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1. INTRODVCTION

It is often useful to look at a quantum-mechanical
problem from both a time-dependent and a station-
ary-state point of view. When a molecule absorbs
radiation, for example, and its electrons are excited
from the ground state there is a time-dependent prob-
lem, since the energy is absorbed when a periodic
electric or magnetic field of a definite frequency acts
on the molecule and sets the electrons oscillating. The
solution of the time-dependent Schrodinger equation
by first-order perturbation theory shows that the oscil-
lations are small except at the "resonant" frequencies
where a transition to an excited state takes place, and
one could infer these frequencies, and the intensities
of the absorption lines from a solution of the time-
dependent equations. Usually, however, one thinks of
the transitions between a set of stationary states with
known energies and wave functions. Both points of view
are precisely equivalent in theory, but in practice,
because electron correlation has important effects on
the wave functions of both ground and excited states,
it is hard to estimate energies or intensities accurately
in the stationary-state approach.

The time-dependent self-consistent held. theory is an
attempt to 6nd an approximate solution of the time-
dependent Schrodinger equation and describes the
absorption of radiation in another way. The periodic
electric field of the light wave sets all the electrons
oscillating, each one in the average field of all the others.
The Coulomb and exchange forces on each electron
vary with time, but apart from this each electron moves
independently of the rest, so that electron correlation
effects are allowed for in a crude but simple way. At
certain frequencies the coupled oscillations have "reso-
nances" which correspond to excited states. The ampli-
tude of the resonance then determines the oscillator
strength and other properties of the transition. This
sort of argument suggests that the time-dependent
Hartree —Fock theory can be a useful alternative ap-
proach to molecular problems, and give a new physical
description of electron correlation effects, including
correlations in the ground state itself.

A time-dependent point of view is also useful in
other ways. For instance in Kubo and Tomita's' theory
of nuclear magnetic relaxation the line shape of a reso-
nance depends on the correlation in time of the Quctua-
tions of the nuclear spin in the ground state of the

' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

sample. In the theory of van der Waals dispersion
forces the interaction energy of two molecules comes
out in terms of their frequency-dependent electric
polarizabilities, ' and the force between two large bodies
depends similarly on their dielectric constants at all
frequencies, or simply their absorption spectra. In this
paper we show that the pair-correlation function of the
electrons in a molecule in its ground state can be de-
duced from a generalized polarizability, 4 and calculate
the polarizability approximately by the time-dependent
Hartree —Fock method. We can also estimate part of
the correlation energy directly from the Hartree —Fock
"resonance frequencies" and use an analogy between
the oscillations of the electrons and a set of coupled
harmonic oscillators' which we have already found
useful for discussing dispersion energies. ' The correla-
tion energy is closely connected with the zero-point
energy of the equivalent oscillators.

Most of the ideas we use are not very new —Dirac~
derived the time-dependent Hartree —Fock equations
in 1930—but they have been elaborated recently in
theories of the dielectric constant of electrons in
metals, ' collective motion in the electron gas, ' ""and
the rotational and vibrational levels of nuclei. " " In
these theories the method is usually called the random-
phase approximation. This paper is then largely a
description of what other people have done. Our aim
is to present the general theorems here as clearly as
possible and discuss particular applications in another
paper. We have thought it worth while to do this
because the method has not been applied before to
molecules, and the important results are scattered in
a large number of papers on different topics.

The main argument is presented in Secs. 2—6. We
begin with the definitions of density operators and
polarizabilities, and show how they are connected with
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the correlation energy (Secs. 2—3) . The time-dependent
Hartree —Fock equations are introduced and used to
calculate the polarizability, either directly (Sec. 4) or
from the "free oscillations" of the Hartree —Fock orbitals
(Sec. 5) . The polarizability depends on a set of vectors
which obey unusual orthogonality conditions, and the
excitation frequencies are the eigenvalues of a non-
Hermitian matrix. They are only real if the Hartree-
Fock wave function of the ground state represents a
true minimum of the energy. Finally (Sec. 6) comes
the connection between zero-point energy and correla-
tion energy.

The second half of the paper fills in some details
including the derivation of the Hartree —Fock equations
from a variational principle (Sec. 8) or from an operator
equation of motion for the density matrix (Sec. 13),
and discusses several theorems which are useful in
applications of the method. They are concerned with
spin effects, stability conditions, sum rules, and a
transformation which connects the oscillations with
the eigenvectors of a IIermiHae matrix.

2. PAIR CORRELATIONS AND POLARIZABILITY

H = grtb*rt, Ub, + ', Q rt, *rtd*r-tort, (cd I
G

I
ab). (2.1)

a, b a, b,c,d

We also introduce one-electron and two-electron density
operators

In this section we use the creation and destruction
operators g,*, qb*, ~ - g„qb, ~ ~ ~ which act on electrons
in a complete set of orthonormal spin-orbitals

."' The Hamiltonian consists of the kinetic and
potential energy U in the field of the fixed nuclei and
the Coulomb interaction G between the electrons, and
takes the form

When any small perturbation of the type

—f(t) = —p.bfb. (t), (2 6)
P

with f an arbitrary one-electron operator, acts on the
electrons it induces small changes in the density which
are described by a linear-response function K(r)'r

p,b(t) —p,b(0) = K,b ,d(r)f.d, (t r) d—r (2. .7)
0

First-order perturbation theory' shows that

K.b:"(r)= (s/&) (Li.b(r), p.d(0) j), (2 g)

pab(~) = Aub:cd(co)fdc(co) p (2.9)

where A (a&), the generalized polarizability, is the
Fourier transform of K(r). A (&o) splits up into Hermi-
tian and anti-Hermitian parts which give rise to dis-
persion and absorption

A (oo) =A'(&o)+iA" (co). (2.10)

Since the operators p b are not Hermitian, but (p,b) o
*=

(pb ) o, the part A' is not Herrnitian in the usual sense,
but A'

b gd (&o) ..=A'd, :b, (co). It is useful to express A'
and 3" in terms of the "transition electron densities"
between the exact stationary states.

(Pob) on(pcd) no (Pcd) on (Pab) no
A ab:cd oo)"'A. tons+co

so the response function is the average value in the
unperturbed ground state of the molecule of the corn-
mutator of the Heisenberg operators p,b(r) and p,d(0).

When the forces are resolved into Fourier components
fb, (co) with time factors e '"' the mean value of p,b has
components

Pab Qb 'ga) Pa.b:cd gc gd gbga (2.2)

Their mean values in any state are the corresponding
components of the one and two-particle density mat-
rices p b and p b.,d of the electrons

b: d(~)
goal (P b)o (P d) o5(~ ~ o)

n

—(p.d)o (p b) o~(co+co o) } (212)

P.b= (P b) P b: d (P.b:.d)

&=p.b~b.+,'p.b,d(cd
I

G
I

a-&),

while the usual Dirac density matrix is

P(V, V') =P.b4. (C) A*(V').

and in this notation the Hamiltonian becomes

(2 5) A A A rE A
Pab:cd PacPbd ~adPbc PbdPac &bcPad) (2.13)

(2 3) Here I stands for the principal value as co approaches
the poles of A'(&o) at +co„o, and the sum does not in-
clude the ground state.

We can infer the pair-correlation function from the
(24) polarizability. e The commutation laws of the rt *, rl,

operators give an operator relation between the one
and two-particle density operators

(From now on we use the summation convention for
repeated suffices in all equations).

'I P. A. M. Dirac, Quantum Mechonics (Clarendon Press,
Oxford, England, 1958), 4th ed."L. D. Landau and E. M. Lifshitz, Qaartlara Mechaajcs
{Pergamon Press, Inc. , London, 1958).

and then matrix multiplication gives the identity

pab:cd= pacpbd 5adpbc+ g (pac) on (pbd) no (2.1&)

rr L. D. Landau and E. M. Lifshitz, Statistical Physics {Perga-
mon Press, Inc. , London, 1958).
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for the mean value in the ground state. This takes a
more familiar form if p(r&) is the ordinary electron
density in space, and 0. (r&, r2) is ',the pair-correlation
function:

~(r~ &2) =p(r~) p(r2)

H'= F'+V.

It can now be shown straightforwardly that

(3.7)

the energy of Cb. We define H'=II (—H) and F'=F
(F ) and then split H' into

The polarizability obeys a sum rule derived from (2.12)

OO

A",b ,d(ic.)du= g(p, b)o„(pcd)ap=I, b;,d, (2.16)

and

F'= gb*gbeb+ (q„*g —1)e

d'ga fib &Gb I «)gdYJc

n.*—nb&~~ I b~)+l &~~ I ~~)

(3.8)

and so the two-particle density matrix becomes

Pab:cd PacPbd badPbc+Iac:bd

Imagine that V is switched on gradually as a perturba-
tion of strength g, with H'(g) =F'+gV. At each stage

(2 17) let the exact wave function be +(g)

This result is exact, but its value depends on how well
we can estimate the polarizability.

H'(g)+(g) =E(g)+(g); (3.10)

E(0) =0, @(0)=Cb, A(0) =n (3.11)
3. SEPARATION OF THE HAMILTONIAN with energy E(g), polarizability A(g), and density

The first approximation to the wave function is the P(g). Differentiation with resPect to g gives

Hartree —Fock single determinant »/~g= &+(g) I
V

I +(g) ), (3»)

in which occupied spin orbitals are labeled m, n,
vacant ones j, k, ~ ~ ~ and all satisfy the Hartree —Fock
equations

and we obtain the correlation energy hE in terms of
the changes Dp= p(g) —p(0):

AE= I ', &«
~
ab) Apa-b, cd(g) —&am

~
bm) Apab(g) I dg.

F4'i= bi/i ~ (3.2)
(3.13)

Il is the one-electron operator de6ned by its matrix
elements

OCC

F.b= U,b+Q (am
~

bm) (3.3)

~mb:bm = 1/Ib (~db~ —~), nb . b= 1/fb(idb +(u). (3.5)

The integrals I b,d then lead to the usual pair correla-
tion function

Pab: cd PacPbd PadPbc (3.6)

of a single determinant, and the mean value of the
energy (2.4) now includes exchange terms.

To 6nd a more accurate expression for the correlation
function and energy we split up the Hamiltonian into
F and a remainder V, and measure all energies from

and we have introduced antisymmetrized electron re-
pulsion integrals

&~b I
«)= &~b

I
G

I
«)—&~b

I
G

I «) (3 4)

The complete set a, b c ~ ~ ~ are now taken to be the
Har tree —Fock orbitals.

In this approximation the excitation energy for a
single electron jump is (eb —b ) and the polarizability
n(~) has only two nonvanishing components

nE'= ,' Ap'ab, cd(g) (cd ) ab) dg. -
0

(3.15)

Now in (2.17) the two-particle density matrix p,b, ,d

depends on the one-particle one, and so the total change
APab:cd dePendS On ~Pab aS Well aS On ~P'ab:cd. SO dOeS

the total correlation energy AK Ap' and AE' therefore
represent that part of the pair-correlation function and
correlation energy which depends on the polarizability,
and under certain conditions they give the whole eGect.
Thus in an electron gas the density is uniform and
(3.15) is the exact correlation energy. d

In this paper we assume that Dp' and AE' represent
the approximate correlation function and correlation

This is exact, provided that one can calculate the
density changes exactly as a function of g.

Let us now 'assume that the difference between the
exact polarizability A (g, cd) and the approximate value
n(~) has been calculated. . This difference is called
AA(g, o&), and its integral (2.16) over all frequencies
called AI,b,d. We then de6ne the quantities Ap' and
AE' by the relations

QO

hp' b.d= AA", :bd(g, , io) d—ho=BI„,bd (3.14)
0
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i%i(rip /dt) =F(t)P„=+F. (t)P,. (4.2)

The operator F(t) involves the time in two ways.
There may be a variable potential U(t) and there are
also changes in the Coulomb and exchange fields as
the electrons move. This solution would be wrong,
because in a stationary state each orbital would have
a time factor exp ( ie t/fi)—and C, (l) itself a factor
corresponding to the total energy

el+ps+ ' ' 'eN (P ) (JV)+ (G) (4 3)

which includes the electron repulsion energy twice.
The difhculty is easily cured by taking the wave
function to be

c'(l) =c (t) exp Lip(t)/fb7,

with a phase factor

(4 4)

V(l) = (G(l) ) «, (4.5)

while the orbitals still obey the Eqs. (4.2). For many
purposes the phase factor is unimportant and one can
use the uncorrected wave function C(t). The proof of
these results uses a time-dependent variational prin-
ciple" and is given in Sec. 8.

We now calculate the polarizability A(ro) directly
from the "unperturbed" polarizability a(co) of the
electrons in the Hartree —Fock ground state Co. The
essential point is that the operator F(t) in (4.2) de-
pends on the electron density

P.b U.b+ (ad
I
bc——)p,d. (4.6)

Suppose that a small external force f(t) acts. The-
density p changes linearly so that P(l) differs slightly
from its steady value Fo, and the orbitals are solutions
of

@(4/dl) = I:P(l) —f(l) 7''= I:Po—f(l) 74' (4 7)

» J. Frenkel, S'ave Mechanics, Advanced Genera/ Theory
(Clarendon Press, Oxford, England, 1934)„p.435.

energy when AA(g, po) has been calculated by the
time-dependent Hartree —Fock method. Certainly if V
is regarded as a small perturbation Ap b is of order g'
and its contribution to AE is of order g', while
Ap' b:,p~ g and AE'~ g'. Thus it may be permissible to
treat AE' as the main part of the correlation energy.

4. CALCULATION OF THE POLARIZABILITY

A reasonable approximate solution to the time-
dependent 'Schrodinger equation for E electrons would
seem to be a single determinant

C'(l)
I I $1(l) iJ/s (l) '1$~ (l) 'le+ (if)

I I (4.1)

in which each spin-orbital varies with time according
to the Hartree —Fock equations"

A= n —nvA (4.11)

and find an iterative solution for A in powers of v

A= n —nvn+ nvnvn —~ ~ ~ . (4.12)

This is simply the series expansion of the exact relation

A '= e '+v. (4.13)

Here A and rr have to be interpreted as matrices with
rows and columns labeled by the pairs of electrons
ab, cd. If v is small (4.12) is a useful expansion; but if
it is large one needs to find a direct solution of (4.13),
and the easiest way is by considering the time-depend-
ent wave functions f(t), as we do in the next section.

A(po) has poles at frequencies where the determinant
of (n '+v) vanishes, that is where "free oscillations"
of the density matrix are possible without any external
force. They approximate true excitation frequencies
of the molecule. Equations (4.12) and (4.13) already
give a closed form for A which is used in Sec. 6 to find
the correlation energy.

S. FREE AND FORCED OSCILLATIONS

When a small perturbation —f(l) acts on the elec-
trons in their ground state Cp each of the orbitals ll

alters slightly and the wave function, to first order in f,
becomes C (t) exp (—iEpt/fi), with

C (t) =C p+ QC b (l) C (qri~k), (5.1)
m)k

where C(rrb—+k) is the state in which one electron
has jumped from f into fb. The Hartree —Fock equa-
tions of motion (4.2) give

N(dC„b/dt) = (eb—e„)C b+ (kri I mj )C;
+ &k& I

m~)C.,* f (l)b-
ifi(dC„b*/dh) —= (eb —e ) C b*+(rrbri I kj )C;

+ (rrbj I krb)C»* f b(t) (5.2—)

According to (4.7) we can say that the motion of le
is the same to first order as if F remained fixed at F~
but a modified effective external force f—(t) acted. Thus
the change of density under a periodic force is expressed
either in terms of 2 (co) and the real force or of n(ro)
and f

p.b(~) =~.b:.d(~)f" (~) =~.b:.d(~)fd. (~) (4 g)

Lwhen re= 0 p,b(0) must be understood as the difference
between p, b and its unperturbed average value7. The
relation between f and f, from (4.6) is

f-(~) =f-(~) &ve
—

I Pr)p-(~) (4.9)

and since it must be true whatever the form of f, we
obtain a relation between n and A

+ab;cd crab:cd rxab:oq (ge I pr )+ra:cd (4.10)

In a simplified notation we could write this symbolically
as
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tel(to. —top) f (Xs
l
X )—(Ys

l
Y ) I =0, (5.9)

e—
trot+ p' e e+uat

e e+ttt t+ It' e ttt—t
so that the vectors are orthogonal with an indefinite
metric. They must also be normalized. Usually A. is a
positive definite Hermitian matrix, and the left-hand
side of (5.8) is positive and real when n= P. This proves
that the frequencies are all real and allows us to choose
the vectors so that

(5 3)

owing to the fact that both C and C* appear in the
equation of motion for C. Substitution into (5.2) leads
to equations for the X and F coefficients

&»-s= (e~—s-)&-s+(&n I mj )X.;
(X'IX )—(Y'I Y )=~b-s (5.10)

+(~& l
~~&I „,-f, (~)

for positive and negative or, respectively.
The vectors belonging to —or are in one sense

redundant because of (5.7), but they are needed to
make up the complete set of double vectors

l X, Y ).
The completeness relations are unusual too:

g l
X-, Y-)(X-, —Y-

l
=1 (5.11)

—flto I' s= (et, —e ) I;.t,+ (tsttt
l kj )&.;

+(m~ l uN&v. ,—f..(~). (5.4)

The solutions of these equations correspond to forced
oscillations, but when f=0 free oscillations can occur
at certain frequencies or . We first study the free oscilla-
tions.

It is useful to adopt a double vector notation with
bras and kets, so that

l X, Y) stands for the set of
coefficients X t„ I' s and (X, Y

l
for X s*, T s~. The

equation of motion (5.4) for free oscillations is then
written

01

Qlx, Y)(X, —Y
l

0.+0

—
I
Y*,x* )(Y* —X*

I
=1 (5»)

for the coeffrcients, " and if the force oscillates with a Now interchange n and P and take the complex con-
time factor e '"' the C's contain terms with factors of jugate, to show that
both e+'"'

irtto
l X, —Y )=A.

l
X",Y &, (5.5)

where A. is a Hermitian matrix made up of 2&2 sub-
matrices. Each pair of excitations mk, ej gives rise to
one submatrix

These orthogonality and completeness theorems are
altered if there is a zero frequency. "

The free oscillation solutions solve the problem of
the forced oscillations at any frequency. We define a
vector

(es —e ) b„t„„,+(ktt
l
tttj) (kj l

tttn) It:m Or r 772k (5.13)

(es—e„)b„s,„,+(mj l ktt)

(5.6)

and the four elements belong to the components X*X,
I'*I', X*I', and I'*X of the vectors.

The or are not eigenvalues of A. and the vectors
l
X~, Y~& are not orthogonal in the usual sense. The

oscillations come in pairs at or and —or with solutions

lX, Y ), to and
l
Y*,X* ), —to (5.7)

and in nuclei zero frequencies may occur." They do
not normally occur in molecules unless the Hartree-
Fock ground state is degenerate or approaching insta-
bility (Sec. 9), and we assume in this paper that all
frequencies are nonzero.

The vectors obey an orthogonality relation. To prove
it one takes the scalar product of (5.5) with another
solution (Xe, Ys I

and write Eq. (5.4) as

A
l X, —Y)=w

l X, Y)—l f, f*). (5.14)

The solution is expanded in terms of the
l X, Y ) at

both positive and negative frequencies, to give

Since the Fourier components of the density matrix are

or in vector notation

I e e*&= I»Y& (5.17)

we can deduce the polarizability matrix A,s,,e(to). Its
only nonvanishing elements are those where each pair
ab, cd is of the type tttk or kttt. We rewrite (5.15) as a
sum over positive frequencies only, using (5.7) and
find that

&x' Y'l~lx Y &=&~-I(x'IX &
—&Y'IY)I 1 lx-, Y-&(x-, Y-l

(5.8) ft a&o (tom —to)
I S, e*&=-Z

"D. J. Thouless, Quttntum Mecttonics of Mony Body Systems-
(Academic Press Inc. , New York, 1961)."D.J. Thouless, Nucl. Phys. 22, 78 (1961),

l
Y*-,X*-)(Y*-,X*-

l (5.18)
glott +to
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The expression in brackets is simply the polarizability
A as an operator in bra and ket notation, or rather it
is the dispersive part A'(co) when &o is not a resonance
frequency. The absorptive part A" (co) is given by

A"(co)=(m/ft)Qf f X,Y )(X,Y
) B(~—co.)

a+0

zero-point energy is

W(g) = l&Z~-(g),
n&0

W (0) = -',ftQcos„. (6.1)

Our theorem is that the part hE' of the correlation
energy (3.15) is

—
i
Y*-,X*.) (Y*-,X*-

i B(~+~.) I. (5.19) ~E'= ,'$&W —(B—W/Bg), o)= (6.2)

I=giX",Y )(X,Y f.
a&0

(5.20)

For example I;„.. ~ is the sum of X; X ~~ . A simpler
way to interpret these results comes from (2.11).We
regard each resonance co as a transition to a Qctitious
excited state 0., to which the transition density is

The free oscillation solutions thus give complete in-
formation about the polarizability, and the integrals
I„..~~ are contained in the expression

', gP-. fi~—,„(m—k
i km)]. (6.3)

We first require a theorem about the way the oscilla-
tions change when the matrix A. in (5.5) is altered by
a small amount 8A., so that the vectors and frequencies
alter by f

BX~, BY ) and Boo . Extracting the first-order
terms

u.
i
X-, Y-)+~

i
BX-, BY-)

=ft Bco.
i X, —Y )+A,co.

t BX, —BY ) (6.4)
(pkm) Oa Xms (ptns) oa Fmk (5.21)

from (5.5) and expanding i
BX~, BY~) in terms of the

so that any one-electron operator M has the "matrix unperturbed vectors, we 6nd
element"

Mp =MI, *X s"+M„s*F s = (M, M*
i X,Y"). and

It, Bco = W (X, Y
i

Bh.
i X,Y ) (6.5)

(5.22)

For example if M is the dipole moment operator i Ms, i'
gives the intensity of absorption of radiation at the
resonance.

The presence of M„s in (5.22) is expected, since the
electron makes a transition from ns to k, but the term
MI, associated with F ~ represents the reverse proc-
ess. It reQects the presence of doubly excited elec-
tronic configurations in the true ground state which
are not included in Co. H we had left out the F terms
in (5.4) the results would be exactly equivalent to an
ordinary stationary state calculation of Mo in which
Co is the ground state and the excited states C are
"best" linear combinations of the C (m—k), chosen to
give stationary values to the total energy.

6. CORRELATION ENERGY

The correlation energy of the electron gas in the
random-phase approximation" " comes out as the
zero-point energy of a set of harmonic oscillators. So
does the van der Waals energy of a group of atoms in
the time-dependent Hartree theory. ' A modified theo-
rem holds here.

Let us imagine, as in Sec. 3, that the electron inter-
action gV is switched on, so that the resonance fre-
quencies &o (g) gradually alter from their initial values
~~ . Regarded as a set of harmonic oscillators, their

XP, YP XP, YP
i
BX-, BY-)=g~ ' '

BX iX., Y.).
p fc(cv cop)—

(6.6)

The signs are the signs of co in (6.5) and &op in (6.6).
The variation of the resonance frequencies comes

from this if we substitute BA/Bg for BA..

(krt i mj) (kj i mrt) X„,'
=[X,s*, I'„s*]

Bg (mn ( kj) (mji krt) F.;
(6.'l)

This is to be compared with the exact relation

BE/Bg= ,'(cd
i ab) fI..:sa(g-) —I...sa(0) I, (6.9)

which follows from (3.14) and (3.15) . Both expressions
contain each distinct electron repulsion integral four
times. They only differ by a factor of two and the fact
that the difference I (g) —I(0) appears in (6.9) .
Evidently

and the sum over all frequencies leads through (5.20)
to a sum of the integrals I., sa(g)

BW/Bg=-', f (k i mq)I;. ,„,+(kq i m~)I,„.,
+ (mrt f kj )I„;,„&+(mj f kn)I.;:& I. (6.8)

"K. Sawada, K. A. Brueckner, N. I'ukuda, and R. Brout,
Phys. Rev. 108, S07 (1957).

~ D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

BE BS' BS'
(6.10)
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which is equivalent to (6.2). When g=0 the oscillation
with frequency Ml, has X &=1, I 1,=0, and substitu-
tion of these modes into (6.7) gives the value of
(&W/&g) 0 in (6.3).

In a Hartree calculation without exchange one would
need to take the correlation energy equal to the whole
zero-point energy (6.2) without the factor of one-half.
The question whether it is best to neglect exchange and
use the whole zero-point energy or to put it in and use
half raises some complicated issues. As the electrons
are indistinguishable a doubly excited state (mn-+kj)
may be likened to two single-particle oscillations in two
ways, either (m-+k) and (n~j) or (m-+j) and (n~k).
This appears to be the reason why the correlation
energy here is only half the total zero-point energy.

In our previous work on distinguishable systems' we

found the correlation energy by another method, as an
integral" of the polarizability at imaginary frequencies,
where it has no singularities. Here the analogous
integral comes from (3.14)

correlation function further in this paper as the results
follow from (5.20) in a straightforward way and we

plan to examine the details in a later paper on the two-

electron problem.
This section completes our main argument, and we

now pass on to fill in some of the details.

O'. SPIN DEGENERACY

The typical closed shell molecule has all its electrons

paired, with two in each space orbital P (r). The
orbitals @ and pI, are associated with four different

electron oscillations, depending on the spin. They
correspond to an excitation into either the singlet or

triplet excited state formed from the transitions

(m—+k). We use the notation m, m' to label electrons
in p with n and P spins.

The time-dependent wave function of the oscillating

pair of electrons m, m' is the determinant

dg d$(c& I ab) AA...~, (g, i&), (6.11)
4~ o

and gives a useful power series expansion. In the nota-
tion of (4.12) the integrand is the trace of a matrix

&&(4 '+c ~A+c I A') ll (71)

When the coefficients C I. are substituted into (5.4)
the oscillations separate out into one singlet with

dkT Ll( v)' —-'( v)'+" j4x o

(6 12) (1/~2) {I
X I, I' I, &+ I

X . I, , l' I & }= I

'* I, 'y I, &

(7.2)

and three degenerate triplet components corresponding
to the spin changes 65,=1, 0, —1. Their coefficients
are

dgTr flog (1+av) —avj.
4x o

(6.13) I& I, 1'a&

Here we have integrated each term of the series (4.12)
with respect to g. The integral of the logarithm over
imaginary frequencies gives, as before, half the change
of zero-point energy, ' while the part O.v gives the cor-
rection (BW/Bg) 0.

The first term of the series (6.13) gives exactly the
same second-order correlation energy as ordinary
second-order stationary state perturbation theory with
doubly excited configurations. For the integral

,~~l (kj I
mn) I2

km jn ~ktn+~j n
(6.15)

The first-order correction to the pair-correlation func-
tion also agrees with ordinary perturbation theory, but
higher terms in both the energy and the correlation
function are generally diGerent. We do not discuss the

d)nntt. gg(i)) (df I
Ce)II f..gg(I() (kk I ga& (6.14)

X Q

reduces straightforwardly to

IXI', 1' I&
(7.3)

'f I„'f I=S (f a~f I ), (7.4)

the equations of motion for the singlet coefficients 'x, 'y

are

A~&„,= (~,—~„)&,+L2(kn I mj) —(kn I jm) jx„,

yl 2(kj I mn) —(kj I nm) &y.j—'f. ,

~y.~= (" ~-)y-~+V—(mn I kj) (mn
I jk) j*I

+L2 (mj I kn) —(mj I nk) jy —'f & (7 5)

A spin-independent external force f(/) induces only
singlet oscillations, but a spin-dependent one triplets.
For example, if we split the matrix elements of f into
parts
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while the corresponding triplet state ones are

Wx, = (e,—e.)x,—(kn I jm) x„;

The Schrodinger equation

N(ae/at) =m (8.1)
—(kj I nm)y„; —'fp,

Mymll;= (ek eg~) y~i —(mn I kj )x„
—(mj I nk)y. , 'f—p. (7.6)

Here, the symbol (ab I cd) stands for the ordinary
electron repulsion integral (ab I

G
I cd) over spinless

orbitals ab, cd and is not antisymmetrized. Electrons
of opposite spin move in phase or out of phase with
one another in the two types of oscillation.

For example, if M is a function only of the space
coordinates of the electron the equivalent matrix ele-
ments Mo in (5.22) vanish for all triplets and have
the value

Me~=02(M~M*
I
'x 'y~) (7 7)

for the singlets. Conversely, if M is an odd function of
the spin component S, it has triplet transition elements

H(M, M*I'x, 'y ) (7.8)

in the oscillation with AS,=O. The polarizability also
separates in an obvious way. A spin-independent force
'f(t) causes oscillations of the charge density q which
are proportional to a space polarizability 'A (&o)

while the spin polarizability gives the spin density
induced by a spin-dependent force. The space polar-
izability

2 I
'z 'y)&'z 'y

I
I'y* 'z*)('y'~(~)=- Z ' ' +

~ a&O ooo+M

(7.10)

comes from (5.18) and the spin one is completely
analogous.

The time-dependent Hartree —Fock theory agrees
nicely with the stationary state picture of the excited
states in a closed shell molecule and gives the correct
spin properties. The frequencies in (7.5) and (7.6)
also agree to first order with the stationary-state energy

differences.

On the other hand, the Hartree —Fock ground
state of an open shell usually violates spin and sym-
metry conservation laws. The time-dependent theory
also runs into difhculties in this case. It is important
that the time-dependent equations for the small oscilla-
tions are linear, unlike the exact Hartree —Fock equa-
tions, so that the oscillations have all the symmetry
properties of the ground-state Hartree —Pock operator
pp

8. VARIATIONAL PRINCIPLES

governs the evolution of the wave function from its
given value @(t) at time t to its value%'(t) +r(a@/at)
at a slightly later time t+r. In the variational principle
we suppose that at all times @(t) has some particular
approximate form such as (4.1) and try at each instant
to estimate the "best" value of M /at which is consistent
with the approximation. Let us suppose that + has been
found at a particular instant t, but M/at is unknown.
The wave function at time t+r close to t then is of the
form

e(t+ r) =e(t) —(i/fs) er, (8 2)

where 8 is an unknown function, independent of v. and
arbitrary except for the restriction that +(t+r) must
have the particular approximate form. 8 is found by
minimizing the space integral

I H+ 8 I'do, — (8.3)

which is equivalent to the condition that the real part

Re 58* II% —8 de=0 (8.4)

vanishes for all allowed variations of 8. One cannot
conclude from (8.3) that the whole of the integral (8.4)
vanishes, as Frenkel postulates, because it is not per-
missible here to treat 88 and 58* as independent
variables. Although (8.3) is a good variational principle
because it leads to a true minimum in every case, it
seems that Frenkel's version is incomplete.

If 8 is completely unrestricted (8.3) just gives the
Schrodinger equation (8.1). Otherwise it gives an
approximate form. Thus if + is formed from linear
combinations C„(t)C„of fixed functions C„we find that
the coeKcients derived from (8.4) satisfy

i5(dC„/dt) =H C (85)

at each instant of time.
To prove the time-dependent Hartree —I ock equa-

tions let us suppose that each orbital has the form

P„(t+r)=P (t) —(i/A)e r (8.6)

at times close to t The occupied . orbitals f are not
necessarily solutions of the stationary state Hartree-
Fock equations, but may be any orthogonal set of
functions. It is however still possible to dehne the
operator P, and to complete the orbitals with a set of
arbitrary orthogonal "excited" functions P&. The un-
known function 8 is expanded in terms of both occupied
and excited orbitals

In this section we derive the time-dependent Hartree-
Fock equations from a variational principle. " em= Q+~m$i) (8.7)
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=
I Qa ]C+gas„C (m—+k), (8.8)

including all the singly excited configurations. The
matrix elements of the Hamiltonian between these
functions are

and then the 8 corresponding to the determinant C (t)
is a sum of determinants

e=Z -lilt "4- "lt II+K -II@" lt " 4 II

9. STABILITY CONDITIONS

The Hartree —Fock ground state is only stable if the
single determinant C(t) in which P is altered a little
to (lt +C &pi,) always has a higher mean energy than
C'p. To calculate this energy to second order in C we
write C (t) as a sum of determinants

C (t) = Cp+ C iC (m~k) +-t2C„i,C„,C. (mts +kj)—+ ~,
(9 1)

(~ I H I ~)= (H) = (~&- (G&,

(C (m~k) I
H I C )=~... (8.9) including both singly and doubly excited con6gura-

tions, and then the energy shift is

C„,*C„s(C(rs~j) I
H —Ep I

C (m—+k) )
and the variation principle gives the coefFicients as

ga = QF (G). —(8.10)

Since the total wave function C (t) is a product of the
f 's only the sum of a is relevant, and the coeKcients
are not completely determined. A satisfactory solution
is clearly obtained by calculating the orbitals from the
time-dependent Hartree —Fock equations, (4.2) and
using the phase factor (4.4).

It is unnecessary to impose orthogonality as a con-
straint in the variations because Il is a Hermitian
operator and orthogonality is preserved by the equa-
tions of motion. Dirac~ has shown too that if H is inde-
pendent of time then the average energy (H) is con-
served throughout the motion, since it commutes with
F. Indeed the mean value of any operator, " such as
momentum or angular momentum, which commutes
with both parts U and G of the Hamiltonian is con-
served.

A second variational principle due to Thouless' is
useful for ending the free oscillations. It states that
the resonance frequencies are those at which the
quantity

-,'(c, c*lx I c, c*) (9.3)

of the vector
I C, C*& with the matrix%. . If the ground

state is stable the "stability matrix" A. must be posi-
tive definite, " and all its eigenvalues X are positive (in
some cases a zero value may occur) . This is important,
because, as we have already seen, the resonance fre-
quencies are all real if A. is positive definite. There
must always be some single determinant wave function
with lowest energy (though it may be degenerate) and
it gives a set of real oscillation frequencies (though
some may be zero) .

CO. SUM RULES

An important class of sum rules follow from matrix
multiplication and the commutation relations of opera-
tors.

+-,'C,C.;(C, IHIC(m~ kj) &

+-,'C i,*C;*(C(mn~kj) I
H

I C'o) (9 2)

Substitution of the approximate matrix elements into
this expression leads to a quadratic form in the C's
and C*'s which is simply the double scalar product

l~l =(»YI+IX, Y&/I &» —YI»Y&l (811) 2+IMo I'(E Eo)=(+oIIM, IH, —M]]I@o&. (10.1)

is stationary for all variations of the vector
I X, Y).

One expands I X, Y) as a sum

I X, Y)= QC I X, Y ) (8.12)

Here +p is the exact ground. -state wave function of the
system. For example if M is the coordinate q of an
electron then

and then uses (5.8) to show that

I &~
I
=2 I c- I'

I ~- I/I Z I c- I'—Z I c- I'] (8 13)

LV, L» V]]=&'/m (10.2)

a)p egp

"D. J. Thouless and J. G. Valatint Nucl. Phys. 31, 211 (1962).

This is stationary for the vectors
I X, Y ), and one

may use the variation principle to derive the equations
of motion (5.5). It is also possible to set an upper
limit to the magnitude of the lowest oscillation fre-
quency, since any trial value of (8.11) must give

and one 6nds the usual oscillator strength sum rule

gfp = (2m/fP) g I q~ I' (E„—Ep) = 1. (10.3)

Thouless" has shown that these sum rules also hold in
the time-dependent Hartree —Fock theory if M is any
ore-electro' operator, provided that the excitation
energies are taken to be resonances 5~ and the ficti-
tious matrix elements Mp from (5.22) are used in the
sum. The double commutator is evaluated in Cp, the
Hartree —Fock ground state.
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We first write the matrix element as

Mp.= (M M*
I
X Y )= (M, —M*

I X, —Y ),

(10.4)
so that the left-hand side of (10.1) becomes

Dr, ——X(Cg, Cg*l C, C*). (11.4)

We now transform the equations of motion (5.2) by
expanding the coefficients C p(t) as a sum

I C, C*)=D~
I Cx, 6,*) (113)

where

a&0

IMp«l fbi'«

=Z~(M —M*IA. IX Y )(X —Y IM, —M*)

A generalized force is also introduced

f&(t)=(Cx G,*l f f*).
The new equations of motion then become

i'(dD Jdt) = (Dr, —fi) Gg„,

(11.5)

(11.6)

=(M, —M*IA. IM, —M*). (10.5) where Gz„ is a pure imaginary Hermitian matrix

Here we have used (5.5) and the completeness relations
(5.11).The right-hand side breaks up into matrix ele-
ments of the Hamiltonian between excited configura-
tions:

(C p I LM, t;H Mj I Cp)

G,„=at l (C„ I C, )—(C, I C„)}= -G,„* (».7)

and D„and f„are always real. The free oscillation
frequencies co are now the real eigenvalues of G and
occur in pairs +or, —co with the eigenvectors

Dp, +(o and Dg*«, —or,
=(C'ol2MHM MH HM—IC'p)

=2M;M p*(C(~~j) IH I
C'(m-+h) )

(compare 5.7) which we normalize so that

QDg "D),~ Bplco—— (11.9)
—M.,M„,(C( jh) I H

I C»&

—M „r*M„&*(C»I
H

I
C (rime k) ). (10.6)

The same matrix elements appear in (9.2), and the
sum easily reduces to (10.5). If M=q the double com-
mutator is a pure number, and so the oscillator sum rule

Under a periodic external f'orce the solution of (11.6)
is found by expanding D& as a sum of vectors Dz,
and its Fourier components are

D a jg 4a D @a D a

+ " f. =».(~)fo-
A «&p M«or G)«+M

gfp-= (2~/rr ) p I vp- I' or-=1 (10.7) (11.10)
a&0 a)0

11. FREQVENCIES AS EIGENVALVES

It is useful to transform the equations of motion for
the free oscillations so that the vectors

I X, Y«) are
the eigenvectors and the frequencies co are the eigen-
values of a Hermitian matrix. This can only be done
when the matrix A. is positive definite (Sec. 9), or has
zero eigenvalues, and we use an expansion in the eigen-
vectors of A..

These vectors are double vectors of the form

I Cz, Cz*) and satisfy the equations

~
I C„C,*)= x

I C„C,*).

(we use X both as the eigenvalue and as a label for the
vector). They define the variations of the function Cp

which make the energy (9.3) stationary. They form a
complete orthonormal set, and we normalize them so
that

l I (C~ I C, )+(C~* I C,*)}= br „, X)0. (11.2)

holds exactly in the time-dependent Har tree —Fock
theory.

IX, Y )=DelC)„C~*)

evidently represent the free oscillations.

(11.12)

12. REAL AND IMAGINARY FORCES

The Hartree —Fock orbitals of a molecule can always
be made real unless the ground state is degenerate; so
the stability matrix A. and the vectors

I X,Y ) are
real too. We can classify the eigenvectors of A. into a
real set IC&+, Cz+) and a pure imaginary set

I
C~-, —C~ ). These vectors are solutions of

(ep —e )C p, x+

+L(h~ I ~j)~(hj I ~~)jC..,.+=~C, ,+ (12.1).

Here II&„ is a generalized polarizability. The
I X, Y)

coefficients themselves, according to (11.3) are the
Fourier components of

I C, C*) at frequency co

I X, Y)=
I C~, C.*)»o(~) (C. C.* I I

f f*) (11»)
Comparing this with (5.17) we see that the polar-
izability A(co) has been expressed in terms of the
quantities D&, which are eigenvectors of a Hermitian
matrix, and that the vectors
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If A. is a 2vX2v matrix there are v vectors of each type.
This makes the equations of motion (11.6) very simple
because all the + + and ——elements of the matrix
Gq„vanish, and the equations for the free oscillations
take the form

SM Dp+= Dy G) II, +~

AG0 DIJt =Dy Gyp,

i'(ep.b/at) =Lp.b. 8), (13.4)

and the commutation laws lead to an exact equation of
motion in terms of one- and two-particle operators

This proof depends on the variational principle (8.4)
for the wave function, but another approach' only uses
density operators. The Heisenberg equation of motion
of the operator p, b

Accordingly one can eliminate half the variables and
solve for (v' I'fb (dpab/~t) ~arprb Par f/rb

(Ro)' D„+=Db+(G') I„++ (12.3) +2 (1~ I Pr)pnr:qb qpartnq(Pg I &r)& (13'5)
as the eigenvalues of a matrix with only v rows. The
vectors Dz+ are real and Dz are imaginary, so that the
polarizability II&„has real + + or ——terms, but
imaginary cross terms. The plus and minus parts
describe the effects of external forces which are even
or odd under time reversal, as for example are electric
and magnetic fields. This is because the generalized
component fb+ comes from the real part of the matrix
elements f„b, and fb from the imaginary part. Thus
for a real force with fb =0 the equation of motion for
D~+ 1S

(fb ') D.'= L&b+ fb+)(G') I—,++, (12 4)

and looks like a forced harmonic oscillator. The matrix
elements

(G') b„++=4xtI (C„+
~

Cr )v'(Cr -(Cb+)-(12.5)

can be reduced a little by using the fact that C~+ are
solutions of (12.1), and it is quite easy to set up the
eigenvalue equation.

13. DIRAC'S DENSITY MATRIX

The whole time-dependent Hartree —Fock approxi-
mation can be developed in terms of density matrices
without using wave functions at all."This approach
depends on the fact that to every time-dependent wave
function C (t) which is a single determinant there corre-
sponds a unique Dirac density operator

p(t) =g ~
m(t) ) (m(t) ~, (13.1)

or more fully

ih(dp/dt) =PF(t), p), (13.2)

@(dp b/dt) =
I f1 P) t+ &~C I rp)p-p. b (rV I &p)P Pnq—

(13.3)

which has the properties p'= p and Tr t p)=1V. All the
information contained in the wave function can also be
deduced from the Dirac density. The matrix elements
(u

~ p ) ti)= p, b are the same as the components of the
one-particle density matrix defined in (2.3), and their
equation of motionr follows directly from (4.2) and
(4.6)

which also holds for their mean values. The Hartree-
Fock approximation consists in the assumption that

Pab:cd PacPbd PadPbc p (13.6)

and when this is substituted into (13.5) we again find
the equations of motion (13.2). The time-dependent
Hartree —Fock method thus appears as essentially a
density matrix theory.

14. DISCUSSION

We have done the following things in this paper:

(i) Shown how the density Quctuations in the ground
state of a molecule, or the polarizability, give informa-
tion about the one-electron excited states, the pair
correlation function, and the energy of the ground state.

(ii) Used the time-dependent Hartree —Fock equa-
tions to calculate the polarizability, and describe the
formal properties of the free oscillation solutions. The
equations can be derived from a variation principle.

(iii) Proved an important part of the correlation
energy to be equal to half the zero-point energy of the
oscillations. When the coupling between electrons is
weak the pair correlation function agrees with conven-
tional perturbation theory to first order, and the energy
up to second order.

(iv) Described spin degeneracy, sum rules, and other
details of the method.

(v) Obtained the main results directly from Dirac's
density matrix without using wave functions.

We intend to make detailed quantitative calculations
on molecules later and compare the results with other
theories.

The methods of this paper have the advantage that
they give a simple physical description of correlation
effects in both the ground and excited states. They do
not have the limitations of perturbation methods or
the physical vagueness of some other approximations,
and the results agree with perturbation theory in the
weak coupling limit. The method also has built-in
danger signals because the amplitude of an oscillation
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often becomes large and unstable when the theory is
applied in a wrong way.

The method is a density matrix theory in the sense
that it calculates matrix elements rather than wave
functions. Indeed one cannot in general construct
stationary-state wave functions for a set of electrons
which would lead to the same oscillation frequencies
and matrix elements as the time-dependent Hartree-
Fock theory. This can lead to important incon-
sistencies'4 in the results. Another limitation is that
one treats the electrons as if their polarization by a
6nite force were perfectly linear, like a harmonic
oscillator. In the language of perturbation theory one
includes the linear effects to all orders, but leaves out
other classes of terms completely. Only a quantitative
" M. A, Ball and A. D. McLachlan, Mol. Phys. (to be

pub1ished) .

calculation can decide whether this limitation is im-
portant.

The molecular problems for which the methods seem
most suited are weak interactions like van der Waals
forces, or situations where configurational mixing is an
impracticable approach because of the large number of
interacting electrons. Examples are the excited states
of large conjugated molecules, or excitons in molecular
crystals. The theory would be particularly useful for
calculating the intensities of the transitions.
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