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poorly. In Part I, after the historical introduction, there
is an account of quaternion algebra which, although
brief, should be sufhcient preparation for anyone
unacquainted with the subject. The notation will seem
familiar to most physicists because quaternion basis
elements are chosen to have the same multiplication
law as Pauli spin matrices.

It is hoped that the work will prove useful to quantum
field theorists, but it has a classical bias. We do not deal
with the possibility of replacing complex numbers by
quaternions in quantum mechanics, ' nor with recent
attempts to describe elementary particles by means of
quaternions. '
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I. INTRODUCTION

I.1 Historical Remarks

If the use of quaternions is advantageous, why have
they been used so little? To answer this question we
give a short, tendentious history.

It was recognized early that special relativity can be
elegantly written in quaternion notation. '4 However,
the formalism was never popular: perhaps because it is
slightly harder to manipulate quaternions than tensors,
but also because the Lorentz-transformation properties
of a tensor are explicitly shown by its indices.

After the invention of the quantum mechanics of
spinning particles there was a renewed attempt to
introduce quaternions. This was natural because the
Pauli spin matrices prove to be quaternion basis
elements in a thin disguise. Again the attempt failed,
and the matrix notations of Pauli and Dirac were
almost universally adopted. There was here no ques-
tion of Lorentz-transformation properties being shown
more explicitly in one formalism than in the other,
but only that it is less trouble to multiply a column
vector by a matrix than to multiply a matrix by a
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Quaternion notation, far from being an outmoded
Victorian fad, is shown to be a concise and perspicuous
formalism in field theory. Clouds of indices are in great
part evaporated, features which depend on the arbi-
trary choice of a coordinate system sink into the back-
ground, and physically significant relationships are
emphasized.

This paper is written for those who know special
relativity fairly well and Riemannian geometry fairly
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matrix —which is effectively what one has to do in
writing, say, the Dirac equation in quaternion form. '6

Another rival formalism was the spinor calculus. ~

This is completely explicit, in that transformation
properties are shown by sets of indices. Four kinds of
index are needed (co and contravariant, dotted and
undotted), which most people find it tedious to juggle.
Since one can readily indicate transformation properties
without using indices, the spinor calculus has been
little used in either Rat or curved space —time.

The Dirac equation in its y-matrix version was soon
generalized to the case of Riemannian space —time. ' The
y matrices, which can be chosen to be constants in
Rat space —time, became functions of the space —time
coordinates in the generalized equation. Further, there
is the possibility of submitting the generalized equa-
tion to coordinate-dependent similarity transforma-
tions. This rather complicated state of affairs may be
brought to order by introducing a reference tetrad of
vectors at each event of space —time, and limiting one-
self at each event to the set of similarity transforma-
tions which correspond to possible rotations of the
tetrad. One can avoid talking about reference tetrads,
but at the price of simplicity: compare the papers of
Schrodinger, ' and Bargmann, "and see Refs. 11, 12.

Coordinate-dependent p matrices are fairly complex
objects, but that is not their worst feature. More
serious is that they have no obvious physical inter-
pretation, so that by using them one loses much
intuitive insight. It is here that the quaternion for-
malism has a decisive advantage. One can write field
equations such as the Dirac equation in terms of
quaternions 0-& which correspond to generalizations of
the Pauli spin matrices, and which at the same time
have a clear physical meaning as the vectors of the
reference tetrad. The situation should be compared
with that in spinor calculus, where also one introduces
tetrads o.&», but where the physical significance is
obscured by the abstractness of the spinor space to
which the suKxes 3, 8 refer. These differences between
the three formalisms are characteristic; and also
characteristic is the way in which the quaternion
formalism combines the advantages of the other two.
At least, so we try to demonstrate.

I.2 Quaternion Algebra

In this section the necessary results of quater-
nion algebra are written in a notation familiar to
physicists. "'4

Definitions

A+B= (Ai+Bi, As+Br, As+Bs, A4+B4),

A —B=A+ (—1)B.

Addition of quaternions is commutative and associative.
Multiplication of quaternions by complex numbers is

commutative, associative, and distributive. It follows

that if one defines quaternion basis elements 0- by
(o.)&=5., so that

oi=(1, 0, 0, 0),

o'=(0, 0, 1, 0),

o'=(0 1, 0, 0),

04= (0, 0, 0, 1), (2)

then A=A 0. and A=A |T™for any quaternion A

(sum over repeated lower-case indices).

The product AB of quaternions 2 and 8 is itself a
quaternion. The product is distributive, and for any
complex number X it satisfies

(XA)B=A(XB) =X(AB).

A quaternion A=(Ai, As, As, A4) is an ordered

quadruple of complex numbers. "The A are the com-

ponents of A (lower-case Greek indices from cr through
~ have the range 1, 2, 3, 4, and from I(, through co have
the range 0, 1, 2, 3. Lower-case Latin indices have the
range 1, 2, 3) . Equality of two quaternions is equivalent
to equality of their corresponding components: 2 =8
if and only if A =8 . We sha11 sometimes put A=
(Ai, As, As) and A = (A, A4). It causes no confusion to
write A =A when A4 ——0; nor is it misleading to write
the zero quaternion as 0= (0, 0, 0, 0) .

The multiplication of a quaternion by a complex
number ), and the addition and subtraction of quater-
nions, are defined by

XA = (XAi, XAs, XAs, XA4),

' C. Lanczos, Z. Physik 57, 447, 474, 484 (1929).' A. W. Conway, Proc. Roy. Soc. (London) A 162, 145 (1937).
L. Infeld and B. L. van der Waerden, Sitzber. Preuss. Akad.

Wiss. , Physik. —Math. Kl. , 380 (1933); W. L. Bade and H. Jehle,
Revs. Modern Phys. 25, 714 (1953); A. Peres, Nuovo Cimento
Suppl. 24, 389 (1962).

s P. G. Bergmann, Phys. Rev. 107, 624 (1957), introduced a
matrix version of spinor calculus which can also be regarded as a
matrix representation of part of our quaternion theory.

E. Schrodinger, Sitzber. Preuss. Akad. Wiss. , Physik. —Math.
Kl. , 105 (1932),gives references to earlier work by Weyl, I'oek, etc.

"V. Bargmann, Sitzber. Preuss. Akad. Wiss. , Physik. -Math.
Kl. , 346 (1932)."D.R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465
(1957)."J. G. Fletcher, Nuovo Cimento 8, 451 (1958).

The products of the basis elements 0 are defined by

0 40K 0' 04 $0

"L. Brand, Vector and Tensor Analysis (John Wiley 8z Sons,
Inc. , New York, 1947), gives a fuller, but still concise account ol
the subject in the traditional notation.

'4 F. Giirsey, Nuovo Cimento 3, 988 (1956), uses a notation
very similar to ours.

"Quaternions are often defined to be ordered quadruples of
rea/ numbers. Our qua, ternions @rt; whgt Hamilton called bj-
quaternions,
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Algebraic Operati ons

The adjoint of a quaternion A=(A, A4) is the
quaternion A. = (—A, A4). In particular, for the basis
elements a-,

(7)
so that

A=A 0 =2 o-.

From Eq. (6) we find that for any A, 8
AB=BA,

which is to say that the operation of taking the adjoint
is anti-automorphic. "From (4), (5), (7), one gets

2A=O- Ao- =0 Ao. (10)

where e„„is the permutation symbol. From Eq. (5)
it follows that the quaternion o-4 has the same proper-
ties as the complex number i. It is therefore per-
missible to write o-4=i. With this change of notation,
Eq. (4) becomes the well-known multiplication rule
for the Pauli spin matrices. It was to achieve such
a correspondence that we chose to use the a rather
than the traditional quaternion basis elements (which
are —ia ).

From these rules one finds that the product of two
arbitrary quaternions is

AB =A /By A484+—i (A48, /A„B4+eyq„AyBq) 4r". (6)

(Note that (AB)4= i(A„B—„A484)—j. The product
is not in general commutative, but is associative.

of Hermitian conjugation is anti-automorphic,

(AB) t =BtAt. (14)

A quaternion A is Hermitian if A~=A.
The complex reflection of a quaternion A is the

quaternion Ax=( —AI, —Aq*, —As*, —A4*). Com-
plex reQection is an automorphic operation,

(AB)x —AxBx

The effect of applying any two of the operations

, ~, +, to a quaternion is the same as that of applying
the third. For example,

(Ax) t —(A t)x —A (16)

Note too that, for any complex number a,

(4IA) =IIX, (4IA) I=a 'A ', (4IA) t=II*At,

(4IA) x = It*Ax (17)

(In the second equation we must require 4z/0, AA. WO) .
The scalar product A 8 of quaternions A and 8 is

defined by

A.B= ,'(AB+BA)—=-,'(AB+BA—)-=A. 8„. (18)

In particular one has A B=AJ,BI„A A= —AA=
—AA, and the important commutation relations

o 4r~+o~o =o o~+o~o"= —2o ~ o~= —25 e. (19)

It has already been pointed out that the multiplica-
tion rule for the a& is the same as that for the Pauli spin
matrices. By making the correspondences

4A =0. Ao.&D =0- D&Ao

=0 Ao.&0- =sr o&Ao- .

The norm of a quaternion A is defined to be AA.
The norm behaves as a complex number,

AH=A. A= —A A . (12)

|'0 1)
g I~!

(1 0)'

0)

L,O -1)

('o

0)

(z O'I
g4~!

EO ')' (20)

AA '=A 'A=1) (AB) '=8 'A '. (13)

The Hermitian conjugate of a quaternion A is the
quaternion At=(AI*, Aq*, Ase, —A4*), where the
asterisk denotes complex conjugation. The operation

It follows that (AB) (AB) = (AA) (BB): the norm
of a product is the product of the norms of the factors.
If AA. =0, one says that A is null or singular. If AA =1,
then A is unimodular.

The reciprocal of any A which is not null is defined

by A I =A/(AA) . The reciprocal has the properties

so that for a general quaternion A

|'A s+zA 4, A I—zA q)
!=8, (21)—A,+ A,)

an isomorphism is established. between the algebra of
quaternions and that of 2X2 matr'ices. Writing the
determinant of 0', as det 8, the adjoint as 6, the in-
verse as 6 ', and, the Hermitian conjugate as St, it is
easy to show that AA =det 6,, A+-+(i, A '&—+0', ',
At~CLt, and also that 2iA4 ——A+3 =Sp S.

"It is sometimes useful to deine an operator E which changes
the sign of only the m component of a quaternion: EIA=
t(—A4, Aq, A4, A4), etc. This operator is anti-automorphic. while
the product I I „is automorphic, and I IE2EBA =A. In the ma-
trix representation which is introduced at the end of this section,
the matrices that correspond to E2A and E2A ~ are the transpose
and complex conjugate, respectively, of the matrix. that corre-
sponds to A.

II. QUATERNIONS IN SPECIAL RELATIVITY

II.1 Lorentz Vectors

Events in Qat space —time may be specified by
coordinates x, where the xi, are real Cartesian spatial
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coordinates in an inertial frame of reference and
x4=ict is the imaginary time coordinate. We define
the Hermitian space —time quaternion x by x=x 0- .
A homogeneous Lorentz transformation of x corre-
sponds to a homogeneous linear transformation of the
x which leaves x Hermitian and does not change its
norm:

x ~ —Aapxp7 x'1 =x'
7 X X XX7 (22)

where the A p are complex numbers independent of x.
It follows from (22) that A4e and the Ast are real, that
A4~ and AI,4 are imaginary, and that A ~Ap~=A~ A~p=
8 p. Any 4)&4 matrix A whose elements A p satisfy
these conditions will be called a Lorene matrix.

Any Hermitian quaternion which transforms in the
same way as a spacetime quaternion under restricted
Lorentz transformations is called a LorerIts vector
(restricted here means homogeneous, proper, ttrtd ortho
chronous). Apart from the trivial cases y'=Ay, no
Lorentz transformation of a Lorentz vector y can be
written in the form y'=Ay; and any Lorentz trans-
formation of the form y'=EyS can be written as
y'=&QyQt, where Q is unimodular (QQ=1). Further,
by taking only the plus sign in the last equation one can
obtain all restricted Lorentz transformations. 4'~ Space
inversion corresponds to taking the adjoint or the
complex reQection.

If we assume that a unimodular Q exists such that,
for all y,

To prove (25), one needs the equation

(Q.-~) =(Q-Q)., (26)

3fanneal's Eqlutioms

As an illustration of the formalism, consider the
Lorentz vector a, the potential of the electromagnetic
field. From Eqs. (6), (7),
CtG 0' l9&gtt = C)~tt~+Z(84ttr Clrtt4 eoerl9Vttej0'

=(—K—iB, isa ), (28)

where K is the electric field and 8 the magnetic induc-
tion (cf. Ref. 3, pp. 46, 200, 217). We impose the in-
variant Lorentz condition 8 u= 8 u =0. The four
Maxwell equations are then equivalent to

which follows from (10) and (11).
If y and s are Lorentz vectors, the quaternions yz

and ys transform under restricted Lorentz transforma-
tions according to the rules

y'z' =QyzQ, gY=QtgsQt. (27)

It follows that the complex number yz+sg=gs+Zy=
—2y s is a Lorentz invariant. In particular, s s and
8 s are Lorentz invariants, and 8 8 is a Lorentz
invariant operator. If we write m=yz, then what we
have shown is that m4=iy s is a Lorentz invariant.
However, usa =—m m also is a Lorentz invariant, and
so therefore is m„m„.

=QyQ', B(K+iB)=cl fl a= —j, (29)

then by comparing coeKcients of yp one has A po- =
QosQt, and multiplying this equation by o&o~ and using
Eq. (11) gives

Q=CA po o&a~, (24)

where C=1/4(Qt), . For C to be defined, one must
choose y so that (Qt) ~NO. That this is always possible
follows from the assumption that Q is unimodular.
The value of C' is found by substituting (24) in

] 1S

Define fl =el/cia, it' = ct/Bte', where x is a space —time
quaternion. The differential operator 8=0. 8 is then
of particular importance. When x undergoes the
restricted Lorentz transformation x~x'=QxQt, the
operator transforms like a Lorentz vector:

where j is the current-density Lorentz vector. "Finally,
identifying E„+iBv with the to„of the last paragraph,
we see that (E„+iB„)(E„+iBv)is a Lorentz in-
variant.

II.2 Spinors

Spinors will be de6ned to be quarternions with speci-
fied Lorentz transformation properties; but they also
will be required to satisfy algebraic conditions (just as
Lorentz vectors are required to satisfy the condition
of Hermiticity). The conditions are that the quater-
nions should belong to certain ideals of the quaternion
ring. M

Ideals of Quaterlions

f)'=0 it' =Qo QtB (25)
A quaternion E is said to be idempotent if it satis-

fies

'7 M. A. Naimark, Les Representations Lineuires dN Grolpe de
Lorents (Dunod, Paris, 1962).

'8 We have assumed the existence of a unimodular Q; but it is
also possible to prove by direct calculation that, for any restricted
Lorentz transformation h., there exists a unimodular Q of the
form (24) which satistres (23). See A. J. Macfarlane, J. Math.
Phys. 3, 1116 (1962), who also gives references. Note however
that Macfarlane's argument is incomplete, since he implicity
assumes that Q4&0.

(30)

It follows from (30) that E is idempotent if and only
if E is, and that the only idempotent quaternions, apart

"Other forms of Maxwell's equations and references to earlier
work are given by M. Sachs and S. L. Schwebel, J. Math. Phys.
3, 843 (1962).

2e J. Blaton, Z. Physik 95, 337 (1935).
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EE=EE==0, E+E=1.
The set of quaternions p which satisfy

from 0 and 1, are those which satisfy the equations

E4 ————,'S.

From (31), the idempotents E and E& satisfy

(31)

(32) ~X~~X~—QX~X

~X03—~~X

(36)x

(37)x

connection between our treatment of spinors as quater-
nions and the usual treatment, in which they are two-
dimensional vectors, is therefore established. "

Take the complex reflection of Eqs. (36), (37), and
write q 'x=q x'..

(33)

is called the left ideal generated by the idemPotent E.
(Since E+E=1, Eq. (33) is equivalent to &pLL = 0).
Similarly, the set of quaternions x which satisfy

We call px a conjugate sPinor Si.milarly, taking the
adjoint or the Hermitian conjugate of (36), (37) gives

~ ~~'=~Q, (36)—

(34) P =~V~ (37)-

is called the right ideal generated by the idemPotent E.
Any quaternion A may be uniquely written as the sum
of a quaternion belonging to the left ideal generated by
E. and a quaternion belonging to the left ideal generated
by E, for by (32),

A =A (E+E) =A E+A E, (35)

and (AE) E=AE'=AE, etc. Similarly one can write
A=EA+EA. The proofs of the uniqueness of the
decompositions are trivial.

Degttition of SPittors

~t~~t~ —ptQt

0 3pt ~pt

(36) '

(37) '
We call P an adj oint sPinor, and. pt an adjoint ooej ugate
spieor.

In conventional spinor algebra, a spinor with an
undotted superfix corresponds to our q, and one with
an undotted suffix to our p. Spinors with dotted super-
fixes and suffixes correspond to E2q ~ and E2q, respec-
tively, where E2A =A —2220-' for any quaternion A.
It is usually possible, as here, to indicate the transfor-
mation law of a given spinor without using indices.

s ~~'=Q~ (36)

A spinor is defined to be a quaternion y which
satisfies Kq. (33) for some idempotent E (EWO and
EW1), and which transforms according to the law

Fermi orI, Field Equations

The Weyl equation in quaternion form is

g~x —0 (40)

p4 =~1+3) pl =&1+2. (3g)

If a and b are complex numbers, and if p satisfles (37)
when the upper sign is taken, then q (aa'+ba') satisfies
it when the lower sign is taken.

The reason for choosing E~= ,I(1~a') is that t-he

matrix representation (21) of a ta satisfying (37) is
particularly simple:

( vs(1a1), its( —1a1))
(39)

(its(1+ 1), ys (—1&1))
The 6rst column vanishes if we choose the lower signs,
and the second vanishes if we choose the upper. The

when the space —time quaternion x undergoes the re-
stricted Lorentz transformation x—&x'=QxQt. Since
y' satisfies p'E =y', the condition (33) is covariant with
respect to the restricted Lorentz transformations (36).

The freedom one has in the choice of E may be useful
for describing the internal degrees of freedom of
elementary particles. However, in this paper we simply
choose E=E+———,'(1+a'), so that E+=—', (1&a') =E~,
and (33) reduces to

(37)

or equivalently, in terms of components, to

The Dirac equation is equivalent to

(l9 zeII) P =zl'8)

(l9 brett) 0 =1K' (42)

where q and 0 are spinors, a is the electromagnetic
potential, jr=me/A, , e =e/etc, and e and m are the charge
and rest mass of the particle.

III. QUATERNIONS IN RIEMANNIAN
SPACE-TIME

To understand the rest of this paper, one needs a
small amount of Riemannian geometry. "Section III.1

2' It is tempting to speculate that the two sorts of spinor,
corresponding to the two choices of sign, may refer to different
particles: say electrons and y mesons, or two kinds of neutrino." See, for example, J. L. Synge and A. Schild, Tensor Calculus
(University of Toronto Press, Toronto, 1952), Chaps. 1—3.

where covariance under restricted Lorentz transforma-
tions requires that px be a conjugate spinor (and there-
fore that p be a spinor). Taking the complex reflection
of (40) and using (7) gives the neutrino equation

(41)
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is introductory in character, and may be skimmed by
the expert for its notation.

III.1 Tetrad Formalism

It makes for simplicity later on if one adopts, not
the most usual formulation of Riemannian geometry,
but the so-called tetrad formalism, in which an ortho-
normal tetrad of vectors is introduced at each event
of space —time. "'4 All that we do here is write down some
definitions, establish the notation, and show the con-
nection between the tetrad formalism and the usual one.

g ~gVX —$ V (47)

Tetrads and Metric Terlsors

Events in space —time are denoted by upper-case
Latin letters I', Q, etc. The value of a function f at the
event I' is denoted by fz or (f)&. An event may be
labeled by four real coordinates x& (recall that tt has
the range 0, 1, 2, 3) .

At each event of space —time one introduces a tetrad
of contravariant vectors with components o-p . Here n
(range 1, 2, 3, 4) labels the vector, and tt labels its
components. The o"s (range of k is 1, 2, 3) are real,
while the o."4 are imaginary. The determinant of the
matrix whose elements are 0-p is assumed not to vanish.
One can then find unique quantities o.„such that

0pa(T"P = ~0;P.

The o.» are real and the 0-„4 are imaginary.
Under the coordinate transformation xp~xp', the

0-p transform, by definition, as contravariant vectors"

(c&xg /c&xv) o v

and it follows from (43) and (44) that the o„ trans-
form as covariant vectors,

o„=(c&x"/c&x-&') a.,„.
The covariant and contravariant metric tensors are

defined by

gp, V=gpa(TVap g""=IT"afT a (46)

They are symmetric, and because of (43) they satisfy

The metric tensor is uniquely determined by (46)
once the 0& are chosen. However, the converse is not
true: choosing the gp" at each event does not determine
the Op uniquely. One easily shows that the tetrads
O.p and cr'p give rise to the same gp' if and only if

o'" =A pa"p, (49)

where A is a Lorentz matrix (cf. Section II.1), which

may now be a function of the xp."

A coordinate system in which Eqs. (50) are satisfied
is said to be inertt'al (at P). We use this word because
such coordinate systems correspond physically to
locally inertial frames of reference. The point of
introducing an imaginary X&")4 is to avoid having to
raise and lower the indices n ~ ~ c.

Using (50) one finds

It follows from (49) that one may obtain the
(&)x&/c&K&~& )t from the (o& )& by a Lorentz transforma-
tion. Thus, by performing a suitable inhomogeneous
Lorentz transformation of the X'~& we can find co-
ordinates x&~& with the following properties. (i) The
x&~& have their origin at I', and are inertial at 2 LEqs.
(50) hold]. (ii) The x&~&s are real and x&~&4 is imagi-
nary. (iii) The transformation coefficients c&x"/c&x& '

are the 0-" at P

Irlerti al Coordinates

We now introduce a class of special coordinate
systems in a neighborhood of each event. This may seem
an unnecessarily complicated procedure, but it will help
us when we try to generalize the results of Part II.

Start from the theorem" that in a neighborhood of
any event P there exist real coordinates X&~» in terms
of which the metric tensor at P has diagonal elements

(—1, 1, 1, 1), zero nondiagonal elements, and zero
first derivatives. Make the trivial coordinate trans-
formation X( ~I, =X~ &~, X& &4=iX~ ~, so that the
transformed metric tensor &d&~&

&t satisfies at P

gpvo a=(Tpn) gpVO —0 p

Generalizing (48), we define the covariant vector f„
corresponding to a given contravariant f& by f„=g„„fv;
and then from (47),fl"=g""f„.This is just as in the usual
formalism.

» L. P. Eisenhart, , 'hemannian Geometry (Princeton University
Press, Princeton, 1926), Chap. 3; F.A.E. Pirani, Acta Phys.
Polon. 15, 389 (1956);C. M&ilier, Kgl. Danske Videnskab. Selskab,
Mat. —Fys. Skr. 1, No. 10 (1961). Also see A. E. Levashev and
0. S. Ivanitskaya, Acta Phys. Polon. 23, 647 (1963).

'4 For some purposes it is better to use tetrads of null vectors:
see R. K. Sachs, Proc. Roy. Soc. (London) A2yOv 103 (1962);
E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

25 We use here the notation of J. A. Schouten, Ricci-Calculus
(Springer-Verlag, Berlin, 1954).

Such x&p& are said to correspond to the tetrad o." . The
x~~' are not uniquely determined by these conditions;
but if x( ' and i~ ~ are two sets of coordinates inertial
at P which correspond to the same gp, then i, ~ & =
x&&'& +O(x& &t&x& &t&*) as x&~& x' & *&0. The meaning of
Eq. (52) is that the vector with components o& (&r

fixed) is tangential at P to the x&~& coordinate curve.

"Be clear on the notation: the 0.t" are got from the ut'„by a
coordinate transformation xp~xp' (they are two descriptions of
the same tetrad), while the e'v are got from the ov by a Lorentz
transformation (they are two different tetrads described in the
same zv coordinate system). We do not write ev, . for the Lorentz-
transformed tetrad, because later the suKxes a are suppressed.
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We have implicitly assumed, and always assume, the ChristoGel symbols of the second kind:
that the Jacobian of the transformation from the
xt" to the x(P) does not vanish in some neighborhood of =(g'EV'»j)p=(x"'-, "x ..)p
P.' This, together with (43) and (52), implies p

(58)

(ax& &./cIx~) p ——(o„.)p.

Loca/ Loreets Transformutiorss

If (o." )p and (a.'" )p are two tetrads at the event P
which give rise to the same (g"")p, then they are related
by a Lorentz transformation like (49)

lp, lj(o )p (~ p)p(os)p (49)p

where (A ~)p(Ap~) p ——b p. Suppose that x&pi. and
x'( ) are coordinate systems inertial at P which
correspond, respectively, to 0.& and 0'& . Then from
(52) and the assumption that the determinants of the

0-& and the 0-'& are nonzero, one shows that

x'&» = (A )px& &s+O(x& & x& ' *)

~(» ~(» *~0.

We call transformations of the type (54) local Loreets
tralsformatioms (im the rseighborhood of P). They are
important in Sec. III.3, where we demand that physical
laws should be covariant with respect to rotations
(i.e. Lorentz transformations) of the reference tetrads.

Christoffel Symbols

We adopt the notation Bf/Bx"=f,„, and similarly for
any suffix from I& through &o, and we put &f/&x& ' =f, ,
and similarly for any suKx from n through ~. However,
one must not write f, if it is unclear which set of
inertial coordinates x(P) one is dealing with. In"deriva-
tives of the form Bf& &/Bxl' or Bf& &/Bx&p&, of quantities

f&P& which depend on the choice of inertial'coordinate
system, we make the convention that the event P
and the inertial coordinate system associated with it
stay Axed throughout the diGerentiation.

The transformation law for the metric tensor can now
be written

g „=g(» g(»p, g(P) p

Differentiate (55) with respect to x~ at P, and use
(g&Pi s,q) p ——(g&P' s,vx&P&~i,)p 0, wh, ich ——holds because
the x(» at inertial at P:

and (58) becomes

=—(x&p&,„x, „)p.
p

(58)'

Absolute aed Covariaet Derivative

Let f„..."'"be a tensor with respect to transformations
of the x". Its components in the x( ) coordinate system
are

(P) —gp .. .g(P) X & ~

Qo ~ ~ Yo ~ o g JP, ~ ~ ~

where x", =Ox"/Bx&P' . If f„..."'" is defined along a
curve 6 and is diGerentiable with respect to an in-
variant parameter v on e, then the absolute derivative
of f„..."" with respect to v at P is defined to be the
tensor g„...""', of the same type as f„...""', whose com-
ponents at the event P in the x(P) coordinate system
are

(g&"-- '-)p =L(did~)f &"'-" ~- 3p (60)

Transforming (60) to the x" coordinate system and
introducing the notation g„..."" = (b/$i) f„...& ", one
finds by (52), (53), that

L(b/»)f-" '"jp
= (o ~ ~ o' ~ ~ ~ (d/dv) (x& ~ ~ x&p& i ~ f ""

) ) (61)

(In such equations it often does no harm to omit the
sufIix P). If one expands the derivative in (61),
writes d(x", )/d~=x~, ,dx /dn, etc. , and uses (43) and
(58), one gets the usual expression for the absolute
derivative in terms of the ChristoGel symbols.

If f„...""' is differentiable throughout a region which
contains P, then the covariant derivative of f„..."'" at
P is de6ned to be the tensor h„...~'", whose contra-
variant degree is the same as that of f„..."'", whose
covariant degree is one higher than that of f„...i"', and
whose components at the event P in the x(P) coordinate
system are

(h"' - '- ) =L(~/~*"' )f"' - .- ] . (62)

Transforming (62) to the x& coordinate system, and
introducing the notation h„...""',=f„...""'~„one finds

(tv, x)p x xx v+x x vx (56)
f '"& =o ~ ~ o' ~ ~ ~ (8/cjx') (x" ~ ~ x&P& i, ~ f "'")

(63)
The Christoffel symbols of the erst kind at P are
therefore

Et p, &jp=-:-(g.i. +g.i,.—g".~) = (*' '-,"*"'-.»p.

Multiply by g~" and use (43), (46), (52), (53) to find

"Let it be understood that throughout this paper we exclude
singular cases. All necessary derivatives are assumed to exist, and
even "arbitrary" transformations are as smooth as we please. fxluv fx&up —+ Ipe fxy (64)

Again the usual expression in terms of ChnstoGel
symbols is got by expanding the derivative, etc.

The preceding examples of the tetrad formalism
should be su%.cient to establish the notation and to
familiarize strangers with its use. The only other remark
we make is that the Ricci identity
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which holds for any differentiable vector field f, and
which may be used to define the mixed curvature
tensor E" „„,gives when f =ot.he equation

g„Ag"=g„Ag"=2A) (73)

From (10), (11), (43), one shows that, for any
quaternion A,

E& grpa & a(O'aa[jor 0'aa[ay). (65) 0aA0~0~=0'po7A''o~=(TaA0~0 =0po~c40a=4Ap. (74)
It follows, using R), ~=—R ),„„that the Einstein field
equations for empty space, R p=R"„„&=0,are equiva-
lent to

Eqs. (73), (74) remain valid if one everywhere raises
the suKxes p and lowers the superfixes p.

+ &I l»l ~)X

where f(.p)
= ,'( f.p -fp.).—

From (48) and (67)

gp=gpag

III.2 The Quaternions oa and 0„

The quaternions g-& and g.„are defined by

(66)

(67)

Coordinate Transformatiols aid the Operators 8, 8

The g.& and g& are contravariant vectors. " This
follows from (44) and from the fact that the 0 and
g are constants, unaffected by transformations of the
x&. Similarly, the g-„and g„are covariant vectors.
Transforming the g.& and a„ to an inertial coordinate
system x&~&, one has

(75)

p=gpv& ) g p —gpvg (68)

gp —gpX
) gp=g p,

x (69)

The operations of raising and lowering indices commute
with the operations, t, x: for example, g„,g"=g.„.

The scalar product of 0& and 0" is, by (18) and (46),

g" g"=——g"g" g"g." =—
~ g"g." g "g"

—gP gtT —gPV (70)

The g-& and g„are the n components of g-& and g-„,

respectively, which agrees with the notation of Section
I.2. Our previous device of writing g with a superfix,
so that one is not misled into thinking that the o.
denotes a quaternion component, is not needed here:
only suffixes from n through i (range 1, 2, 3, 4) are
used for quaternion components, so g-„cannot be the p,

quaternion-component of some quaternion g.. If
ambiguity does threaten, one can always put brackets
round a suffix to indicate that it does not denote a
quaternion component: for example,

0.& & =(Bx& ' /Bx")o".
is the reference tetrad expressed in the x&~) coordinate
syste~.

The reality conditions imposed on the a.& and
g„are gpss, =g.pj„crp4 =—~"4, g„y =g„j, g„4*=—g„4. It
follows from the definitions of Section I.2 that

It follows that if a quaternion fp (f )po——is given. at
the origin P of an inertial coordinate system x& ), then
by defining a vector (f,)p=(0„ f )p, one can write
fp in the invariant form fp = (f„o")p. .

The operators B=o-pB„and 8=gpB„are invariants:
g-p9„=o-&'8„. and o."8„=cr"'8„ for any coordinate systems
x& and x&'. If a is an invariant quaternion, then Ba and
8u are also invariant quaternions, and 8 u and 0 a are
invariant complex numbers. If the coordinates x are
inertial at the event I', then it follows from (75) that

Bp ——(o&8„)p 0'(8 )p,
—— (76)

where 8 =8/Bx . In a flat space —time one can find
coordinates x which are inertial at every event. In
such a coordinate system Eq. (76) is valid everywhere,
so that B=g. 8 in agreement with the de6nition of
Section II.1.

Lorents Transformation of 0„

It was shown in Sec. III.1 that a Lorentz transforma-
tion of the reference tetrad (0.„)p entails a local
Lorentz transformation (54) of the coordinates inertial
at P which correspond to g-„. Omitting the suffixes P,
we write the local Lorentz transformation correspond-
ing to o.'„=h po.„p as x'& ' =A px& 'p+O~, where 02
denotes terms of the second order in the x&~); and
provided that A. describes a restricted Lorentz trans-
formation, these equations are equivalent fcf. Eq.
(23) $ to

Lowering one superfix in (70) gives 0." O„=g"„=p„;
lowering both gives g.„.g, =g„„.

The norm of g-& is
xT(P) =Qx(P)Qt+8 (78)

o&ol"= —0& o& = —g» (no summation ontT); (71)

and its reciprocal is

gp
(0~)—'= ——for g»MO (no summation on p). (72)

gIJt p

Similar results hold for g„.

for some unimodular Q. We have here written 0'„=
x =x g x ~ ~=g ~+) g, and Q~ ]s a quater-

' We always use the words invariant, vector, tensor, to refer to
quantities v hich behave in the appropriate manner with respect
to general transformations of the x&. When we are concerned with
Lorentz transformations of the reference tetrads, we use the
phrases Lorents invarian, Lorents vector, Lorents tensor, as in
Part II.
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F =fjgv0'~0 +'iA (87)

for some qua, ternion n, and by substituting (87) in
(84) we show that F is a solution if and only if ~ is a
real number. When +&0, one naturally has F~—F.where o'&=0'& fT .

The transformation of the operator 8=0-&B„which
corresponds to the Lorentz transformation (79) is Deriiiafi ves of a„

nion whose components are of second order in the fies (84) can always be written
x&~' . Note that both A. and Q are invariants. One can
multiply (77) by g"" and use (48) to get

~'"=Q~"Q' (79)

8 =0 "BN=Q(T~Q Blv

If one uses (76) to write 8'=s (8' )T, and (52) to write
Qa."QtB„=QO. Qt(8 )T, then (80) becomes identical,
apart from the suflixes F, with Eq. (25).

When Q differs little from 1, we may write Q=1+8q
and neglect terms of the order of (5q )'. The uni-
modularity condition QQ = 1 is then equivalent to
bg+6q=0 or to 6q4 ——0, and the transformation law

(77) reduces to

The definitions of absolute and covariant derivatives,
which were given in the last section, apply unchanged
to tensors which are also quaternions. Each quaternion-
component of such a tensor is, of course, itself a tensor;
and the requirements that a tensor should be differ-
entiable along a curve or throughout a region must
now be interpreted as meaning that these quaternion-
components are so differentiable. Applying the defini-
tions, we see that the covariant derivatives of 0-& and
Op are

as

80.„=0'„0-„=tiqo—„+o„(8q)t+0(8q 5q *)
where

0 l„=o
l

0 ) &pl v =&pal v& ) (88)

QQ =QQ =e"s, (82)

where p is a real invariant. If p is of the same order as
the 8q, then to first order (82) is equivalent to 8q+
by =2iP, or to 8q4=P.

Skew-symmetri c Terisors

The representation of real skew-symmetric tensors
by quaternions which is given in this subsection will be
needed when we calculate derivatives of the 0„.

Let f„„be a real skew-symmetric tensor. Define the
invariant quaternion F by

8q Sq *~0.
We note that none of the Eqs. (7'7) through (81) is

altered if, instead of requiring that Q be unimodular, we

impose the weaker condition"

p,
0 alv=& a, v~ 0 a)p

vP
&pal v &pa, v 0') a.

7)rp v
=PaP7&)ra&pP&vy. (9o)

They are real, satisfy p „„=—p„„, and at I' in a co-
ordinate system inertial at F one has (y&~& p~)~=y p~.
Multiply (89) by 0 sg» and use (43), (88), (90):

It makes for ease of interpretation if, instead of
using Christoffel symbols, one expresses the covariant
derivatives of 0„ in terms of rotation coefficients (see
Eisenhart" p. 97, but notice that his rotation coe%cients
are all real) . These are the invariants p p~ defined by

V Vv
—0~ l

7"PT v

Because of (43) they satisfy p pv= —
yp ~. Define the

tensors p „,by

F=f a."o" O'pl)r =PXp)rg ~ (91)
Berne a quaternion F byBecause f„„= f,„, we have F—= —F, or F4=0. From

Eqs. (69), (70) it follows that I v. ao v[vvtT +Z&vvv

4f„„a"=Fo„+O„Ft, . -

8f„=~,(~uF+F'~. ) (F~.+~.F') ~—

(92)
(84) where the n are real and are chosen to transform as the

components of a covariant vector (so that I' is a
covariant vector). From (91) and (92),

(86)II= F f 0"0"—
and put F= —H" in (84) and (85).

For any given f„„we have found a quaternion F
which satisfies (84). The most general F which satis-

» H. We) 1, Z. Physu 56, 330 (1929).

and hence f„„is uniquely determined by F Lthat (85)
is skew-symmetric can be seen by writing o-„0„=
2 (0'v0'Iv —Oivo'v 2glvv) v etc.j. —

Another possibility is to define an invariant quater-
nion II by

Iv 4:7yvvtT 0"+Z(Xvv '~(93)

Vyvva'" = I wo'iv+0'ivt w (94)

Further, F„ is the most general covariant vector solu-
tion of (94). Finally, substitute (94) in (91):

fT~l~ = I ~f7~ 0~1 ~ ~

Since the p„„are real and skew-symmetric in p and v,
the I' satisfy all the conditions required of the F of
Eq. (87), and therefore by (84),
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Lorelts Trartsform(ttiort of F„

Apart from the usual assumption that all necessary
derivatives exist, the choice of reference tetrads in the
last subsection was quite arbitrary. Suppose that
O„and 0-'„are two sets of tetrads de6ned on the curve 6
and related by the v-dependent Lorentz transformation
(r'„=Qo„Qt. In a coordinate system inertial at P =8 (v),
the tetrads are o&~)& &=(Bx"/(&x&~) )o„and o'(~)& )

——

((&x&/c&x&p) )o'„The d. isplacement dv along &' from I',
which corresponds to a Lorentz transformation 1—F, dv

of the fT(~~~ ), corresponds similarly to a Lorentz trans-
formation 1—F', dv of the 0'& )~ ). This latter trans-
formation can be accomplished in three steps: from
o.' (.)(v) to o (.)(v), from o&.)(v) to o -& )(v+dv),
and from (r&~)& )(v+dv) to o.'&~)& )(v+dv). The corre-
sponding Lorentz transformations are Q '(v), 1—F„dv,
Q(v+dv), so that 1—F'„dv =Q(v+dv) (1—F„dv) Q '(v),
and hence

F'=QF.Q-' —(dQ/d )Q '. (98)

In (98) everything is evaluated at P =E(v) . One can,
of course, add to (98) a term iy(v), where y(v) is real
fcf. (93)j.

By taking the curve 6 to be arbitrary, we can deduce
from (98) the relation between F and I" . Alter-
natively, use the defining equation analogous to (92):

IF ~= xo v(w(r +t(i w. (99)

It follows from (62) that for any quaternions A and B
one has (AB)

~
=A& B+AB~, and that the covariant

derivative of an invariant quaternion is the sa,me as the
partial derivative. Since Q is an invariant,

o'.i-= (Q~.Q') i-= Q~ i-Q'+Q, -o Q'+Q& Q' -. (100)

The absolute derivative of o.„with respect to a
parameter v on a curve &' is, from (95),

f&(r&I/gv=a'~[r(dx /dv) = Fg(rp (rpFy ) (96)

where F„=I' dx"/dv is an invariant. Multiply (96) by
dv, and put d(o„) = (i&'(r„/I)v) dv, dq = —F„dv:

d(~.) = (dq) ~.+~.(dq) '. (97)

Equation (97) has been written to look like the differen-
tial version of (81),but it has a different interpretation.
In a coordinate system which is inertial at the event
E=P(v) of &', the vector d(o„) a.t I' is (i)(r&~)& )/(&v) dv=
(do&~)( )/dv) dv =do&~)( )

——o&~)( )(v+dv) —o&~)( )(v). In
this way the vector d(o„) determines the change in o.„
corresponding to the displacement dv along 6 from I'.
On the other hand, the vector l&o„ in Eq. (81) is the
change in O.„at I' corresponding to the Lorentz trans-
formation Q=1+(&q. We conclude that in (t coordirtate
systems inertial at I' the change in the reference tetrad
produced by the displacement dz along 8 from I' is the
same as that produced by the Lorentz transformation
1—F„de at I'.

We impose on Q the condition (82), which is equiva-
lent to Q '=Qe ' e and which implies (Qt Qt), =—P e '(e. A short calculation using (74), (92), (99),
and (100) then gives

F'.=QF.Q-' —Q,.Q-'+i(~'. —~.+p,.). (101)

We define o." so that the last term in (101) vanishes:

(102)

Because o.'„ is by assumption a real covariant vector
and p is a real invariant, we see that n' is a real co-
variant vector. If we write e=e/Ac and identify (t =
—o. /e as the electromagnetic potential, then (102)
represents a gauge transformation. "

At any given event P we can choose Qt =1,
(Q, )t = (F )t. Because Q is an invariant, these equa-
tions are covariant with respect to transformations of
the x)'. Then from (101) and (102) we have (F' )t =0,
and from (95), ((r'„~ ))*——0. At P in a coordinate
system inertial at I' the covariant derivative is the
partial derivative, and the last equation becomes
(o.'&~)& ),t))t ——0. The physical meaning of the trans-
formation is therefore that it makes the vectors of
the tetrad at an event near I' parallel to the corre-
sponding vectors of the tetrad at I'. We say that after
the transformation the tetrads are locally aHgeed with
respect to the tetrad at I'. This is of importance in the
next section when we dehne aligned absolute and aligned
covariant derivatives.

III.3 Physical Laws in Riemannian Space —Time

There are two kinds of freedom within the formalism
that we have been developing:

(i) The coordinates x" may be transformed in an
arbitrary manner.

(ii) The reference tetrads at every event may be
subjected to independent Lorentz transformations. 30

Ke impose the traditional requirement that any equa
tion which correctly expresses a physical law must be
covariant with respect to both sorts of transformation.
This is quite restrictive, and consequently a sensible
method for guessing the laws of curved Riemannian
space —time is to try to write known laws of Oat space—
time in a form covariant with respect to the transfor-
mations (i) and (ii), and then to assume that these
covariant laws are valid in general. We shall now ex-
amine this procedure more closely.

In Rat space —time one can choose coordinates x
which are inertial at every event Lthat is, by (50),
the metric tensor is everywhere g t)

——(& t)j. When
working in such a coordinate system one does not
normally bother with reference tetrads; but at each
event we shall introduce a tetrad whose vectors point
in the x coordinate directions. From the last subsec-

» That is, in accordance with out general policy, independent
but smoothly varying from event to event.
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tion we see that these tetrads are everywhere locally
aligned with respect to one another.

We suppose that a physical law of Oat space —time is
expressed in the x coordinate system by the equation

f=0.To write this equation in a form which is covariant
with respect to transformations of type (i) is commonly
not hard: one can use the mechanism of tensor calculus.
What we must think about is how to ensure its co-
variance with respect to the general tetradtransforma-
tions of type (ii).

The original equation f=0 must be covariant with
respect to Lorentz transformations of the x„,—other-
wise it would not be acceptable as the expression of a
physical law. Since we have identihed the x coordi-
nate directions with the directions of the vectors of the
reference tetrads, we can say that f=0 is covariant
with respect to those special transformations of type
(ii) in which the reference tetrads undergo the same
rotation at every event. We cannot however expect it
to be covariant with respect to general transformations
of type (ii) unless the Lorentz transformation of the
quantity fz is determined solely by the rotation of the
tetrad at P, and not at all by the rotations of the
neighboring tetrads. When this is the case, we say that
the Lorentz transformation of f~ is QI* deterrnin-ed

(recall that QI is the Lorentz-transformation quater-
nion at P, and that it- determines the rotation of the
tetrad a,t P).

How does one Qnd out whether the Lorentz trans-
formation of a quantity at P is QI-determined? We
shall not attempt a profound answer, but simply assume
that the Lorentz transformations of certain of the
variables appearing in fz are QI-determined. Further,
when we come to reinterpret the covariant form of the
equation fI =0 as being valid in curved space —time, we
shall assume that for such a variable the transformation
which corresponds to a given Lorentz transformation of
the tetrad at P is the same in the old, fiat space —time,
and the new, curved space —time interpretations. "

In the examples that we shall deal with, the Lorentz
transformations of the quantities fI which appear in the
fiat space —time equations are not QI-determined; but
they are functions of QI -determined variables and of the
partial derivatives of QI-determined variables with
respect to the x . If, therefore, we can define a quantity
which has the same Lorentz-transformation properties
as the QI-determined variable CI, and which reduces
to (84/Bx )p at the event P in the case when the
tetrads are locally aligned with respect to the tetrad at
P, then the problem of writing the equation f=0 in a
form which is covariant with respect to general trans-
formations of type (ii) should be readily solved. The

" In Qat space —time, where the tetrad vectors were chosen to
point in the x coordinate directions, the Lorentz transformation
of the tetrad at I' is the same as the Lorentz transformation of
the x . Similarly, in curved space —time, Eq. (77) and (78) express
the relation between the Lorentz transformation of the tetrad at
I' and the local Lorentz transformation of the corresponding
coordinates inertial at P.

quantity that we need is the aligned covariant deriva-
tive, defined in the next subsection.

Aligned Absolute and Aligned Covariant Derivatives

In S c. III.t. we defined the absolute derivative of a
tensor A, which is a tensor of the same type as A, and
the covariant derivative, which is a tensor of the same
contravariant degree as A and of covariant degree one
higher. The de6nitions do not involve any particular
choice of reference tetrads, but transformations of the
tetrads need not correspond to any simple transforma-
tion of the derivatives. Now, for any Riemannian
space —time, we define new quantities, the aligned
absolute derivative and the aligned covariant derivative
of the tensor A. They have, respectively, the same
tensor transformation properties as do the absolute
and covariant derivatives of A, but they transform in
the same way as A when the tetrads undergo Lorentz
transformations.

It was shown at the end of Sec. III.2 that, given an
event P and a tetrad (o.„)I,one can always transform
the neighboring tetrads so that (o.'„~,)I ——0. After the
transformation the tetrads are said to be locally aligned
with respect to the tetrad (o„)I. Suppose that, as a
result of the aligning transformation, the tensor A
becomes A~, where A~ is dered in some neighborhood
of P. Then we define the aLigned absolute deriIIatr', e of
A at P to be the absolute derivative of A~ at P,
and the aligned coIIariant deriIIatine of A at P to be
the covariant derivative of A~ at P. We introduce the
notations AA/As for the aligned absolute derivative
of A with respect to a parameter v, and A,.„ for the
aligned covariant derivative of A with respect to x&.

It follows from (60) that if one locally aligns the
tetrads with respect to the tetrad at P, and chooses
coordinates x&~) inertial at P, then at P the aligned
absolute derivative is the ordinary derivative. Simi-
larly, from (62), the aligned covariant derivative with
respect to x(") at P is the partial derivative with
respect to x&~& . From this we get an intuitive idea of
the meaning of the aligned derivatives.

The aligned absolute (covariant) derivative of a
tensor A is the absolute (covariant) derivative of a
tensor A~ of the same type as A, and is therefore a
tensor of the same type as the absolute (covariant)
derivative of A.

The aligned absolute and aligned covariant deriva-
tives of a product of tensors are found by rules like
that for ordinary derivatives. For any tensors A and 9
one has (AB) ,„=A,„B+AB,„, etc. Th.e pro. ofs are
trivial if one 6rst transforms to an inertial coordinate
system.

It follows from the definitions that, if a tensor is
unchanged by Lorentz transformations of the reference
tetrads, then its aligned absolute (covariant) derivative
is the same as its absolute (covariant) derivative. In
particular, g„„,.),=g„,~q=0 and g&",.y=g&"~q=0; and using
the product rule of the last paragraph, we see that the
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Alternatively, after performing the transformation Q
one may locally align the tetrads with respect to the
transformed tetrad at 0 by means of a Lorentz trans-
formation q':

A'r =L[q')A'= L[q']L[Q]A, (105)

q'=q'(v) =1+(I")o(v—vo)+0(v —vo)2 as v—+vo.

(106)

The aligned absolute derivatives of A with respect to
v at 0 before the transformation Q is

(107)

and after the transformation Q the aligned absolute
derivative of A' is

(108)

From the group property of L, one has L[q']A'=
L[q']L[Q]A =L[q'Q]A, and since by (98),

q'=QoqQo '—(dQ/dv) oQo '(v —vo)+o(v —vo)', (109)

we get, writing Q(v) =Qo+ (dQ/dv) o (v —vo) +0 (v —vo) '
and using q= 1+0(v—vo),

operations of raising and lowering tensor indices com-
mute with the operations of taking the aligned absolute
or aligned covariant derivative.

To investigate the Lorentz transformation properties
of the aligned absolute derivative, we make an arbi-
trary, but smaoth, transformation of the reference
tetrads on the curve t . Take e to be a parameter on 6,
write the events of 6 as J'=P(v), and let Q=Q(v) be
the Lorentz transformation quaternian. The Lorentz
transformation of the tensor A, defined on 6, is written
A~A'=L[Q]A, where L[Q] is an operator with the
group property L[Q&'&]L[Q&'&)=L[Q&'&Q&'&) for any
Lorentz-transformation quaternions Q&'& and Q&'&.

Without performing the transformation Q of the
reference tetrads, one may locally align them with
respect to the tetrad at the event 0= I'(vo) by means
of a Lorentz transformation g. The aligned tensor is

Ar=L[q)A, (103)

where, using the results and notation af Sec. III.2,

q=q(v) =1+(I'„)o(v —vo)+0(v —vo)' as volvo.

(104)

and from (107), (108),

(&A/») o = (8A/R) o+KoA o (113)

A simple special case of (113) is when A is a spinor q.
Instead of (36), we assume the slightly more general
Lorentz transformation

~p' =exp[i (N —1)P)Qq, (114)

where P is the real function such that QQ=e2'e, and N
is a positive or negative integer or zero. (In quantum
theory, the charge of the particles described by p is
N times the electronic charge). From (93) and (104),
using the definitions I'„=I' dx /dv and n„=e&, dg /dv,
we have

The commutation of the operators L[Qo) and 8/ttv is
valid for all reasonably behaved L[Q], and certainly
for all the L,[Q) that we shall deal with. This is easiest
seen by transforming ta a coordinate system inertial at
0 (where 5/R becomes d/dv).

Eq. (111) says that the Lorentz transformation law
of the aligned absolute derivative AA/» of a tensor A
is the same as that of A. Provided that A is differ-
entiable throughout a region containing 0, so that the
curve 6 can be chosen arbitrarily, one proves at once
that the Lorentz transformation law of the aligned
covariant derivative A,„is also the same as that of A.

Relation of Aligned to Nonaligned Derivatives

For brevity, let aligned derivative(s) mean aligned
absollte or (and) alrtgned covariant derivative(s), and
nonaligned derivative(s) mean absolttte or (and) co
variant derivative(s). We now express aligned deriva-
tives in terms of nonaligned. The principal application
that we shall make of the results will be in evaluating
the aligned derivatives of invariants. (A nonaligned
derivative of an invariant is just an ordinary or partial
derivative) .

The aligned form A~ of the tensor A is given by
Eqs. (103), (104). Expand the Lorentz transformation
operator L[q] about the point 0 (for which v=vo)
on the curve 6:

LLq] =1+Ko(v—vo) +0(v—vo) '. (112)

Substituting in (107), one finds the aligned absolute
derivative at 0 in terms of the operator Eo

Thus

q'Q =Qoq+0(v vo) '. —

L[q Q)A =L[Qo]L[q)A+0(v vo)2—
(110) qq=1+2i(n~) o(v —vo)+0(v —vo)'s (115)

and substituting in L[q]q = (qq)'&~ —
'&qy, one finds the

Ko of Eq. (112). If we drop the suffixes 0, Eq. (113)
then gives

=L[Q.]A'+o( -"), (D(p/») = (t)p/5v)+(i(N —1)o.„+I'„)tt, (116)
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DA =cr"A,„, DA =0 "3;„, (121)

for any tensor A. We write the variables that appear
in the 6eld equations —the electromagnetic potential a,
the spinors q, 8, etc.—as invariants. For example, we
define a real vector a„such that a=a„a& Lsee Eq. (75)
and the remarks that follow it). When A is an in-
variant and the tetrads are locally aligned, one has
DA=BA and DA=DA, where 8=o-&B„and B=o-&B„.

Thus we put the Geld equations of Part II in a generally
covariant form by replacing 0 by D and 8 by D.

As an illustration, the Lorentz condition on the
electromagnetic potential was written as B.a =0.
This is equivalent to (Ba)4——0; and according to our

For N=O, the i(N —1)n„ term in (116) is cancelled

by the "electromagnetic" iu„ term in F„which is
what one would expect for neutral particles.

Starting from the transformation law

px—
&q

~' =exp) —i(N —1)P)Q~q ~, (117)

one shows similarly that hy~/Dn is given by the com-
plex reflection of (116),and it is also easy to prove that
Dg/An and Apt/d, v are given by its adjoint and Her-
mitian conjugate, respectively.

If y is a Lorentz vector, then L/qjy=qyqt, and
Eoyo (F„)o——yo+yo(F„t) o. Again dropping the suffixes

0, Eq. (113) gives

(Dy/Dv) = (5y/R) +I'„y+yF„t. (118)

In particular, taking y=o„and using (96), we have
Do„/De=0, which . is also an immediate consequence of
the definition of the aligned derivative.

The aligned covariant derivatives of p and y with
respect to x& are found by replacing the aligned and
nonaligned absolute derivatives in (116) and (118)
by the corresponding aligned and nonaligned covariant
derivatives, and replacing o.„F„byo.„, F„:

p;q= %[11+(&(N 1)~~+Fy) A (119)

y;.=yi.+F.y+yF. ' (120)

porn, riced Field Eqlatioes

With the mathematical apparatus that we have
assembled, it is straightforward to write the field
equations of Part II in forms which are covariant with
respect to transformations of the x~ and Lorentz
transformations of the reference tetrads. We define
operators D and D by

prescription it has the generally covariant form
(Da) 4 ——0.

The generalized form of the Dirac equation (42) is

Dyx =i ~0, D8 =i ~q +. (122)

The terms involving the electromagnetic potential are
implicit in (122) provided that we allow Lorentz
transformations in which Q satisfies only (82), and
provided that the Lorentz transformation of q is given
by (114) and the Lorentz transformation of e by

8~8' =exp)i (N' —1)P]Q8, (123)

for suitable N, N'. To show that (122) can be reduced
to (42), substitute for D and D from (121), then use
(119) and its complex reflection. Recall that in (42)
the tetrads may be taken to be locally aligned, so that
o.,

~

=0 and, by (92), F =in . We find

(8 iNn—) rp =i~8, (8+iN'a)g=igyx (124)

where n=~&n„. Eq. (124) is the same as Fq. (42)
provided that Eo;=—g'O. =~a. If as before ~a= —o.,
then E'= —g =1.

The covariance of these field equations does not
depend upon space —time being Rat. They are therefore
possible expressions of physical laws in curved space—
time.

IV. CONCLUSION

The movement towards abstract algebraic and coordi-
nate-independent formulations of physical theories,
and away from particular matrix representations and
special coordinate systems, is an increasingly popular
one, and our work is in accord with it. Less popular,
and seemingly opposed to this rarefied mathematical
spirit, is our desire to make abstract concepts more
concrete and imaginable. To pure mathematical minds
the aim is unsympathetic. They are happy in their
complex spaces, and would prefer to postulate an
affine connection rather than to align tetrad vectors.
It is a matter of taste. Those, however, who are pre-
pared to exploit the accident of having been born in
space —time may find this paper useful.
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