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1. THE LANDAU EQUATIONS

The terms of the perturbation series for a given col-
lision amplitude are of the form

F(z) =lim [ &ty - d] [ (g2 —mi+io =, (L.1)

>0+ =1

where ¢; is the four-momentum of the particle of mass
mqi, which corresponds to the ith internal line of a
Feynman diagram: ¢; depends linearly, via the law of
conservation of energy momentum at each vertex, on
a set of independent internal momenta %; and on the
external momenta p;. The symbol z summarizes a total
set of independent scalar variables z; which can be
constructed in an invariant manner from the vectors p;.

The complications of charge and spin dependence
have been ignored on the grounds that the factors
which these considerations introduce, occurring as they
do in the numerator of the integrand, cannot increase
the number of singularities of the function F(z). This
means that we have discarded important selection
rules which we require to impose artificially when nec-
essary. However, as the perturbation approach is in-
tended as a model for a more sophisticated theory,
simplicity is of primary importance.

By means of a transformation due to Feynman we
obtain

F(3) =lim | @%;- - -d*k,

>0+

/1doq- cedand(1—= 2 M)
0 d(q: «, 6)” ,(12)

where
(g, a, €) =D ai(gi—m+tie).
=1

The symbols ¢ and « summarize, respectively, the
variables ¢; and a;.

In dispersion theory, we wish to locate the singu-
larities of the functions F(z). The sets of values of
the variables z;, both real and complex, which corre-
spond to possible singularities of F(z) are called the
Landau curves, and may be obtained by processes of
elimination from a set of algebraic equations first writ-
ten down by Landau.!

1 L. D. Landau, Nucl. Phys. 13, 181 (1959).

The Landau equations for an uncontracted diagram
are

iaz:l,

> (1.3)
gl=ms, (1.4)
2 =0, (1.5)

together with equations which express the law of
conservation of four-momentum at each vertex. There
exists an equation of the type (1.4) corresponding to
each internal line of the diagram. There are / equations
of the type (1.5), where the summations are taken
round independent closed loops of the diagram.

Equivalent criteria have also been given by Polking-
horne and Screaton.? They proceed by first performing
the % integrations to obtain

. 1da1---dan6(1—2/=”1ai)f(a n, 1)
F =1 / ) )
(#) =lim 0 D(z, a, e) %

Their philosophy is to consider the multiple integral
as an integral over a “contour” 4 in « space (i.e., in
the space of the variables «;). At any point z there
exists a set of points a(z) at which D(z, «, €) vanishes,
and as z is varied the analytic continuation of F(z) is
obtained by deforming 4 to avoid the zeros of D. In
this way we obtain the singularities of F(2) when such
deformations become impossible, i.e., when either two
zeros of D pinch the contour between them (Fig. 1)
or a zero of D moves up to the fixed boundary of the
contour (Fig. 2). The equations of Polkinghorne and
Screaton which express these two alternatives are, re-
spectively,

. (1.6)

>0+

OD/dey;=0  i=1,

--c,r

t=r+1, 00 m,

a,;=0 (1.7)
for any partition of the a,; into classes of # and n—r
members, 0<r<#. When r=#» we talk of the resulting
Landau curve as the leading curve, and when <# of a
lower-order curve. Each partition of the a,; in (1.7)
corresponds to a complete set of Landau equations
with nonzero a,,. The leading curve gives the singulari-
ties belonging to the uncontracted Feynman graph
while the lower-order curves correspond to the con-
tracted diagrams.

? J. C. Polkinghorne and G. R. Screaton, (a) Nuove Cimento
15, 289 (1960); (b) 15, 925 (1960).
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T16. 1. Pinch configuration in « plane.

2. EFFECTIVE INTERSECTIONS

Suppose that we are at a point of singularity of a
function F(z) which corresponds to a pinching of the
contour as in Fig. 1. [These figures are to be regarded
as 2-dimensional models of the 2z-dimensional situa-
tion. The full justification for drawing such pictures
involves performing #—1 of the integrations in (1.6)].
If we vary g, while remaining on the Landau curve,
Eqs. (1.7) tell us that the zeros of D remain coincident.
Thus a mechanism whereby we may move from a
region of singularity of F(2) on a Landau curve to one
of nonsingularity is that we move up to a boundary
of the contour 4 and the pinch occurs harmlessly,
thereafter, as in Fig. 3. This mechanism, for a long
time supposed to be the only mechanism for moving
from regions of singularity to ones of nonsingularity,
is very important. At the point of transition we reach
the boundary of the contour and hence the Landau
curve on which we were varying our z value has inter-
sected a lower-order curve. We define an intersection
between a Landau curve and a lower-order curve
>/, at which the Landau equations for each are
satisfied by the same set of «; values, to be an effective
intersection. At effective intersections the analytic
properties of F(z) may change.

Tarski® has proved, in the special case of single-loop
diagrams, that a Landau curve intersecting a
curve »./ of next lowest order necessarily does so
effectively.

We now discuss the validity of the more general
assertion that this theorem applies to Landau curves
belonging to any arbitrary Feynman diagram.

Consider the set of equations

8D/dc;=0 (2.1)

which, as follows immediately from Egs. (1.2) and
(1.6), are homogeneous of degree zero in the variables a.

i=1, eee, m—1

A

F16. 2. End-point configuration in « plane.

3 J. Tarski, J. Math. Phys. 1, 154 (1960).

Suppose, for the present, that we may solve Egs.
(2.1), uniquely, in the following fashion:

ariagt v lan=A 1 Asl v 1Ay, (2.2)
where the A; are algebraic functions of the variables
2;, from which we have removed any infinities.

The equation of the curve Y/ may be constructed in
the following manner. In addition to (2.2) impose the
further condition that a,=0. It follows at once that

the equation of D’ is simply given by

An(Z) =0. (2.3)
To construct the equation of the curve ., the
condition which must be imposed in addition to (2.2)
is 0D/dan=0. If we now write 0D /do,=E then E is
homogeneous of degree zero in the «; variables. It
follows that E can be expressed as a function of the
ratios of the a/’s only. Hence the equation of ), is

E(Al, Az, MY An) =0 (24)

The theorem now follows: our construction ensures
that »_ and'Y " have the same set of a; values at their
points of intersection. It should be emphasized that

,?‘f—/;:x_‘\A

F1c. 3. Transition mechanism in « plane.

the argument does not hold good when more than one
of the a; vanishes and consequently the proof relates
only to intersections of curves whose orders differ by
unity.

However, it may turn out that the solution (2.2)
is not unique. In this case the theorem may fail to hold
when, corresponding to a given value of z, there exists
more than one set of functions 4,(z). If there happens
to be an N-fold degeneracy we must rewrite Eqs. (2.2)
in the form

arlag: voe tap=Ayt At o004 (2.2a)
where
i=1,2,+++,N.

Now the equations of the curves »_/ and >, are,
respectively,

N
114.i(z) =0 (2.3a)
=1
and
N
11 Ei(z) =0, (2.4a)
=1
where

El(z) =E<A1i; AZi; Y Ani)'



There is no longer any guarantee that the intersec-
tion of A4,%(z) =0 with E’=0 is effective when 757,
although certainly the intersections of these curves are
effective if 7=7.

The author’s conclusion is thus that in the simplest
conceivable case, namely when to each point z of a
Landau curve there corresponds a unique set of a;
values, curves of consecutive order intersect effectively,
regardless of the complication of the Feynman dia-
gram. When the a;’s corresponding to a given z value
are degenerate the intersection may or may not be
effective: we can give no example of Landau curves of
consecutive orders intersecting noneffectively but
we can see no reason why such behavior should not
occur for some diagram. Further consequences of
degenerate behavior are discussed in Sec. 3.

Landshoff, Polkinghorne, and Taylor* have shown,
in the case of two invariants, that at effective inter-
sections of Landau curves, the curves have parallel
tangents.

In the general case the proof of the tangency property
is still very simple. It can be shown that the dominator
function D(2, @) in Eq. (1.6) can be written as

D) =S f@atfn(@. (29

Now the direction of the normal to the tangent
hyperplane of the Landau curve is given by the set of
ratios

oD oD
aZl ) 622.

8D
.

(2.6)
Differentiating Eq. (2.5) with respect to z; we obtain

aD 4D 9
GZ,‘ ’(a)+;8a,~ 621; fz(Ol)
on both > and >/, using the Landau equations in the
form (1.7). Thus, at an effective intersection between
> and D/, the ratios (2.6) are identical and the
curves touch.

These properties provide a simple geometric way of
classifying the Landau curves into families which
touch one another in prescribed fashions. Such a
classification was given by Tarski in the case of the
single-loop scattering diagram. A similar classification
for curves corresponding to a five-point single-loop
graph was attempted by the present author, and has
also been given recently by Cook and Tarski® This
latter classification has not, as yet, proved to be of any
value whatsoever and so we do not discuss it here. In
the former case, however, Tarski proceeded to a satis-
fying and elegant verification of the truth of the

(2.7)

4 P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor, Nuovo
Cimento 19, 939 (1961).

5 L. F. Cook and J. Tarski, (a) Phys. Rev. Letters 5, 585 (1961);
(b) J. Math. Phys. 3, 1 (1962).
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Mandelstam representation, for certain external mass
values, for the four-point single-loop graph. Tarski’s
proof of double dispersion relations for the simplest
scattering diagram forms the basis of the more general
discussions of Landshoff, Polkinghorne, and Taylor
Their methods are inductive, and properties of the
scattering diagram to any order in perturbation theory
are asserted— the single-loop graph being the starting
point of the induction procedure.

An essential feature of the proofs of the Mandelstam
representation is that the effective intersections can,
in some sense, divide up the Landau curves into re-
gions, each of which corresponds to a definite type of
analytic structure for F(z). We ignore, for the present,
those points other than effective intersections at which
the analytic properties of F(z) may change. One may
well ask in what manner this is possible because the
set of effective intersections is of too low a dimension-
ality to divide up the Landau curves! In general, F(z)
is a many valued function and our interest is centered
upon one specific sheet, namely the physical sheet.
Thus, if we perform analytic continuations of F(z)
by paths lying on the Landau curves, we must avoid
passing through branch cuts on to unphysical sheets,
or if we do enter such sheets we must ensure that we
return eventually to the correct sheet. It happens that
we can sometimes do neither of these things without
being forced to pass through an effective intersection
—and an effective intersection is a point through which
continuations may not be made. A detailed analysis of
the mechanisms involved is given in Sec. 4.

3. MODES OF CONTINUATION

Because of the reality of the Landau equations the
Landau curves are real in the sense that they are
algebraic curves with real coefficients. As a result, a
Landau curve can, in some measure, be represented
by its real section, i.e., that portion of the curve cor-
responding to choosing all the invariants real. The
complex regions of the curve can then be obtained by
using a generalization of the “search-line” technique
introduced by Tarski for the case of two invariants.
For a Landau curve depending on two invariants only,
this is to say that all points of a Landau curve are
found by taking its real section toegether with the
complex intersections of the curve with the set of all
possible real lines. In the general case we must take
the real section together with the curve’s complex in-
tersections with all possible real hyperplanes. By a
real hyperplane we mean, in the case of # invariants,
any manifold of the form

Z)\izi=6,

where \; and ¢ are real. In Fig. 4, for example, this
technique tells us that a whole double region of the
curve composed of complex points, joins the two arcs.
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F16. 4. Search-line method: 1=real intersections, 2=coincident
intersections, 3=complex intersections.

A family of search-lines of constant gradient maps out
points which sprout off each arc in complex conjugate
pairs. The entire complex region of the curve is then
obtained by varying the gradient of the search-line.

Evidently enough, the technique is not very inform-
ative in the case of Landau curves with no real section
(e.g., #*+9?4+1=0 is composed entirely of complex
points). If such curves do exist, then unless they are
composed entirely of points corresponding to regular
behavior, it may be impossible even to write a simple
single-dispersion relation in any invariant.

The basic method of determining whether or not a
function F(z) is singular is to continue the function
from a region of the z plane where it is mathematically
well defined to the region of interest, taking into ac-
count that a singularity may arise whenever we en-
counter a Landau curve. In general, the F(z) is many
valued and the mode of continuation affects the singu-
larity or nonsingularity at a point.

This last paragraph gives the clue to the true signifi-
cance of the real section of a Landau curve in the
proofs of dispersion relations. The function F(z) al-
ways possesses real branch cuts which are the normal
cuts—in our continuations we must always take care
that we do not leave the physical sheet by passing
through one of these (more precisely we must ensure
that we end up eventually on the physical sheet). If
at some stage we find further branch points we must
then decide how to define our physical sheet taking
these into account. However, initially the object of
our continuations is to look at all the points which
may possibly be branch points (i.e., the points of the
Landau curves) and decide whether or not they are
signular points on the physical sheet as defined by the
normal cuts. Now it happens that the Landau curves
themselves are often convenient vehicles for analytic
continuation so that, in such a continuation, we must

)
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F16. 5. Coincidence in « plane corresponding to a singularity.
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F16. 6. Coincidence in & plane corresponding to regular behavior.

exercise great care on the real section, because on
moving on it we may pass through a normal cut into
an unphysical sheet. Thus it is that the real section
plays a central role in this theory.

If we continue the function F(z) from a region of the
real s plane where F(z) is regular, to a point z, then the
continuation by the complex conjugate route to z,* yields
the same type of analytic behavior for F(z) at both 2z and
#*. This as Landshoff, Polkinghorne, and Taylor re-
mark, is because the complex conjugate mode of con-
tinuation in the z plane leads us, in the « plane, to the
complex conjugate configuration of both the contour
A and the zeros a(z) of D.

Let us suppose that we have a real point z, at which
F(z) is regular, and let us choose a path from 2 to z
which does not intersect any portion of the Landau
curve ), (that it is indeed possible to construct such
a path is to be proved later in this section).

Figure 5 depicts a pair of zeros «(z) moving, as z
varies from z, to 2;, into a coincidence which pinches
the contour and produces a singularity of F(z) at
2=2. On the other hand, in Fig. 6, we have a coinci-
dence which corresponds to regular behavior at z=z.
It is fairly evident that the complex conjugate con-
figurations lead to identical behavior at z=z%* More
complicated situations are clearly conceivable because
the zeros of D may move in such a way as to necessi-
tate drastic contour deformation. As a further exam-
ple, consider a pair of points which move from the
initial to final configurations of Fig. 6 but via more
tortuous paths. Let us say that the upper point en-
circles the end point of the contour twice in a clock-
wise sense while the lower point makes one circuit in
an anticlockwise direction. The effective situation is
that these points are now encircled by loops of the
contour shown in Fig. 7. The result of the complex
conjugate continuation is shown in Fig. 8.

Both Fig. 7 and Fig. 8 depict pinches of the type
illustrated in Fig. 9, and so both modes of continua-
tion lead to identical types of singularity for F(z).

@
&

Fi1c. 7. Paths of zeros in « plane corresponding to a given con-
tinuation in z.



Now 2, was a real point, and so our corresponding
zeros a(2) occurred, as shown in Figs. 5 and 6, in
complex conjugate pairs. There is no need however for
this to be true at =2z, unless 2 also is real. It is inter-
esting to notice that at a real point z=z, if the singu-
larity of F(z) is due to the simple coincidence of one
complex conjugate pair of zeros «(z), then the a;-
values at the singularity must be real. By choosing a
real path from the point z=2,, one can easily convince
oneself that the first genuine singularity which one
encounters corresponds to «; values which are all real
and lie between 0 and 1.

If, however, as suggested in Sec. 2, there exists more
than one set of a; values corresponding to a given real
point z=2z; of a Landau curve then it is possible for
the a;’s to be complex. Figure 10 illustrates such a situa-
tion. It is not the coincidence of a complex conjugate
pair of points a(z) which gives rise to the pinching of
the contour, but a coincidence between two such pairs.
It is clear that the complex conjugate configuration
also produces a singularity.

@
@

. F16. 8. Paths of zeros in « plane corresponding to the con-
tinuation in z complex conjugate to that illustrated by Fig. 7.

All possible situations lead to the same conclusions.

We now proceed to prove that we can, in fact, con-
tinue in the complex z plane by paths which never
intersect a Landau curve.

Let the equation of the Landau curve be f(z) =0
where g summarizes » variables z;, 25, +++, 2,. Essen-
tially there are 2n real variables and f(z) =0 gives
two real equations. Thus the Landau curve is a mani-
fold of dimensionality 2z—2 in a space whose dimen-
sionality is 2n. Suppose z=x and z=7y are two points
of the space such that f(x)>0 and f(y)0. Connect
these two points by a path having one degree of freedom
—call such a path a line. Then the line intersects the
Landau curve in some set of points.

This set may be null, in which case the line which
we have chosen is a suitable path since it fulfils the
requirement of having no intersection with f(z) =0.

The set may have dimensionality zero and consist
of a finite set of points; we defer the discussion of this
case.

The set may have dimensionality unity and, in this
case, we simply choose some other line connecting %
and y which intersects the Landau curve in a set of
points falling into either the first or the second cate-
gory. It is always possible to do this because if it were

JouNn CUNNINGHAM Properties of Landau Curves 837
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T'16. 9. Pinch configuration in « plane equivalent both to Fig. 7
and Fig. 8.

not possible the manifold f(2z) =0 would have dimen-
sionality greater than 2n—2.

Thus our problem is essentially whether or not we
can find our way past a single point C on a Landau
curve: we assert that it is a trival matter to modify
our path throuth C only slightly to avoid C and obtain
a line which does not intersect the Landau curve at
all. Suppose that the coordinates of the point C are z.
In the neighborhood of =3, the Landau curve has the
form

of
z=;c§- 03
provided only that 9f/92z |,—.,#0 for some of the vari-
ables z,. We can write the equation of the Landau

curve locally as
2 aii=0,

J(zA44) =f(z) + ¢=0,

2=Z¢

af
. (3.1)

(3.2)

where
azzaf/azz lz=zc- (3'3)

Equation (3.2) is, in general, two real equations
which we can write as follows:

Z Re a; Re¢i— Z Im a; Im¢;=0, (3.4)

Z Ima; Rem—z Re a¢; Im{,;=0. (3.5)

The condition that (3.4) and (3.5) should be the
same equation is

Re a;/Im a;=—Ima;/Rea; foralli=12 <+ n,
(3.6)

which is simply an expression of the condition

la:i| = | {0f/02i ez} | =0, (3.7)
which we have already assumed untrue in writing
Eq. (3.1).

Now (3.4) and (3.5) define a subspace of dimen-
sionality 2n—2. Let us take a set of basis vectors to
span our original 2z-dimension space, the first 2n—2
of which actually span the subspace defined by Egs.

A+

% *

Fi1c. 10. Pinch configuration in & plane corresponding to complex
a values.
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(3.4) and (3.5). Then
x= (%1, X, ***, Yan—g, Xon—1, Xom)

=31, Y2, ***; Yn—2, Yon1, Yon), (3.8)

where not both of the last two coordinates may vanish
since # and y do not lie on the Landau curve. We now
construct a path from x to y which does not intersect
f(2) =0. Several cases must be distinguished. In all
cases we first move (a1, ***, Zon2)—(y1, ***, Yon2) in
a continuous manner.

Case 1
Xon—1, Xony Yon—1, ym# 0.

Let %on1—yon—1, and then xs,—>ys,; or make the vari-
ations in the opposite order. In either case it is impos-
sible for both coordinates to vanish simultaneously.

Case 2

Xon1=0, Xony Von1, Yon7™ 0

Vo= 0, Xon—1, Xony Yon—17 0

Xon—1="Y2a =0, Fony Yon-170 J

Let ®n1—Y2.—1 and then xo,—>ya,, the order of the
operations being essential in this case to avoid the
possibility of both coordinates being zero at once.

Case 3

Kon—1=Yan—1=0, Zony Yon PO,

Let %p,1—€20, then ®e—ye, and finally let e—0.
In this way both coordinates can never vanish at the
same time.

Thus a path can always be found in the neighbor-
hood of C which connects « and y and which does not
intersect f(z) =0.

If 9f/92,=0 for all 7 at the point C then f(z) =0 has
a multiple point at 2=z, Unless all neighboring points
are also multiple points we can choose an adjacent
path and use our previous argument: if, however, all
neighboring points are multiple points then f(z) must
have the form

f(28)=g(2)%h(2),

h
%ﬁg(z)h(z) ai(:) = g<z)2a a(:) ’

(3.9)

and clearly it is the points of the manifold g(z)=0
which are apparently blocking our route: intersections
with g(z) =0 can be avoided by using the above argu-
ment again for g(z) instead of f(z). For a long time it
has been supposed that Landau curves did not posses
multiple points, but, recently Eden, Landshoff, Polking-
horne, and Taylor® have given an example of a Landau

§R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C.
Taylor, (a) Phys. Rev. 122, 307 (1961); (b) J. Math. Phys. 2,
636 (1961).

curve which does possess crunodes, and incidentally
also acnodes.

The importance of these results is to facilitate the
understanding of the problem of proving the Mandel-
stam representation to all orders in perturbation the-
ory. A necessary condition for the truth of this repre-
sentation is the absence, on the physical sheet of our
function, of complex singularities. The type of proof
which is necessary, as stated in Sec. 2, is an inductive
one where at any stage of the induction procedure it
is assumed that all lower curves have their complex
regions nonsingular on the physical sheet. Thus the
problem is to continue the function analytically from
a region where it is known to be regular to all points
of the leading curve of the diagram being considered.
If we establish that a given portion of a Landau curve
is nonsingular it is convenient to choose our path of
continuation on the curve thereafter. We must always
take into account the points at which the analytical
behavior of F(z) may change—we may not continue
through these points—and also we must notice care-
fully whether or not we have passed through a cut
into an unphysical sheet. An important subset of these
points are the effective intersections (see Sec. 2) with
lower-order curves. Because of the induction hypothe-
sis these all occur at real points.

4. PROPERTIES OF F(z) ON UNPHYSICAL SHEETS

Suppose that we have a function F(z) of several
complex variables z;, *++, 2,. By the results of the
previous section we know that there exist, at most,
271 distinct types of analytic behavior of F(3) as we
approach a point of the real plane. For example, if
n=3, the limits with imaginary parts of z; having the
Sign schemes (+’ +) +)7 (+J +7 '_); (+7 ) +)7
and (=, 4, +) are the only possible distinct ones
(those obtained by complex conjugation give identical
analytic behavior).

We now prove the following theorem: if the function
F(z) is singular in only one of the 2" possible senses,
then in any adjacent sheet, the function is singular in
only one sense—which sense depending upon which adja-
cent sheet has been chosen. For definiteness, we consider
the case n=23 with F (z) singular only in the (+, 4, +)
limit and we show that, in the sheets obtained by pass-
ing through the 23 cut, F(z) is singular only in the
(4, +, —) limit.

Let P, in Fig. 11, be the point under consideration.
As we approach P by path (1), while the imaginary
parts of z; and s, are fixed at positive values, we find
a singularity at P. Let us now roll back the z cut, as
shown in Fig. 11, and approach P by the path (2). We
must also roll back any other cuts which might lie in
the way of our path—this is what we mean by “adja-
cent.” It is evident, then, that in the adjacent sheet
obtained by going down through the z cut, F(s) is
singular in the (4, 4+, —) sense. If we had fixed the
imaginary parts of z; and 2, at negative values and



approached the z; cut from below the singularity would
also appear because the (4, +, +) and (—, —, —)
limits are not distinct. Thus, by rolling the z; cut up,
we would find that F(z) was singular, in the adjacent
sheet obtained by going through the z; cut, in the
sense (—, —, +). Then since (—, —, +) and (4,
-+, —) are not distinct we can assert that in both
adjacent sheets F(z) is singular in the (4, 4+, —)
sense. To complete the proof of the theorem we require
that, in these adjacent sheets, F(z) is nonsingular in
the senses (+1 +, +)’ (+: g +) and (_1 +, +)
This is a trivial matter of fixing the imaginary parts
of 2 and 2, at suitable values and again rolling back
the z; cut.

In the particular case of #=2 we are dealing with
the elastic scattering problem. By considering a real
search line of the form z;=MNzy, it is clear that the
complex singularities which sprout off arcs of positive
gradient (A\>0) have like signs of the imaginary parts
of z and z.: similarly those which sprout off arcs of
negative gradient (A<0) have opposite signs of the
imaginary parts. One defines that limit on to the real
section of a Landau curve in which the imaginary
parts of z and 2z, have the same relative sign of the
imaginary parts of the Landau curve in that neighbor-
hood to be the appropriate limit. That limit which
does not satisfy this criterion is called the inappropriate
limit. Clearly the above theorem implies that a function
singular only in the appropriate (or inappropriate) sense
in some sheet is singular only in the inappropriate (or
appropriate) sense in an adjacent sheet. Thus, a curve
corresponding to an arc singular only in one sense
must lie wholly inside a region which corresponds to
cuts of the function in both variables: this is because,
in a region below the beginning of a cut, it is immaterial
whether we approach the real axis from above or below,
and so appropriate and inappropriate behavior must
be identical.

In the general case of # invariants there exist several
inappropriate limits inside regions which are suitably
cut.

At this stage we are now equipped to study the
question raised in Sec. 2 of how a set of points, such
as the effective intersections, can divide up a Landau
curve into regions, each of which corresponds to iden-
tical analytic behavior of F(z). We consider specifi-
cally the case n=2.

Let us define a plot of the Landau curve under con-
sideration on to the sz plane as follows: the curve,

F16. 11. Modes of approaching the point P in complex z3 plane.
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F16. 12. Graph of T, and the plot of Z onto the complex z plane.

being 2-dimensional, is capable of being projected on
to the 2 plane. A portion AB (see Fig. 12) of the real
21 axis corresponds to the real section of the Landau
curve, while other points of the plane correspond to
complex points of the Landau curve.

In the example which is illustrated in Fig. 12, the
real section I' of the Landau curve lies wholly inside
the region of the cuts in both 2 and 2. Thus since I’
is plotted by AB, AB must lie between z;=a and z;= 0.
Further the line which plots the intersection of the cut
b<2,< o with the Landau curve must also include AB.

Let us now consider the intersection of two Landau
curves and D/, and suppose that we are perform-
ing continuations of F(z) on »_, and that F(z) is
nonsingular. The intersection with )’ is a point. Thus,
in the plot of >, on to the z plane the point P of
intersection with )’ appears as a single point. As-
suming that all the other branch points are isolated
as shown in Fig. 13(a) it is evident that we may thread
the branch points in any way we wish—so reaching
every sheet of F(z). We may thus continue F(z) on
the Landau curve as we wish without any change in
the nature of F(z). We conclude, then, that an ordi-
nary intersection cannot divide the Landau curve up.

Now let us consider the configuration of Fig. 13(b)
where the Landau curves », and »_.’ have, locally,
two intersections. This, while P and P’ remain dis-
tinct points, is just the situation of Fig. 13(a). How-
ever, as P—P’, and ) touches Y/, the two branch
points in the plot coincide, and paths, such as that
sketched in Fig. 13(b), which passed between’ the
branch points P and P’ while they were distinct, are
now no longer available since we cannot continue
through a branch point. Thus all sheets of the func-
tion F(z) are no longer available. If those we cannot
reach include the physical sheet then the touch of two
Landau curves has caused the division of the Landau
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Fic. 13. (a) Intersections of Z and 2, and the plot of = onto the
complex z plane (points of 2’ in this plot are denoted by crosses).
(b) Case when Z and Z’ have locally two intersections. (c) Case
when = and 2’ touch.

curve Y into two parts and we cannot continue from
one to the other on .

Clearly, then, touching of two Landau curves is
very significant. In Sec. 2 we proved that if two Landau
curves intersected effectively then they touched. We
now prove that the tangency point belween two Landau
curves can divide up the curve ), into two parts only if
it is an effective touch. In Fig. 13(c) we have drawn a
touching situation between the curves and D"
Construct a third curve " which coincides with Y
except near the point P of tangency, where it differs
only very slightly from ). In the plot of >.” on to
the z; plane the branch point P has split up into two
branch points, and the plane is no longer divided, cor-
responding to the fact that we may find a route past
P on the curve D" which keeps on the physical sheet.
However, in doing this we have left the Landau curve

so that, in the « plane, the coincident zeros of D,
to which > corresponded, are slightly separated. If
> is not a lower-order curve which meets  effec-
tively, then the slightly separated pair of zeros in the
« plane are never in the neighborhood of an end point
(continuity argument) and so no slipping over an end
point (see Fig. 3) can occur. Thus when the path of
continuation rejoins » , the zeros of D coincide without
causing a pinch. On the other hand, if D’ is an effec-
tive intersection, it is quite possible that when the
path on " joins ), again a singularity of the pinch
type appear.

In this way effective tangencies can divide up the
Landau curves into regions. Strictly the argument pre-
sented here applied only to appropriate singularity or
nonsingularity. However, the inappropriate case is al-
ways the case which is appropriate in some unphysical
sheet, and the argument is precisely the same.

The proofs of dispersion relations, and in particular
the Mandelstam representation, in the #nth order of
perturbation theory proceed by using the techniques
of analytic continuation to connect up various regions
of the Landau curves which correspond to the same
type of analytic behavior. In the induction process
each leading curve is considered at a stage when all
lower-order singularities are real in the physical sheet
and various portions of the real section of the leading
Landau curve can be shown to correspond to identical
analytic properties of F(z) if they can be connected
by paths lying on the Landau curves which do not
pass through effective intersections with lower-order
curves.

Outside the region of the crossed cuts the matter is
trivial.

Otherwise two arcs of given slope connected by a
single arc of opposite slope can be identified as regards
analytic behavior provided that the connecting arc
does not effectively intersect an arc of inappropriate
singularity. It must be inappropriate because it is of
lower order and so is assumed to have no attached
complex singularities in the physical sheet, ie., no
arcs which are appropriately singular. The method of
constructing a path between two arcs of given slope
via adjacent unphysical sheets has been discussed by
Landshoff, Polkinghorne, and Taylor. Thus arcs of .
inappropriate singularity are of fundamental impor-
tance in the methods of analytic continuation of F(3),
and it is to a discussion of their properties that the
following paragraphs are devoted. Such arcs define the
boundaries of the Mandelstam spectral functions.

In general, arcs of inappropriate singularity can have
no horigontal or vertical tangents. This statement is not
intended to include inflectional tangents. Landshoff,
Polkinghorne, and Taylor say that a change in the sign
of the gradient of the real section of a Landau curve
lying wholly inside a region where F(z) has cuts in
both 2z and 2, implies a change in singularity type
from appropriate to inappropriate (or vice versa). The
reason for this is that, as we continue on from one
side to the other of the point of horizontal or vertical
tangency, the relative sign of the imaginary parts of
21 and 2, changes because we have gone through either
the z or the z cut into an adjacent unphysical sheet.
If at the outset our singularity was an appropriate
one, we now have F(z) appropriately singular in an
adjacent unphysical sheet. By the first result of the
present section, this implies that F(z) is inappropri-
ately singular at the corresponding points of the physi-
cal sheet. It now follows that an arc which is only



inappropriately singular cannot possess horizontal or
vertical tangents unless there exist complex singularities
in the physical sheet (a circumstance forbidden by the
induction hypothesis). This is because, if it did possess
such tangents, a contradiction arises: for, by assump-
tion, the arc beyond the tangency point is free from
complex sprouts into the physical sheet and is thus
appropriately nonsingular. Then, by the above argu-
ment, the original arc must have been inappropriately
nonsingular which is a contradiction.

The argument presented in the last paragraph is
blatantly false in the case when the gradient change is
accompanied by an effective intersection with a lower-
order singular curve. The single-loop vertex graph ex-
emplifies this situation for certain values of the external
masses.

In the case of the elastic scattering problem, there
is no serious difficulty arising from this type of be-
havior. In the remainder of this section we assume,
except where explicit statement of the contrary is
made, that arcs of inappropriate singularity have no
horizontal or vertical tangents.

Arcs, singular only in the inappropriate sense cannot
lie across a Landau curve which corresponds to a normal
cut and so pass out from the crossed cut region. By
drawing a plot of the curve on to the z plane it is
clear that, on any curve such as  , whose real sec-
tion is drawn in Fig. 14(a), a continuation path cannot
be blocked by the single intersection with the lower-
order curve. Thus we may conclude that F(z) is singu-
lar in the appropriate sense to the left of z;=a. This,
however, also implies appropriate singularity because
we are outside the crossed-cut region. This contradicts
the induction hypothesis, so we must exclude curves
such as D, from the possible types having arcs of
inappropriate singularity. On the curve s it is not
immediately clear that we cannot be blocked, because
two branch points coincide in the plot of D on to
the z; plane. By the device already employed we can
choose a slightly different curve D .o” which is not
blocked. The intersection is not effective, and so, by
the usual argument we may deduce the behavior of
F(z) on ) outside the crossed-cut region. It can be
argued that if an arc of inappropriate singularity ever
meets a normal threshold effectively it does so at
infinity. This is because, if it meets a normal threshold
effectively, it also meets effectively all curves of inter-
mediate order obtained by setting equal to zero any
subset of the a; which actually vanish at the intersec-
tion. The vertex curves which occur in the elastic
scattering problem are parallel to the normal thresh-
olds, and since they are the curves of second-lowest
order, the result follows because parallel lines meet at
infinite points. Just as with D ; we find that curves
such as D » are, in general, inadmissible. These con-
clusions would be invalid if, at the point where the
arc intersects the normal-threshold curve, there also
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F1c. 14. (a)Ty and T, lying across normal cuts. (b) Cusplike
behavior of T'. (c) Abrupt termination of I'. (d) Closure of T

occurs an effective intersection with a lower-order
curve. We assume, unless explicit statement to the
contrary is made, that this situation does not arise.

A case which is similar to Y, passing through the
point (@, b), is the case of a curve passing through
one or other of the points (¢, ), (e, b) which are
also coincidences of branch points. This behavior is
inadmissible, in general, by the same argument of con-
tinuation to the region outside the crossed cuts. This
then implies that if an arc of inappropriate singularity
does meet a normal threshold curve at infinity it meets
it effectively, and this in turn gives us that the direc-
tions of the normals at the intersection is the same on
both curves.

In order that this latter deduction should be true
we must give a reason for excluding the possibility of
the type of behavior for Y, which is illustrated in
Fig. 14(b): because, in the absence of an effective
intersection, there is no way of continuing to that



842 ReviEws oF MopERN Prysics « JurLy 1964

F1c. 15. Composite arc of inappropriate singularity.

part of the real plane outside the crossed-cut region
by paths on ».. It was pointed out to the present
author by Professor N. Kemmer, that, at cusplike
behavior of this sort on a Landau curve, it was possible
to find, in the neighborhood of the cusp, points both
appropriate and inappropriate to the arcs which formed
the cusp. Thus the induction hypothesis could be vio-
lated by such behavior and so we should exclude such
curves from consideration. However, it was very clear
that algebraic curves could possess such behavior and
we could not see any good reason for supposing that
at any stage in the induction such a curve appeared
as the leading Landau curve. We set aside this prob-
lem in the naive hope that physical situations would
not necessitate considerations of cusplike behavior of
Landau curves. Subsequently, however, Eden, Lands-
hoff, Polkinghorne, and Taylor have given an explicit
example which involves cusplike behavior. In their
example, the Mandelstam representation fails to hold.

In general, arcs of inappropriate singularity do ex-
tend, in the real plane, as far as the normal-threshold
curves.

The fundamental property possessed by arcs of in-
appropriate singularity is that it is impossible, under
the assumptions of the induction hypothesis, to con-
tinue F(z) from that unphysical sheet on which it is
appropriately singular to the physical sheet via points
of the Landau curve. Consider Fig. 12, which depicts
a curve, the real section of which lies wholly within
the crossed-cut region as we require. In the plot on to
the z plane, the real section AB has the properties
a<A, Band A, B< «. For our argument we require to
assume that the branch points actually drawn (marked
by crosses in Fig. 12) are the only relevant ones. It is
clear that, in the case illustrated, both cuts can be
passed through separately, and every sheet of F(z)
is accessible on all curves satisfying ¢<A, B and
A, B< . Thus arcs, such as those sketched in Figs.
14(c) and 14(d), certainly do not do as arcs of in-
appropriate singularity. The situations in which our
route of continuation on the Landau curve is definitely
blocked are those in which A and B coincide with
z1=a and z=c (which also forces them into coinci-
dence with 2= and z,=). This proves the stated
result.

All this information now tells us that arcs of in-
appropriate singularity are, in general, arcs of nega-
tive slope, with asymptotes parallel to the axes of #

and 2, which lie wholly inside the region of the crossed
cuts. We can, in fact, have an arc of inappropriate
singularity with these properties composed of several
arcs of various orders which do not themselves conform
to the general pattern. If, as shown in Fig. 15, arcs Ty
and T touch effectively and change in nature from arcs
of inappropriate singularity to arcs of nonsingularity
(in both senses), then the arc composed of the undotted
portions of T'; and T'; constitutes an arc of inappropriate
singularity, while the dotted portions are irrelevant.
In particular, Ty and T could have horizontal (or
vertical) noninflectional tahgents at the intersection
while the arc which is essentially the arc of inappropri-
ate singularity does not.

In those cases when our general theorems are in-
valid, the feeling is that it is not a terribly important
matter unless the situation persists for a whole range
of values of the external masses of the problem.

These properties, which we have discussed in detail,
permit the inductive proof of the Mandelstam repre-
sentation to proceed. The results are used in the fol-
lowing fashion: assume them true for all but the leading
curve and try to prove that there exist no complex
singularities of F(z) on the physical sheet, at points
associated with the leading Landau curve. It may be
impossible to do this if any of the exceptional features,
such as cusplike behavior, occur on the leading curve.

No general criteria have yet been found for the
exclusion of the exceptional features. Eden; Landshoff,
Polkinghorne, and Taylor have given examples when
some of the exceptional features arise and it seems
likely that the class of Landau curves which fit the
pattern of behavior required for the validity of the
inductive proof do #ot include all interesting physical
cases. In the example quoted here, acnodes, crunodes,
and cusps, persist for a wide range of values of the
external masses.

5. THE SCATTERING AMPLITUDE AND THE
PROOF OF MULTIPLE DISPERSION RELATIONS

The work of Eden,” of Landshoff, Polkinghorne, and
Taylor, and Eden, Landshoff, Polkinghorne, and Taylor
has done much to promote the understanding of the
analytic properties of collision amplitudes, and, before

N\

Fi16. 16. Triple coincidence mechanism in e plane.

7 R. J. Eden, (a) Phys. Rev. 119, 1763 (1960); (b) Phys. Rev.
120, 1514 (1960); and (¢) UCRL Rept. No. 9345 (1960).



the discovery of acnodes (isolated points), crunodes
(double points), and cusps on the Landau curves a
great deal had been done to imbue field theorists with
confidence in the value of dispersion relations, and, in
particular, in the truth of the Mandelstam conjecture
for the elastic scattering amplitude. Basically their
methods of proof consisted in exploiting a limited
knowledge of proven dispersion relations and a knowl-
edge of regions of regularity of the amplitudes, by
means of the powerful method of analytic continua-
tion. The Landau curves themselves very often provide
suitable vehicles for the continuations, because, start-
ing from a point at which the analytic behavior is
known, we can move freely on the Landau curves
provided we take proper account of the set of points
at which F(z) may change its nature—thus far the
only members of this set which we have discussed in
detail are the effective interactions: the other members
of this set were unknown to the author at the time
when the present work was in hand and they are
associated with the exceptional features such as ac-
nodes, crunodes, and cusps which were discovered by
Eden, Landshoff, Polkinghorne, and Taylor. Briefly,
the mechanism is that, in the « plane, instead of two
zeros of D coinciding and causing a pinch, three zeros
coincide. Different modes of continuation in the z
plane lead to différent pairings of the zeros in the
« plane. As (1) and (2) (see Fig. 16) approach the
contour they pinch it. As (2) and (3) do so they
coincide harmlessly. At a triple coincidence singular
and nonsingular behavior may interchange correspond-
ing to (2) changing from its association with (1) to
an association with (3) (or vice versa). Such a mecha-
nism can give rise to cusplike behavior of a Landau
curve.

The discovery of these new members of the set of
points where F(z) may change its nature are associ-
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ated with the appearance in the physical sheet of
complex singularities, and must be regarded as a major
set back in the progress towards the goal of a new
starting point for the theory of elementary particle
phenomena. If, as the work of Polkinghorne® suggests,
these features occur not only in perturbation theory
but in any unitary theory the matter is very serious
indeed and requires much further investigation. One
hopes that methods can, and will be evolved to cope
with these new features of the scattering amplitude.

The reason for the present optimism is that one
hopes that the physical data, in which one is interested,
are dominated by singularities of the well-understood
type, i.e., that integrals over complex branch cuts lead
to negligible contributions. In a sense, current experi-
mentation confirms this hypothesis because reasonable
results have been obtained by calculations based on
the assumption that processes are dominated by a
small number of singularities. This sort of outlook
tends to downgrade dispersion theory to a mere ap-
proximation scheme and hits hard the attitude of mind
which has been seeking in the study of analytic prop-
erties of collision amplitudes some hint of a fundamen-
tal understanding of elementary particle phenomena.

The author feels that altogether too little is known
to assert categorically that complex singularities are
unimportant in general. They may well be, in the long
run, an important and a difficult problem.
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