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INTRGDUCTIGN

' E. R. Dobbs and G. O. Jones, Repts. Progr. Phys. 20, 516
(1957).

The study of the solid state of rare gases is doubly
and uniquely interesting. First, the forces between
identical molecules are weak, short range, much in-
vestigated, and rather well understood so that critical
tests of appropriate theories by their ability to predict
properties of rare gas crystals are comparatively simple.
Second, these same forces make it necessary to carry
out experiments on the rare-gas solids at low tempera-
tures, high pressures, or both so that accurate measure-
ments of the predicted properties are dificult. Partly
on account of the theoretical advantages and notwith-
standing the experimental difficulties much interest has
centered around these studies since the beginning of
this century, shortly following the discovery of the
gases themselves, and increasingly in the last fifteen
years. The purpose of this paper is to review both
experimental and theoretical work on solid Ne, Ar, Kr,
Xe, and Rn with special emphasis on advances since
the well-known review' of this kind on Ar.

Rare-gas crystals are prototype' 4 molecular crystals,
one of the classic solid types. ' For our purposes
molecular crystals may be characterized thus: (a) all
lattice points are occupied by identical molecules, and
(b) the lattice molecules interact with weak forces,
principally van der Waals attra, ctions (r '). In more
complicated molecular crystals the forces may be
strongly noncentral, or covalent effects may become
important. Actually these contributions are present
even in rare-gas crystals but their eAects are quantita-
tively small (see, however, I.C. Theory of the Solid
Structure). The properties of rare-gas solids usually
change in an ordered and frequently predictable fashion
(see, e.g. , III.B.1 Law of Corresponding States) as the
tables and 6gures show. This has been used, for exam-
ple, to study effects of isotopes and zero-point energy
and also as a basis for calculating properties of other
not quite so ideal molecular crystals. Using more
specific theories, experiments on rare-gas solids yield
much knowledge on the details of molecular interaction
especially departures from simple inverse-power po-
tentials, anharmonicity, and electron exchange. Most
recently, e8ects of lattice imperfections have been ob-
served and studied in rare-gas crystals. We have
attempted in what follows to discuss the main ideas in
these and in other modern currents of rare-gas solid
research. Although He is a rare gas and should properly
be included in the discussion, its small molecular mass
and large ratio of zero-point energy to static-lattice
energy give the solid and the liquid many well-known
and appreciated unique properties. These have been
copiously reviewed by others and therefore any but
casual mention of He is omitted here. Experiments on
solid and liquid Rn in contrast have been very few;
these have been included. A clear and concise survey of
experimental properties of liquid and solid rare gases
including He has been given by Hollis Hallett' as part

s G. O. Jones, Z. Physik. Chem. 16, 26'I (1958).
s A. V. Stepanov, Krystallografiya 3, 392 (1958) LEnglish transl. :

Soviet Phys. —Cryst. 3, 395 (1958)g.
e E. R. Dobbs, Am. J. Phys. 28, 243 (1960).' F. Seitz, The 31odern Theory of Solsds (McGraw-Hill Book

Company, Inc. , New York, 1940).
C. Kittel, Introduction to Solid State I'hyszcs (John Wiley R

Sons, Inc., New York, 1956).
7 P. W. Anderson, Concepts in Solids (W. A. Benjamin, Inc. ,

New York, 1963).
s A. C. Hollis Hallett, in Argon, Helium, and the Rare Gases,

edited by G. A. Cook (Interscience Publishers, Inc. , New York,
1961), Vol. I, pp. 313—385.
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of an exhaustive treatment of He and the rare gases. '
For further, general information on the rare gases the
reader is referred to two recent books. ' "

This paper is divided into the following main parts:
I. Structure, II. Melting and Crystallization, and III.
Thermodynamic Properties, each with several sub-
headings. Under these headings a comprehensive re-
view, within limits of coherence, of both the experi-
mental and theoretical literature has been attempted
with enough background material to facilitate under-
standing by workers in other fields. The theoretical
discussions aim at presenting the main ideas in suffi-

cient detail to enable at least qualitative and where
feasible quantitative comparison of different approaches
among themselves and with experiment. Some ad-
vantage has been taken of the excellent discussions in
the earlier review of Dobbs and Jones' in avoiding
unnecessary duplication. The experimental discussions
are aimed at describing the techniques and their limita-
tions, presenting the results as far as they are known in
figures and tables, and pointing up directions for further
progress of especial interest. Relevant theoretical work
has been discussed either interwoven with or else closely
following the experiments. Since it was clear from the
outset that there were many more theoretical papers
than experimental ones to be reviewed, preference was
shown toward these latter, our stated aim being to
encourage further experiments on rare-gas solids.

I. STRUCTURE

A. X-Ray DiÃraction Exyeriments

1. Ietroductioe

Of all the kinds of measurements which have been
made on solid rare gases the most complete are those of
x-ray diffraction studies. From these and related experi-
ments it is known that the rare gases crystallize into
the cubic close-packed structure common to many
metals, e.g. , Cu and Ag, and to other molecular crystals,
e.g. , HCl and CH4.

In a cubic close-packed molecular crystal the lattice
may be conveniently pictured as built up of layers of
spheres, each sphere representing one molecule. Let all
the centers of a large number of identical spheres be
coplanar and let the spheres be closest packed in the
plane so that every sphere touches six others, i.e. every
sphere has six nearest neighbors in the plane. If many
such identical planes are layered upon each other so
that the interstitial volume is minimized (each sphere

'Argon, Helium, and the Rare Gases, edited by G. A. Cook
(Interscience Publishers, Inc. , New York, 1961), Vols. I and II.

'0 P. Laffitte and H. Brusset, I.es Gas Inertes, l'Hydrogene, les
Halogenes (Masson et Cie. , Paris, 1955)."D. N. Finkel'shtein, Inertnye Gary (Izdatel'stvo Acad.
Nauk U.S.S.R., Moscow, 1961).

touches three spheres in the plane below and three
spheres in the plane above) and the spheres of any
plane are vertically aligned with the spheres in the
planes twice removed, i.e. an ordering ABCABC. . . ,
we have a representation of the geometry involved. "
The equilibrium molecular crystal structure is in general
a function of the external conditions, e.g., temperature
and pressure, and although there has only most recently
been experimental evidence for any phase other than
the cubic close-packed one for rare-gas solids, much
theoretical work has been done on a postulated hexa-
gonal close-packed (hcp) phase. This is another rather
commonly observed structure in metals, e.g. , Mg and
Zn, but less commonly observed in molecular crystals.
The hcp structure has, however, been observed in H2
and recently" in N2. It is characterized by closest-
packed planes layered so as to minimize the interstitial
volume but with an ordering AHAB. . . ."

The equilibrium crystal configuration under a set of
conditions is that for which the Gibbs free energy
(G= 8+I'V TS) is a—minimum. Under certain condi-
tions, notably at O'K and at zero pressure, there are
theoretical grounds for the stability of an hcp over a
cubic close-packed structure for rare-gas crystals. Much
has been learned from calculations of this kind and we
discuss them in detail below (I.C.) . It is to be empha-
sized that problems of phase change are much more
easily treated in rare-gas crystals than in the other less
symmetric molecular crystals whose Gibbs functions
must contain important terms for relative orientation,
rotational and vibrational energy, etc. In such sub-
stances discontinuities in solid-state properties are
more dificult to trace down and they occur frequently.
In a rare-gas crystal on the other hand almost any dis-
continuity in physical properties should be detected by
a change in crystal structure, i.e. by x-ray observation.
Principal exceptions are higher energy phenomena
which involve electron distribution and these too may
in principle be observed by x-ray techniques. Thus,
for the study of the solid state of rare gases x rays are
a uniquely powerful probe.

For understanding the results of x-ray structure
studies it is necessary to fix attention on the unit
cell of the rare-gas crystals. For these cubic close-
packed structures, the unit cell is face-centered cubic
(fcc), i.e., a cube of side ae the lattice parameter, with a
molecule of rare gas more or less loosely bound to each
of its corners and another in the center of each face. The
relation between a molecule in the center of a face and
each of the four molecules at the corners of that face is
that of nearest neighbor, and the relation between a
molecule at the corner of a face and the molecules at

"The geometry is made much clearer by reference to diagrams.
L. Pauling, Nature of the Chemical Bond (Cornell University Press,
Ithaca, New York, 1948), 2nd ed. , pp. 373, 374.

» W. E. Streib, T. H. Jordan, and W. N. Lipscomb, J. Chem.
Phys. Ã, 2962 (1962).
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Fro. 1.Lattice parameter ao (A) and density p(gicm') of argon
as function of temperature T ('K). The experimental uncertainty
in the best modern values, which are represented by the solid
curve, is about 0.002 A. Most of the measurements shown were
carried out on argon samples 99.999% pure. The x-ray diffraction
data is that of Dobbs et al. {Ref.26), and Solz and Mauer (Ref.
28); the bulk-density data are that of Dobbs et al. , and Smith
(Ref. 27); the density at the triple point is from Clusius and
Weigand (Ref. 25).

adjacent corners of the face is that of second nearest
neighbor. It may be seen that for a fcc crystal the
number of nearest neighbors is 12 and the nearest-
neighbor distance is ao/v2. The number of second
nearest neighbors is only 6 and the second nearest-
neighbor distance is ao.

Until recently the only x-ray measurements on rare
gases were on powder samples and these have been
the most productive experiments. The techniques and
their results are discussed in more detail in the next
section (I.A.2) . X-ray measurements on single crystals
oGer the opportunity of determining ao more accu-
rately. So far very few experiments of this kind have
been reported, but such work is being undertaken in
some laboratories. Sec. I.A.3 therefore discusses brieQy
what is involved in single crystal measurements on
rare gases and related experiments.

2. I'omder Methods ced Eesllts

The Debye —Scherrer —Hull powder technique" " and
variants of it have been the most productive for x-ray
study of rare-gas solid structure. Briefiy described, the
low-temperature Debye —Scherrer —Hull camera beams
monochromatic, collimated, x rays at a powdered
sample in the center of a cylindrical cell. The powder is
usually deposited in a uniform, thin layer on the surface
of a small, hollow, thin-walled metal cylinder filled with
an appropriate coolant, e.g., liquid nitrogen or liquid
helium. The beam is diRracted from the crystallites in
the powder and the diffracted x rays impinge on a film
strip which is concentric with the sample and which is
placed around the camera so as to subtend the largest
possible angle measured from the cylinder axis. If the
crystallites of the powder are sufficiently small and
randomly oriented, the type of crystal structure and
lattice parameter ao may be determined from the spac-
ings and relative intensities of the lines on the de-
veloped film. A powder satisfying these conditions
is formed when rare gas is condensed from a pres-
sure below its triple-point vapor pressure onto a suffi-
ciently cold surface. Slow condensation of Ar vapor onto
a O'K cold surface for example, gives crystal sizes of a
few hundred angstroms. Crystals smaller than 100 A
are usually not observable on powder patterns.

The earliest x-ray determinations of rare-gas solid
structure were made with such cameras, " at isolated
temperatures, almost concurrently in Germany' and
Holland' on Ar, the most widely available of the rare
gases. Subsequently the techniques were extended to
Ne" and Kr" by Dutch workers and to Xe" and Kr" in
Italy. These experiments all identified the fcc structure
of the solids but their determinations of ao were all
rather unreliable by modern standards. Inaccuracies in
measurement of ao were probably due to several causes.
In general, the beams were not well collimated. This,
along with large sample radius and eccentricity, tends
to spread out the di8raction maxima on the film strip,
making accurate measurements of the angle of diGrac-
tion dificult. Not surprisingly these early devices lacked
the Aexibility of modern Debye —Scherrer —Hull cameras
and no adequate provision could be made for assuring
that the axis of the cylindrical specimen coincided with
the axis of the film. The claimed uncertainties in ao for
this earlier work vary from about &0.01 A to &0.06 A

'4 A. H. Compton and S. K. Allison, X-Reys As Theory crId
Eapersmeat (D. Van Nostrand Co., Inc. , New York, 1935)."L. V. Azaroff and M; J.Buerger, The Powder Methodic X-Ray
Crystallography (McGraw-Hill Book Co. , Inc. , New York, 1958).

~' F, Simon and C. von Simson, Z. Physik 21, j.68 (1924).
'r F. Simon and C. von Simson, Z. Physik 25, 160 (1924)."J. De Smedt and W. H. Keesom, Physica 5, 344 (1925).
'~ J. De Smedt, W. H. Keesom, and H. H. Mooy, Commun.

Kamerlingh Onnes Lah. Univ. Leiden 18, 203e (1930).
"W. H. Keesom and H. H. Mooy, Nature 125, 889 (1930).

W. H. Keesom and H. H. Mooy, Proc. Acad. Sci. Amsterdam 33,
447 (1930)."G. Natta and A. Nasini, Nature 125, 457 (1930)."A. Nasini and G. Natta, Atti. Accad. Naz, Lincei, Rend. 12,
141 (1930).
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but modern values of as fall in general well outside these
limits.

Perhaps the most severe limitation in these pioneering
researches was the necessity of working with the solids
only at temperatures far below their triple points be-
cause of the high vapor pressures of the rare gases. For
insuS. ciently low temperatures the appreciable vapor

'pressure in the camera conducted heat to the powder
which melted it. This made the long exposures necessary
for good powder patterns impossible. Investigation of
ao for Kr and Xe at temperatures nearer to their triple-
point temperatures were undertaken by Ruhemann
and Simon" with an apparatus which was the fore-
runner of modern low-temperature powder cameras. In
this camera the deposition surface and the vapor in
equilibrium with it were thermally isolated from
ambient temperatures by a vacuum jacket. Beam ac-
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FIG. 3. Lattice parameter ae (A ) and density p (g/cm') of
xenon as function of temperature 2' ('K). The solid curve repre-
sents the best modern values. The experimental uncertainty below
120'K is about 0.001A. Except for the determination of Clusius
and Weigand (Ref. 25), which is uncertain, the only measure-
ments of either p or ao which have been reported above 120'K
are the very recent ones of Packard and Swenson (Ref. 35) from
compressibility experiments. The x-ray diffraction data are from
Cheesman and Soane (Ref. 32), Eatwell and Smith (Ref. 36),
Sears and Klug (Ref. 37), and Bolz and Mauer (Ref. 28).

I t I & I t I i I i I l I l I l I i I l I 1

p g0 4o So so Ioo 120
'f EMPERATURE T (4K)

Fro. 2. Lattice parameter ae(A) and density p (g/cm ) of kryp-
ton as function of temperature T ('K). The soIid curve repre-
sents the best modern values. The experimental uncertainty is
about 0.001A in the range of the measurements. Most of the
measurements shown were carried out on krypton samples 99.5'Po
pure. The x-ray diffraction data is that of Dobbs and Luszczynski
(Ref. 31), Cheesman and Soane (Ref. 32), Figgins and Smith
(Ref. 33), Klug and Sears (Ref. 34), and Bolz and Mauer (Ref.
28). The density at the triple point is from Clusius and %eigand
(Ref. 2S).

23 B. Ruhemann and F. Simon, Z. Physik. Chem. Bls, 389
(1931).

cess to the condensed 61m was through vacuum tight
but x-ray transparent windows.

The lattice parameter at the triple point was subse-
quently indirectly determined from thermodynamic
considerations of the change in volume on freezing. '4'5

When the densities p of the solid-rare gases at the triple
point obtained in this manner are used to recompute
ao with modern molecular weights the results, except
for Xe, are impressive. These four values of ao have
been included in Figs. 1—4.

~ K. Clusius, Z. Physik. Chem. B31, 459 (1936)."K. Clusius and K. Weigand, Z. Physik. Chem. B46, 1 (1940).
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During the last decade reliable values of ao have be-
come available over almost the entire temperature
range from O'K to the triple point for the rare gases.
The work on each of these is brieQy discussed and the
results shown on Figs. 1—4. Since p and ao are connected
for fcc crystals by the simple formula p=4M/Eao',
where M is the molecular weight and E is Avogadro's
number, results both of diffraction techniques which
measure ao and of measiUements of the bulk density
have been plotted on the same curves. Density and
expansivity is discussed in I.B.

Argom The first modern work on uo for Ar" as well as
for Kr was done by a group at Queen Mary College in
England. For temperatures from 20 to 60'K the Debye-
Scherrer —Hull technique was used but above 60'K it
was necessary to measure p by a bulk-density
method. "'~ At these higher temperatures the powder

'6 E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Piercey, and
D. P. Riley, Nature 1'78, 483 (1956).

'r B.L. Smith, Phil. Mag. 6, 939 (1961).

0 I I I I I I I I I I I I I I I I I I I l I I I I I

0 8 l2 le 20 24
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Fro. 4. Lattice parameter ao(A) and density p (g/cm') of nor-
mal neon ("Ne), and lattice parameter of ' Ne and "Ne as func-
tions of temperature 2' ('K). The standard deviation of all the
x-ray data is 0.0006A. The solid curve represents the best modern
values for normal neon. Points for Ne and Ne were taken at
5'K intervals from a least squares polynomial fit over the entire
temperature range. Purities of the samples were: "Ne 99.96/&,
"Ne 98.6 j(), and "Ne 98.8 j&. The x-ray diffraction data is the
work of Bolz and Mauer (Ref. 39); the density at the triple point
is from Clusius and Weigand (Ref. 25).

recrystallizes and the grain size increases causing the
patterns to become "spotty. " X-ray powder measure-
ments which are in good agreement with these have
been made over a wider temperature range, 4.2 to
73'K."The results are all shown on Fig. 1. Notice that
the density scale on the right of all the figures is cubic.
A single determination by Henshaw" of ao at liquid
helium temperature using neutron di6raction gives a
value smaller than the x-ray data. Meyer et a/. ' have
recently observed, in x-ray powder patterns of Ar
frozen from liquid, evidence for 1—5% metastable hcp
structure mixed in with the fcc. The amount of hcp
depends sensitively on impurities in the lattice. Lattice
constants for the two phases show that the hcp is

ideally close packed and that the planar spacing in both
lattices is the same within experimental error. This is
the first experimental evidence for hcp structure in
rare-gas solids.

Krypton An accurate deterrrunation of as for Kr was
first reported by Dobbs and Luszczynski" from x-ray
diffraction of a powdered sample at 91'K. This result
was confirmed and extended by the same method in
1957," and somewhat later by both x-ray and bulk
density measurements. "Bolz and Mauer" have made
thorough measurements from 4.2 to 92'K confirming t'he
above results using a modified powder diffractometer,
and a single diffractometer measurement by Klug and
Sears'4 at 48.4'K is also in good agreement. All of these
data have been plotted in Fig. 2.

X|;roe Until now the single available measurement
above 120'K was the determination of Clusius and
7Veigand" at the triple point, calculated using an un-
certain value of the liquid density. Most recently, how-

ever, Packard and Swenson" have determined Xe spe-
cific volumes accurate to probably better than 0.3% in
the range 20 to 160'K from piston displacement equa-
tion of state and compressibility measurements (see
III.E. Compressibility) . The earliest measurements"
have been extended to the range 5.5 to 120'K by x-ray
techniques" ' and bulk-density measurements. " In
order to get sharp x-ray patterns at temperatures near
120'K where recrystallization and grain growth occur,
the sample was rotated and vertically translated in the
beam. Under these experimental conditions, the x-ray

ss L. H. Bolz and F. A. Mauer (unpublished)."D.G. Henshaw, Phys. Rev. 111, 1470 (1958).
'0 L. Meyer, C. S. Barrett, and P. Haasen, J. Chem. Phys. 40,

2744 (1964). Thanks are due the authors for graciously pro-
viding preprints of their work.' E. R. Dobbs and K. Luszczynski. Proc. lnternat. Conf.
Low Temp. Phys. , Paris, 1955, pp. 439—440."G. H. Cheesman and C. M. Soane, Proc. Phys. Soc. (London)
Voa, 700 (1957).

ss B. F. Figgins and B. L. Smith, Phil. Mag. 5, 186 (1960).
"H. P. Klug and D. R. Sears, AFOSR Contract Report

449(638)-575 (Aprii, 1962)."J.R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24,
1405 (1963).Thanks are due the authors for graciously providing
a preprint of their work."A. J. Eatwell and B. L. Smith, Phil. Mag. 6, 461 (1961).

3~ D. R. Sears and H. P. King, J. Chem. Phys. 37, 3002 (1962).
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determinations of ao are more accurate than the bulk-
density ones. These results are shown in Fig. 3.

Peon Because of its very low triple point very little
accurate data have been available until recently on ao
for Ne. A determination by x-ray diGraction~ of the
lattice-parameter difference between "Ne and "Ne at
4.2'K had been made and at the same temperature ao
was determined from neutron diffraction experiments. "
The most complete data are those of Bolz and Mauer"
who determined ao at frequent temperature intervals
for normally occurring Ne ("Ne), ", and "Ne, from
4.2'K to the respective triple points. Their results are
shown in Fig. 4. Their apparatus and technique' "
offer considerable improvements over those of other
workers' and are worth mention. The powdered samples
were deposited on a fiat surface which could be ac-
curately oriented both by translation and rotation.
Temperature of the surface was measured by an im-
bedded thermocouple and controlled with an automatic
feedback heating circuit. The diffracted beam (Ni
filtered CuKa radiation) was detected over a wide
angle by an electronic counter-diIIfractometer. This
detector is faster than 61m detectors and transient
e8ects can be better observed with it. The data from
these experiments show a standard deviation of only
0.0006 A.

3. Other TechrIiques

The study of single crystals of rare gases by x rays
can potentially provide more information than has been
obtained from powder methods. For most diGraction
experiments of this kind single crystals about 1 mm on a
side are sufhcient and crystals of this size can be grown

by slow freezing from the melt (see II.B. Crystalliza-
tion). Technical difhculties in making such measure-
ments are many and therefore relatively little progress
has been reported. We present here very brieQy what
has been done and some potentialities.

For measurement of the lattice parameter the powder
method gives at best4' a reproducibility of 1 part in 104.

Using Bond's method" for determination of ao from
nearly perfect single crystals, an uncertainty of 4
p.p.m. may be achieved. It is to be emphasized that
experiments on solid-rare gases whether powders or
single crystals, must be performed under much more
dificult conditions than obtained in the above experi-
ments, which used standard substances at room

"V. S. Kogan, B. G. Lazarev, and R. F. Bulatova„Zh. Eks-
perim. i Teor. Fiz. 40, 29(1961) LEnglish transl. : Soviet Phys. —
JETP 13, 19 (1961)j."L. H. Bolz and F. A. Mauer, in Advances in X-Ray Analysis,
edited by W. M. Mueller and M. Fay (Plenum Press, New York,
1963), Vol. 6, pp. 242—249.

4' L A. Black, L. H. Bolz, F. P. Brooks, F. A. Mauer, and
H. S. Peiser, J. Res. Natl. Bur. Stds. 61, 36'7 (1958)."F. A. Mauer and L. H. Bolz, J.Res. Natl. Bur. Stds. 65c, 225
(1961).

4s W. Parrish, Acta Cryst. 13, 838 (1960).
4' W. L. Bond, Acta Cryst. 13, 814 (1960).

temperatures. Experiments on the orientation and x-ray
diffraction of 1 mm single crystals of more complex
molecular crystals" have been carried out well below
liquid-nitrogen temperature. Rotating crystal measure-
ments of the structures" have yielded much information
on phase changes, molecular orientation, etc., although
measurements of ao are still uncertain due to difficulties
in centering the samples. It is to be expected that
experiments of this kind will eventually give results
better than those now attainable with powder methods
and that they will be carried over to rare-gas crystals.
Single crystal ao measurements may also be carried out
closer to the triple-point temperature than powder
measurements since no problems of recrystallization
and grain growth arise.

Defect properties in solids are also best studied by
single crystal x-ray measurements. Recent theoretical
work4'4' on symmetric point defects in solid argon, i.e.,
vacancies, substitution of other rare-gas atoms in the
lattice and interstitially, and pairs of these defects, has
predicted interesting quantitative and qualitative
eGects observable in such experiments. There is much
of fundamental interest in studying these defects in
solid-rare gases since the energies required for their
creation are so small (see III.C.1) .

B. Density and Exyansivity

Two techniques have been applied in determining
the densities of solid-rare gases: the x-ray powder
diffraction method, previously described, and the bulk-
density method. The bulk-density method consists of
measuring the mass of the gas, at some standard
temperature and pressure, which condenses to a corn-
pact solid block free of macroscopic voids and defects.
The solid is condensed, usually directly from the vapor,
in a known volume at a known temperature below the
triple-point temperature. The bulk-density method is
preferred near the triple point where powder diRraction
determinations are dificult and single-crystal diffrac-
tion methods not yet practical.

Agreement between these methods is in general
excellent but it must be noted that the bulk density,
especially, is sensitive to crystal defects of various kinds.
Recent experiments in growing large crystals of rare
gases and measuring their sizes (see II.B. Crystalliza-
tion) have shown that compact crystanine solids free of
macroscopic irregularities may be composed of grains of
widely diGerent average size depending on the crystal-
growth parameters, in particular, the growth rate. This
difhculty has been further pointed up by a bulk density
determination4~ of solid Ar in which the solid was con-
densed from several pressures at 6xed temperature from

t

4 W. E. Streib and W. N. Lipscomb, Proc. Natl. Acad. Sci.
U. S. 48, 911 (1962).

4' H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).
4' H. Kanzaki, J. Phys. Chem. Solids 2, 107 (1957).
47 W. M. Hinds, M. S. thesis, University of Virginia, 1956.
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been plotted in Figs. 5, 6, 7, and 8, respectively. The
large uncertainties and the scatter of the points result
from insufficiently detailed knowledge of the variation
of p or ao with T fo'r rare gases.

Expansivity measurements are of particular theo-
retical importance for these substances. The canonical
means for calculating p in a region where it has not been
measured but where the specific heat is known, is from
Gruneisen's law:

p= (yx/v) c„,
where x is the compressibility, C, the specific heat at
constant volume, V the volume, and y Gruneisen's
constant. The usefulness of the law is that at low tem-
peratures, say below the Debye temperature 6D, & may
frequently be taken as a constant or a slowly varying
function of V; in this range then, P ~ C„,approximately.
Detailed experiments have shown that y varies more
than is expected and theoretical work" has closely con-
nected temperature variations in y with the lattice
vibration frequency spectrum of the solid. The predic-
tions of the model are applied best to rare-gas solids
at around 0.29D where the main deviations in y should
occur. This means that from accurate measurement of
p information about the molecular vibrations can be
obtained in a region where effects of anharmonicity in
the interatomic potentials are unimportant.

0
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Fro. 5. Volume expansivity p (10 '/'K) of argon as function
of tern erature 2" ('K). The open circles are the data of Dobbs
e( a/. Ref. 26), the crosses are the results of Bolz and Mauer
(Ref. 28). The closed circle is an optical determination of Smith
and Pings (Ref. 246). Uncertainty in the ordinate is about
~1X10 4/'K at temperatures near the triple point and decreases
somewhat at lower temperatures.

the liquid, and then from several lower pressures and at
the same temperature from the vapor. The average
density of the solid grown from the vapor was found
in these experiments to be about 1% less than the solid
grown from the liquid; the effect may be less important
for purer samples. By comparison, the inherent un-
certainties in bulk-density determinations are from
0.1% to 0.05%. This indicates that the crystalline
solid condensed from the vapor may be more porous
than when grown from the liquid; the result of voids too
small to be seen or of lower density caused by small
grain size in the bulk.

Volume expansivity P = V '(cl V/ci T)z has been
measured from the slope of p or ao vs T curves for solid
Ar,""Kr,""Xe,'~' and for Ne."The results have
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"T. H. K. Barron, Phil. Mag. 46, 720 (1955).
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FIG. 6. Volume expansivity P (10 4/'K) of krypton as function
of temperature T ( K). The circles are the data of I'iggins and
Smith (Ref. 33), the crosses are the results of Bolz and Mauer
(Ref. 28).
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C. Theory of the SoM Structure

The general problem of structure of molecular solids
may be stated thus: from detailed knowledge of the
forces among the molecules and of appropriate molecu-
lar properties, e.g. mass, polarizability, molecular struc-
ture, find the equilibrium arrangement over all tem-
peratures and pressures for which the solid phase exists.
The problem is not yet capable of accurate quantitative
treatment but for the rare gases it is known (see III.A.
Interxnolecular Potentials) that to a good approxima-
tion the forces among the molecules are well represented
by two-body central potentials of the Mie —Lennard-
Jones type. This potential function is of the general
form
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Fxo. 8. Volume expansivity P (10 4/'K) oi neon as function of

temperature T ('K). All points are results of Bolz and Mauer
(Ref. 39). The curve is to be regarded as approximate.
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Fxo. 7. Volume expansivity P (10 '/'K) of xenon as function
of temperature T ( K). The open circles are the data of Eatwell
and Smith (Ref. 36), the crosses are the results of Sears and Klug
(Ref. 37), the closed circles are results of Packard and Swenson
(Ref. 35).

where e is the depth of the potential well for two mole-
cules at equilibrium separation rp. The treatment for
rare gases is further characteristically simplified by the
sufficiency of finding only the positions of the molecules
in the solid, no orientational coordinates being required.
It is further known, from the classic work of Born, that
conditions of mechanical stability restrict the possible
ordering of ideal crystals such as these generally to
either cubic (fcc) or hexagonal (hcp) close packing.

There remains, however, some difficulty in treating
this problem for rare gases. Until recently the only
crystal structure observed for the rare gases was the
fcc and in any case all measurements have indicated
that fcc is overwhelmingly the most common structure
in rare-gas solids. Theoretical investigations on the
other hand have invariably concluded, again until re-
cently, that hcp should be the equilibrium structure
and that it should therefore be overwhelmingly the
most common solid phase for rare gases. The crux of
the trouble lies in the small diGerences of short-range
order around a molecule in these two lattices as shown
on Table I.Potentials of the form (2) do not adequately
discriminate between the two structures.

The situation has been well reviewed by Barron and
Domb" and by Dobbs and Jones. ' The Gibbs free
energy is most easily computed at T=O'K and I' =0,
for which if zero-point energy is neglected, G= Up, the
static lattice potential energy. Under these conditions
the equilibrium lattice is the one for which Up is mini-
mum. From a potential of the form (2), assuming only

I

4' T. H. K. Barron and C. Domb, Proc. Roy. Soc. (London)
A22'7, 447 (1955).
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TABLE I. Comparison of local (microscopic) structure of cubic close packed (fcc) and hexagonal close packed (hcp) lattices. R is
the radius of the close packed spheres. At distance 2Ia8 the hcp lattice has 18 spheres. Much more complete tables of near neighbor
distributions for several lattices may be found in: J.O. Hirschfelder, C. F. Curtiss, and R. B.Bird, Molecular Theory of Gases and Liquids
(John Wiley R Sons, Inc. , New York, 1954), pp. 1037—1039.

First-nearest neighbors

Number Distance Number Distance Number Distance

Second-nearest neighbors Third-nearest neighbors

fcc

hcp

2EV2

2EV2

24 2R(3) i

22t.'(8/3) &

two-body forces, and neglecting zero-point energy, one
obtains for Up of a large crystal with E molecules

where ~p' is the nearest neighbor distance and A and
A„arecrystal potential constants which depend on the
lattice. For study of the relative stability of cubic and
hexagonal close-packed phases the significant quantities
are differences in A; between the two lattices for differ-
ent values of j and a comprehensive statement of these
is available. 4' The conclusion of calculations of this
kind is that the hcp structure is preferred at O'K and
zero pressure for all values of e and nz except for un-
realistically small ones (m=4, 5&m&8; m=5, m=6).
The relative difference in Up between the two lattices
has been found to be rather small, the hcp value being
only about 0.01'P~ below the fcc value. If the pressure
over the solid is increased as the temperature is kept
constant at O'K, the hexagonal structure becomes de-
creasingly preferred and at sufficiently high pressures
cubic structure is indeed preferred. Using a I.ennard-
Jones (6, 12) potential, Barron and Domb4' found that
the solid —solid phase transition takes place at pressures
for which the cell volume is equal to or smaller than
one-half the equilibrium cell volume at zero pressure.
In Ar this corresponds to pressures of 10' atm and
above.

If the temperature of the solid is increased and the
pressure remains constant one must examine the
behavior of

(4)

where ODp is the Debye temperature calculated near
O'K. From Eq. (4) it may be seen that if 0&0 for the
hcp is larger than that of the fcc phase then it is still
possible that a transition temperature exists at which
the two states have equal G and above which G f (Gh p.
Calculation of OD requires detailed knowledge of the
lattice dynamics of the crystals, in particular of the

frequency distribution of normal modes in the lattices. "
Barron and Domb" have made such a calculation using
Born—von Karman lattice dynamics. The most im-
portant contributions in OD near O'K come from the
low frequency, long wavelength modes, and the velocity
and frequency distribution of long waves in both fcc and
hcp lattices were calculated assuming a potential of the
form (2). Symmetries of the two structures are quite
different, e.g. , the fcc is a Bravais lattice but the hcp is
not, as are the elastic constants and hence the velocity
and frequency distribution of the normal modes.
Smaller elastic constants are associated with the hcp
lattice since it is more easily deformed under stress"
than the fcc and this implies generally a lower ODp for
the hcp phase. Fortunately, although the average
velocity of long waves in the hexagonal lattice is smaller,
eDp is actually greater since the distribution of the
velocities for the cubic lattice is wider. The temperature
of transition from the hcp to the fcc phase is found to
be approximately equal to the melting-point tempera-
ture. Since, however, all the rare-gas solids are known
to be cubic close packed even at 4.2'K, it is clear that
for agreement with experiments either the lattice
dynamics must be modified so that the transition
temperature falls lower than this, or Up must be calcu-
lated in a more refined manner to show that the fcc
static lattice potential energy is smaller than the hcp
value. This latter approach has been employed almost
exclusively and we discuss each of the modifications in
calculating Up in turn. The possible existence of a stable
hcp phase for rare gases at very low temperatures can-
not be dismissed but must await further experiments.
If such an hcp —fcc phase transition does indeed exist
much could be learned from studying problems of
nucleation of solid —solid phase transitions, and of solid—
solid phase diagrams, in such prototype systems.

"Since the publication of Ref. 49, neutron spectrometry
techniques have been developed which make possible direct
measurement of the normal mode frequencies by inelastic scat-
tering of neutrons from single crystals of rare gases; cf. Inelastic
Scattering of neutrons in Solids and Liqlids (International
Atomic Energy Agency, Vienna, 1961), especially Chap. B. 1.

~' A. W. Sleeswyk, Phil. Mag. 7, 1597 (1962).
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In calculating and comparing Uo for the fcc and the
hcp lattices, two-body sums over the lattices of the form
A, =g'(r) 'are found where the summation includes
all molecules at distance r from the molecule at the
origin; the principal contributions coming from nearest
neighbors. Since the number and distance of nearest
and second-nearest neighbors are the same for both
lattices (Table I), the difference in Us depends upon
the distribution of further neighbors and is thus small.
The most commonly used form of Eq. (2) for rare-gas
molecules is the Lennard-Jones (6, 12) potential where
the r ' term represents two-body induced dipole
attractions from second-order perturbation theory and
the r " term represents conveniently the short-range
repulsion between molecules. It is to be emphasized
that the distribltiom of nearest neighbors is diRerent in
the two lattices so that if the dipole —dipole forces are
not strictly additive two-body forces, but instead the
force between any two molecules is modified by the
position of other molecules, then a diRerence in the
lattice sums even over nearest neighbors may exist.

This correction has been considered in third-order
perturbation theory by Axilrod" who then computed
the eRect of the triple —dipole interaction on the static
potential-energy diRerence between the two possible
lattices of rare-gas solids. 5' Summing triples of dipoles
over a large but finite cylindrical lattice volume it was
found that the difference in Uo due to these three-body
forces favors the fcc lattice but not enough to counteract
the original 0.01% lower Uo of the hcp.

Using the same general approach Ayres and Tred-
gold'4 investigated two more cases of nonadditivity of
the two-body dipole —dipole force. They found first that
the triple dipole forces interact with the repulsive
energy in erst order so as to favor the cubic structure,
but only by an energy diRerence of the same order of
magnitude as the triple dipole forces themselves.
Secondly, higher-order multipole three-body interac-
tions were investigated but the only important con-
tribution of these is in the dipole —dipole —quadrupole
case for which the hexagonal structure was found to be
heavily favored. Doniach'5 has examined in some detail
many-body eRects on long-range dipole —dipole forces
for ground-state interacting molecules in an undisplaced
lattice. Considering the lattice as an array of electron
oscillators he found that the eRect of the lattice through
this mechanism still allowed valid consideration of pair-
wise r ' van der Waals attractions at long range for
isotropic lattices. For Ar the long-range contribution
to cohesive energy thus corrected becomes about 95%
of the free-space value. The form and strength of the

ss B. M. Axilrod, J. Chem. Phys. 19, 719 (1951)."B. M. Azilrod, J. Chem. Phys. 19, 724 (1951).
~ R. U. Ayres and R. H. Tredgold, Proc. Phys. Soc. (London)
8, 840 (1956)."S. Doniach, Phil. Mag. 8, 129 (1963)."J.Cuthbert and J. W. Linnett, Trans. Faraday Soc. 54, 617

(1958).

long-range interaction depend upon which of the two
lattices is considered but no estimate of this eRect has
been given.

Cuthbert and I.innett" have qualitatively examined
the eRect of angular dependence in the intermolecular
force on the relative stability of the two static lattices.
Because of electron-spin correlation the 8 electrons in
the outer shell of isolated rare-gas atoms tend to pair
at the corners of a regular tetrahedron. Since the pat-
tern of neighbors is different in the two lattices the
interaction of tetrahedral charge distributions may
cause a diRerence in the static potential energies. Calcu-
lation of the interaction energy for several mutual
orientations of two rigid tetrahedral-charge distribu-
tions shows that the eRect of the pattern especially of
first, second, and third-nearest neighbors may be to
favor the cubic structure although the difference in
distances of third nearest and further neighbors in the
two lattices favors the hexagonal. Kihara' " has
suggested that the pattern of nearest neighbors in hcp
structure favors the induction of an octapole moment in
the molecules and that the repulsion of these octapoles
decreases the stability. In the fcc lattice by comparison
the lowest-order induced moments from this model are
hexadecapoles, with consequently smaller mutual
repulsions.

The possibility that the static potential energy may
be properly a sum of two body forces of the form (2)
but with constants different from m=6, m=12 has
been extensively investigated by Kihara and Koba."
These workers examined potentials with m=6 and
e& 6; increasing e corresponds to narrowing the hollow
part of the potential. It was found that the hcp struc-
ture is always favored under these forces; fcc structure
would become more stable if the well were broadened.
Although the use of the inverse sixth attraction term is
well founded by both theory and experiment, for many
calculations an exponential rather than inverse power
in the repulsive potential is more realistic. In the usually
employed (exp, 6) Buckingham potential,

y(r) =
(
—
)

—6 exp (1——), (5)

u is a parameter controlling the narrowness of the
hollow part of the potential. Experimentally realistic
values of o. vary" from 12.3 for Kr to 14.5 for Ne but
Kihara and Koba demonstrated that for n&8.675, the
hcp has lower energy and that for the wider wells,
u(8.675, the fcc structure is preferred.

These calculations were further extended to include
zero-point energy by Jansen and Dawson" " who

"T. Kihara, J. Phys. Soc. Japan 15, 1920 (1960).
58 T. Kihara, in Advances in Chemica/ Physics, edited by I.

Prigogine (John Wiley 8r Sons, Inc. , New York, 1963), Vol. Y.
pp. 186—188."T.Kihara and S. Koba, J. Phys. Soc. Japan 7, 348 (1952)."E. A. Mason and W. E. Rice, J. Chem. Phys. 22, 843 (1954).

e) L. Jansen and J. M. Dawson, J. Chem. Phys. 22, 1619 (1954)."L. Jansen and J. M. Dawson, J. Chem. Phys. 23, 482 (1955).
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showed that for Lennard-Jones (6, rt) potentials with
i's between 7 and 16 and for Buckingham (exp, 6)
potentials with Or between 10 and 16 the hcp structure is
preferred by a relative static potential-energy di fference
of about 0.01% The consistency with which this
factor arises for all reasonable values of zero-point
energy parameter and two-body potential-function
parameters led these workers to suggest along with
Axilrod'3 and others that theoretical failure to account
for the stability of fcc structure for rare-gas solids can
only be avoided by due consideration of many-body
forces. Wallace, 63 however, has recently calculated the
zero-point energies of rare-gas solids including anhar-
monic corrections and found that the fcc structure is
thus made stable for Ne and Ar at 0'K but not for Kr
and Xe.

General consideration of three-body forces has
shown" that their effect on the relative stability of the
lattices may be to produce differences in Uo an order of
magnitude larger than those calculated from two-body
forces alone. The dipole —dipole and dipole —quadrupole
interactions of two nearest-neighbor molecules 2 and 8
with a molecule C, considered in second-order perturba-
tion theory with an adjustable Gaussian distribution
assumed for the electronic charge around the molecules,
yields results of this kind whose magnitudes depend
critically on the details of the model. For close approach
of C to A and 8, e.g., C is a nearest or next-nearest
neighbor to either A or 8, the perturbation-theory
calculation breaks down since eSects on the three-body
forces of increased electron exchange among molecules
become important A summation over a large
6nite volume of C excluding nearest and next-nearest
neighbors gives a Us for fcc 0.1% lower than for hcp.
When nearer C's are included, however, this effect
rapidly reverses sign.

The three-body forces between a central atom and
all pairs of its nearest neighbors are principally due to
electron exchange. These forces and their eGect on the
relative stability of fcc and hcp lattices have been
analyzed by Jansen" in first order and by Jansen and
Zimering 6 in second-order perturbation theory. Theii
net result is to favor the cubic lattice for rare gases at
0'K and when taken in conjunction with the lattice
dynamics analysis previously discussed, " to favor the
cubic lattice at all temperatures in substantial agree-
ment with experiment. In these calculations only the
exchange of single electrons among different neigh-
boring molecules need be taken into account and this is
conveniently done with a spherically symmetric
Gaussian charge distribution for the single electron
effective in the exchange interaction. The width of the
charge distribution determines which rare-gas atom is

considered and the three-body effect depends thus only

63 D. C. Wallace, Phys. Rev. 133, A153 (1964).
'4 I.. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 {1956)."L.Jansen, Phys. Letters 4, 91 (1963).
6& L. Jansen and S. Zimering, Phys. Letters 4, 95 (1963).

on a width parameter and the angles of the triangles
formed by the triplets of nearest neighbors. Of the 66
possible triangles so formed in each lattice, 9 are
di fferent between the hcp and the fcc structures and
their net effect in the first order is to stabilize the hcp
structure by an order of magnitude larger than the
stabilization due to pair potentials alone. The second-
order calculation, however, gives a further important
contribution to Uo composed of two parts: diatomic
exchange (favoring hcp structure) and triatomic
exchange (favoring fcc structure) . The net effect of
these, in agreement with experiment, is to decisively
favor the cubic structure so that the sum of first and
second-order calculations of three-body exchange
forces is to give a Us for the fcc structure about 1'Po
smaller'~ than that for hcp. Higher order contributions
are negligible as are also exchange forces between next-
nearest neighbors and beyond.

II. MELTING AND CRYSTALLIZATION

A. Melting

1 General and Theoretical

The investigation of melting phenomena in rare gases
is a particularly fruitful way of studying melting
phenomena in general. A fundamental goal of the
theory has been to quantitatively understand the
behavior of physical properties upon and near melting
and especially to understand the melting curve, P
vs T, itself . This is a hard problem, of course, and even
for the simplest case of rare-gas melting it is not well
solved,

The theory of the . molecular solid is much further
advanced than the theory of the corresponding liquid,
so considerable work has been done on calculating the
liquid-state properties from those of the solid. The
long-standing investigation on Ar of Rice" connects
the vibration spectrum of the solid with that of the
liquid by considering the liquid as a highly disordered
solid. From the OD of the solid a characteristic tempera-
ture for the liquid may thus be constructed and from
it some properties of the liquid near the melting point
may be calculated, e.g. , free energies, entropies, and
specific heats. From the more general thermodynamic
approach ' it has been possible to discuss fruitfully
the rare-gas melting properties qualitatively and to
compare these in meaningful quantitative juxtaposition
to those of other substances which have seemingly
much different melting parameters.

Modern theories of melting have tended to treat the
short-range order characteristic of the liquid and the

sr L Jansen and E. Lombardi, P. hys. Rev. Letters 12, 11 (1964).
O. K. Rice, in Phase Transformcti ons in Solids, edited by R.

Smoluchowski (John Wiley 8z Sons, Inc. New York, 1951).
's A. R. Ubbelohde, Quart. Rev. {London 4, 356 (1950).
ro A. R. Ubbelohde, Chem Ind. (London) '7, 186 (1961).
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long-range order characteristic of the solid more
explicitly. Some success has resulted from the cell-
model theory of liquids. v' ' The fusion process is viewed
as involving increased correlation between motions of
molecules in different cells. To calculate these "correla-
tion e8ects" a mathematically convenient, well dered,
harmonic intermolecular potential function which acts
only between nearest neighbors serves best; these
conditions are satisfied best by the potentials between
rare-gas molecules. Models of this type have been used
to calculate entropy of fusion, vapor pressure of fusion,
and melting points for rare gases and other molecular
crystals. The results have been in fair agreement with
experiment, especially for the melting temperature. "
These same properties of the rare-gas intermolecular
potential have been used with other models of melting.
The Einstein model of the solid, which accounts for
some thermodynamic properties of rare-gas solids
fairly well above about 20'K, has been applied to the
melting of solid Xe by Moelwyn-Hughes7' with special
emphasis on quantum eBeets. Assuming harmonic
oscillations and a (6, 11) intermolecular potential (see
III.A.) the approximate isotherm at the triple-point
temperature could be calculated. Bazarov~4 considered
the melting point as the temperature at which the
Einstein vibration spectrum of the solid disappears.
Assuming especially a well-defined correlation number
permitted by the short range of the forces, melting
temperatures could be calculated. These are all about
three times too high when compared with experiments
on rare gases, presumably principally the result of the
relative crudeness of the frequency distribution.
Approximations of this same kind have also been re-
ported on Ar melting studies of Henkel. ~' The role of
pair exchanges in rare-gas melting has been brieQy
discussed by Nardi et aI.~' and a recent calculation of
heats of fusion using a rigid-sphere equation of state
for the liquid gives results for rare gases within about
15% of experiment.

We have so far discussed theoretical approaches to
melting especially of rare gases, at the relatively low
pressures near the triple point. The theoretical situation
at higher pressures stimulates even more interest. In
1929 Simon and Glatzep' proposed on empirical grounds
the melting equation

log (8+a) =clog T+b. (6)

This was a vast improvement over the other melting
equations of the time some of which, for example,
"J. A. Barker, Proc Roy. Soc. (Lond. on) A240, 265 (1957).
PP L. A. Rott, Fiz. Tverd. Tela 4, 577 (1962)/English transl. :

Soviet Phys. —Solid State 4, 421 (1962)g.
ss E. A. Moelwyn-Hughes, Z. Physik. Chem. 15, 270 (1958)."I.P. Bazarov, Dokl. Akad. Nauk SSSR 135, 1351 (1960)

[English transl. : Soviet Phys. —Doklady 5, 1293 (1960)).
ss J. H. Henkel, BulL Am. Phys. Soc. 1, 258 (1956).
~6 V. Nardi, J. P. Auffray, and J. K. Percus, Bull. Am. Phys.

Soc. 8, 323 (1963).
'r S.J. Yosim and B.B.Owens, J. Chem. Phys. 39, 2222 (1963).
78 I". Simon and G. Glatzel, Z. Anorg. u. Allgem. Chem. 178,

309 (1929).

curved back at high I' to give only a finite region for
existence of the solid in the (E, T) plane. Equation (6)
and its equivalent, known as the Simon melting equa-
tion:

(7)

using the same parameters u and c, have been widely
6tted~' to the melting curves of rare gases, metals, and
other substances up to very high pressures. The param-
eters are to be viewed as follows: a is the internal pres-
sure, (i)E/itV) z p for—a van der Waals gas model; T&„
is taken either as the triple-point temperature or some
other low-pressure melting temperature; and c is a
constant usually related to Griineisen's constant. Equa-
tions (6) and (7) have not yet been satisfactorily
derived theoretically, nor have the parameters been
satisfactorily quantitatively discussed in terms of other
molecular properties. Some general attempts in this
direction have been made, most successfully on the
rare gases. An interesting approach to deriving the
Simon-melting equations (6) and (7) from a classical
statistical, order —disorder model of melting based on
some earlier work of Lennard-Jones and Devonshire is
due to Bomb. '0 Unfortunately not enough is known
about melting mechanisms for success of such a model
and Bomb was unable to get quantitatively close to
the equation. Subsequent researchers have therefore
bypassed questions of detailed mechanisms and at-
tempted, with more success, to derive the Simon equa-
tions from less fundamental postulates. One such
attempt is due to Salter" whose rather successful
derivation uses as a base the Griineisen equation of
state and the Lindemann melting formula, both also of
wide range of applicability. A more recent such deriva-
tion" using a quantum-mechanically corrected version
of the Lindemann melting formula and another equa-
tion of state also applies in some quantitative approxi-
mation to rare-gas melting. Unfortunately, critical tests
of these theories frequently rely on accurate experi-
mental values of Gruneisen's constant, and these are
only seldom available (see III.C.2 Anharmonicity and
Griineisen's Constant) .

The rare-gas melting curves have also been much
used following the suggestions of Simon et al. ,""to
test for the possible existence of a critical point for the
solid —liquid transition analogous to the well-known
critical point for the liquid-gas transition. " The co-

"S.E. Babb, Jr. , Rev. Mod. Phys. 35, 400 (1963). This is a
review of the Simon —Glatzel melting equation in the form
(P Pp)/a= (T/Tp)' 1, and an—exhaustive co—mpilation of the
parameters and their precisions for many substances including
Ar, Kr, Xe, and Ne.

P' C. Domb, PhiL Mag. 42, 1316 (1951).
P' L. Salter, PhiL Mag. 45, 369 (1954).
P' S. E. Babb, Jr., J. Chem. Phys. 38, 2743 (1963).
8' F. Simon, M. Ruhemann, and W. A. M. Edwards, Z. Physik.

Chem. B2, 340 (1929).
pp F. E. Simon, Res. Council Israel, Spec. PubL 1, 37 (1952).
PP B. J. Alder and G. Jura, J. Chem. Phys. 20, 1491 (1952).

In this note approximate estimates of the solid-liquid critical
points for Ar (250 000 atm, 1840'K) and Ne are calculated under
the condition that the solids are harmonic, independent qf yo)u~e,
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TABLE II. Some properties of rare gases at the triple point, boiling point, and critical point.

Triple point properties

Temperature Pressure
T (t.p.) 'K P (t.p.)mm

Density of
solid

p. (t p )
g/cm'

Density of
liquid

pL(t p )
g/cm3

Initial slope
of melting

curve
dP/d T

(atm/'K)

Boiling
point

T{b.p.) 'K

Critical
temperature

T'K
Critical
pressure
P, (atm)

Ne
Ar
Kr
Xe
Rn

24.56' b

83.810~ "
115.78m

161.37j
202'

323 5c,b

516.86~ i

548. 7m

612.20
~500r

1.444~

1.6231

2.8261

3.399~

1.248&

1 41001
2.451' '
3 076i

7r

62.7e

39.21

31.1'
25. 1I

27.078

87.2932

119.812

165.04'
211r

44.5'
150.9k'
209.4~

289.8'
377 5'

25.9f

48.3'
4 3n

57.64~

62.4r

8 Reference 185.
For triple point coordinates (P, T') of Ne isotopes see caption of Fig. 23.
Reference 186.

~ Reference 24.
Reference 102.

f International Critical Tables (McGraw-Hill Book. Company, Inc. , New York, 1928), Vol. III.
g Reference 171.
h K, Clusjus, K. Schleich, et al. (Ref. 191) have recently determined the triple point coordinates (I', T) for Ar isotopes: 36Ar (516.52 mm, 83.76'K) and 4oAr

(516.76 mm, 83.82'K) .
' Reference 25.
' Reference 97.
& E, Mathias, H. Kamerlingh Onnes, and C. A. Crornmelin, Commun. Kamerlingh Onnes Lab. Univ. Leiden 12, 131a (1912).

A. Michels, J.M, Levelt, and W. de Graaff, Physica 24, 659 (1958).
~ Reference 99.

K. A. Kobe and R. E. Lynn, Jr., Chem, Revs. 52, 117 (1953).
Reference 100.

P Reference 35.
cl H. W. Habgood and W. G. Schneider, Can. J. Chem. 32, 98 (1954).
r Reference 188.' E. Mathias, C. A. Crommelin, and J. J.Meihuizen, Physica 4, 1200 (1937).

ordinates of the liquid —gas critical points (P„T,) for
the rare gases are listed in Table II. Simon pointed out
that since the solid —liquid critical point coordinates
must be considerably higher than (I'„T,) the use of
low-triple point, low-critical point substances such as
the rare ga, ses (and especially helium) makes possible
investigation of the melting curve at high ratios of
8/I'. and T/T, without the great experimental
difhculties attending work at high pressures and
temperatures. As one approaches the proposed critical
point along the melting curve, the discontinuities in
physical properties upon transition are expected to
become smaller, and above the critical point there
should be no discontinuities at all. Bridgman" has di-
rectly measured the change in volume upon compres-
sion of the liquid to solid along the melting curve of Ar
with this in view. He found from his data that although
the volume change indeed does become smaller along
the melting curve, a plot of AV vs T shows that At/' will
only vanish at infinite T. Subsequent investigators'
working at still higher pressures have found that AV
approaches zero even more slowly. The latent heat of
melting along the Ar melting curve stays constant

'6 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 70, 1 (1935).
'7 P. H. Lahr g,nd W, Q, Eversole, J. Chem. Eng. Data '7, 42

(1962).

whereas, for example, for nitrogen it increases. Ke
must therefore conclude with Bridgman' that experi-
mental evidence suggests that the melting curve does
not terminate in a critical point, but rather that it
"rises indefinitely with continually decreasing curva-
ture" for rare gases and other simple substances.

2. ExPerimental

The melting curve of Ar has been studied over the
widest range of all the rare gases. The first extensive
study was that of Simon, Ruhemann, and Edwards"
who made measurements of melting pressure P vs T
from the triple point to 3400 kg/cm' and 150'K. To
detect the onset of freezing these workers used a
blocked capillary method. " Pressure is continuously
increased by a pump on one side of the cold Auid sample
in a capillary tube as it is monitored on both sides.
%hen freezing occurs, the manometer on the pump
side of the capillary shows increasing pressure but the
manometer, typically a sensitive Bourdon gauge, on the

' P. W. Bridgman, in Solids Under Pressure, edited by W. Paul
and D. M. Warschauer (McGraw-Hill Book Co., Inc. , New York,
1963)."F. Simon, M. Ruhemann, and W. A. M. Edwards, Z. Physik.
Chem. B6, 331 (1930), also erratum, ibid B'/, 80 (1930). .

9 F. Simon, M. Ruhemann, and W. A. M. Edwards, Z. Physik.
Chem. B6, 62 (1929).
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far side of the sample remains stationary. Bridgman"
extended the experimental range from the triple point
to about 5500 kg/cm' and 185'K with his piston dis-
placement technique. The Quid sample is compressed
by applying pressure on a piston; when the sample
freezes the discontinuous change in density causes a
discontinuity in the plot of piston displacernent vs P at
the melting pressure. Decreasing the pressure over the
solid then melts it, again with the corresponding dis-
continuity in density. This technique avoids a difficulty
in iriterpretation which is inherent in blocked capillary
measurements. As Bridgman has pointed out, the
melting curve measured from a sample plugging a
capillary should be lower than the true-melting curve
because the sample fs under a shearing stress. Although
the curve of Simon et al."does indeed lie lower than
Bridgman's, later experiments" show that the eRect of
the shearing stress is probably negligible.

Robinson" used a unique method for measuring the
melting curve, his measurements extend up to 8500
kg/cm' and 234'K on Ar. A small magnetic pellet in the
freezing chamber was alternately lifted and dropped
by an external magnet. The pellet moves freely in the
Quid sample but its motion is arrested when freezing
occurs and this is indicated by the absence of signals on
a built-in microphone. The high pressure was produced
in stages and the final intensifying pressure stroke was

applied effectively right in the cryostat, thus avoiding
low-temperature seals. Michels and Prins" recently
have reported very accurate blocked capillary measure-
ments on the melting curve up to 1550 kg/crn'. To
measure absolute pressure, a pressure balance with
sensitivity 1 part in 10' was used and the melting curve
was expressed by a Simon —Glatzel formula of the type
Eq. (6) to within about 0.1 kg/cm' over the experimen-
tal range.

The measurements at highest pressure are due to
recent work of Lahr, Eversole, and Williams. ' They
used a piston displacement method very similar to
Bridgman's and report data on Ar from about 2500
kg/cm' and 137'K to 18500 kg/cm' and 360'K. In
their measurements the increase in density upon
freezing occurs at a somewhat lower pressure than the
decrease on melting for the same sample at the same
temperature. This interesting hysteresis may be
averaged over conveniently to get a single curve for
melting or freezing pressure. The effect is not surprising
since other workers"" have indeed reported super-
cooling of between 3' and 6'K in rare-gas freezing.
Representative data of all the above work on Ar has
been plotted on Fig. 9.

The melting curve of Ar may be fitted'7 satisfactorily
from the triple point to 18 500 kg/cm' by the following

9' C. A. Swenson, Phys. Rev. 89, 538 (1953).
» D. W. Robinson, Proc. Roy. Soc. (London) A225, 393 (1954).
» A. Michels and C. Prins, Physica 28, 101 (1962).' H. J.De Nordwall and L. A. K. Staveley, J. Chem. Soc. 1954,

224.
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pro. 9. Melting curve of argon, pressure P (kg/cms) as func-
tion of temperature 7' ('I). The piston displacement data are
from Bridgman (Ref. 86), and Lahr and Eversole (Ref. 87); the
arrested pellet data are from Robinson (Ref. 92); and the blocked
capillary data are from Simon et al. (Refs. 89, 90), and Michels
and Prins (Ref. 93).In addition to the above, measurements have
been made on Ar by Clusius and Weigand between 0.7 and 205
kg/cm' (Ref. 25).

log [P (atm) +2087.00]
= 1.593 292 6 log T+0.255 307 5. (9)

Since, as already discussed, grain growth makes x-ray
determination of ao near the triple-point difficult, solid

density at the triple point is best obtained from the
initial slope of the melting curve and application of the
Clausius —Clapeyron equation

dP/dT=Lt/T AV, (10)

where Lt is the latent heat of fusion (Table VIII) and
AV is the change in specific volume upon melting. This,

has been done by Clusius and Weigand" from their
mew, surements on the melting curves, of Ar, Kr, and Xe,

Simon melting formula of the type Eq. (7):
P (kg/cm') /2308 = ( T/83. 2) "—1, (8)

where P is the melting pressure and T the melting
temperature in 'K. For the region below 1500 atm
(1550 kg/cm') the equation fitted by Michels and
Prins" is better:
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FIG. 10. Melting curves of krypton and xenon, pressure
P (kg/cms) as function of temperature 7' ('K). In addition to
those shown, measurements have been made by Clusius and
Weigand between 0.7 and 112 kg/crn' on Kr, and between 0.8
and 78 kg/cm' on Xe (Ref. 25).

350

up to about 210 kg/cm'. The initial slopes, a,s well as
the more reliable of the solid densities they found, are
entered on Table II. In order to apply Eq. (10) the
liquid density near the triple point must be independ-
ently determined. This is not as dificult, and reliable
values of liquid density are also shown.

The triple points of the rare gases are particularly
suitable as low-temperature thermometric fixed points
since the pure gases are readily available and con-
sistently high reproducibility has been obtained. The
most thorough measurements have been on Ar" ' for
which a reproducibility of about 0.001'K has been
reached. Current investigations'7 of rare gases up to
99.999% pure show, however, that Kr and Xe may
also be used for the same purpose. Modern, reliable
values of the triple point temperature and pressure
appear in Table II; the normal boiling points have also
been included.

"A. Michels, T. Wassenaar, T. Slayters, and W. De Graaff,
Physica 23, 89 (1957).

'6R. A. H. Pool, B. D. C. Shields, and L. A. K, Staveley,
Nature 181, 831 (1958)."D. R. Lovejoy, Nature 19'7, 353 (1963).

j

The melting curve of Kr has been measured up to
12000 kg/cm'. Representative data has been plotted
on Fig. 10. Stryland et ul. ' used an arrested-rod tech-
nique, a modification of earlier experiments, '2 from 190
kg/cm' up to 3100 kg/cm'. Lahr, Eversole, and Wil-
liams'7 extended the measurements from about 2200
kg/cm' to 12 000 kg/crrP and 362'K and give the fol-

lowing equation as a satisfactory 6t over the whole
range of the Kr melting curve:

P (kg/cm') /3100 = ( T/116 1)"—1. (11)

For the region below 1500 atm the Inelting curve has
been measured very accurately by Michels and Prins"
who give for this region the melting formula

log LP (atm) +2345.00]
= 1.616 984 1 log T+0.033 615 4. (12)

Reliable triple-point data for Kr have been obtained
by Beaumont et ul."and their results are included in
Table II.

The melting curve of Xe has been measured up to
7000 kg/cm'. Representative data have been plotted
along with Kr on Fig. 10. Arrested-rod measurements"
extend from 130 kg/cm to 3100 kg/cm' and the highest
pressure measurements of Lahr et al. '~ go from 2000
kg/cm' to 7000 kg/cm' and 363'K. A satisfactory fit
over the whole range of the Xe melting curve is given by

P (kg/cm') /3513 = ( T/161.5)"'—1 (13)

For the region below 1500 atm the melting curve has
been measured very accurately by Michels and Prins"
who give for this region the melting formula

log fLP (atm) +2576.00]

= 1.589 165 0 log T—0.097 818 8. (14)

A rather old value"' of the triple point pressure of Xe
is apparently still the most reliable but the triple point
temperature has been more recently accurately deter-
mined. ' ' '

The earliest measurements of the melting curve of Ne
are those of Simon et a/."who took data from the triple
point up to 4900 kg/crn' with the blocked capillary
method. This work suAered from the relative impurity
of the Ne obtainable, resulting in noticeably gradual
melting points. On Fig. 11 the data is plotted along
with modern determination of the melting curve and
the melting-point depression characteristic of impure
samples is apparent. A more accurate determination
over the limited range below 200 kg/cm' was carried

'8 J. C. Stryland, J. E. Crawford, and M. A. Mastoor, Can. J.
Phys. 38, 1546 (1960)."R. H, Beaumont, H. Chihara, and J. A. Morrison, Proc.
Phys. Soc. (London) 78, 1462 (1961).

"0 K. Clusius, Z. Physik. Chem. 350, 403 (1944)."' R. Heastie and C. Lefebvre, Proc Phys. Soc. (Lon. don) 'F6,
180 (1960).
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out by Keesom and Lisman'' at Leiden where the
blocked capillary method had been originally developed.
The Inodern work on Ne of Mills and Grilly'" extends
from the triple point to 3500 kg/cm', impurity eRects
were mitigated by using Ne which was at least 99.8 jo
pure. A satisfactory melting formula for the range of
their measurements is:

I' (kg/cm') = —1057.99+6.289 415T"""'. (15)

B. Crystallization

Conditions under which rare gases crystallize and
their crystallization habits have long been studied' ' but
progress has been slow mainly due to difFiculty in main-
taining and manipulating the solids at the necessary
temperatures. Much has been learned, however, about
the importance of single crystal samples for accurate
measurement of physical properties from studies on
other solids; and techniques for growing large single
crystals have been developed from the more active
interest in metals, semiconductors, etc. From such
studies rather detailed knowledge, theoretical and
experimental, of crystal growth has come. In this sec-
tion we describe some measurements that have been
made on crystalline rare gases and the limitations im-
posed by the crystals, then studies of the grain size and
crystal growth of rare gases as such are treated.

The earliest difficulties due to lack of suitably large
single crystals in measuring solid-state properties of
rare gases were rather successfully circumvented by
Barker et al. '0' ' in their determination of the elastic
properties of argon. They measured the velocity of
standing waves in a polycrystalline block of grain size
about 0.1 mm (as estimated with x rays) which had been
deposited from the vapor. By properly choosing the
quartz transducers they were able to generate waves of
wavelength ()I) 1 mm or more so that the higher
compressibility of the intergrain regions had only a
negligible effect on the over-all elastic properties. Grain
boundaries were found to attenuate the waves con-
siderably, even at this wavelength, and thus led to
lower accuracy in the experiment than could have been
obtained with single crystals. It must be emphasized
that generally the effect on physical properties of inter-
granular material may be difficult to assess even qualita-
tively. Molecules in this region may be viewed as
forming a highly defected lattice characterized by both
low density and high compressibility, these imply,
respectively, lower and higher sound velocities.

Difficulties in measuring the index of refraction"~ may
also be worth consideration. Accurate measurements

~ W. H. Keesom and J. H. C. Lisman, Commun. Kamerlingh
Onnes Lab. Univ. Leiden 20, 224b (1933).'" R. L. Mills and E; R. Grilly, Phys. Rev. 99, 480 (1955).

M4 W. Wahl, Proc. Roy. Soc. (London) A8'7, 371 (1912)." J. R. Barker, E. R. Dobbs, and G. 0. Jones, Phil. Mag. 44,
1182 (1953).

"e J. R. Barker and E. R. Dobbs, Phil. Mag. 46, 1069 (1955).
B.L. Smith, Rev. Sci. Instr. 34„19(1963).
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FIG. 11.Melting curve of neon, pressure P (kg/cm') as function
of temperature T ('K). In addition to those shown, measurements
have been made by Keesom and Lisman between 0.4 and 198
kg/cms (Ref. 102).

demand large angles of deviation and thus large solid
samples. If the grain diameter in the samples is of the
order of 0.1X however, scattering from grain bound-
aries causes the samples to be almost opaque. This
problem may be partially circumvented by using
grains that are as large as possible so that the number
of boundaries the light crosses, and thus the apparent
decrease in refractive index, are minimized. Measure-
ments of thermal properties are also difFicult to interpret
from molecular properties unless carried out on almost
perfect single crystals. Thermal conductivity measure-
ments"' on Ar have shown that the scattering of lattice
waves by grain boundaries and other imperfections is a
dominant mechanism increasing thermal resistance in
the lattice at very low T. Thermal conductivity data
may then be more characteristic of the crystallization
conditions and other past history of the samples than
of the lattice itself. The general problem of scattering of
low-frequency waves from lattice imperfections has
been treated by Klemens. "'

Rare-gas crystal sizes have been investigated by both
x rays and thermal etching. Bolz et al." took back-
reQection x-ray photographs of polycrystalline solid Ar
which had been frozen from the melt near the triple
point at growth velocities around 1 mm/min. A rough

'" G. K. White and S. B. Woods, Nature 177, 851 (1956)."' P. G. Klemens, Proc. Phys. Soc. (London) 68, 1113 (1955).'" L. H. Bolz, H. P. Broida, and H. S. Peiser, Acta Cryst. 15,
810 (1962).
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estimate of grain size 4 mm was possible and by
comparing the patterns on photographs taken from
quickly grown Ar crystals with that of slowly grown Ar
they concluded that the latter had the larger grain size.

Observations on thermal etching have provided most
of the knowledge about grain size and crystallization
habits of rare gases. The essentials of the process are
these: (a) Since surface molecules which are on highly
defected sites, e.g., those near a crystal boundary, are
more loosely bound than those on true crystal faces,
they are more rapidly evaporated from a free solid
surface. This preferential evaporation results in the
appearance of indented etched lines along the bound-
aries of grains. (b) Since surfaces formed by molecules
which are on highly defected sites have higher surface
free energies than those of true crystal faces, the
molecules migrate along a polycrystalline surface from
the grain boundaries onto the crystal faces as the surface
energy of the crystal tends to a minimum. Thus surface
nw'gratioe away from grain boundaries also causes
grain boundaries to be etched on polycrystal faces.
Thermal etching has been most extensively studied in
metals but it is not yet clear which of these mechanisms
predominates. "' '"Etching in rare-gas solids is expected
to take place more rapidly in general than in metals
since the weak intermolecular forces lead to more rapid
surface migration and higher triple-point pressures;
experiments on Ar have borne this out.

Polycrystalline Ar is most conveniently grown by
progressive freezing from the melt, a modified Bridg-
man's method. The Ar liquid is contained in a glass
growing chamber which is lowered into a cold bath at a
rate which determines the crystal-growth rate. The
pressure over the liquid is usually maintained somewhat
above the triple-point pressure and the bath may be
held at any temperature below the triple-point tempera-
ture, normally boiling liquid nitrogen (77'K), or
liquid oxygen boiling under reduced pressure (90'-
55'K) are convenient coolants. In this manner trans-
parent samples of solid Ar may be grown large enough
for experimental purposes. These solids are generally
polycrystalline, partly because the probability of
nucleating a new crystal is higher on the normally
colder chamber walls than on the warmer crystal. This
difficulty may be partially obviated by warming the
walls with a heater or by keeping the coolant level
sufficiently fax below the growing interface so that the
solid surface is convex toward the melt. In practice
largest grain sizes are obtained from slowest growth
rates. It is expected that the other rare gases would
crystallize in an analogous way if solidified in appropri-
ate coolants.

If the Row of warm gas to the growing chamber is cut
off and at the same time the coolant level is raised so as
to bring the upper surface of the melt below the triple

'" E. D. Hondros and A. J. W. Moore, Acta Met. 8, 647 (1960).
G. E. Rhead and H. Mykura, Acta Met. 10, 578 (1962).

113 D
114 Q

(1963).
115 R

(1956).
116 D
117 R
118

Stansfield, Ph. D. thesis, University of Bristol, 1954.
L. Pollack and H. P. Broida, J. Chem. Phys. 38, 968

Verschingel and H. I. Schiff, J. Chem. Phys. 22, 723

Stansfield, Phil. Mag. 1, 934 (1956).
F. Followell, Ph. D. thesis, University of Bristol, 1957.
Beltrami, J. Appl. Phys. 33, 975 (1962).

point, a crust freezes on the melt and the very inter-
esting phenomenon of vapor snakes"' "' may be
observed. The melt in the closed volume between the
crust above and the crystalline solid below is effec-
tively sealed off and as this enclosed melt solidifies, with
attendant density increase, a vapor filled bubble ap-
pears just below the crust. The rare gases in common
with some other substances, especially those with
globular molecules, have large heats of vaporization
compared to their heats of fusion so that as the liquid
evaporates to fill the vapor bubble a thin solid shell
freezes around it. Further solidification of the liquid
leads to more free volume and the bubble propagates
into the melt as a vapor filled tube with a transparent
thin-walled solid sheath and an apparently closed tip.
The velocity with which this snake propagates, from
about 0.1 cm/sec to 10 cm/sec, is determined by the
rate at which the melt solidifies and the ratio of sheath
thickness to tube radius is determined from conserva-
tion of thermal energy during evaporation and
freezing. '""' The phenomenon has been observed in
both Ar and Kr and presents many intei'esting problems
especially concerning the nature of the sheath and its
rapid growth, and the radius of the snake and its wall
thickness.

The application of Bridgman's method to rare-gas
crystal growth was developed by Stansfield"' and
extended by Followell'" who studied polycrystalline Ar
samples grown from the melt, and observed thermal-
etch patterns on the free surface which was exposed
when the solid contracted and separated from the
growing-chamber walls upon cooling. Grain boundary
grooves indicating grains of about 4 Inm diameter and
2 mrn thickness were observed similar in appearance
and properties to those observed on thermally etched
metals. The grain boundaries are to be interpreted as
enclosing single-crystal faces, i.e., the lattice orientation
is essentially constant within a grain.

Seltrami'" has extended Bridgman's method to
produce grain-boundary-free Ar specimens of volumes
up to 1.5 cm', in general, however, the samples were
polycrystalline and exhibited grain boundaries and
surface striations. The crystals were grown at rates from
I—5 mm/h with solid interf'aces either flat or convex
toward the melt. In this work the free surface examined
was the upper one and the depth of the crystals could
be determined by successively pumping and sublimating
off the top surface of the crystal. Surface striations and
other surface structure, less pronounced than grain
boundaries, also appear on grain faces. Their interpreta-
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tion is less definite but they may indicate coherent or
noncoherent twin boundaries, growth steps, or slip
planes. It has been suggested that some of the finer
striations are due to intersections of (111) planes with
the crystal surface, this may allow tentative determina-
tion of the crystal orientation without x-ray examina-
tion. A photograph of a typical thermally etched Ar
surface is shown in Fig. 12.

The surface configuration and energy"' of rare-gas
type solids has been considered in theoretical work of
Schmidt and Jura. "'"' Their results indicate that for
the lattice at O'K the surface layer of molecules may
be slightly displaced in the normal direction to the
crystal surface. Using the same techniques they were
able to calculate surface energies for Ar at grain-
boundary interfaces separating two perfect half crystals
at low-index planes misfitted in a simple way. They
found energies from 16.0 ergs/cm' at (111)—(111)
interfaces to 41.7 ergs/cm' at (100)—(110) interfaces.
No direct measurements have been reported of surface
energies of rare-gas crystals although they may be
estimated from surface tensions of the liquid near the
triple point. The surface energy of solid Ar estimated in
this manner'" is about 35 ergs/cm', the corresponding
value"' for solid Ne at its triple point is about 15
ergs/cm'. For comparison the surface energy of Cu at
its melting point is 1400 ergs/cm'.

Rare gases also oGer opportunity to study quantum
effects on surface processes, "4 ranging from Xe whose
zero-point energy has only a negligible effect on its
properties to Ne and He where it has important effects.
These solids are also especially interesting as models
for crystal growth. The van der Kaals forces bond
molecules to the surface and to the lattice extremely
weakly and this is expected to have far reaching
consequences in the production and study of defects,
e.g., from radiation damage.

Canonical crystal growth properties of Ar have
recently been systematically investigated. "' Crystalline
solids were grown under varying values of conventional
growth parameters: rate, temperature gradient at the
interface, substrate temperature, chamber geometry,
and supersaturation; and the grain size was determined
as a function of these. The experiments are still rela-
tively unsophisticated but qualitative agreement with
current theory has been obtained. In general, if all

"' R. Shuttleworth, Proc. Phys. Soc. (London) 63A, 444
(1950)."' H. H. Schmidt and G. Jura, J. Phys. Chem. Solids 16, 60
(1960).

~' H. H. Schmidt and G. Jura, J. Phys. Chem. Solids 16, 67
(1960)."' D. Stansfield, Proc. Phys. Soc. (London) '/2, 854 (1958)."' A. T. Van Urk, %.H. Keesom, and G. P. Nijhoff, Commun.
Kamerlingh Onnes Lab. Univ. Leiden lV, 182b (1926).

"4 A. Harasima and Y. Shimura, J. Phys. Soc. Japan 11, 14
(1956).

"5 E. N. Farabaugh and G. L. Pollack, Bull. Am. Phys. Soc. 8,
22'I (1963). Further work is to be published.

~umb ~ ya a i ll II 3RRI l (I~

FIG. 12. Thermally etched surface of polycrystalline Ar grown
from the melt. The heavy lines are grain boundaries. Notice also
the striations on grain faces; these are probably twin boundaries
or slip planes. Field diameter is 2 mm.

other parameters are fixed, grain area decreases line-

arly with increasing growth rate.
Attempts at growing crystals of rare gases other

than Ar have been few. Pollack and Broida"' have
investigated spectroscopically the mechanism by which
impurities are grown into crystals using NO in Kr as a
model. Pure crystalline Kr and Kr—NO solid solutions
were grown from the melt and the vapor at the tempera-
ture of boiling methane (112'K) . The ultraviolet
absorption spectrum of NO was followed as the Kr—NO
solution was successively liquefied and then solidified.
An interesting corollary of this work is that Kr, and
probably a1.1 the other rare gases, may be purified by
zone refining. This is especially important for impurity
content frequently controls the upper limit in growing
large single crystals.

III. THERMODYNAMIC PROPERTIES

A. Intermolecular Potentials

All thermodynamic properties of a molecular solid in
a broad temperature and pressure range could be
calculated, in principle at least, from a sufficiently
accurate intermolecular potential function and a very
few other molecular structure properties. For rare-gas
molecules the intermolecular forces may be assumed to
be central and the intermolecular potential @(r) is

thus particularly simple. Although as we have seen

(I.C), noncentral corrections ma, y be decisive in

determining the stable crystal structure of the rare

G. L. Pollack and H. P. Broida, J. Chem. Phys. 38, 2012
(1963).
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gases, they only account for relative lattice energy
difkrences of the order of 0.01%. This is much less
than the experimental uncertainty in measuring
thermodynamic properties so little is lost and much is
gained in ease of calculation by considering only
central forces between rare-gas atoms.

The general procedure in 6nding an intermolecular
potential is to construct, usually on both theoretical
and empirical grounds, a sample function containing
several parameters, use some experimental data on
thermodynamic properties to fix the parameters, and
test the resultant P(r) by calculating other experi-
mentally known properties from it. In order to use a
property in this manner there must be available
accurate experimental data and theoretically well-

grounded, preferably simple, equations connecting the
property with the intermolecular potential. Properties
which have been most frequently used in these roles
are the crystal-lattice spacing aoo and heat of sublima-
tion Lo both at O'K, and the temperature dependence
of the second virial coefficient for the gas, B(T).
Liquid properties are generally not sufficiently well
understood theoretically to be useful for determining
potential parameters; recently, however, shock waves
in liquids have been so used. '"

From these few properties only two or three param-
eter potential functions may be determined and tested
and these are of limited use for examining theories a,nd
experiments by calculating still other properties. More
detailed potential functions can be derived and tested
with additional assumptions, from enthalpy, entropy,
and equation of state data for the solid, and from
Joule —Thomson coefTicients, viscosity coeKcients, and
transport properties in the gas. %e here describe and
compare the different proposed potential functions
between rare-gas molecules and discuss ways of deriving
and testing them, especially from solid-state theories
and experiments but also where necessary from gas
properties.

The simplest commonly used form for g(r) is the
Lennard-Jones (6, e) potential written

Lcf. Eq. (2) 7 where e and rp have the same meaning as
earlier. In the most useful special case, m=12, this
takes the form

where e is again the depth of the well at the minimum,
rp ——2lo., and y(Ir) =0.

Corner"s investigated potentials of the type (16) for
Ar and Ne, determining the three parameters e, ~0, and
e, so that the lattice parameter aop and the heat of

'" W. Fickett and W. W. Wood, Phys. Fluids 3, 204 (1960).'" J. Corner, Trans. Faraday Soc. 44, 914 (1948).

sublimation I.o at O'K were given correctly, and using
second virial and Joule —Thomson coefficient data to
determine Is and test the resultant p. The comparison
with second-virial data is easily done but in order to
connect the parameters with the crystal properties a
simple, approximate model must be assumed. He found
from a comparison of different potentials that the
Lennard-Jones (6, 12) potentials gave almost as
accurate predictions as the best potentials with expo-
nential repulsion and the former are much more
convenient for many applications. The values of his
parameters for Ne and Ar are shown on Table III.
Zuckeriss has determined the parameters in the (6, n)
potential Eq. (16) entirely from solid-state data and
used the potential in an appropriate equation of state
to compute isotherms for Ne, Ar, and Kr. He obtained
reasonable agreement with experiment with values of
Is, respectively, 14, 12, and 12. His (6, 12) potential for
Ar is shown on Fig. 13.

Some knowledge of the allowable repulsion exponents
Is in Eq. (16) may be obtained from a thermodynamic
discriminant recently investigated by Brown and
Rowlinson. "' The discriminant, an explicit function of
P, T, and several thermodynamic properties as well as
m, can be shown from classical statistical mechanics to
satisfy a Schwarz inequality of the form D(e) )0, at all
P and T, for all permissible values of e, and thus sets a
lower bound on n. Although a meaningful lower bound
could not be determined from solid-state data for Ar
due to the importance of quantum effects, the inequality
m&13.3 was obtained for the liquid near the triple
point. In order to apply the analogous quantum me-
chanical discriminant, more must be known about the
thermodynamic behavior of the crystal, especially
relating to Gruneisen's law.

Most recently Horton and Leech'" have carried
through systematic and thorough machine calculations
of the potential parameters e and rp in Eq. (16), from
Lp and Iipp, investigating the effects of: (a) variation of
the repulsive exponent ri from 10&Is&14; (b) variation
of the order of near neighbors (viz. , first only, first and
second, and all neighbors) to be considered as con-
tributing nonnegligibly according to Eq. (16); (c)
variation of L, and app, and (d), respectively, including
and excluding zero-point energy. The many quantita-
tive conclusions'" are difficult to summarize. In general,
however, the calculations emphasize the importance of
careful determination of e and ro and in particular of
using only assumptions in the further derivation of
thermodynamic properties from Eq. (16) which are
consistent with the assumptions used in determining e

and ro from the original data. The inclusion of zero-
point energy in calculating the parameters, especially
e, is important particularly and not surprisingly for Ne.

"' I. J. Zzcker, J. Chem. Phys. 25, 915 (1956).
"P W. B. Brown and J. S. Rowlinson, Mol. Phys. 3, 35 (1960)."' G. K. Horton and J. W. Leech, Proc. Phys. Soc. (London)

82, 816 (1963).
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TABLE III. Lennard-Jones (6, rt) and Buckingham (exp, 6) potential parameters for rare-gas molecules.

Lennard-Jones (6, n)
/ek ('K) re(L)

Potential
n

Buckingham (exp, 6) Potential'
e/k(' K) re(k) u

Ne
Ar
Kr
Xe
Rn

36.3b
119.3b
159
228~
29Pc

3.16
3.87
4.04
4.46
4.87

12.0
12
12
12
12

38.0
123.2
158.3
231.2

3.147
3.866
4.056
4.450

14.5
14.0
12.3
13.0

~ Reference 60.
Reference 128.
G. A. Miller, J. Phys. Chem. 64, 163 (1960).
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FIG. 13. Comparison of intermolecular potential functions for
Ar determined from crystal properties. The dashed curve is the
Buckingham (exp, 6) potential obtained by Mason and Rice (Ref.
60), the parameters are given on Table III. The solid curve is
the Lennard-Jones (6, 12) potential obtained by Zucker (Ref.
129), the parameters are &=1.644)(10 ' ergs and ra=3.874 A.
The curve labeled Six parameter is the two-piece potential of
Guggenheim and McGlashan (Ref. 147), the parameters are
given on Table IV with P =0. Regions between the experimentally
determined parts of the six parameter potential are shown by
the dotted curve.

Although the r attractive term in Eq. (16) is well

founded theoretically from quantum mechanics the
r " repulsion is not, as noted earlier. A more realistic
repulsion, although mathematically less convenient, is
an exponential one. Mason and Rice" have determined
the parameters e, ro, and n of Ne, Ar, Kr, Xe, and some
other nonpolar molecules for the (exp, 6) Buckingham

potential (cf. I.C):

e and rs have the same meaning as in Eq. (16) and n
determines the steepness of the repulsion at small
intermolecular separations. '" These workers followed
Corner in first 6tting the parameters to the crystal
properties at O'K but extended the method by using
the more sensitive gas viscosity data besides second-
virial coefficients to determine the remaining unspecified
parameter a and test the potential. In addition the
potentials were tested on other available gas transport
properties: thermal conductivity, self-diRusion co-
e@cients, and the isotopic thermal-diffusion ratios. The
(exp, 6) potential functions determined in this manner
are somewhat superior to the (6, 12) potentials but
although they 6t the crystal data well they are in
only fair agreement with the transport properties. The
(exp, 6) parameters of these authors for Ne, Ar, Kr,
and Xe are shown on Table III, along with parameters
for the (6, 12) potential they calculated by applying
an earlier procedure of Corner to Kr and Xe. The Ar
(exp, 6) potential they obtained is shown on Fig. 13 in
comparison with some other potentials. On I'ig. 14 is
shown the (6, 12) potential obtained for Kr.

In general, potentials derived from one set of prop-
erties predict other sets of properties only fairly. It is
useful, '" for example, to separate potentials derived
from equilibrium properties (Ls and ass for the crystal,
second- and third-virial-coeKcient data, Joule —Thom-
son coeflzcients) from potentials derived from non-
equilibrium properties (thermal conductivity, diffu-
sion) . Better theoretical understanding and more
accurate experimental data are usually available for
equilibrium properties than for nonequilibrium prop-
erties. The problem of finding reliable potentials is also

"2 This function has a physically unmeaningful maximum at
small r. For a typical value of a=13.5, the maximum occurs at
r/ra=0. 2 however, and this represents a solid density obtainable
only at pressures far beyond present Emits. The whole subject of
short range repulsions is a very interesting one but unfortunately
cannot be treated here."' J. Bahadur and M. P. Madan, Proc. Natl. Inst. Sci. India
A26, 64 (1960).
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complicated by unevenness in the experimental un-
certainty with which different properties have been
measured and unevenness in the sensitivity of different
potential parameters to diIIferent properties. For exam-
ple: Accurate second-virial coefficients for rare gases are
available, but surprisingly wide ranges in intermolecular
potential parameters fit the data; third-virial coe%-
cients are more sensitive to variations in potential
parameters but they have not been accurately meas-
ured. These coefficients as well as most gas data,
especially at high T, depend largely on the details of

I IG. 14. Comparison of intermolecular potential functions for
Kr determined from crystal properties. The dashed curve is the
Morse potential obtained by Konowalow and Hirschfelder (Ref.
145), the parameters are &=2.521&(10 " ergs, ra=4.038
0.=3.510 A., and c=4.5. The solid curve is the Lennard-Jones
(6, 12) potential obtained by Mason and Rice (Ref. 60) using
Corner's method, the parameters are given on Table III.The curve
labeled Six parameter is the two-piece potential of Barua and
Chakraborti (Ref. 153), the parameters are given on Table IV.
The region between the experimentally determined parts of the
six parameter potential is shown by the dotted curve.

molecular collision, i.e., of the repulsive portion of the
potentials. Solid-state properties such as ao, enthalpy,
entropy, and speciic heat are sensitive to the detailed
form near the minimum in the potential since this is
what controls lattice vibrations; Lo depends on the form
of p from the minimum out to large separations.

Limitations on the applicability of the simple po-
tentials Eqs. (16) and (5) have been especially pointed
up for Kr. Second-virial coefficients for Kr have been
accurately measured over a broad range of tempera-
ture'" '" and can be used to determine potential
parameters. The potential parameters obtained from
the high-temperature virial coefficients do not agree
well with the low-temperature data. Surprisingly, for
Ne the entire range of second-virial data from about
120' to 1000'K and up to 80 atm can be fitted excel-
lently by either an (exp, 6) or a (6, 12) potential. "'
Parameters which have been determined from second-
virial data for Kr and some crystal properties do not fit
other crystal properties satisfactorily. IS~ Potentials on
both models for Kr have also been determined from
transport property data, especially thermal diffusion
and thermal conductivity. '""' Both potentials can be
used to give good agreement with experiment for the
self-diffusion and viscosity but no amount of parameter
adjustment makes possible acceptable agreement with
experimental crystal properties and low-temperature
virial data. For the other rare gases the agreement be-
tween virial data and potentials determined from
transport properties is uniformly better than for Kr and
there has been some discussion" on the apparently
unique properties of Kr potentials. The diffi.culty lies
in the lack of good experimental and theoretical values
for the thermal diffusion factor'" —by far the most
sensitive of the transport properties to small changes
in potential.

Recently, however, accurate measurements of vis-
cosity"' have been reported on Kr gas in the range from
300—660'K and potential parameters obtained on the
(6, 12) model from these data are in good agreement
with almost all of the equilibrium and nonequilibrium
properties of both the solid and the gas. We wish to
emphasize that for potentials with few parameters,
such as so far considered, the values of the parameters
are not unique, i.e., sets of parameters which differ
rather widely can still give very similar fits to experi-
mental data.

'" B. E. F. Fender' and G. D. Halsey, Jr., J. Chem. Phys. 36,
1881 (1962).

's~ G. Thomaes and R. van Steenwinkel, Nature 193, 160 (1962)."' G. A. Nicholson and W. G. Schneider, Can. J. Chem. 33,
589 (1955).'" E. Whalley and W. G. Schneider, J. Chem. Phys. 23, 1644
(1955)."' M. P. Madan, J. Chem. Phys. 22, 113 (1957).

''9 E. A. Mason, J. Chem. Phys. 32, 1832 (1060)."' B. E. F. Fender, J. Chem. Phys. 35, 2243 (1961).
'+ E. A. Mason, J. Chem. Phys. 35, 2245 (1961).
'4' D. G. Clifton, J. Chem. Phys. 38, 1123 (1963).
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To some extent solid-state data have been fitted to
the four parameter Buckingham —Corner (exp, 6, 8) po-
tential. "' '4' This potential is a variation of Eq. (5) and
is usually considered separately in the two regions
r& rp and r&rp and suitably matched at rp. The essential
improvement in the (exp, 6, 8) potential over Eq. (5) is
the inclusion of a parametrically variable, additive,
dipole —quadrupole (r s) correction to the attractive
dipole-dipole (r ') term. The extra parameter jf is the
dimensionless ratio of the coeKcients of these two
terms and can be determined from quantum mechanics
or from experimental data; in either case its magnitude
is about 6. The connection between the parameters and
data for this potential is through rather complicated
transcendental equations; the necessary coefficients
and integrals have very largely been worked out and
tabulated, however. No significant improvements over
the simpler potentials in fitting properties have been
reported. Coefficients of the r ' attractive van der
Waals potential term have been calculated"' to within
10% for Ne and Ar from quantum-mechanical first
principles applied to refractive index data. Such funda-
mental calculations are of great value in uniquely
specifying the parameters since, as has been remarked,
data fitting usually does not do this.

Konowalow and Hirschfelder'4' have determined
from solid-state and virial data the parameters for
Ne, Ar, Kr, and Xe in the Morse potential:

r(i(r) = c Iexp $ 2c(r/o—rs/o) ].—
—2 exp $ c(r/rr rs/—o) ]I, —(18)

in which c is a new parameter and the other symbols
are the same as in Eqs. (16) and (5) . At large distances
the Morse potential does not have the correct r '
attraction but for solid-state applications this is rela-

tively unimportant. The agreement this potential gives
with experimental virial coeKcients is comparably as
good as Eqs. (16) and (5), although the more stringent
tests of how well Eq. (18) gives transport properties
cannot yet be carried through for lack of the necessary
collision integrals. One of the major advantages of Eq.
(18) is that the Schrodinger equation with a Morse
potential may be accurately solved. The other po-
tentials we have discussed do not share this property.
This means that the interactions among rare-gas atoms
may be studied from first-quantum mechanical prin-
ciples; calculations of this kind have been carried out
for the gas"' but not the solid phase. The Morse po-
tential obtained for Kr is plotted on Fig. 14.

In the last few years much attention has been paid
to finding and investigating potentials which fit all of

"' A. K. Barna, J. Chem. Phys. 81, 957 (1959).
"4 A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London)

78, 607 (1961).
D. D. Konowalow and J. O. Hirschfelder, Phys. Fluids 4,

629 (1961).
' ' N. Bernardes and H. Primakoff, J. Chem. Phys. 30, 691

(&9S9).

re�(r) = —Xrss/rs for r& 1.4rp. (19b)

The parameters e and rp are as before the energy and
separation, respectively, at the minimum of p, K de-
scribes the curvature of the potential at the minimum,
and 0. describes the rate of change of curvature there.
The parameter P in the last term of Eq. (19a) is related
to anharmonicity in the lattice vibrations. It has been
suggested that the effects of anharmonicity in the
experimental data are small and no significant decrease
in validity of p results from ignoring it, i.e., taking p= 0.
An alternate assumption, P=n, which makes anhar-
monicity in the potential negligible, is equally effective.
The principal forces between molecules further apart in
the crystal than nearest neighbors are van der Waals
r ' attractions. The factor X in Eq. (19b) may therefore
be either determined a priori from theory or treated as
a free parameter. In practice the quantum mechanical
value usually gives the best fit to experimental data.
Solid state equilibrium data cannot quite specify the
parameters in Eq. (19) uniquely and so recourse must
be made once again to gas data. For these purposes an
extra parameter must be introduced, cr, the crossover
separation at which g(o) =0. The six parameters to be
fitted to the data are then X, rs, e, K, er, and o., with P
generally taken as zero. Table IV contains the best
values of these parameters for rare-gas molecules and
the resultant potential with P=O is plotted for Ar on
Fig. 13 along with simpler potentials which have been
discussed above. The behavior of P for r within the
crossover does not acct any of the properties tested
and the most convenient, albeit arbitrary, assumption
is: for r(a, g is infinite. The hard sphere radius o. of the
molecule may be straightforwardly estimated from gas
viscosities. The form of g in the region between Eqs.
(19a) and (19b) is also not critical and this has been
drawn in following the example of the original authors.

The potential of Eq. (19a) has been long used in the
theory of band spectra and was applied to the study of

' ' E. A. Guggenheim and M. L. McGlashan, Proc. Roy. Soc.
(London) A255, 456 (1960).

the experimental equilibrium crystal properties for
rare gases from O'K to the melting points. Until re-
cently these properties, especially the density and
compressibility, had not been extensively measured, so
not much understanding of solids could be gained by
increasing the complexity of re(r) . It is now worthwhile
to investigate whether a potential can be found which
correlates all these solid-state properties as functions of
T and I' over a broad range. Guggenheim and McGla-
shan'47 have investigated for Ar the two-piece inter-
molecular potential

Q(r) = e+K(t—(r re) /rs—]'
—aL(r —rs) /rs]'+ pL(r —rs) /rs] (19a)

for r in the neighborhood of rp, and
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TABLE IV. Parameters for rare-gas molecules in the potential.

g(r) = R+—RL(r ro)/—rhea' Ucp(—r ra)/—roj'+pp(r ro)/—roj' for r near r„kc(r)= Xr—,'/r' for r)1 4ro, 4.(cr) =0.

./u('K) 10 '«/k ('K) 10 'a/k ('K) 10 'fi/-k ('K) ),/k ('K)

Ne~
Arb
Arb
Kr'
Xed

40.6
137.5
137.5
192.8
267.0

3 ~ 130
3.818
3.812
4.074
4.435

13.26
44.3
44.9
65.95
85.10

5.78
18.3
19.6
30.74
39.24

0.578
0
1.96
0
0

44.3
150
150
185
300

3.165
3.165

(3.67
3 ' 960

~ Reference 152.
Reference 147.

0 Reference 153.
d Reference 154.

crystal properties of Ar by Rice'" "' who in fact
assumed a Debye frequency spectrum for the solid in
contrast to the simpler Einstein model. On the Debye
model'4s the parameter R ~ er3', and n and P control the
thermal expansivity of the lattice. If c3. and p are zero
the simple case OD = const results. Unfortunately
difhculties arose in the theory due to the lack of ade-
quate experimental data at the time. We here describe
in outline the procedures and results of the more recent
work on Eq. (19) as an elegant example in the use of an
intermolecular potential to predict solid-state equili-
brium properties. Agreement with experiment has
proved to be markedly superior to that of other po-
tentials.

If all the molecules are on their lattice sites and inter-
act according to the force law of Eq. (19) then the
static lattice energy per mole is"

Us ——6/V $—e+ R LV —n dP+P A4

—~3' (Cs —12)X(1+ 6)—'], (20)

where h=(as —re)/re, and C„is the crystal potential
constant for an fcc lattice and an r "force law [ cf. Eq.
(3)].Crystal potential constants have been tabulated
by Lennard-Jones and Ingham'" for many rs and several
lattices.

If a molecule is displaced slightly from its static
lattice site then to a first approximation it executes
harmonic vibrations about its equilibrium position with
frequency I, the characteristic Einstein frequency of the
lattice. This frequency may be found from a geometric
analysis and satisfies the equation

2''mv'res/12=-'R(1+ A) '(1+3 6)
—o. A(1+ A) '(1+2 6)

+2P LV(1+ A) '(1+' 6)
—3ss (Cs —12))h(1+ A) s. (21)

O. K. Rice, J. Am. Chem. Soc. 63, 3 (1941).
O. K. Rice, J. Chem. Phys. 12, 289 {1944).'" O. K. Rice, J. Chem. Phys. 14, 321 (1946).

'3' J. K. Jones and A. E. Ingham, Proc. Roy. Soc. (London)
A107, 636 (1925).

The partition function Q is then simply

Q=L-,' csch (hv/2kT)]', (22)

and from the partition function the crystal properties
may be calculated in the canonical manner. The free
energy (F=E—TS) is

F= Us RT ln Q =—Us+3RT ln (2 sinh hv/2kT) . (23)

The total energy U is given by

U=U+RT ( )
= U+3RT(

™w

) coth( ).

and the entropy S is given by

S=3R(hv/2kT) coth (hv/2kT)

—3R ln L2 sinh (hv/2k T)]. (25)

The equation of state of the solid Ar comes straight-
forwardly from

QF —4 BP

EBV r 3%ass Bas
(26)

The parameters may be conveniently evaluated and
made sensitive to the temperature and pressure de-
pendence of the equilibrium crystal data U(T), S(T),
and p(I', T) by use of Eqs. (21), (24), and (26)
applied at two different temperatures spaced as widely
as possible but both sufficiently high so that the Ein-
stein approximation holds, viz. T„and T„/2.The fre-
quency v may be determined from S(T) which in turn
is obtained from integration of experimental specific
heat data. At ordinary pressures U in Eq. (24) is essen-
tially equal to the enthalpy, also obtainable from
integration of specific heat. The critical test of the
chosen potentials and parameters is how well they give
back experimental crystal data in the P and T regions
between and beyond the points at which they were
fitted. These tests have been carried through in detail. '47

The potential of Eq. (19) for Ar with appropriate
parameters (see Table IV) was found to fit S(,T) and
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U(T)within experimental error and give a passably
good fit to p(I', T) data at not too high pressures nor
too low temperatures. The 6t of the theoretical equation
of state to p(P, T) is an especially sensitive test for
anharmonicity. As expected, experimental agreement
is better than with simpler potentials.

The experimental data on the other rare gases is not
as complete as for Ar but their respective potential
parameters in Eq. (19) may be obtained from applying
the law of corresponding states (see III.B) to the Ar
results. This has been done'" for Kr, Xe, and Ne and
the results tested on experimental curves of V(T),
$(T), and p(T). The results for Kr and Xe are well
within experimental accuracy but for Ne use of the
potential can only be made in a narrow-temperature
range around 20'K and sufhcient experimental data is
lacking. The potential parameters obtained in this
manner for Ne are the best available for Eq. (19) and
they have been included on Table IV.

Barua and Chakraborti'" have derived the potential
for Kr on the six-parameter model of Eq. (19) di-
rectly from the available experimental data using the
procedure described. Their potential correlates satis-
factorily with the solid-state equilibrium properties
and the best values are shown on Table IV and plotted
on Fig. 14 in comparison with other potentials. From
these parameters a closely related (6, 12) potential
was derived and this enabled convenient satisfactory
correlation with both equilibrium and transport prop-
erties of the gas. A potential energy curve for Xe on
the model of Eq. (19) has also been recently determined
by Chakraborti"' using essentially the same procedure.
The agreement with experiment is again satisfactory
for the solid-state and second-virial data and the best
6tting parameters for Xe are shown on Table IV.

B. Law of Corresponding States and Applications

1. I.au of Corresportdi rtg States

The law or principle of corresponding states may be
used much as formally derived equations of state, for
example, to predict some properties from others, to
dehne ideal behavior and investigate departures from it,
and in particular to investigate the effects of quantum
mechanics in solids and liquids. Historically, laws of
this kind have been investigated and proven mainly
for gases and liquids but they are also valid for many
solid-state properties especially of argon, krypton,
xenon, and to a lesser extent neon. We here describe
the modern forms of the law of corresponding states,
its general application to the solid state of rare gases,
and then briefly investigate some specific properties
with it, viz. zero-point properties, melting properties,

'52 E. A. Guggenheim and M. L. McGlashan, Mol. Phys. 3,
563 (1960).'" A. K. Barua and P. K. Chakraborti, Physica 27, 753 (1961).'~ P. K. Chakraborti, Physics 29, 227 (1963).

and in more detail vapor pressure and thermal con-
ductivity.

The law of corresponding states roay be written thus:
The equations of state of certain simple substances are
identical when expressed in terms of suitable reduced
variables. Sufficient conditions under which the law
may be shown to hold have been carefully eluci-
dated. "''" First, some assumption must be made on
the statistical mechanics of the system. If classical
statistics apply, i.e. there is no meaningful distinction
between the results of Fermi —Dirac or Bose—Einstein
statistics, then the universal equation of state in the
reduced variables can be shown to read P„=P„(V„,T„)
if the further assumptions to be discussed below also
obtain. In this older form of the law, applied first to
van der Waals gases, the variables were reduced or non-
dimensionalized by dividing them with the appropriate
critical constants: I'„=P/P„V„——U/V„and T„=
T/T, . The law in this form also holds for liquids and
solids so long as quantum effects are negligible as at
not too low T„and for molecules whose masses are not
too small.

Second, the molecules must be either actually
spherically symmetric, as the rare-gas molecules, or else
be freely rotating so that they are effectively spheri-
cally symmetric. Simple diatomic molecules sometimes
satisfy this latter condition in the liquid state and less
frequently in the solid state. Third, intramolecular
vibrations must be the same in the condensed state as
they are in the gas, i.e., independent of molecular
volume. This means that in order for diatomic and
polyatomic molecules to follow the law, the intermolecu-
lar forces must be weak and short range. Fourth, the
potential energy must be a function only of the inter-
molecular distances. This is nearly exactly true for
rare-gas molecules in the solid state as we have seen
from the potential functions in III.A and even holds to
a surprisingly good approximation for diatomic mole-
cules. Fifth, the intermolecular potential for two
molecules can be written p=ef(r/a)where e i. s some
energy scaling factor, 0 is some characteristic distance,
and f is a universal function. In the older forms of the
law e was taken proportional to T, and 0. proportional
to t/', . This allows only limited application of the
principle to solid-state properties of rare gases although
liquid and gas properties can still be given accurately.

In the more Qexible, modern, form of the law the
reduced variables are I'*, t/'*, and T*, defined as
follows: I'*=Pos/e, V*=V/Xos, and T*=kT/e, where
e is the depth of the well and 0 is the value of r for
which the potential vanishes. These are of course
exactly the parameters used to describe the potentials
in III.A and the (6, 12) potential function as we have
seen serves adequately as the universal function f(r/o).
which gives quite accurate representation for calcu-

"5 K. S. Pitzer, J. Chem. Phys. '7, 583 {1939)."' E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
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lating solid-state properties of rare gases. In these
variables the reduced equation of state in the classical
approximation is: E*=E*(V*,T*). Compared to I'„,
V„,and T„,the starred variables have the advantage
that they may be used to investigate quantum eRects
since e and 0- are not aRected by quantum mechanics as
are the critical constants. Guggenheim has pointed out
that the value of I',V./T. for Ne, for example, is 4%%u~

higher than that of the average of the heavier rare gases,
presumably a quantum effect."' The same effect is
apparent in investigation of correspondence in triple-
point temperature, pressure, and entropy of fusion. As
is expected the reduced constants for Ar, Kr, and Xe
are very close but quantum eRects tend to keep the Ne
lattice more loosely bound so that its reduced triple-
point temperature and entropy of fusion are lower, and
its reduced triple-point pressure is higher than for the
heavier rare gases. In the past, values of the critical
constants were much more accurately known than
values of the potential parameters but this is no longer
true for rare gases. It is worth remembering, however,
that for many diatomic molecules, especially hetero-
nuclear ones, e and a. cannot be easily determined
whereas critical constants are accurately known. Such
molecules as N~, CO, and CH4 can be shown to follow
the law of corresponding states fairly well as gases and
liquids.

De Boer and Blaisse" '" have extended the principle
of corresponding states to account both qualitatively
and quantitatively for quantum eRects. Using quantum
statistics the sum over states Z is given as

Z=Z'g exp (—E„/kT), (27)

where E„arethe eigenvalues of the Schrodinger equa-
tion for a system of E interacting molecules:

L
—(a /2m) gV", y Py(r, ,) —Z„]e„(r„"r~) =O.

X@„(ri*, , r~*) =0, (29)

where A*, a nondimensionalized de Broglie wavelength,
is the new variable defined as (see Table VIII in
III.D)

(3o)

The eigenvalues E„*depend then on V* and A~ and
Eq. (27) may be written

Z=Z'Q(V*, T*, A*).
'» J. De Boer, Physica 14, 139 (1948).
»' J. De Boer and B. S. Blaisse, Physica 14, 149 (1948).

(31)

(28)

Written in reduced variables with E„*=E„/Xe,
g =sf(r*), and o'7',s= V', *' the equation becomes

(—A*sg(1/g~s) V,*s+gf(r,,*)—A Z„*]

The equation of state in De Boer's formulation is then

I'*= (T*/Jli') (ci/c)V*) ln Q(V*, T"', A.*)

=E*(V*,T*, A.*). (32)

Quantum efkcts are largest near O'K where ordinary
thermal effects are small and these have been much
investigated especially by examining the reduced
static-lattice energy (see Fig. 16) Us*=Us/1A, and
the reduced molar volume Vs*= Vs/Eo' for Xe, Kr, Ar,
and Ne at O'K as functions of their respective A*.
Quantum deviations are apparent"' for all the rare-gas
solids and are most pronounced for Ne. Deviations in-
crease as the molecular masses decrease further, for
example when the solid states of the hydrogens, 'He,
and 'He are considered. De Boer and Blaisse" have
examined the quantum law of corresponding states
quantitatively giving U,*, Vs*, and en*=ken/e as
explicit functions of A*. This theory applies only for
mo1ecules for which A*&AN, * since if t/"0* is too large
difhculties arise in averaging the velocity of sound over
direction, due ultimately to breakdown of the harmonic
approximation. The results are in good quantitative
agreement with experiment in this region. In the limit
A.*—&0 the results are: V0*=0.916, Uo*= —8.610, and
OD*= 9.45K*.

Corrections to the zero-point properties of rare-gas
solids due to increasing A* have been calculated from
quantum mechanical erst principles by Bernardes'"
(see III.D. Zero-Point Properties). In his formulation
the reduced molar volume, static lattice potential
energy, bulk modulus, sound velocity, Debye tempera-
ture, and Gruneisen constant, are calculated at O'K in
the limit A*—+0 from classical principles applied to a
I.ennard- Jones potential. The quantum corrections
result from a variational principle applied to a Heitler-
London wavefunction and are expressed as power series
in Jr of the form (1+aA*+bA*'+ ~ ~ ~ ) multiplying the
classical values. The A*=0 limit as well as the A* de-
pendence of the derived properties are in generally
excellent agreement with experiment for the rare gases
including Ne. Figure 15 shows as an example the
theoretically calculated ratio of reduced bulk modulus
&*(A*)= —V*(dJ'*/dV*) including quantum effects
to bulk modulus in the limit 4*=0, both at O'K in
comparison with experimental data. Zucker '6' has con-
sidered corrections in the zero-point properties t/"0*, and
Uo* due to large A* as the result of anharmonic eRects in
an Einstein lattice. These eRects become important at
large mean excursions of molecules from their static
lattice positions such as result from large zero-point
energy. His results are also in excellent agreement with
experiment for not too large A* and we have shown on
Fig. 16 the plot of Fs* (or Es*) vs A*.

'"R. Gopal, Z. Anorg. U. Allgem. Chem. 281, 217 (1955).'" N. Bernardes, Phys. Rev. 120, 807 (1960}.
isi L J. Zncker, Proc. Phys. Soc. (London) '7'7, 889 (1961).
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De Boer and Blais e'" '" have also derived explicit
model equations of state of the form (32) . The reduced
free energy F*=F/Xe at T)0'K may be written as
the sum of three terms, respectively: the reduced po-
tential energy Uo*, the reduced zero-point energy
96D*/8, and in the Debye approximation a term for
thermally excited lattice vibrations,

P =Up + eD +3T ln exp —19
T*

Ta 3 en+/T+ fed)
( (33)

OD* o exp $—1

All of these terms may be expressed as explicit func-
tions of t/'* and T* so that the reduced equation of
state

P*=Po.t, *+P..*+. Pg, .*=—(ctP*/itv~) r~ (34)

"2
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may be used to give theoretical reduced isotherms, P*
vs t/'~ at constant T*. From theory thus it is expected
that correspondence in compression isotherms obtains
for the condensed rare gases in the limit A.*=0and that
the reduced experimental curves deviate from each

1.0

"9—
I'&G. 16. Comparison of theoretical and experimental variation

of reduced lattice free energy F*=F/ftre at O'K with quantum
parameter A*=h/o(me)&. For this temperature Fe*=Ro Ue +-—
&*, the reduced static-lattice cohesive energy+reduced zero-
point energy. The solid curve is theoretically predicted. (After
Zucker Ref. 161.) (Colrtesy of The Institlte of Physics and The
Physical Society. )
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Fn. 15. Comparison of theoretical and experimental variation
of reduced bulk modulus K*=—V*(dF~/dV*) at O'K with
quantum parameter cP=&/o. (me)&. The ordinate is the ratio of
the quantum mechanically calculated reduced bulk modulus at
O'K, Eo*(A.*) to the reduced bulk modulus EO*(0) in the classical
limit A*=0. Experimental values for Ar and Kr have been
extrapolated to O'K. Measurements of bulk modulus of Ar at
higher temperatures are indicated with open circles. The solid
curve is theoretically predicted in the form: Ke*(A )/E'0*(0) =
1+aA*+bA.*'. (After Bernardes Ref. 160.)

'" B. S. Blaisse, Ned. Tijdschr, Natuurk. 19, 267 (1953) (in
Dutch),

other to the extent that quantum e6ects are important,
e.g. , at low T*. These curves have been tabulated and
examined'" for Kr, Ar, N2, Ne, H2, and He in order of
increasing A* (A* from 0.1 to 2.7) and give general
qualitative agreement with experimental curves al-

though quantitative agreement is poor. The experi-
mental compressibility isotherms show the expected
correspondence for the heavier rare gases near p, .'"
However, even at T. deviations from correspondence at
pressures only a few times higher than P, have been
observed. Correspondence in the compressibility of the
solids at low T has not been extensively investigated
and would be of much interest although the same prob-
lem for liquids and gases has been treated. '"

Correspondence in the melting lines of substances
following the assumptions may also be straightfor-
wardly demonstrated. G*, the reduced Gibbs free

energy may be written in general from Eq. (31)

G*= (T*/1V) (8 ln Z/cl ln V*—ln Z), (35)

so that the reduced melting curve along which the
liquid and solid G* are equal becomes

(a in/a ln V*) Lgg(V*, T*, t1*)/g, (V*, T*, &*)j
=» t:Q~(v*, T*, t1*)/0 (V* T" ~*)3 (36)

re' F. Danon and K. S. Pitzer, J. Phys. Chem. 66, 5g3 (1962)."' J. M. H. Levelt, Physica 26, 361 (1960).
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Application of the law of corresponding states to the
theory of melting and to melting parameters has been
of much use in generalizing and understanding the
Simon melting formula" Bomb"' has discussed and
derived the Lindemann melting formula in terms of
the law of corresponding states and has extended the
formula taking into account quantum effects and other
melting parameters. Theoretical reduced melting curves
for rare gases may be derived in principle from Eq. (36)
and in practice'" from Eqs. (33) and (34). It is ex-

pected from theory that in the classical limit A.*=O
and high T* the melting curves I'"' vs T* of all sub-
stances satisfying the 6ve conditions described above be
identical. At lower T*, and for larger A* where quan-
tum eRects become important, the universal melting
curve splits into individual curves for each substance.
These results are in qualitative agreement with the
experimental curves. Michels and Prins" have measured
the melting curves of Ar, Kr, and Xe, up to 1500 atm
and compared the reduced melting curves for all the
rare gases. The variations from a universal melting
curve are of the order of a few percent, probably the
result of assuming the Lennard-Jones two-body inter-
molecular potential. However, the introduction of
arbitrary scale parameters on I'* and T* brought the
results to a universal melting line. This means that for
some set of 0 and t. the law of corresponding states holds
more rigorously for the experimental melting curves.

Boato and Casanova"' have found a self-consistent
set of e and 0- for all the rare gases by assuming that the
law of corresponding states holds and adjusting the
parameters to give universal reduced vapor-pressure
curves over a wide range of temperature. The param-
eters obtained in this manner are usually somewhat
diRerent from the e and 0 determined by the methods
described in III.A, and can be used to predict rather
well the variation with A* of Ppp Vpp Tpp Vp*,
and Up*. It is interesting to note that the values of e

and 0- obtained in this manner are independent of the
particular potential assumed so long as p(r) =of(r/o)
whereas the values of the parameters shown, for exam-
ple, on Tables III and IV are obtained from and depend
on specific postulated potentials. Another interesting
point is that measurements of isotopic eRects in a prop-
erty provide information on the local variation with A.*
since for isotopes of the same monatomic molecule both

and 0- are the same and A.* changes only due to the
change in mass. Unfortunately isotope eRects in solids
are difficult to measure although in recent years con-
tinuing excellent work has been reported along these
lines. "7

In applying the law of corresponding states to the
molecular parameters e and 0. and calculating crystal
density, energy, and entropy for the rare gases from

"~ C. Bomb, Suppl. Nuovo Cinmnto 9, 9 (1.958).'" G. Boato and G. Casanova, Physica 27', 571 (1961,.'" G. Boato, J. Chim. Phys. 60, 44 (1963).

LIp
ln P= — +-', ln T-

ET

r dT~ Vr

0 0
( Tl/) d Tl I

where Lp is the heat of sublimation at O'K. This rela-
tion may be applied, at least in principle, to estimate
P(T), C„(T),or I.s from the other two. In practice,
the vapor-pressure curve may usually be described as

ln P = —-,'ln T+a/T+b. (38)

Salter Ms has derived Eq. (38) from first principles
assuming perfect crystal structure, quasiharmonic
lattice vibrations, and an almost ideal vapor, and has
shown that for T&en/2

a= Uo/Xk; 5 =3 ln M,y-,'ln P(m/27r) '(I/k) ], (39)

in which if the zero-point energy is called E„Up=
—I p

—E, is the static lattice energy and

is the geometric mean frequency of the lattice vibra-
tional spectrum. The theory may be refined by taking
into account anharmonicity: on an Einstein model at
moderate temperatures this results in the addition of a
term cT to the right side of Eq. (38) . No experimental
evidence for the existence of such a term has yet been
reported. This is, however, not an argument against
the importance of anharmonic effects in rare-gas solids,

'" L. S. Salter, Trans. Faraday Soc. 59, 657 (1963).

20'K up to the triple points, Guggenheim and Mc-
Glashan'5' have introduced the principle of corre-
sponding interactions, a natural extension of corre-
sponding states. This is an eRective way to use corre-
spondence to predict crystal properties which are
sensitive to molecular mass and hence cannot be found
from a straightforward application of the law of
corresponding states. For example, the absolute
entropies of rare-gas crystals when plotted as functions
of T„follow distinctly separate curves. '" However,
when the values of e and 0- for Kr and Xe obtained from

applying corresponding interactions to the potential
curve of Ar, for example, are used to calculate char-
acteristic frequencies and hence densities, entropies, and
energies for the crystals, agreement is obtained almost
to within experimental error from about 20'K to the
triple points. The deviations from experiment increase
toward lower temperatures, probably the result of
breakdown of the Einstein approximation.

2. Vapor Presslre

For a monatomic solid the statistical mechanical
expression for vapor pressure is
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From this improved curve and accurate vapor-pres-
sure measurements on Ar and Kr, Salter finds

Up(cal/mole) &ee(sec ')

Ar —1991&16 (6.99&0.15) X 10"
Kr —2747& 18 (5.14&0.21) X 10"

E,(cal/mole)

185&26
146~28.

These theoretical values of co, and E, are in good agree-
ment with independent determinations.

Vapor pressures for the rare-gas solids have been
experimentally determined over broad ranges of
pressure and temperature although much of interest at
the lower I' and T remains to be done. The experimen-
tal techniques need not be described in any detail here,
the central experimental problems have been: meas-
uring low pressures and low temperatures accurately
on standardized scales, controlling the temperature,
and in dynamic experiments, the slow temperature rise
over the whole volume of solid and vapor so that
measurements at equilibrium can be made, and ob-
taining sufficiently pure samples. Smoothed data and
references to the earlier literature on sublimation pres-
sures for rare-gas solids and vapor pressures for the
liquids including helium have been well tabulated. s

In the region of I' and T below present experiments,
approximate vapor-pressure curves have been given
by Honig and Hook'" who fitted high temperature
sublimation pressure data to equations of the form

logip I'= AT '+8 logip T+CT+—DT'+E,

in which A, 8, C, D, and E are constant for each sub-
stance, and extrapolated down to very low E(10 "
mm). Although their data in some cases were over
narrow regions the equation is a reasonable one and
their estimations are the only ones in this region. Some
of their results are shown on Table V.

Argom The vapor pressure of solid Ar from about
(66'K, 24.7 mm) to the triple point has been deter-
mined most recently in a thorough investigation of

"' R. E. Honig and H. 0. Hook, RCA Rev. 21, 360 (1960).

as Salter has noted, since more sophisticated theories
would make clear anharmonic contributions to a and b.

The ln term in Eq. (38) is usually negligible in
comparison with the aT ' dependence and is cus-
tomarily omitted from empirical vapor pressure curves
for convenience. Recent thermodynamic measurements
on solid Ar and Kr (see III.C. Specific Heat) indicate
that at higher T the crystal properties may be inQu-

enced by the presence of lattice vacancies. If the Gibbs
free energy for creation of such an imperfection is gz
then the vapor-pressure curve becomes instead of Eq.
(38)

ln I'= —rsin T+a/T+b exp ( —gs/IeT)—. (40)

TABLE V. Vapor pressures and temperatures of rare-gas solids
for low (P, 2'). These results have been obtained (Honig and
Hook, Ref. 169) by extrapolation of experimental sublimation
pressures for Ne from 15'—45'K, for Ar from 82'-88'K, for Kr
from 63'-121'K, and for Xe from 110'-166'K. Errors in T in-
crease at lower I' but are probably never worse than ~1 K.

Pressure Ne Xe

10 mm
10 '
10 '
10 '
10~
10-13

18.45'K
13.85
11.05
8 ' 48
6.88
5.50

62.5'K
48.2
39.2
30.6
25.2
20.3

85.9'K
66.3
53.9
42. 2
34.6
27.9

118.5'K
91.5
74.4
58.2
47.7
38.5

thermodynamic properties of Ar by Flubacher et al. '~ '"
Over the measured range the vapor pressure of the solid
was fitted to the equation

logip P(mm) = A —8/T (41)

with constants 3= 7.65590, 8=414.272 to about 0.05
mm. Pressure was measured on a differential mercury
manometer, the general rule for these experiments,
and temperature was measured on a Pt resistance
thermometer. Freeman and Halsey'~' '~' using the same
general technique fitted a curve of the form Eq. (41)
to their data between 82'K and the t.p. in good agree-
ment with other data. The vapor pressure results of
simultaneous independent experiments from groups in
England and Holland on solid Ar between 70'K and
the t.p. have been reported by Clark et al. '~4 Results
of all these investigations are shown on Fig. 17 and they
are all in good agreement.

Some earlier work reQects difficulties in obtaining
pure samples. Born'" ' for example, measured the
sublimation pressure of Ar from 65'K to the t.p. but
his pressures are consistently lower than modern pres-
sures for T& 72'K and higher for temperatures below
this, apparently the result of oxygen impurities. The
most important impurities in modern rare-gas samples
are other rare gases.

Krypton The vapor pressure of solid Kr from about
(83'K, 6.1 mm) to the triple point has been determined

by Beaumont et a/. " in a thorough investigation of
thermodynamic properties of Kr, a continuation of the
Ar study by Flubacher et al. '~' '~' A least-squares fit to
their data to approximately 0.05 mm is given by Eq.

"0 P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc.
Seventh Intl. Conf. Low Temp. Phys. , Toronto, Canada, 1960,
pp. 695-7.' ' P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc.
Phys. Sop. (London) '78, 1449 (1961)."' M. P. Freeman, Ph. D. thesis, University of Washington,
1956, pp. 103—6.

' ' M. P. Freeman and G. D. Halsey, Jr., J. Phys. Chem. 60,
1119 (1956)." A. M. Clark, F. Din, J. Robb, A. Michels, T. Wassenaar, and
Th. Zwietering, Physics 17, 876 (1951).

's' F. Born, Ann. Physik 69, 473 (1922).
'7' T. Batuecas and E. Garcia-Rodeja, Anales Real Soc. Espan.

Fis. y Quirn. (Madrid) 52B, 485 (1956).
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results for Kr solid extended from about 84 K almost
up to the t.p. and fall gratifyingly near modern determi-
nations.

Xemoe Freeman and Halsey' ' '" have measured the
vapor pressure of solid Xe from 110'K to the triple
point and 6tted their data to Eq. (41) with 2 =7.371,
8=799.1. Recently Podgurski and Davis" have re-
ported vapor-pressure data on Xe between 83'—900K
and have extrapolated an equation of the form (41)
down to 70'K. In this region the data show a scatter of
about 2% and were corrected for thermal transpiration
and other related effects. The region between 90' and
110'Khas not been well covered except for the measure-
ments of Peters and Weil'" which are not in good
agreement with data of others in overlapping regions.
On Fig. 18 some of the data of Peters and Weil have
been plotted along with vapor pressures calculated from
Eq. (41) with appropriate constants. '" '"
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FIG. 17. Vapor pressure of solid Ar as function of temperature.
The solid curve is drawn from the equation log&oP (mra) =2 B/T—
with A and 8 experimentally determined by Flubacher et al.
(Ref. 171).The dotted curve is part of the extrapolation of Honig
and Hook (Ref. 169).For lower P and T see Table V.

(41) with 2=7.0741, 8=575.267. Part of this same
region has also been covered, with reasonable agree-
ment, in work of Freeman and Halsey'"' ' between
about 87'K and the t.p. on studies of Kr—Xe solid solu-
tions. The constants found over this narrow range for
Eq. (41) are however, somewhat larger than those of
Beaumont et al. In the lower temperature region
63'—80'K sublimation pressure measurements have
been reported by Fisher and McMillan'~7 whose experi-
mental results below 70'K differ significantly from the
theoretically expected curve, probably due to trace
quantities of nitrogen impurities. Selected data of all
the above work have been plotted on Fig. 18 and con-
nected with a smooth curve. In the region below 70'K
the dashed curve follows theoretically corrected data. "'

Ramsay and Travers, the discoverers (1898) of Kr,
Ne, and Xe, '~' reported low-temperature vapor-pressure
data only three years later'~' on Ar, Kr, and Xe. Their

'7~ B. B. Fisher and W. G. McMillan, J. Phys. Chem. 62, 494
(1958).

Ar was discovered in 1895 by Rayleigh and Ramsay."' W. Ramsay and M. W. Travers, Phil. Trans. Roy. Soc.
(London) A19'7, 47 (1901), W. Ramsay and M. W. Travers, Z.
Physik. Chem. 38, 641 (1901).

a
O
a

I.O—
.8—
.6—5—
.4—

O.I

.08—

.06—

.05—

.04—

b
I0

I
I0

I
I0

.02—

0.01
50 70 90 I IO I 30

TEMPERATURE T( K)
150 170

FIG. 18. Vapor pressures of solid Kr and Xe as functions of
temperature.

H. H. Podgurski and F. N. Davis, J. Phys. Chem. 65, 1343
(1961).

's' K. Peters and K. Weil, Z. Physik. Chem. (Leipzig) 148A,
27 (1930).
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Eeoc The vapor pressures of solid "Ne and its princi-
pal isotopes "Ne and "Ne from about 16.4'K to the
triple point have been determined in a recent thorough
investigg, tion of isotopic e6'ects on vapor pressure by
Bigeleisen and Roth. '""3 In these experiments the
vapor pressure of "Ne and also the vapor pressure
difference between solids enriched, respectively, with
"Ne and "Ne are measured directly. The vapor pres-
sures of pure ' Ne and "Ne are calculated from the data
by Raoult's law for solid solutions. On Fig. 19 repre-
sentative data for "Ne and "Ne are shown. On this
scale the data for 'ONe fall indistinguishably close to the
"Ne curve.

Measurements from 20.3'K to the t.p. on "Ne in

good agreement with these have been reported by
Grilly"' and nearer the t.p. by Henning and Otto. "'
For the range of his data, Grilly gives the sublimation
pressure curve: logm P(tnrn) = 6.89224 —110.8091 '+
5.4348X10 'T. Long standing vapor-pressure measure-
ments of Crommelin and Gibson'" and Keesom and
Haantjes" from about 15'K to the t.p. are in satisfac-
tory agreement with extrapolated modern values.
Representative data of all these workers have been
plotted on Fig. 19 and connected with a smooth curve.

The only reported vapor pressure measurements for
Rn are those of Gray and Ramsay, '" from the triple
point to the critical point.

As already noted, a sensitive test of solid state
theories is calculation and comparison with experiment
of differences in properties of isotopic solids; this is
especially powerful for the monatomic solids we are
discussing here. For the solid (and liquid) the vapor-
pressure ratio of two isotopes, most commonly ' Ne and
"Ne, can be measured as a function of T, extreme care
being necessary to assure that the slowly attained
equilibrium associated with isotopic diffusion through
low-temperature solids obtains. The, isotopic vapor-
pressure diGerence, which is associated with differences
in zero-point energy, is especially large for such light
molecule s.

Early measurements of the ratio were made by Kee-
som and Haantjes. "' Since pure isotopic solids are very
difficult to prepare, suitably enriched isotopic mixtures
were used, corrections being made from the theory of
ideal solutions. The vapor pressure at constant tempera-
ture was found to vary linearly, with negative slope,
with the average atomic weight of the isotopic mix-
ture. More accurate measurements of the vapor.-pres-
sure ratio of these two Ne isotopes between 16'—30'K
have been recently reported by Bigeleisen and Roth'" '"

'~ E. G. Roth and J. Bigeleisen, J. Chem. Phys. 32, 612 (1960)."' J. Bigeleisen and E. Roth, J. Chem. Phys. 35, 68 (1961).
'e4 E. R. Grilly, Cryogenics 2, 1 (1962).
'se F. Henning and J. Otto, Physik. Z. 37, 633 (1936).

C. A. Crommelin and R. 0. Gibson, Commun. Kamerlingh
Onnes Lab. Univ. Leiden 17, 185b (1927).

'e' W. H. Keesom and J. Haantjes, Physica 2, 460 (1935).
'~ R. W. Gray and W. Ramsay, J. Chem. Soc. 95, 1073 (1909)."' W. H. Keesom and J. Haantjes, Physica 2, 986 (1935).
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FIG. 19. Papor pressures of solid normal Ne and ~Ne as func-
tions of temperature. The solid curve is the vapor pressure of "Ne,
blackened circles represent the data on ~Ne. Bigeleisen and Roth
(Ref. 183) have also determined the vapor pressure of "Ne; on
the scale shown this data cannot be distinguished from the "Ne
curve.

»o G. Boato, G. Scoles, and M. E. Vallauri, Nuovo Cimento
23, 1041 (1962)."' K. Clusius, K. Schleich, F. Endtinger, R. Bernstein, and
M. Vogelmann, J. Chim. Phys. 60, 66 (1963)."' J. Bigeleisen, J. Chim. Phys. 60, 35 (1963).

in substantial agreement with the earlier work, and
a steady-state Qow method has been used to measure
the vapor-pressure ratio between 72'K and the t.p.
of "Ar and 'Ar by Boato et al." Clusius, Schleich,
et al."' have recently reported experimentally deter-
mined t.p. pressures and temperatures for these two
Ar isotopes (footnote h of Table II).

The theoretical and experimental situation has been
discussed in a recent review on vapor pressures of
isotopic molecules. "' All of the data is in reasonable

agreement with the long-standing equation, in which

the primed and unprimed quantities represent the two

isotopes

ln (P /P) = (3/40Ts) (On' —On ) + (42)
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derived in the limit of a harmonic Debye lattice in
equilibrium with an ideal vapor. Johns'" has derived a
somewhat diAerent relation

ln (P'/P) =ss ln (M'/M)+(f' f)/—kT, (43)

where f' and f are the free energies per mole of the
isotopes, by considering an Einstein lattice and taking
account of anharmonicity. His calculations were applied
to the Ne data of Keesom and Haantjes assuming a
(6, 14) potential and are in improved agreement with
experiment. The OD values derived from Eq. (42) are
in general not as accurate as those derived from other
thermodynamic data owing to the model approxima-
tions. An improved expression'" for ln (P'/P) taking
account of nonideality in the vapor gives better Gt to
experimental data although anharmonicity in the lattice
vibrations still precludes accurate eo determinations.

Casanova st al. ts4 have examined Eq. (43) and found
that varying potential and potential parameters does
not further improve agreement of ln (P'/P) with the
data on Ne and Ar. The principal theoretical difhculties
are connected with taking due account of both an-
harmonicity and coupling among molecules. Calculated
isotopic vapor-pressure ratios for the systems 'Kr —"Kr
and '"Xe—"Xe were obtained from application of the
quantum mechanical law of corresponding states. No
sublimation pressure experiments on either of these
isotopes have yet been reported, although relative
differences in vapor pressure of the two systems
"Kr—"Kr and "Xe—"'Xe have been measured' ' at
the respective boiling points and found to be in qualita-
tive agreement with the quantum-mechanical law of
corresponding states.

Vapor-pressure curves of rare-gas liquids from the
triple points to the critical points follow the expecta-
tions of the law of corresponding states. For Ar, Kr, and
Xe, a single equation in the reduced variables describes
the curves excellently'" and the vapor pressure of Ne
deviates from this universal curve in the manner
expected due to quantum effects. In view of the close-
ness of microscopic structure between the liquid and
solid states of rare gases near the triple point, universal
sublimation-pressure curves may be expected to obtain
for a short distance below the triple point.

3. Thermal Comdlctinity

The theory of thermal-energy conduction in solids at
low temperatures has been the subject of much sophisti-
cated development, " '" review, "' and discussion. It is
only recently, however, that experimental data have

'" T. F. Johns, Phil. Mag. 3, 229 (1958).
'94 G. Casanova, R. Fieschi, and N. Teni, Nuovo Cimento 18,

837 (1960)."' V. N. Grigoryev, Ukrayin. Fiz. Zh. (U.S.S.R.) '7, 739 (1962)."' C. E. Hamrin and G. Thodos, J. Chem. Phys. 35, 899 (1961).
'97 R. Peierls, Ann. Physik 395, 1055 (1929).'" G. Leibfr'ied and E. Schlomann, Nachr. Ahead. Kiss.

Gottingen 2a, 71 (1954)."' P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).

become available on thermal conductivity (h) for
rare-gas solids. We here discuss very briefly some of the
salient points of the theory 6rst, and then in more detail,
applications to the experiments on rare-gas solids.
Some recent extensions of the law of corresponding
states are used to give the thermal conductivity for Xe
approximately; no experimental data are available for
Xe. Thermal conductivity of rare-gas solids has been
discussed by Dobbs and Jones' who, although handi-
capped by the absence of data, except for Ar, antici-
pated the application of the law of corresponding states,
and also by Hollis Hallett' who gives the experimental
results clearly.

In metals heat may be conducted by both electrons
(at room temperatures a large contribution) and
phonons (at room temperatures a smaller contribution)
and it is also necessary to consider several kinds of
interactions among these. In dielectric solids the
problem is somewhat simpler. In the absence of free
electrons, thermal energy in the solid can only go into
the normal lattice vibrations, i.e., only phonons carry
the energy. In the harmonic approximation, i.e., the
potential energy of a molecule displaced from its
equilibrium lattice position is quadratic in the displace-
ment, all higher order terms being negligible, no energy
transfer among the lattice modes is possible and thus no
thermal equilibrium can be attained. This means that
there is no interaction between phonons, and thermal
energy is carried at approximately the speed of sound
through the crystal. Under these conditions neither
temperature gradients nor even temperature in the
usual sense can be spoken of.

Proper qualitative account of the role of coupling
among the lattice modes due to anharmonicity in
giving a Rnite thermal conductivity for all real solids
was given by Peierls, '" who showed that for high T the
finite ) comes from Umklapp processes. These are three-
phonon interactions in which the diGerence between the
propagation vectors of the incoming phonons (or
phonon) and that of the resultant phonon (or phonons)
is proportional to a vector in the reciprocal lattice.
For T»BD this mechanism gives X~ T ', a result
which had been given earlier by Debye. This law is in
good agreement with experiment and indeed the propor-
tionality extends for rare-gas solids down to much lower
T than expected (T OD/3 for Ar). As T is lowered
further, fewer phonons are available with sufhciently
high energies to eGect Umklapp and X in a perfect crys-
tal rises, becoming proportional to T " exp (On/2T),
p~i, if scattering from crystal boundaries may be
neglected. The constant of proportionality between )
and T ' in the region T»OD has been independently
calculated by several workers and the results are
generally equivalent. We use here the result of Leibfried
and Schlomann '"

X= 12ma k'Ons/Sash'T
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Fro. 20. Experimental thermal conductivities X of
solid Ar, Kr, and Ne, as functions of T. These curves
have been drawn from those of White and Woods
(Ref. 200). Data points are here omitted but X was
measured from 2'K up to near the triple point tem-
peratures for all three substances. To the right of the
conductivity maxima ) is limited principally by
Umklapp processes, and the high T behavior ) =B/T
is shown in the broken curves. These experimental
values of B are in reasonable agreement with theory
(see text). To the left of the maxima Xo:Ts, charac-
teristic of phonon scattering from dislocations. For Ar
below 10'K, X showed large variations for difterent
sources of gas and is therefore to be regarded as
approximate.
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where y is Gruneisen's constant and m is the molecular
mass. This equation is derived from an extension to
three dimensions of a linear chain with nearest-neighbor
central-force interactions.

Thermal conductivities of rare-gas solids have been
measured by White and Woods"' "'who give curves for
Ar, Kr, and Ne, from 2'K to their triple points. A
single determination ) =2.6&0.4 mW/cm 'K at 80'K
for Ar is due to Lawrence et al."' The experimental
procedures both for forming the polycrystalline solids
and for measuring ) are quite diGerent but the results
are in agreement. Both experiments measure the
temperature gradient V T associated with a measured

X(solid) at t.p.
mW/cm'K

Ne
Ar
Kr
Xe

47 mW/cm'K
38
17
24

3.4'K
8.2

11.5
16.1

3.1
3.0
2.3
2.0

"' G. K. White and S. B. Woods, PhiL Mag. 8, 785 (1958)."' D. J. Lawrence, A. T. Stewart, and E. W. Guptill, Can. J.
Phys. 37, 1069 (1959).

TABLE VI. Thermal conductivity X of solid-rare gases. The
6rst two columns give the coordinates (X, T) of the maximum on
the X(T) curve. The third column gives the thermal conductivity
for the soHd at the triple point. The entries for Ne, Ar, and Kr,
have been read from the experimental curves of White and Woods
and calculated from the asymptotic form 7 =B/T of these curves
(see Fig, 20 or Ref. 200). Entries for Xe, for which no experi-
mental data are available, have been calculated from the law of
corresponding states.

for Ar: Bth 464,

for Kr: B~h 509,

for Ne Bth 98,

B,„p 250 mW/cm

B p~270 mW/cm

Bexp~ mW/cm.

Theoretical values for B are thus from 30—90%
higher than experimental values, Kr is in worst agree-
rnent. Considering the experimental and theoretical
uncertainties, this general agreement must be regarded
for the present as satisfactory. For studying the details
of Umklapp processes the rare-gas solids are thus as well
suited as alkali halides, for which in formulas like Eq.
(44) B~h/B,„p varies from 1—2.5, and better than
diamond, germanium, and silicon, for which the ratio

heat flux Q and directly apply the equation which
defines X: Q= —)VT. The results of White and Woods
for Ar, Kr, and Ne, have been combined on Fig. 20 and
selected numerical values read from the curves are
shown in Table VI.

All three of the curves of Fig. 20 may be seen to
terminate at their high T ends as the dotted lines for
which ) ~ T ', characteristic of Umklapp processes. For
Ar this proportionality sets in at about 25'K ( 0.318n)
and 10 mW/cm 'K, for Kr at about 60'K ( 0.958n)
and 4.5 mW/cm 'K, and for Ne at about 12'K
( 0.198n) and 6.4 mW/cm 'K. If reasonable values
are substituted for the constants in Eq. (44) and if it is
abbreviated ) =BT ' then Eq. (44) gives theoretically
expected values of B. By comparison with the experi-
mental data then' ':



780 REvIEws QP MQDERN PHYsIcs JULY 1964

may be 5 or larger. "' An important disadvantage of
rare-gas solids as noted before, is the difFiculty in ob-
taining good quality, large, single crystals.

As T decreases further, ) rises faster than T ' since
phonons sufFiciently energetic to take part in Umklapp
processes become scarcer as noted above; the prob-
ability of such processes falls approximately as exp
( —9n/2T), and the phonon mean-free path increases.
On Fig. 20 this rise in ) is evident for Ar and Ne al-

though X is rather smaller than expected. For Kr, )
rises more slomty than T—'. This is apparently the
result of a decrease in mean-free path due to phonon
scattering from imperfections in the Kr crystals. As
the temperature decreases still further, scattering from
imperfections in the crystals becomes increasingly
important and X reaches a maximum (see Table VI)
and then finally decreases with decreasing T, falling to
zero at O'K. In these experiments ) ~ T' below the
maximum. The phonon mean-free path I may be roughly
estimated from the formula (derived for an attenuated
gas)

) =—'Col, (45)

in which C is a specific heat per unit volume and v is
approximately the velocity of sound.

For the data shown l lO 4 cm at 2'K. These are
surprisingly small mean-free paths even for crystals
imperfect as those used here. In general, the poor
quality of the crystals especially after the straining
attending cooling, as remarked by White and Woods,
makes interpretation of the results at low T extremely
difFicult. The polycrystalline solids were carefully
annealed and growth conditions were varied without
changing ). For Ar from different sources, appreciable
spread was found in ), especially for T to the left of
&max

For T(T(X,„)the increased thermal resistivity is
due to scattering from imperfections; for good quality
crystals one may from the form of X( T) (for this region
generally X~ T ) study in principle the nature of the
lattice defects and other imperfections present in the
solid. The problem of phonon scattering is thoroughly
discussed in the recent review of low-temperature
thermal conductivity in solids by Carruthers. '" The
effects on ) of several kinds of departures from perfec-
tion in the crystal are discussed there, in particular
scattering from strain fields due to dislocations (X ~ T')
and point defects (vacancies), scattering due to mass
differences in the lattice (isotope effect), and scattering
from crystal boundaries. However, much needs to be
done experimentally in improving the quality of
rare-gas crystals in order for knowledge of their low

temperature X behavior to add to understanding of
these processes.

'0' G. K. White, S. B. Woods, and D. K. C. MacDonald,
. Annexe Bull. Inst. Intern. Froid 2, 91 (1956).

Although no experimental studies of the variation of
with pressure in the solid-rare gases are available

(such studies have however been carried through for
He), it is interesting to note that at high I' the outer
electrons of rare-gas molecules, especially heavier ones,
will be transferred into a conduction band. ' ' High
electrical conductivities near this region have already
been found for Ar. In the presence of conduction elec-
trons thermal conduction in rare-gas solids would
involve prototype electron-energy transport and pho-
non —electron collisions.

A recent electron-spin resonance study'04 on im-

purities in Ar and Kr matrices at liquid helium tem-
peratures indicates that energy absorbed by the lattice
may be transferred to the impurity molecules by migra-
tion of electron holes in the rare-gas lattice.

Keyes"' has made an interesting application of the
quantum law of corresponding states to ) for rare-gas
solids. He defines a reduced thermal conductivity X* as

X*=X/(k/o') (s/nz) '*. (46)

If the law is applicable one expects (in the A*=0
limit) X*=X*(T*)neglecting dependence on I'*. In
the range of the experiments I'* is small. When the data
on Ar, Kr, Ne, and H2, are plotted as ) * vs T*, the
points in general follow a universal curve remarkably
well. At high T*(T*&0.3) the behavior of this uni-
versal reduced curve is X* 12/T* in accordance with
expectations. At T* below X,„*(T*&0.07), the uni-
versal curve behaves as )* 7&(10'T*', the variation
characteristic of phonon scattering from dislocations.

The behavior of ) * for 0.07& T*&0.3 is also inter-
esting. In this region the data for the diferent sub-
stances separate and the largest values of ) * occur for
the lightest molecules (highest A.*). In this region a
more significant energy than e may be the minimum

energy for phonons to take part in Umklapp processes
and it is thus perhaps more reasonable to define a new
T* in which T is reduced by division by OD, or A*,
which is proportional to OD. As a test of this hypothesis
Keyes plotted X*A* vs T*/A* and showed that the
data in this region does indeed now fall on a universal
curve for which an approximate formula is

X*A*~20 Lexp (A*/2T*) —1$. (47)

'" B.J. Alder, in Solids U'nder Pressure, edited by W. Paul and
D. M. Warschauer (McGraw-Hill Book Co, , Inc. , New York,
1963), pp. 396—8. B. J. Alder and M. Van Thiel, Phys. Letters 7,
317 (1963).

~04 W. V. Bouldin, R. A, Patten, and W. Gordy, Phys. Rev.
Letters 9, 98 (1962)."' R. W. Keyes, I. Chem. Phys. 31, 452 (1959).

Notice that the exponential dependence in Eq. (47)
suggests that of Peierls. We have used these general
principles to calculate ) for Xe and this is shown on
Table VI along with some experimental data for the
other rare-gas solids.
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C. Syeci6c Heat

Morrison and his co-workers' ' '~' have recently
described an adiabatic calorimeter suitable for accurate
measurement of heat capacity and other thermodyna-
mic properties in the difficult region below 10'K and
continuously up to room temperature. The major
source of uncertainty in the T&10'K region is due to
the temperature scale, but in their comprehensive
experiments on Ar and Kr the uncertainties in C„,the
specific heat at constant pressure, are at most 2% and
decrease steadily to 0.2% above 20'K. From 20'K to
the triple points the uncertainty increases to 0.5%. In
Fig. 21 their C„results for solid Ar, Flubacher et al. ,

' '
and for solid Kr, Beaumont et al. ,"between about 2'K
and the triple points are shown in comparison with
some earlier measurements. All reported rare-gas-solid
heat capacity experiments measure C„~,the speciic
heat of the solid under its saturated vapor pressure.
C„&is thermodynamically connected to C„by
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The relative diRerence between C„and C„~is only
about 0.1% and may thus usually be neglected. Heat
capacity data on solid Ar between 10'—80'K of
Clusius, '4 part of an early study including also Kr, Ne,
and later Xe, fall about 2% lower than the modern
values for T&25'K and at lower T are rather more
widely scattered. Measurements with estimated un-
certainties of 0.5% between 16'—35'K of Figgins et

al.'I' ~ fall within the combined experimental un-
certainty.

Heat capacity determinations of solid Kr have also
been reported by Clusius et al. ,

"' ' from 10'K—t.p. and
by Kucken and Veith' ' between 10'—80'K. Selected
data of these workers are shown on Fig. 21 in compari-
son with the smoothed curve of the recent work dis-
cussed above. "As in the case of Ar the earlier data
scatter about 4% at T &20'K but increase in accuracy
with increasing T. The experiments of Clusius are
especially distinguished by the techniques he developed
for purifying all the rare gases. Present day technology
makes available Ar and Kr better than 99.999% pure,
Ne and Xe perhaps 99.99% pure, so that for most
experiments the impurity eRects which were so trouble-
some to pioneer workers with rare gases are hopefully
absent.

Partly owing to these difficulties in purification, the
heat capacity of solid Xe over a wide temperature
range has been measured apparently only by Clusius
and Riccoboni. "0 A smooth curve through their data
"'E. R. Dobbs, B. F. Figgins, and G. 0. Jones, Suppl. Nuovo

Cimento 9, 32 (1958).'" B. F. Figgins, Proc. Phys. Soc. (London) 76, 732 (1960).
'08 K. Clusius, A. Kruis, and F. Konnertz, Ann. Physik 33,

642 (1938)."' A. Eucken and H. Veith, Z. Physik. Chem. B34, 275 (1936)."' K. Clusius and L Riccoboni, Z. Physik. Chem. B38, 81
(1937),
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for C„t(or C~) between 10'K and the triple point is
shown in Fig. 22. C„the specific heat at constant vol-

ume, may be calculated from C„using

Cr C.=P'T/pyz, — (49)

where p is the volume coefficient of thermal expansion,
and xz is the isothermal compressibility. C„has been
calculated from O'K—t.p. for solid Xe using this equa-
tion and the resultant C„(T) is shown on Fig. 22.
Values of p were taken from Fig. 7, those of p from Fig.
3, and xz were taken from recent measurements of bulk
modulus of solid Xe of Packard and Swenson. "

In Fig. 23, C„dataof Clusius, Flubacher, et ul."' on
the two principal Ne isotopes are plotted. Measure-

"' K. Clusius, P. Flubacher, U. Piesbergen, K. Schleich, and
A. Sperandio, Z. Naturforsch. 15a, 1 (1960).

Fzo. 21.Experimental heat capacity C„orC», (cal/mole deg K.)
for solid argon and solid krypton as function of temperature. The
plotted data are experimentally determined heat capacities at
saturated vapor pressure C„&.C„tdiffers from C„byonly about
0.1%or less in the region of the curves. The estimated error in the
solid curves is about 2% for lowest temperatures, decreasing to
0.2% for T&20'K, and then increasing for T&60'K to about
0.5% near the triple points (Refs. 99 and 171).The rapid rise of
heat capacity near the t.p. which is apparent on both curves is
probably the result of lattice vacancies.
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Fro. 22. Experimental heat capacity C„or C„& (cal/mole
deg Kl and calculated heat capacity C, for solid xenon as function
of temperature. The solid curve is drawn through experimental
measurements of C„~ (or C„) between about 10'—157'K of
Clusius and Riccoboni (Ref. 210) . It has been extrapolated down
to O'K assuming eD=55'K and up to the triple point. C, was
calculated from the equation C„=C„P'T/pxru—sing experi-
mental data for all quantities on the right hand side of the equa-
tion. The rapid rise of observed heat capacity near the t.p. may
be the result of lattice vacancies in the solid and is reQected in
the calculated C„.
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ments for "Ne extend from 9'K up to the t.p. , for this
isotope 24.66'K, and measurements for "Ne extend
from 8'K up to its t.p. 24.84'K. Determinations'4' ' "'
of C„for pure normal Ne (90.9%"Ne, 0.3% "Ne, 8.8%
"Ne) are very close to those for "Ne. An approximate
curve of C, for 'ONe has been calculated from

C„—C„=AC„'T,

where A is a constant determined from Eq. (49) at any
fixed temperature as A=P'/xrpC„'. Using values of P
and p at 16'K from Figs. 8 and 4 and taking xr (16'K)
to equal the single experimentally determined value
4.02X 10 ' cm'/cal (at 4'K) gives A =2.79)& 10—'
mole/cal. The use of Eq. (50) may not be rigorously

justified over the whole T range since it assumes the
validity of Gruneisen's rule. A more reliable estimate
of C, would of course be possible with measurements
of xr(T).

C, and 8D for Ar and Kr have been estimated by
Beaumont ef aL" from Eq. (49) and the C„data of
Fig. 21. The resultant 8n(T) curves for T(40'K are
shown on Fig. 24 and may be profitably compared.
Above 40'K, estimated (C„—C„)values approach 10%
of experimental C„'sand are thus uncertain. In addition

'" K. Clusius, Z. Physik. Chem. 34, 1 (1929).

C„(T)data show the effects of lattice vacancy forma-

tion, i.e., an unexpectedly rapidly rising C~. This is

especially pronounced near the t.p. for Ar and Kr
(Fig. 21) and also is apparent for Xe (Fig. 22). In
Fig. 22, for which the C, curve has been calculated
from the C„data right up to the t.p. , the rise in C„due
to vacancy formation is reRected in C, . Vacancy eGects,
which have also been observed in vapor pressure
experiments as already remarked, represent nonvibra-
tional contributions to thermodynamic properties and
must be theoretically accounted for by special methods.
We discuss some of these brieRy later in this section.

The 8D curves for Ar and Kr are in remarkably good
agreement with those calculated by Leighton"' ' from
the frequency spectrum. 8n (Kr) shows a sharper
minimum in the region of about 8'K than 8n (Ar) and
at higher T it rises more slowly. Since the zero-point
energy for Ar is a larger fraction of lattice energy than
for Kr these differences may be interpreted as the
result of anharmonicity. ' Notice that at least for
T &40'K anharmonicity decreases C, but the e6ect of
lattice vacancies above about 40'K is to increase C„.
It is to be emphasized, however, that independent
calculations"' indicate that anharmonicity increases
C,. This question has not been satisfactorily resolved.

"' R. B. Leighton, Rev. Mod. Phys. 20, 165 (1948).
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In their recent work, Horton and Leechzsz system-
atically calculated C.( T), 8&(T), and Griineisen
constants for Ne, Ar, Kr, and Xe for T(8n/2 in the
harmonic approximation as functions of: the repulsive
exponent e and potential parameters e and ro in Eq.
(16), and the number of interacting neighbors. Some
of their general conclusions are: (a) Calculated Bz&'s

for Ne show greater sensitivity to variation of the
number of interacting neighbors than OD's for the
heavier rare-gas solids but are less sensitive to variation
of N. (b) The inclusion of interactions with atoms
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Fzo. 24. Debye temperature Bn ('K) for Ar, Kr, Xe, INe, and
"Ne, as functions of temperature. References for the curves are:
Ar and Kr (Ref. 99), Xe (Ref. 35), "Ne and ssNe (Ref 211)..All
of these Bn(T) are derived from heat capacity measurements
and therefore refer to a temperature dependent molar volume.
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beyond the erst- and second-nearest neighbors gives
an appreciable contribution to calculated 6D's, be-
coming znore important with increasing T. (c) In-
creasing st raises Bz&(T) but does not change the shape
of BD(T) . The results of this calculation for Ar and Kr
do not in general agree very well with the speci6c heat
data of Fig. 21 and the Bz&(T) curves of Fig. 24 except
at very low T. The source of the disagreement is
apparently the combined result of exaggeration to the
effect of distant neighbors given by Eq. (16) and the
neglect of anharmonicity.

Shown on Fig. 24 is BD (Xe) as estimated by Packard
and Swenson" from earlier entropy data" and extra-
polated from 20'—O'K. The characteristic sharp drop of
about 15% in BD with increasing T just above O'K,
derived for the basic case of central forces between
nearest neighbors in an fcc lattice"' is not evident in
the extrapolated Xe curve although apparent for both
Ar and Kr. From theoretical considerations"'" and
analogy with BD (Ar) and Bn (Kr) behavior, BD (Xe)
near O'K is expected to be about 65'K. Debye tem-
peratures for "Ne and "Ne from the heat capacity data
of Clusius, Flubacher, et al."' are also shown in Fig. 24.
Since the measurements extend only down to about 8'K
any behavior of 6D below this disappears in the extrap-
olation. Anharmonic effects in this region are expected
to be most pronounced for Ne and its isotopes since the
ratios of zero-point energy to static-lattice energy are
higher than for any other rare-gas solids. The zero-point
energy for Ne may be considered to cause melting in
the lattice at a temperature so low that C„for the solid

I.O—

r
l 1 I I I f t l I l 1

0 4 8 I2 I6 20 24 28
TEMPERATURE T (4K)

Fzo. 23. Experimental heat capacity Ce or C„q(cal/mole deg K)
for solid neon 20 and neon 22 and calculated C, for solid neon 20,
all as functions of temperature. The solid curves are drawn through
experimental measurements of C»& (or C„),between about 8'K
and the triple points, of Clusius, Flubacher, Piesbergen, Schleich,
and Sperandio (Ref. 211).The t.p. for 'eNe has (2, T) coordinates
(325.10 mm, 24.66'K) and those of "Ne are (327.73 mm,
24.84'K). The solid curves have been extrapolated to O'K as-
suming Bz&(soNe) =66.7'K and Gn(~Ne) =65.2'K. C„has been
calculated aPProximately for s Ne from C„=Ce PsT/PXr and—
C,= C&—AC„~T (A const), using available experimental data.
The heat capacities for normal Ne are very close to C„and C,
for "Ne.
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shows no tendency to level out at the t.p. (Fig. 23).
This is in marked contrast to C„curves for the other
rare-gas solids (Figs. 21 and 22). Classically, in the
approximation of a harmonic lattice with no vacancies,
C„~3E.at temperatures above OD. This is the cause of
the decreasing slope in C, for Xe on Fig. 22. The ap-
parent leveling off of C, for "Ne (Fig. 23), however, is
probably spurious, the result of approximations in
computing C,.

.Many theoretical aspects of thermodynamics of
rare-gas solids have been thoroughly discussed by
Dobbs and Jones' and most recently by Horton and
Leech."' We here restrict ourselves to brief discussion
of the eGects of vacancies and anharmonicity on ther-
modynamic properties.

n=N exp ( gs/hT), — (51)

in which gg =h —Ts is the Gibbs free energy for creation
of a single vacancy; h and s are, respectively, the
enthalpy and the entropy for a vacancy. The eBect of
e vacancies on the observed C„is an increase

ACv= (Bnh/BT) p=nh2/hT'. (52)

The second equality holds at higher T where h and s
are independent of T. Beaumont et ul. 99 have estimated
AC„for Ar and Kr by extrapolating their C„datanear
the t.p. (Fig. 21) and obtain for vacancies in Ar be-
tween 45'—83'K, h=1280 cal/mole of vacancies, and
for Kr between 60'-115'K, h= 1770 cal/mole vac. , to
within about 10% in both cases. The corresponding
experimental estimates for the number of vacancies
are

and

n/N (Ar) = (30&20) exp ( —1280/RT)

n/N (Kr) = (30&20) exp ( 1770/RT). —

Near the triple points these give vacancy concentra-
tions of about 1.5% in the solids. Evidence for vacancy
formation in experimental vapor pressure data has
been discussed by Salter. '"

Kanzaki4' has analyzed the general problem of point
defects in a static (O'K) fcc lattice and presents a
formalism for calculating the displacement field $;(r)
of the molecules in the relaxed lattice around the point
defect, and the associated lattice energy and volume
changes. This technique has been extended by Nardelli
and Chiarotti"' to vacancies in a vibrating lattice

2'~ A. J. E Foreman an. d A. B.Lidiard, Phil. Mag. 8, 97 (1963).
~~ G. F. Nardelli and A. Repanai Chiarotti, Nuovo Cimento

18, 1053 (1960).

1. Vacancy Egecfs

In thermal equilibrium the number e of vacancies in a
crystal of E atoms is "4

(T)0'K), in particular to Ar between 0'—80'K as-
suming an Einstein model with two-body (6, 12) central-
potential interaction. At T &60'K the displacement
Geld oscillates in sign, e.g., at O'K, at which the theo-
retical concentration of vacancies is 2g 10 ", the
nearest neighbors are displaced inward toward the
vacancy by ) $ ~

0.02 A. but the second-nearest neigh-
bors are displaced outward by

~ P ~

0.01 L. At higher T
the displacements are all outward although still oscilla-
tory, at 80'K for which on this model the vacancy
concentration is 5X10 ', for the nearest neighbors

0.01 A, for second-nearest neighbors
) $ ~

0.02 A,
and for third-nearest neighbors

~ $ ~
0.004 A. The

calculated changes of volume in the lattice due to a
vacancy are small, at O'K, Ae= —0.007ao', and at
80'K, Av=+0.005ae3 where ae is the temperature-
dependent lattice parameter. The volume of the
absent molecule is much larger in contrast, 1.e. ae'/4.
From these considerations the free energy fs to create
a vacancy in Ar was calculated for T from 0'—80'K. In
the high T region the result"' "' is fs (cal/mole vac. ) =
2540 —6RT so that the theoretically predicted value at
the Ar t.p. temperature is 1540 cal/mole vac. , about
20% larger than the experimentally reported fs. The
discrepancy is considerably larger (70%) if a recently
improved experimental estimate taken from Morrison's
C„data is used, "' i.e., fs 1820———5.5 RT for Ar (900
cal/mole vac. at t.p. for Ar).

Difhculties in properly accounting for the observed
thermodynamic eGects of vacancies in solid Ar with a
two-body potential and the necessity of considering
many body forces in the theory have been pointed up
by Foreman and Lidiard"' with their calculation of C„
using an anharmonic Einstein lattice and a (6, 12)
potential. The results may be compared with a C„
taken from experimental C„data, corresponding ther-
mal expansivity and compressibility data, and Eq. (49),
as has been done on Fig. 22 for Xe. This calculation
gives good agreement with the measured C, from 40'-
60'K but above this a AC„due to vacancy formation
becomes increasingly important:

Ov T) eT
(53)

where v is the free volume of vacancy formation arid the
subscript zero refers to the vacancy-free solid. Values
for fs obtained in this way are in well-defined disagree-
ment with experiment by about 25%.

Jansen"' has extended earlier work by calculating
the corrected energy of vacancies in solid Ar using the
short range three-body exchange forces described
earlier" (see I.C) In the static lattice the energy of a
vacancy is reduced when these forces are taken into
account so that at O'K the ratio of vacancy energy to
total cohesive energy is about 0.7 whereas if pair po-

"' L. Jensen, Phil. Mag. 8, 1305 (1963).
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tentials only were considered the ratio would be about
one. Since the earlier two-body interaction calcula-
tions"' showed very little lattice relaxation the energy
of vacancy formation for them may be taken as the
cohesive energy. The ratio at O'K of this (pair) cohe-
sive energy to the (three-body) vacancy formation
energy is 1.9. These corrections are of the right sign and
of about the right magnitude so that they may be
expected to explain the diRerences between experi-
mental and theoretical fs at higher T. Finally, Fore-
man"~ has estimated the volume of a vacancy in Ar
including the three-body interactions of Jansen and
Zimering. He finds the elastic relaxation per vacancy to
be about 0.25 molecular volumes, much increased over
relaxation in the two-body interaction model, and the
volume of a vacancy w'ould thus be 0.75 molecular
volumes, i.e., 3ae'/16.

2. Aehurmomcity arid Grv'reise, 's Corrstant

The problem of calculating thermodynamic prop-
erties including anharmonicity eRects is formidable
and no entirely satisfactory treatment is available.
HenkeP" "' has developed an elegant approach for
taking into account small anharmonicities in the
Einstein model of crystals. He supposes that when a
particle is displaced from its equilibrium position at
the origin to a point (a, y, s) its potential energy be-
comes"'

V(z y s) =Pe/2+82(z2+ys+s2) ++4(z4+y4+s4)

(54)

The dependence of I'0, I'2, and I'4 on volume and po-
tential parameters is obtained by inverse power sums
over all particles. in an in6nite lattice. In order to get
the energy levels from which the partition function Q
may be calculated the potential of Eq. (54) is substi-
tuted into the time independent Schrodinger equation.
If I'4 is sufficiently small this reduces to the problem
of the perturbed three-dimensional harmonic oscillator
which may be solved by separation of variables. The
resultant partition function for the atom is

Q= g exp ( e~/kT) = exp (——Pe/2kT)

X exp (—3W/2k T) [g exp [ k'T '(—rtW+242 7) 7 I
n=o

(55)
where

W =5(282/m) &+F; F=3PI'4/4mI'2.

"' A. J. E. Foreman, Phil. Mag. 8, 1211 (1963).
"8 J. H. Henkel, Ph. D. thesis, Brown University, 1954.
"2 J. H. Henkel, J. Chem. Phys. 23, 681 (1955).
2'4 J. W. Leech, Can. J. Phys. 27, 1067 (1959), notes that for

the one-di&nensionul anharmonic chain model, which can be
solved exactly, it can be shown that cubic terms in the displace-
ment are very important in the analog of Eq. (54).

PV+ VUp'(V) =yEv;b (56)

in which Ue(V) and E;b are, respectively, the non-
thermal (static lattice) and thermal contributions (in-
cluding E,) to internal energy K The term on the right
is more generally given by

yE;b ——gy;hv;I —',+1/Lexp (k /ok T) —17} (57)

in which v; are the lattice frequencies and

y;= —d ln trt/d ln V. (58)

Equation (56) may be derived from the assumption
that the y s in Eq. (58) are all equal and functions of

",' L J. Zucker, Phil. Mag. 3, 987 (1958).
222 P. A. Flinn and A. A. Maradudin, Ann. Phys. 22, 223 (1963);

In the limit of a small perturbing anharmonic term
V((W, and a good approximation to Ii = lVk—T ln Q
may be obtained with an expansion of only a fevr terms
of the infinite sum in Eq. (55).

Comparison of this model with experimental data
for Ar has been carried through by Henkel using a
(6, 10) potential, and subsequently by Zucker"' using
an improved (6, 12) potential. Zucker compared
Henkel's anharmonic Einstein model with a harmonic
quasi-Debye model for crystalline Ar, i.e., a Debye
model in which BD is taken as a function of V so that p
and yp may be calculated. The diRerences between the
models are small at low T (T &eD/5) but at higher T
the differences become larger and the anharmonic model
gives values for p(T), P(T), C„(T),C„(T),xr(T), and
xr(P) in better agreement with experiment. In general
the anharmonic lattice is denser, has smaller thermal
expansivity, smaller isothermal compressibility, and
smaller speci6c heats than the harmonic lattice. Agree-
ment with experiment is very good for not too low T
for such an admittedly crude model. For C~ the predic-
tions of the anharmonic modei242 fall between 1—222%
lower than experimental Co data (Fig. 21) between
20'—60'K. At lower T' the Einstein model is generally
inaccurate as has been noted and for T&60'K where
the deviations are largest, vacancy eRects become
important in the experiments. Henkel's Inodel has also
been applied remarkably successfully on solid-state
properties of Ne by Johns'" who used it to calculate
from first principles the vapor-pressure ratio of ' Ne to
"Ne in agreement with experiment.

Anharmonic contributions to thermodynamic prop-
erties at low T of fcc Debye solids have been recently
investigated by Flinn and Maradudin. '" The contribu-
tions to F and eD appear as terms in qP (ro) and $ (rp)
and in Pb, to which the model is applied, the calculated
anharmonicity effects on ODe are about 1%.SufTiciently
reliable P(r) are now available for rare-gas solids so
that this model could probably be profitably applied
to them.

Gruneisen's equation of state is'
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TABLE VII. Griineisen's constant r for rare-gas solids. For Ar and Kr, tabulated values are for r=p/pxsC„using p, p, and C„data
taken from 6gures in the text and xa from Refs. 1 and 99 and the law of corresponding states. For Ne and Xe, tabulated values are
for y=:P/pxrC„using P, p, and C„data taken from 6gures in the text. For Xe, data for xr were taken from Ref. 35. For Ne, xr was
estimated from a single value at 4'K (Refs. 248 and 8) and the law of corresponding states. Constants obtained from extrapolated
data are bracketed.

T('K) 10 20 60 80 110 140

Y(Ne)
Y(Ar)
Y(Kr)
p(Xe)

4.16 2.85 2.69 2.68
1.78
2.05
1.95

2.87
2.27
2.91

2.83
2.42
3.06

[2.21)
2.33
2.88

(1.76)
P2.47) t 1.88)

t/' alone and under these conditions we have for the
Griineisen constant y

y =P!pxrC.=PlpxsCp (59)

in which xp and xq are, respectively, isothermal and
adiabatic compressibilities. ' Griineisen's rule states
that at low T, say T(8D, P is proportional to Cp and
C,. Generally the p s in Eq. (58) may differ widely
and 7 as defined by Eq. (59) varies both with V and T.
The behavior of y(V, T) in particular as a measure of
anharmonicity, has been much discussed for rare-gas
solids both experimentally and theoretically.

Table VII shows values of y computed at several T
from Eq. (59) with experimental data on P (Figs. 5—8),
p(Figs. 1—4), and C„and C„(Figs.21—23). Except for
Xe for which rather complete data on xr(T) is avail-
able" and Ar for which as(T) has been reliably deduced
from experimental data, " compressibilities have been
estimated with heavy reliance on the principle of
corresponding states. This assumption, viz. that
xs(T)/7fs(0) is the same function of T/Tt, , for all
rare-gas solids has only been tested, over limited
temperature ranges, for Ar and Kr. For this reason and
also because P is in g'eneral not accurately known, the
tabulated values of y are to be regarded as approximate
and theoretical deductions about p cannot be rigorously
tested until more data is available. Clusius, Flubacher,
et al."' have obtained the following single values
(T=16'K) of y from Eq. (59) for Ne isotopes,
y(sPNe) =4.09, y(ssNe) =4.24.

Barron ' "'"' has discussed the temperature varia-
tion of p by using Born—von Karma, n lattice dynamics.
According to this model the principal variation in 7
independent of the crystal should occur at tempera-
tures of the order of 0.26D in qualitative agreement
with experimental data on metals. For rare-gas crystals
in which the molecules interact with a Lennard-Jones
(rE, I) potential, the behavior of y(T) may be more
quantitatively determined. For a (6, 12) potential
considering all neighbor interactions, p (T sufficiently
above 0.28D) = 2.96 and yp(T sufIIciently below
0.28D) =2.82. Some general qualitative agreement

~ T. H. K. Barron, Ann. Phys. 1, 77 (1957).
~4 T. H. K. Barron, Proc. Seventh Internat. Conf. Low Temp.

Phys. , Toronto, 1960, pp. 655-670.

with experimental y's may be seen from the y for Ar,
Kr, and Xe in Table VII in which y has a high and more
or less constant value (about 3 for Ar and Kr) at 40'-
60'K and falls sharply near 20'K. This kind of behavior
for y(Ar) has been previously discussed. ' "' The fall of
y at T)60'K and the anomalous behavior of y (Ne)
is not accounted for since the theory breaks down at
higher T and for large zero-point energies. A recent
calculation of y and an extension of the equation of
state to define and calculate higher order Griineisen
constants for solid Ar and other lattices has been re-
ported by Arenstein et at." in generally good agree-
ment with Barron's work.

Savvinykh"~ has calculated the equation of state of
ideal crystals in a harmonic lattice approximation
taking oscillation frequencies explicitly into account.
The isotherms, C„(T),and C,(T) given by this de-
tailed model are in excellent agreement with results
given by the simpler Gruneisen model and both are in
good agreement with experiment. The theoretical
volume dependence of y has been studied for several
kinds of Griineisen constants by Vashchenko and
Zubarev. "' lt may be shown from their result for Ar
that y is approximately a linear function of molar
volume in agreement with the experimental observa-
tions of Packard and Swenson" who concluded that
for T)OD, 7 is a linear function of molar volume at
constant T for Xe.

D. Zero-Point Properties

On Table VIII are collected modern values for
several zero-point properties of rare-gas solids, e.g.,
8op the Debye temperatures extrapolated to O'K (see
III.C); pp and Gpp, respectively, the densities and lattice
parameters extrapolated to O'K (see I.A); and
the compressibilities extrapolated to O'K (see III.E).
The quantum parameters A* (see III.B.1) are, essen-
tially, temperature independent. Heats of sublimation
I.o, zero-point energies E„and the static-lattice

PPP C. Domb and I. J. Zucker, Nature 1'78, 484 (1956).
~~6 M. Arenstein, R. D. Batcher, and J. Neuberger, Phys. Rev.

131, 2087 (1963).
»'7 S. K. Savvinykh, Fiz. Metal. i Metalloved. 6, 400 (1958).

8 V. Ya. Vashchenko and V. iL Zubarev, Fiz. Tver. Tela 5,
886 (1963) )English transl. : Soviet Phys. -Solid State 5, 653
(1963)).
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TABLE +III. Zero-point and related properties.

Latent heats (cal/mole)

Debye
Temp.

('K) at
O'K BDp

Sublima-
tion at
O'K

Lp

Sublima-
tion at

t.p.
Ls

Fusion
at t.p.

If

Zero pt.
energy m

(cal/mole)
E.

Density
at O'K
(g/cm')

po

Lattice Compressibility
parameter at O'K
at O'K (A) (cm'/dyne)

Cpp Xp

Quantum
parameter'

h*=h/o (me)&

Ne
Ar
Kr
Xe

66.6»
93.3b
71.7b
550,d

44ge, f,g

1846b
2666b
3828h

511"
186ib
2579b
3450j

80.1f ~

284.5'
392.0b
548.50

154
187b
145b
123~

50go 4.4620 &

1.769 5.312&
3.094 5.644~
3.782 6.131~"

X10
3.98X10-»b
3 gg X10-lib

8X10-11d

0.574
0.184
0.105
0.0637

' Interpolated value obtained from ODp(MNe) =66.7'K and O~p(»Ne) =65.2'K as measured in Ref. 211. K. Clusius (Ref. 24) has measured C& for pure "Ne and

found BD("Ne) =64'K, T=10'K.
Reference 99.
Reference 210.

~ Reference 35.
e Reference 212.
f Reference 24.
g Reference 176."Reference 137.
' Reference 184.
' Calculated from Clausius-Clapeyron Eq. (10) with data from Ref. 8 and this paper."For the principle isotopes of Ne: Lf (opNe) =79.20 cal/mole, Lf (»Ne) =79.74 cal/mole, and interpolated Lf ("Ne) =79.3 cal/mole; Ref. 211.

Reference 171.
E =9R+D /8, Ref. 229.

Reference 211.
For the principal isotopes of Ne: aoo('oNe) =4.4622k. , pp(MNe) =1.494 g/cm8; aoo(»Ne) =4.4536L, po(»Ne) =1.653 g/cmg.

~ Reference 39.
& Reference 28.
~ Reference 37.
I T=4'K, Reference 249.
~ Calculated from e and o' values on Table III.

energies U'p, all at O'K are connected by

&o= —Lo= U'o+K,

from which U'p can be found from tabulated Lp and E,.
E, was calculated, using modern estimates of eD, from
the equation E,=9R8n /8 as developed by Domb and
Salter."' OD is the limiting value of OD at high
temperatures although from theoretical considerations
8D—+8D rapidly for T&8D/5. The influences of this
expression for the zero-point energy on internal energy,
equilibrium volume, and especially on elastic constants
all at O'K have been examined by Salter"' and others. "'
Qlallace63 has recently analyzed errors in using this
expression by considering anharmonic corrections,
beginning with terms in T4, to the free energy Ii at O'K.
He found that the true zero-point energy is less than
9R8D /8 but that the relative difference is 1% or less
as long as the powers in the (m, I) potential are large
enough, i.e., short-range forces.

Among the latent heats in Table VIII, the heat of
fusion at the t.p. L~ is determined directly from ex-
periment. The heats of sublimation at'the t.p. and
O'K, respectively, L, and Lp are generally calculated
from experimental data on C„and heats of vaporiza-

n' C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).I L. Salter, Phil. Mag. 45, 360 (1954).
+' T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)

82, 161 (1963).

tion using standard thermodynamic relations, e.g.,'

Lo=L„(T)— C„(gas)dT

r (dB+ C„(solid) dT+RPT'~ —,(61)
&dT

'

in which 8 is the second-virial coeKcient; the term in
(dB/dT) is a correction for gas imperfection. Vapor
pressure measurements I see III.B.2, Eq. (37)g have
also been used to determine L, and Lp.

' There have been several rather successful theoretical
approaches to the zero-point properties of rare-gas
solids, usually from a combination of quantum-me-
chanical first principles and the principle of corre-
sponding states (see III.B) . Bernardes'es has calculated
the molar volume t/'p and total lattice energy Ep= —Lp
at O'K for Ar, Kr, Xe, and Ne, in substantial agreement
with experiment in this manner. Bernardes's general
procedure was to find the volume-dependent energy
Es(V) in the Schrodinger equation using an experi-
mentally determined (6, 12) potential and suitable
Heitler —London variational wavefunctions. The pro-
duct wavefunction for the solid is composed of single-
particle wavefunctions for the ground and first-excited
states of a particle in a spherical box. This absence of
correlation among the atoms is a characteristic of the

'3s N. Bernardes, Phys. Rev. 112, 1534 (1958).
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Es*=—8.61(1—5.34) +16Xs)

Vs*=0.916(1+2.02X+5hs)

Eo*——/5 (1—9.4) +28Xs)

(63a)

(63b)

(63c)

P*=(24.3V* '—28.9V* ')+114XV* "", (63d)

along with analogous expressions for longitudinal sound-
wave velocity, Debye temperature, and GrQneisen's
constant"' (y=2.83). Agreement with experiment for
Eqs. (63a, b, and c) is very good for all the rare-gas
solids including Ne, although not so good as X increases,
as for deuterium and lighter molecules. The experi-
mental comparison of Eq. (63c) for the reduced initial
bulk modulus E's* is displayed on Fig. 15 (the ordinate
axis is Es*/75 and ) =A.*/2sv2). A comparison of
experimental P, V data with Eq. (63d) shows'" rea-
sonable agreement for Ne and Xe but not for Ar.

Zucker' ' in an extension in the Einstein model of the
work of Salter" has derived a reduced equation of state
and expressions analogous to (63a) and (63b) for E,*
and Vo* at O'K as functions of A* by taking explicit
account of the anharmonic terms of the fourth and
sixth order in displacement components in the potential
of Eq. (54) . A plot of the function Ps*(A*) is shown on
Fig. 16. Incorporation of anharmonic terms into the

+' N. Bernardes and C. A. Swenson, in Solids Under Pressure,
edited by W. Paul and D. M. Warschauer, pp. j.01—136.

Einstein crystal and indeed further refinement could
be obtained by including explicit correlation terms.
The calculation takes into account two contributions
to Eo due to quantum eGects, viz. the correction DUO

to the static potential energy necessary to account for
motion of the lattice molecules around their static sites,
and the zero-point kinetic energy. Both contributions
are approximately equal in magnitude and have the
same sign (plus); for Ne their combined magnitude"'
is 28% of Us, for Ar 10%,for Kr 5.6%, and for Xe 3./%
The equilibrium molar volume Vo at O'K is calculated
from the zero-point equation of state:

Ps —(dE——p(V)/dV) v=vs, (62)

taking PO=O at V= Vo to determine the equilibrium
volume Vs. Substitution of Vs back into —E&(V)gives
Ls. Zero-point compressibility and the P(V) isotherm
may be obtained from the more general

P= —(dEs(V)/dV)r=p K.

Bernardes'" "' has also calculated several zero-point
properties in their explicit dependence on the quantum
parameter )I =5/o. (2me) & in an application of the varia-
tional technique to the classical law of corresponding
states (in the classical limit of no zero-point energy,
X=O). In the usual reduced units E*=E/1/e, V*=
V/Mrs, P*=Po'/e, Er* —V*(dP*——/IEV*)re, he ob-
tains (O'K)

equation of state makes it possible to take satisfactory
account of large zero-point vibrations up to and in-
cluding those in 4He. A quantum-mechanical varia-
tional principle technique which takes some account of
correlation between molecules has been described by
Yoshimori and Matsubara. "4 In this treatment the
wavefunction for the solid is taken as a generalization
of that for an assembly of harmonic oscillators: lt ~ exp
t
—(a quadratic form in the displacements of nearest

neighbors in the lattice) $. The coeflIcients in the
quadratic form are taken as the variational parameters.
Analysis is carried through using both a harmonic
potential and also using a potential with small anhar-
monicity (Ne). For Ne including anharmonicity and a
suitable (exp, 6) two-body potential, Ls 445 ca——l/mole;
ignoring anharmonicity increases this by 2% all in
excellent agreement with the tabulated 1.0.

Xosanow and Shaw"' have made a more reined
iterative computer calculation of Eo in the Schrodinger
equation for rare-gas solids using self-consistent Har-
tree wavefunctions. Their physical assumptions about
the lattice are the same as those of Bernardes, viz. ,
single-particle wavefunctions spherically symmetric
about static lattice sites, and the resultant 1.0's are
slightly closer to experimental values. "' Since this
calculation is the optimum one with such a wavefunc-
tion, one can estimate from the experimental compari-
son that correlation and symmetry effects in the lattice
account for about 5% of Es in Ne and less in the other
solids. It is worth noting that the self-consistent poten-
tial for the crystals turns out to be well approximated
by a harmonic oscillator potential when the mean-
square deviation 8 of an atom" from its lattice site,
5s=0.121XIrs(1+6.1'A), is small. For lighter molecules-
e.g. , He—the self-consistent potential is more nearly a
square well.

The general idea of molecules localized in spherical
boxes and acted on by a spherically averaged potential
due to all other molecules in the lattice is familiar from
the cell model of liquids. '" The approximation holds
better the smaller the actual displacements of the
molecules from their lattice sites, but near the boundary
of the cell the field is decidedly nonspherically sym-
metric so application to molecules with small A* is
limited. Hurst and I.evelt23~ have extended the cell
model to calculate Eo, E„andthe equation of state of
rare-gas solids at O'K with an anharmonic Einstein
theory.

Total static potential energy is obtained from a
specially calculated sphericalized potential in the

~~ A. Yoshimori and T. Matsubara, J. Phys. Soc. Japan 9,
465 (1954)."' L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).2" J. M. H. Levelt and R. P. Hurst, J. Chem. Phys. 32, 96
(1960) and references given there, especially J. E Lennard-Jon. es
and A. F. Devonshire, Proc. Roy. Soc. (London) A163, 53 (1937).

~37 R. P. Hurst and J. M. H. Levelt, J. Chem. Phys. 34, 54
(1961).



GERAi.n L. PoLLAcK Solid State of Rare Gases 789

variable p(reduced displacement from static-lattice
position):

V(p) =4e+Bs„p'",
n=o

in which the 8's are constants determined from the
intermolecular potential and lattice structure. Zero-
point energy per molecule is the ground-state eigen-
value in the Schrodinger equation:

The adiabatic compressibility xs(P 0, T) of solid
Ar under its own vapor pressure has been determined
from measurements of the velocity of longitudinal
ultrasonic waves' '"'v~, and more satisfactorily, from
measurements of both ~~ and the velocity of transverse
ultrasonic waves"' e~. From these g8 may be obtained
from:

(64)

and from yq, y~ may be calculated with:
—(jp/2rrtgs) qy+(4egIi ps+ —ep]/=0

n=l xr =xs(1+PTy) . (65)

Zero-point properties are calculated from Vs+8, in
the standard manner using Eq. (62). No adjustable
parameters are needed in this calculation and the use
of (6, 12) potentials obtained from second-virial
coefficients leads to generally good agreement with
experiment from Xe through He.

Gomba, s and Kunvkri23' have assumed that the high
symmetry of lattice sites in rare-gas solids allows
consideration of the molecules as localized, spherical,
electron gases. Using the statistical theory of the atom,
the equation of state Eq. (62) for an atom is obta, ined;
Eo and V in this case the energy and volume of an
atom, and P(V) curves at O'K are calculated for the
solids.

Dugdale and MacDonald"' have proposed from a
Debye consideration of the solids the nonlinear diGeren-
tial equation: y = v (x) +a (y") *', to describe zero-point
properties. In this equation: y = Es/1Ve, v =Q(r) /e,
x=r/o. , and a~ A*. Although a limited iterative solu-
tion of the equation gives good values for Eo, Vo, and
OD, a continuation of the iteration'" diverges for a&0
(E,)0) and r) 0. The behavior of the equation in the
limit a~0 is apparently nonphysical, and the equation
has no solutions which are physically acceptable over
the whole range of r. Therefore, although the equation
has some physical significance, it is not entirely suitable
for investigating zero-point properties.

E. Comyressibility

Although the I'—V—T surfaces of rare-gas solids have
been much studied experimentally (e.g. , see II),
knowledge is limited of the surfaces themselves and
especially of their important derivatives: isothermal
compressibility yz (P, T) = —V '(BV/BP) r, volume
expansion coefficient P(P, T) = V '(BV/BT) t (see
I.B), and "thermal pressure'"4' (BP/BT)rr. We here
discuss experimental compressibility determinations
and some of their theoretical aspects.

"8 P. Gombas and 0. Kunvari, Acta Phys. Acad. Sci. Hungary
5, 339 (1955).

2'~ I. S. Dugdale and D. K. G. MacDonald. Phil. Mag. 45, 811
1954).

M. E. Fisher and I. J. Zucker, Proc. Cambridge Phil. Soc.
57, 107 (1961).

'4' F. Simon and F. Kippert, Z. Physik. Chem. 135, 113 (1928).

The velocities have been measured between about
60'K and the triple-point temperature on polycrystal-
line solids, of approximate grain size 0.1 mm, condensed
from the vapor into a resonance chamber in which
plane ultrasonic waves of known frequency are typi-
cally'" '" excited by a quartz-crystal transducer. The
thickness of the Ar solid may be varied and measured
at successive standing wave resonances to determine
the velocities. Measurements of this kind as of all
elastic properties, are best carried out on single crystals
but strain free homogeneous polycrystals are suitable
for ultrasonic velocity determinations as long as the
wavelength is large compared to grain size, in these
experiments typically X 1 mm. Even when these
conditions are satis6ed, attenuation, about 0.6 cm ' at
1.5 Mc, '4' and possible dispersion at the grain bound-
aries along with other eSects of microscopic and
macroscopic imperfection in the solid, limit the ac=
curacy of the results. Smoothed values of the velocities
are: vi(60'K) =1420 m/sec, vi(84'K) =1290 m/sec and
vt(60'K) = 750 m/sec, vt(84'K) = 705 m/sec. The
ratio vi/vi=0. 54 is approximately constant over this
range. Theoretical predictions of v& by Dobbs'4' using
Henkel's Einste&n model of the crystal are somewhat
larger than these and outside the experimental error.
The ratio vi/vt however has been accurately calculateds44

from low-temperature lattice dynamics and considera-
tion of the important problem of properly averaging
single crystal ~~ and v~ values to get expected velocities
through a solid of randomly-oriented crystallites. An
expert discussion of elastic constants of solid Ar may be
found in the review of Dobbs and Jones. '

Fig. 25 shows yz 's at low I' as functions of T, as far as
they are known for rare™gas solids. The data originate
in the ultrasonic velocity experiments discussed above
and other experiments to be discussed below. As has
been pointed out by Beaumont et aL. ' the extrapolation
of y8 for Ar to O'K given by Barker and Dobbs' '
assumes a BDO determined from elasticity data much
smaller than the more reliable BDO from specific-heat

'~ E. W. Guptill, C. K. Hoyt, and D. K. Robinson, Can. J.
Phys. 33, 397 {1955).

s4s E. R. Dobbs, J. Chem. Phys. 24, 477 (1956).
244 T. H, K. Barron and C. Domb, Phil. Mag. 45, 654 (1954).
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s4' J W Stewart Phys. Rev. 97, 57g (1955).
. W. Stewart, J. Phys. Chem. Solids 1, 146 1956 .
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modulus Er (=xv '), and other thermodynamic prop-
erties, for Xe has been experimentally studied up to
about 20 000 kg/cms in recent piston displacement work
of Packard and Swenson" "' and the general theory of
pressure dependence of thermodynamic properties,
about which relatively little is known, discussed (see,
especially, Fig. 3 in Ref. 35). High-pressure isotherms
for rare-gas solids generally 6t well an equation given
by Birch'":

&= lx o( Vo/V) '"
I (Vo/V) '—11I1—tu Vo/V) '—1jI

(66)

in which 7trp and Vp are, respectively, the isothermal
compressibility and volume at zero pressure, and ( is an
adjustable characteristic parameter. Values of xzo ob-
tained by 6tting data to this equation by Stewart"' "'
and by Packard and Swenson" are shown on Fig. 25
for Ne, Ar, Kr, and Xe. Since the lowest P at which the
isotherms are determined is usually still quite high,
some error is introduced in the long extrapolation.

The only rare-gas solid for which yz data is available
from both ultrasonic velocity as well as piston displace-
ment experiments is Ar and from Fig. 25 it is clear that
near the t.p. the two sets of data are in poor agreement.
This diIIiculty has been much discussed"' "'"' and is
apparently a fundamental one possibly due to differ-
ences in microstructure between melt-grown and vapor-
grown crystals. Although the piston displacement
experiments use polycrystalline solids condensed from
the melt under conditions which may favor formation
of voids and vapor snakes (see II.B) and hence non-
compactness in the solids, Stewart'" "' has shown that
compressing the solids to 4000 kg/cm' before taking
data leads to reproducible results and, further, corn-

pressing the solids to 19 000 kg/cm' before taking data
does not change the results. This implies that the sam-

ples were compact during data taking. An interesting
and relevant theoretical problem, the eGect of vacancies
and other lattice 'defects on xp of rare-gas solids, is
dificult and has not yet been quantitatively discussed
in the literature.

Analyses and predictions of x& for rare-gas solids
have been given by several of the thermodynamic and
statisti. cal mechanical approaches discussed earlier.
Compressibility may be straightforwardly determined
from theoretical equation of state isotherms by taking
another volume derivative of F, i.e., 7er

' ——V(r)'F/
elVs)r. The V dependence of F or of v;, the lattice
frequencies, is the problem of Gruneisen's law, also
discussed earlier. Since XT''s for rare-gas solids have not
been so accurately determined experimentally as, say,

"P F. Birch, J. Geophys. Res. 57, 227 (1952).

speci6c heats and vapor pressures, we forego a de-
tailed theoretical treatment here. In the interests of
completeness however we briefly treat some rather
recent very interesting contributions to the theory of
elasticity and compressibility iri these solids.

Davies and Parke"' have extended Griineisen's
equation of state, Eq. (56), to

V/xr = V'Up" ('V) +y'E;b —y'TC„ (67)
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in which again Up and E;b are nonthermal (static
lattice) and thermal contributions to the internal
energy, and Up(V) is determined for a quasiharmonic
lattice, a good approximation for Ar when T&40'K.
The new constant y'= (V'/v;) (rl'v, /BV') averaged over
i, is a so called "second" Gruneisen constant obtainable
from T dependence of x~, for Ar y' 10. Still higher-
order Gruneisen constants appear in the coef6cients of
the expansion of P as a power series in dilatation,
( V—Vp) /Vp. The theory gives Cv ( T) and P( T) as well
as xr(F, T) in good agreement with experiment and
with several other harmonic and anharmonic theories.
For T&40'K the theoretical treatment of Zucker"'
which specifically considers anharmonic terms gives
better agreement with experiment. In an extension of
this work including zero-point energy and all neighbor
interactions in Ar at O'K, Parke'" has calculated v~ and
v&, respectively, 1567 m/sec and 877 m/sec, and hence
v&/v&

——0.56, for ultrasonic waves in a polycrystal. A
semi-empirical treatment of Ar due to Kalinin'" which
assumes a Debye model for the crystal with U'0= A exp
(—Bx&) —Cx ', A, 8, and C adjustable parameters and
g= V/Vp, has been used to fit equation of state data
satisfactorily from 20'—80'K. David and Hamann"'
have shown that at not too high pressures, say P&104
kg/cm', and not too low temperatures, say T)40'K,
the solid Ar P—V—T surface may be obtained from
application to simple molecular solids of the Lennard-
Jones and Devonshire liquid model.




