| REVIEWS OF
MODERN PHYSICS

VoLuME 36, NUMBER 3 JuLy 1964
Dynamical Diffraction of X Rays by
Perfect Crystals
BORIS W. BATTERMAN
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey
HENDERSON COLE
International Business Machines Corporation, Yorktown Heights, New York
CONTENTS 3.1 Primary Extinction. . ........... . i, 708
. . 3.2 Wave Fieldsin Crystal. ................... ... .. 708
Introduction. .........ciiiiieiiniiii i, 681 4.0 Special ToPICS. ..\ vvvevetetieeet et 710
1.0 The Borrmann Effect.................ccooiiuun... 682 5.0 SUMMAIY. ........ooninerereineieeiaianenennn. 11
2.0 General Theory............ s S 683 Acknowledgments .. ...........co.iiiiiiiiiia e 711
2.1 The Periodic, Complex, Dielectric Constant....... 684  Appendix A: Waves Satisfying Bragg’s Law and Maxwell’s
2.2 Waves Which Satisfy Bragg’s Law and Maxwell’s Equations. .....ooovvviiriininnenneennn. 712
Equations..................oo 685  Appendix B: Boundary Conditions. ................c...: 713
2.3 The Dispersion Surfaces. . ...............cvivnnn.. 687  Appendix C: Numerical Evaluation of Integrated Intensities 714
2.4 Boundary Conditions..............covvviineninnn... 688 (1) TheLaue Case. .. ......ocvvuenivennnnn. 714
2.5 TField Amplitudes. ................cooiiiiiL, 689 (2) The Bragg Case.....................5. 715
2.6 TFieldsand Tie Points.....................oooiaL, 690 (3) Evaluation of €. . ....ovvuviinenniann.s 715
2.7 Discussionof Fields...........coooviiiinnnnn... 6092 NOMENCIAUTE. « o oo v vv e e e e e e e e s - 716
2.8 Energy Flow and Poynting’s Vector................. 692
A. Pendellssung. .........coooiiiiiiiiiiiien... 693 :
B. Direction of Energy FIow. .......oooveeeeen.... 694 INTRODUCTION
2.9 Limitations of Plane Wave Theory.................. 694 . . .
2.10 AbSOTPHON. . «.vveveenennn... Yo 695 There are two general theories which may be used
A. Formal Absorption Factors. .................... 695 to account for the intensities observed in x-ray diffrac-
B. %’l;ySical Interpretation of Anomalous Absorption.. 698  tion studies. The better known one, the kinematical
1) Specialcase...........covviiiiiiiiiiin.. 698 i h volume element
(2) Relation between atomic planes and nodal planes .theory’ treats the sca.tterl‘ng from each volume e
of wavefield.............. ... ... ..l 698 11 the sample as being independent of that of other
(3) Calculation of absorption coefficient in general volume elements, except for incoherent power losses in
case and the physical significance of e...... 699 reaching and leaving that particular volume element.
B _(41)3 Effect of thermal vibrations.................. 700 The other theory, normally called the dynamical
2.11 Exit Beams................. L 790 theory, takes into account all wave interactions within
A. Boundary Conditions on Exit Surface............ 700 ’ . A
B. Field Amplitudes at Exit Face................... 701 the crystalline particle, and must generally be used
C. Intensity Distribution Along Exit Face (Special whenever diffraction from large perfect crystals is
Ca:se) .......... EE RIS TR R PR P P EPPRPPR TP 702 being considered. There has been a growing number of
D. Diffracted Intensities: Laue Case................ 702 studies of diffraction from large perfect crystals within
(1) Rocking curve line shape: Symmetric Laue case 703 he 1 § d . to th ilability. of
Diffracted beam.......................... 703 the last few years, due, in part, to t e availability o
Forward-diffracted beam. . ................ 703 such crystals as a by-product of semiconductor ma-
(2) Integrated intensities....................... 704 terials research. As a result of these studies, it was
?lﬁmd;% _‘;’Ieam (Symmetric Laue Case). ... ;gg thought worthwhile to review the theory and bring
30 The Bragg %:::I‘ -diffracted beam. . .. . oeeselne 703 out the explanations it offers of the observed effects.
O A No Aot 111110 o The dynamical diffraction theory considers the total
B. With AbSorption..........oeuuieeninenenenannnn. 707 wave field inside a crystal while diffraction is taking
681

Copyright © 1964 by the American Physical Society



682  Reviews oF MopeErN Puysics - Jury 1964
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Fi1c. 1. Anomalous transmission. (a) Thin crystal Laue dif-
fraction. (b) Thick crystal Laue diffraction. (c) Transmitted
intensity for thin crystal case is shown in upper curve and thick
crystal case in lower curve. The peaking of the lower curve at
6=0pg is the anomalous transmission.

place as a single entity. Although the wave field may
be thought of, naively, in the beginning, as consisting
of incident and diffracted beams, these beams are co-
herently coupled and the energy is swapped back and
forth between them so that the total field must be
considered as a unit. The conditions under which this
coupling can be ignored and the kinematical formulas
used can be derived quantitatively; but intuitively, if
the size of the diffracting region and the weakness of
the reflection are such that space does not permit
multiple interplay of the beams, then the results pre-
dicted by the dynamical diffraction formulas are es-
sentially the same as those predicted by the kinematical
ones. Thus, for example, in general, for fine powders
either theoretical approach leads to the same intensity
expression. Even for small crystallites, however, the
phenomenon of primary extinction, a dynamical diffrac-
tion effect, is often encountered when measuring a
strong reflection, i.e., the integrated intensity is not as
great as expected on the basis of the kinematical ex-
pression. Correcting for, or attempting to avoid this
primary extinction, is probably the way most diffrac-
tionists become familiar with dynamical theory effects.
A better example, however, for illustrative purposes,
an effect which very clearly displays the properties of
the total wave field, is the anomalous transmission of
x rays through reasonably perfect single-crystal slabs
when they are set for Laue diffraction. This effect was
first observed by Borrmann in 1943, and is now gen-
erally called the Borrmann effect. (Campbell redis-
covered the effect in 1950 and it is sometimes called the
Borrmann-Campbell effect.) We use the explanation
of the Borrmann effect to present the concepts that
have emerged in the development of the dynamical
theory of diffraction.

1.0 THE BORRMANN EFFECT

The basic features of the Borrmann effect are sche-
matically represented in Figs. 1 and 2. In Fig. 1, a

single crystal cut in the form of a parallel-sided slab
with the planes to be used in the diffraction perpendicu-
lar to the slab faces is rotated through its diffracting
position about an axis perpendicular to the plane of
the figure. Although a monochromatic beam is not
needed to observe the effect, it aids in the discussion to
assume a monochromatic ray. We fix our attention on
the transmitted beam only at this stage. When the
crystal is well off the diffraction setting, i.e., when
6%0p in Bragg’s law A=2dsinfg, the transmitted
intensity is given by the usual expression for photo-
electric absorption: Ipexp(—uet). In case (a), mot is
assumed <1; in case (b), mt>10. In case (a) as the
crystal is rotated through 6=6g, there is a dip in Ir
[upper curve in 1(c)] which would be expected from
kinematical considerations, on the basis that additional
energy is now removed from the transmitted beam by
diffraction. For case (b), however, [the lower curve in
1(c)], if the crystal is perfect enough to be a single
domain, a peak is observed in Iy at §=0s.

The experiment shown in Fig. 2 demonstrates that
this peak is clearly due to a diffraction effect. In this
figure the thick crystal is set at §=0g and a film is
placed on the far side to receive the beams emerging
from the sample. When developed, the film usually
shows three spots, spot (1) being the diffracted beam,
spot (2) being a beam of about the same darkening as
spot (1) and separated from it by a distance corre-
sponding to the correct 20s; and a weak spot, (3),
which is actually in line with the incident beam and
may be shown to consist of radiation which had not
been involved in the diffraction (for example, possibly
a hard component in the beam). The separation be-
tween the centers of spots (2) and (3) is proportional
to the thickness of the sample. The peak shown in Fig.
1(c) is associated with spot (2). From the geometry
shown in Fig. 2 it is clear that the radiation forming
spots (1) and (2) emerged from the crystal at a point
opposite to the point where the incident ray struck the
crystal. We can thus conclude that the radiation
apparently traveled along the atomic planes and that
the anomalous transmission is really a diffraction phe-
nomenon. We thus refer to this beam as the forward
diffracted beam rather than the transmitted beam.

Even though the geometry shown in Fig. 2 may be
straightforward, the startling thing about the Borrmann
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beams when anomalous
3 (2) transmission is occurring.
(3) (a) Ray diagram required
to explain spots on the film.
(b) The energy in the
diffracted beam (1) and
forward diffracted beam
(2) apparently flows along
the atomic planes in the
crystal.
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effect is that any energy at all gets through a crystal
for which the absorption factor is something like
exp (—10). One would suppose that some mechanism
must be operating which keeps the energy away from
the absorbing atoms. The dynamical theory predicts
that a standing-wave pattern should exist inside the
crystal, shown schematically by the dark sine curve in
Fig. 3 with nodal planes parallel to the atomic planes.
Much the same thing happens when a light beam
bounces back and forth between two parallel mirrors:
interference fringes are set up in the region between
the mirrors parallel to the mirrors, while the average
energy flow is along the mirrors. In the x-ray case, if
the crystal structure is simple enough, the nodes of
the standing-wave pattern can coincide with the atomic
sheets and so very little photoelectric absorption can
take place. Thus, the peak in Fig. 1(c) results from an
extinguishing of the normal photoelectric absorption;
the dip in 1(c) occurs when the crystal is already so
“thin” that little absorption was taking place.

A close analogy exists between the standing-wave
pattern in the x-ray case and the electronic wavefunc-
tion at the edge of a Brillouin zone for free electrons
moving in a periodic medium. From band theory, for
the electron case, there are two permitted solutions;
one which has nodes at the atoms, and one with anti-
nodes at the atoms. The energy of the electron is
different in the two cases, the difference essentially
being the energy gap at the zone boundary. There are
also two solutions in the x-ray case, one with nodal
planes, in simple structures, passing through the atom
sites, and another solution with antinodes at the atoms.
This second field, of course, suffers enhanced absorp-
tion; this standing-wave pattern is shown dotted in
Fig. 3. The existence of two standing-wave patterns
for the x-ray case is consistent with the existence of
two sets of incident and diffracted beams inside the
crystal from a single ray incident from the outside.
As a matter of fact, as we see, there are four sets of
fields when one considers the two states of polarization
of the electromagnetic radiation.

Most treatments of diffraction effects in crystals,
for radiation whose wavelength is of the order of an
angstrom or less, make use of Ewald’s geometrical
constructions in the reciprocal lattice in order to
visualize the predictions based on Bragg’s law or von
Laue’s formulas. The points in the reciprocal lattice
each represent a set of planes in the real crystal lattice;

Fic. 3. Standing wave
pattern produced by two
coherent, traveling plane
waves with wave vectors .
K, and K. Nodes of dotted l<

o

curve coincide with anti-
nodes of solid curve. When
such a pattern exists rela- °
tive to the atomic planes,
the normal photoelectric
absorption is F radically
altered.
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F16. 4. Ewald sphere and
Bragg’s law. The incoming
wave with wave vector K,
is diffracted by the atomic
planes with interplanar
spacing d. The diagram
represents the situation in
real space and in reciprocal
space.

EWALD
SPHERE

the position of the reciprocal lattice point indicating
the orientation and reciprocal of the d spacing of the
set of planes. Diffraction is generally expected to occur
if a sphere of radius 1/A (the Ewald sphere) passing
through the origin of the reciprocal lattice and having
its center back along the incident beam direction also
passes through the particular reciprocal lattice point;
at least, the geometrical conditions of Bragg’s law,
A=2dsin§ are satisfied: ie., 1/d=1/A(2sin@) and
Oin=0out (see Fig. 4). We also express most of the
diffraction concepts in terms of the geometry of the
reciprocal space.

Turning now to the dynamical diffraction theory,
the crucial change is in the concept of the Ewald
sphere. In reciprocal space, there is no longer a single
Ewald sphere for a single monochromatic incident ray.
Instead, the problem to be solved is to determine the
loci of centers of permitted Ewald spheres, the sc-
called dispersion surface. Wave vectors drawn from
points on this surface to reciprocal lattice points
represent waves that are permitted solutions of Max-
well’s equations in a periodic medium. The results of
the formal theory present a wealth of detailed predic-
tions with respect to these propagation vectors, energy
flows, and absorption. The rest of the paper deals with
this theory. The only general factor not explicitly con-
sidered in the theory is the effect of the thermal
vibrations.

2.0 GENERAL THEORY

The original theoretical work done by Darwin,!
Ewald,? and von Laue® has been ably summarized and
extended in treatments by Zachariasen* and James.®
Hirsch® has published two very necessary papers re-
casting the theory to bring out explanations of newer
experimental results. Kato” has further extended the
theory in both the x-ray and electron diffraction cases.
Summaries of theory and experimental detail have

1C. G. Darwin, Phil. Mag. 27, 315 (1914); 27, 675 (1914).

? P, P. Ewald, Ann. Physik 49, 1 (1916); 49, 117 (1916); 54,
519 (1917); Acta Cryst. 11, 888 (1958).

3 M. v. Laue, Ergeb. Exakt. Naturw. 10, 133 (1931). A com-
plete treatment of Laue’s contributions is given in his book
Rﬁézé§enstrahl—l nierferenzen  (Akademische Verlag, Frankfurt,
1960).

4 W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals
(John Wiley & Sons, Inc., New York, 1945).

§R. W. James, The Optical Principles of the Diffraction™of
X-Rays (G. Bell and Sons, London, 1950), Chaps. II and VIII.

6 P, B. Hirsch, Acta Cryst. 5, 176 (1952); and P. B. Hirsch and
G. N. Ramachandran, Acta Cryst. 3, 187 (1950).

7§N. Kato, J. Phys. Soc. Japan 7, 397 (1952).
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been prepared by Borrmann® (in German), Kohra® (in
Japanese) and Authier'® (in French). A very elegant
approach to the basic theory is contained in an article
by Slater!! entitled, “Waves in Crystals.”

The fundamental problem as pointed out by von
Laue is to solve Maxwell’s equations in a medium with
a periodic complex dielectric constant. The formal
steps employed follow in approach that used in dis-
cussing, for example, thermal diffuse x-ray scattering
or any other characteristic value problem. Most of the
mathematical steps can be found in Appendix A. We
set down Maxwell’s equations, use a periodic complex
dielectric constant to describe the medium, assume
wave solutions consistent with Bragg’s law, obtain a
set of homogeneous linear equations for the ratio of
the field amplitudes, and write down a determinant
whose value must be zero for nontrivial solutions of the
equation to exist, which imposes certain conditions on
the wave vectors. The loci of tips of permitted wave
vectors in reciprocal space defines the dispersion
surface. Once the properties of this surface in reciprocal
space are understood, using constructions due to Ewald,
the results of the dynamical theory of diffraction can
be easily generated. The main body of the paper is
concerned with understanding these properties.

In the material to follow, we mostly are concerned
with a problem in classical electromagnetic wave theory.
Fundamentally, the crystal is represented by a periodic,
anisotropic, complex dielectric constant which depends
explicitly on time. Being periodic in three dimensions,
the dielectric constant can be represented by a Fourier
series over the reciprocal lattice in exactly the same
way that the periodic charge density is so represented
in crystallographic work. In fact, in Sec. 2.1 to follow,
we associate the Fourier coefficients of the dielectric
constant with those of the charge density. A complex
dielectric constant is used to handle the question of
absorption, and an anisotropic one is required in the
sense that waves propagating in different directions
must have different indices of refraction. This difference
becomes the important parameter in the whole problem.

2.1 THE PERIODIC, COMPLEX, DIELECTRIC
CONSTANT

We recall that the electron density at any point in
the crystal p(r), can be expressed as a Fourier sum
(for a sufficiently large crystal) over the reciprocal
lattice. That is:

p(r)= (1/V)‘ZH‘,FH exp(—2riH-r) (1)

8 G. Borrmann, Trends in Atomic Physics, edited by O. R.
Frisch, et al. (Interscience Publishers, Inc., New York, 1959).

® K. Kohra, X-Ray Crystallography (Maruzen Company Ltd.
Japan, 1961), Vol. 119, p. 849.

10 A. Authier, Bull. Soc. Franc. Mineral Crist. 84, 51 (1961).

1 J. C. Slater, Rev. Mod. Phys. 30, 197 (1958),

where V is the volume of the unit cell and H is a re-
ciprocal lattice vector. If by, by and by are the reciprocal
lattice vectors defining the unit cell in reciprocal space,
then H="/b;+kb,+Ib; where %, k, | are the Miller
indices of the reflection described by the reciprocal
lattice point. The sum over H signifies all possible
values of 4, k, I and Fy may be identified as the struc-
ture factor for the %, &, I reflection. Conversely:

Fu= f p(1) exp (2miH-1) do. )
12

Within the assumption that the atoms behave as
rigid spheres with respect to their charge densities and
are not vibrating thermally, Fy can be written as

Fu= Y fyexp (+2xiH-1,), (3)

where the sum over # is over the atoms in the unit cell.
The atomic scattering factor of the nth atom is repre-
sented by f.. In the kinematical treatment one includes
thermal vibrations by replacing f, by f.exp (—M,)
where the exponential is the Debye-Waller factor. In a
later section we discuss the corresponding situation in
the dynamical treatment.

The connection between the Fourier Series which
describes the electron density, Eq. (1), and a repre-
sentation of the periodic dielectric constant can be
made by performing essentially a dimensional analysis
using the concept of electronic polarizability.

The electric displacement vector ® in the rationalized
mks system can be written in terms of the electric
field &, and polarization P, as

D=rke€=€8+P,

where « is the dielectric constant and ¢ is the per-
mittivity of empty space; or more specifically

k=14P/¢8. (4)

If we consider a sinusoidal field of amplitude E,,
acting on a collection of electrons held by restoring
forces such that they have a natural frequency of
oscillation wo, then the amplitude of the induced elec-
tron motion is given by

x= (e/m) Eo/ (wo>—w?). (5)

If w is much greater than w, the polarization ampli-
tude is P=pex and « is now:

k(r) =1=[(&/me)N/4n’eJo (7). (6)

The quantity (e2/Amegmc?) is the classical electron
radius 7., and is equal to 2.818%X10~% c¢m. Thus, in
any system of units we can write

K(r) =1=r.(N/7)p(r).



If we define the symbol I':

P_n)@_( e ) A?
7V \dwegmc?/nV

from Eq. (1) for p(r) we have
k(r)=1—T_Fyexp (—2miH-r).
H

()

Naturally, if the x-ray frequency is near a resonant
frequency for some of the electrons and also if absorp-
tion is present, the polarization is much more compli-
cated than that given by the single expression in Eq.
(5). As a matter of fact, the dielectric constant is
generally taken to be a complex quantity with a com-
plicated frequency dependence under such conditions.
In x-ray work, this physical complexity is usually
handled formally by considering the atomic scattering
factors as complex and wavelength dependent. Thus,
we now take for Fy

Fu= Y (f+Af'+iAf")exp (42riH 1,).  (8)

The corrections to the atomic scattering factor f due
to resonance and absorption, Af’ and Af”, are called
the Honl corrections. All of the detailed physics of the
scattering and absorption is thus included in these terms.
They have been investigated both theoretically and
experimentally (see, for example, the chapters in
James or von Laue), but even so, certain points re-
garding their dependence on scattering angle and tem-
perature are still being worked out in detail.

Fy thus has a complex part, due to the physical
scattering mechanisms. For convenience, in later sec-
tions we separate the contributions of the real parts of
the atomic scattering factors ( f4Af’) and the imagi-
nary parts ( Af”") to Fy and write Fy as

Fu=Fg'+iFy". 9)

Unfortunately, Fr’ and Fg'' may still be complex
quantities due to the spacial arrangement of the atoms
or the choice of origin for the unit cell.

If we consider the %kl=000 term in the Fourier
series for x, Eq. (7), we can write in detail that

Ko=— 1"" P[Fol—f—iFo,/]

where we see from Eq. (8) that Fy’ and F," are real
quantities. That is,

ko=1—T2_( fo+Afe)n—3iT 2 ( Af")n.  (10)

Since these terms are of zeroth order, they are ex-
pressions for the average value of the dielectric con-
stant. By using the methods in the sections to follow,
we can show that for a beam traversing a slab of ma-
terial without diffracting, the linear absorption co-
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efficient is related to the imaginary part of the average
dielectric constant. That is

wo= (2w/\)TF,". (11)

From measured linear absorption coefficients, then,
we can get a measure of I'Fy”. For CuKa radiation
passing through germanium, we have

po=350 cm~, A=1.54X10"8 cm,

and thus

I'Fy”=0.86 X 10~¢ (a pure number). (12)

From these considerations, we also see that « differs
only slightly from unity for x rays, a fact already well
known from index of refraction measurements. The
fact that « differs from unity by, at most, one part in
104, and usually differs by the order of one part in 108,
constitutes the main assumption in the development of
the theory in the next sections.

2.2 WAVES WHICH SATISFY BRAGG’S LAW AND
MAXWELL’S EQUATIONS

If we assume that the conductivity o is zero at x-ray
frequencies so that there is no resistive heat loss and
that magnetically the crystal has the same behavior as
empty space so that u=po, then Maxwell’s equations
can be used in the form!?

(a) Vx&=— ?%=“#0?—5£
ot ot 13)
1
9D 9(x8)
(b) Vx3= Py

The magnetic vectors 8 and 3¢ are thus colinear and
freely interchangeable. The dielectric constant & is
given by Eq. (7). Although « is time dependent because
of the lattice vibrations, we take its time derivative
terms in (13b) to be negligible.

We now assume that the fields &, D, and 3¢ can be
expressed as sums of plane waves. If now the wave
vector of a wave is such that a diffracted wave is gen-
erated, that is, if the wave with wave vector
Ko(| Ko | =1/A) is scattered by the Fourier compo-
nent of charge density with periodicity H (|H| =
reciprocal d spacing) then the wave vector of the
scattered wave is

Ki=K+H (14)

(see Fig. 4). This relationship between the two wave
vectors may be taken as a statement of Bragg’s law or
as the conservation of momentum for the scattering of
waves by waves. Although any wave may propagate in

2 J, C. Slater and N. H. Frank, Electromagnetism (McGraw-
Hill Book Company, Inc., New York, 1947), Chap. VIL
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Fic. 5. The imaginary
part of the wave vector K,
which represents absorp-
tion, is normal to the
crystal surface. The real
part of the wave vector
K¢, describes the phase
propagation.
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the medium, it is only waves connected by (14) which
are strongly coupled and of interest in diffraction.

We assume that the crystal is perfect in the sense
that the reciprocal lattice vector H, is independent of
position in the crystal.’®

In order to handle absorption with some ease, we
take the wave vectors as complex, i.e.,

K=K'—iK", (15)
where K’ and K’ are real. Note the negative sign.

For a wave described in complex exponential form,
an imaginary term in K results in a real negative expo-
nential damping term in the wave description, thus
leading to absorption. The vector components of K,
K’ and K’ need not be collinear since planes of con-
stant absorption which are perpendicular to K” need
not be the same as planes of constant phase which are
perpendicular to K. This is illustrated in Fig. 5. In all
cases of interest in x-ray diffraction, as we saw in the
last section, | K" | /| K’ | &2107% so that the direction
of K is substantially that of its real part. We carry K
along as complex, for absorption purposes, but when
we refer to its directional properties we consider only
its real part. This involves dropping a second-order
term in taking cross products to get Poynting’s vector
for energy flow later on.

The substitution of plane-wave expressions into
Maxwell’s equations (13) with use of relations (7) and
(14), are carried out in Appendix A. The result is
Eq. (A12), which gives the fundamental set of equa-
tions describing the fields inside the crystal. Our
primary interest is in the wave vectors which describe
these permitted waves. However, from this point on,
we restrict our attention fo the case of only ome active
reflection, that is, where only one reciprocal lattice
point is near enough to the Ewald sphere to give any
appreciable diffraction. With this restriction, Eq.
(A12) reduces to a pair of equations (A13) for the field
amplitudes of the two waves; that is, for Ey and Eg

13 P, Penning and D. Polder, Philips Res. Rept. 16, 419 (1961);
have treated the case where H is a slowly varying function of
position in order to understand the behavior of elastically strained
perfect crystals, also Philips Res. Rept. 18, 82 (1963).

for each polarization state, which we reproduce here
as Eq. (16).

[F(1—TF,) — (Ko-Ko) JEy— B PTF g Ey=0,

—k2PFFHEo+[k2(1—PF0) o (KH'KH) ]EH’-:O (16)

The two polarization states have been handled in a
combined form by use of the parameter P, which equals
unity or cos 20, respectively, for the o polarization state
(E perpendicular to the plane of incidence, defined by
K¢ and Kz’) and for the = state (E in the plane of
incidence), respectively. For these pairs of linear homo-
geneous equations in the field amplitudes to have a
nontrivial solution, their determinant must equal zero,
which restricts the permitted values of the wave vectors.
We set the determinant of Eq. (16) equal to zero:

kz(l—I‘Fo) —‘KQ'KO "‘kZPPFﬁ

=0, (17)
where % is the vacuum value of the wave vector, K,
and Ky are the internal wave vectors, and Fy, Fy, Fg
are the structure factors of the corresponding reflec-
tions. This determinant is free of approximations for
the o polarization state (P=1) but involves neglect of
longitudinal components of E for the = state. This
latter approximation, again, neglects terms of the order
of 10~° compared to unity.

The first and fourth terms above represent the differ-
ence between the square of the wave vectors K, and
Ky inside the crystal and the square of the vacuum
value %2, corrected for the average value of the di-
electric constant (1—TF,). If there is no difference,
there is no unique solution. Thus, the index of refrac-
tion for the Ky and Ky waves must be different from
the average index of refraction. It is this difference
which is the important parameter.

We can bring out this difference more clearly by
defining new parameters, & and {y such that

(a) 2kb=Ko-Ko—k(1-TF,),

(b) 2ktg=Kgy-Kp—F(1—TF,). (18)

That these parameters are fundamentally the needed
difference parameters can be seen by writing the right-

hand side, above, as the product of the sum and
difference:

[(Ko-Ko) 4k (1—TFo) VJ[ (Ko-Ko)*— & (1—TFo) ],

F Fic. 6. Ewald sphere in re-
ciprocal space corrected for the
average index of refraction. L, the
Laue point, would be the center
= in vacuum, Q is the center in the
real crystal. H is the reciprocal
lattice vector of the %kl reflection.

hk £

000



which reduces to

2k[ (Ko Ko)}—Ek(1—3T'Fy) ], (19)

where the approximation is extremely well justified,
to terms of the order of the square of 10~%. Thus

(a) &= (Ko-Ko)}—£(1—3TF)
and similarly,

(b) &n=(Kn-Ku)—k(1—3TFy).  (20)
& represents the difference between the wave vector
inside the crystal (still complex, since Ko-Kj is com-
plex) and the vacuum value corrected by the average
index of refraction. (The index of refraction # is the
square root of the dielectric constant, «).

In terms of & and £x, Eq. (17) reduces to the equation

bob =1 PT*Fy P . (21)

This is the fundamental equation describing the
dispersion surface.

In the usual Ewald construction, Fig. 4, the center
L of the sphere is determined such that the magnitude
of the wave vectors to the origin and the (%kl) reciprocal
lattice point is the vacuum value %. If the construction
is now performed such that the distance to these points
takes into account the average index of refraction of
the medium, i.e., K (inside) =%(1—3I'F,) the center
of the Ewald sphere is now at point Q (Fig. 6). We
have greatly exaggerated the distance from L to Q
with respect to the radii of the spheres. Since we do
not expect Ko or Kz to differ much from % or k«o, let
us assume that the point A, somewhere in the neigh-
‘borhood of L and Q in Fig. 7(a) is a proper point from
which K, and Ky can be drawn, such that Eq. (21) is
satisfied.

Fic. 7. (a) Geometrical
representation of the param-
eters of the dispersion surface &
and &g, where the point A, in
the region of the center of the
Ewald sphere is assumed to be
a valid tie point from which
wave vectors can be drawn to

O and H to represent permitted U
solutions. (b) General nature |
of the dispersion surfaces. They \\ _ M
are hyperbolic sheets which e
serve to join the spheres about L V2
O and H in the vicinity of Q, . 7
the center of the Ewald sphere. FEEN

!

!

'O

(b)
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F1c. 8. More detailed view of the dispersion sheets in the region
of the Q point. The spheres through Q centered on O and H form
asymptotes for the hyperbola. Any point on the hyperbola repre-
sents a tie point, or a point from which wave vectors can be drawn
to O and H. The dotted curve is for the # polarization state and

the solid curve is for the ¢ state. The « branch is the designation
for the branches closest to the Laue point.

Then, according to Eq. (20), % represents the dis-
tance {rom the point A to the sphere of radius £k} and
£x is the corresponding distance from A toward H. If
the spheres are approximated as planes in the vicinity
of Q, it follows from (21) that the locus of points A
are hyperbolic sheets with the spheres from O and H
as asymptotes. These hyperbolic sheets are the dis-
persion surfaces and are shown as heavy lines in Fig.

7(b).
2.3 THE DISPERSION SURFACES

In Eq. (21) which describes the dispersion surfaces,
the right-hand side may be complex since FgFj is not
necessarily real. Thus, & and & are complex and in
Egs. (A12) and (16) the field amplitudes may be
complex. _

The structure factor for the (hkl) reflection appears
in Eq. (21) even though we assumed that only the
(hkl) reflection was operative. This is reasonable since,
in our coupled system, the wave with wave vector Ku
is scattered by the backside of the atomic planes back
into the K, direction.

Since & and #y are complex, usually only their real
parts are plotted in reciprocal space, as for instance, in
Fig. 7. Generally, the real parts of the £'s are related
to the change of wavelength in the crystal (i.e., varying
index of refraction) whereas the imaginary parts are
related to absorption. If there is no absorption ( Af”=
0) then, from Eq. (8) for the structure factors, we see
that FyFg is real, and therefore, so are the £’s.

Figure 8 shows a more detailed view of the region
around the point Q. Since the distance between L and
Q is proportional to the index of refraction for x rays
which differs from unity by one part in 105, if the
distance from L to Q is represented by 1 cm, the dis-
tance from Q to (000) or (kkl) is approximately 10°
cm. On this scale then, the circles about (000) and
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(kkl) which intersect at Q can be represented by
straight lines. These straight lines form the asymptotes
of the hyperbolas given by Eq. (21). The solid hyper-
bolas represent the o polarization state (P=1) and
the dotted ones the = state. We call the branch of the
hyperbola closest to L the a branch and the other the
B branch. The line LQ is part of the perpendicular
bisector of H and is a symmetry axis for the dispersion
surfaces. A point on one of the dispersion surface
branches is called a fie poins. Three tie points Aj, A,
and A; have had their appropriate real £ values drawn
in. Note from the definitions in Eq. (20) that &’ and
£y’ are both positive for the a branch and both negative
for the B branch. Consider, for example, the tie point
Az Ko’ and Kpg' are vectors drawn from A, to the
origin and to (kkl), respectively, and represent a per-
mitted pair of wave vectors. &g’ carries Kos' on out to
the sphere of radius k(1—3T'Fy’) and &mg’ does the
same for Kyg'. The tie points A; and A; are on opposite
ends of a line through Q and their &’ and £g" values
are equal in magnitude but opposite in sign. The wave
vectors K¢’ and Kz’ for other tie points are not indi-
cated in the figure. For the tie points on the hyperbolas
and also lying on the line LQ, A4 and A;, we have that
&'=¢&g'. If D is the distance between such a pair, from
the geometry, and Eq. (21) with no absorption, we
have that the diameter D of the hyperbola is given by

D=FkT | P|| Fu | secOp. (22)

This diameter, for reasons which we shall see, gives the
width of the total reflection in Bragg diffraction from
a perfect crystal, as derived by Darwin.

The general dispersion surface, given by Eq. (21)
is, as we have seen, complex. We can justify our dis-
cussion of Fig. 8, however, by noting that if in Eq.
(20) we take Ky-Ko= (Ky')2— (K,y"’)2—2iKy'Ky"’ cos B
and realize that (K,”"/K,)?<1, (B is the angle between
K¢ and K,"”), then

(a) &'=K,/—k(1—3TF/),

(b) &''=—K," cos B+LkTF,". (23)

Thus, indeed &/’ is very closely related to the real part
of the wave vector, and &' to the imaginary (or ab-
sorptive) part (—Ky"”).

Now, in addition to describing the directional and
absorptive properties of a wave, the tie points on the
dispersion surface also characterize the ratio of the
field amplitudes. From Egs. (16), (A14), and (20)
we obtain

Ep/ Ey=—2t/kPTFg=—kPTFy/2tu, (24)

where Ep and E, are the complex field amplitudes for a
given state of polarization characterized by P. At the
diameter points A4 or A; in Fig. 8, the ratio En/E,
tends toward 4=1. As we move up the hyperbola from

A4 towards Ay, & increases and so Exg> Fy; as we move
down from A, & decreases and Eo> Ep.

Rather than, at this point, explicitly deriving detailed
properties of the waves which are associated with each
tie point, we first consider the incident boundary con-
ditions which select the tie points characterizing a
particular solution. That is, in any particular experi-
ment, only certain of the tie points are chosen by the
incident conditions, viz., the angle of incidence and
orientation of the crystal surface with respect to the
diffracting planes.

2.4 BOUNDARY CONDITIONS

We must consider the boundary conditions on the
field vectors and on the wave vectors. For the field
vectors, the conditions are usually that the tangential
components & and 3¢ are continuous. However, since
the index of refraction differs so little from unity, we
can neglect any true reflection from the surface. Also,
within the crystal, as we have seen in Appendix A, we
can neglect any longitudinal components of the fields.
Thus, with respect to field vectors, we say simply that
the surface does not exist and all field vectors are con-
tinuous across any surface. This is not the case, how-
ever, with respect to the wave vectors.

We assume for the present that we can accurately
treat the diffraction problem by assuming an incident
plane wave. The limitations on this assumption, pointed
out by Kato, is discussed in Sec. 2.9.

The mathematical matching of an incident and
diffracted plane wave just outside the surface to the
plane wave solutions which exist inside the crystal is
carried out in some detail in Appendix B. The analysis
results in conditions which seem quite reasonable. At
the surface, the inside “incident” amplitudes, Eo, plus
E, add up to the outside incident wave amplitude
Ey. And the inside “diffracted” amplitudes, Ex, plus
Epng, add up to the outside diffracted amplitude, Ex®.
In addition, in order to match phase fronts as is shown
schematically in Fig. 5, the components of the inside
wave vectors, Ko, and Kg along the surface must equal
the surface component of the outside incident wave
vector, K¢’. In Appendix B this condition is expressed
the other way around, namely, that Ko, and Ke can
differ from Ko¢ only by a vector along the surface normal
[see Eq. (B6)].

Since, without losing generality, we can assume that
the outside incident wave is not being absorbed, then
ko’ is a real vector and the imaginary parts of Ky, and
Kos then must lie along the surface normal. Thus, the
absorption fronts in Fig. 5 are shown parallel to the
physical surface.

In reciprocal space, the wave vector K¢ starts at
some point on the sphere which passes through the L
point, say point P in Fig. 9 and ends at the origin. If it
started at L, Bragg’s equation would be exactly satis-
fied. If the line SS represents the physical entrance



surface, then from P we draw a line parallel to the in-
ward surface normal until it cuts the dispersion sheets,
generating tie points A and B. The tangential compo-
nents of the internal vectors Ko, and Ko’ are equal
to that of K¢, which satisfies the boundary conditions
on the wave vectors. Vectorially, we can write

K0a=k0i—PA= koi—‘qakn, (25)
where n is a unit inward normal vector and we express
the vector from P to A as ¢.kn. A corresponding rela-
tionship holds for the B point. PA and ¢ are complex.
Using Bragg’s law [as expressed in Eq. (14)] we have
that

(a) Ko'=ko—g./kn,
(b) Ko'=¢."kn,

Ku' =Ko +H—g.kn;

Kn.' =g tn=Ko". (26)

Since the reciprocal lattice vector H is real, a con-
sequence of Bragg’s law is that the imaginary parts of
K, and Ky are equal, as shown above.

The geometrical construction shown in Fig. 9 gives
us a quick way of determining the active tie points for
an incident ray if we know how far off the Bragg angle
it is (represented by the distance LP) and the relative
orientation of the entrance surface and the diffracting
planes.

Figure 9 has been drawn for the Laue case, that is,
where Kz, and Kys (not shown on the figure) are
directed into the crystal. For the Bragg case, SS is
more nearly horizontal and the surface normal through
P would cut only the a branch or 3 branch, or pass
between the two branches of the hyperbola. If it passes
between the branches, only an exponentially attentuated
field can exist in the crystal and so total reflection results.
This is why the diameter of the hyperbola is related to
the angular width for total reflection in the Bragg case
and is discussed in more detail in Sec. 3.0.

Boundary conditions similar to the ones above are
imposed on the exit surface, but the entrance conditions
are sufficient to select the particular tie points which
are consistent with Maxwell’s equations in the medium
and which match the incident exciting wave. We see
that there are fwo inside incident waves of each polariza-
tion state produced by the single outside incident ray.

The exit surface is generally taken to be a plane,
usually parallel to the entrance surface so that the
crystal is an infinite slab. However, the exit condition
can be treated separately from the entrance one, and a
separate exit wave vector matched to each of the inte-
rior wave vectors. Thus, for example, in the Borrmann
effect for a single polarized incident ray, two forward
diffracted beams and two diffracted beams emerge
from the far side of the crystal slab. This is discussed in
detail in Sec. 4.0. The intensities associated with these
beams depend on the internal field amplitudes just at
the exit surface.
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F16. 9. Selection of the tie points by use of entrance point P and
surface normal n. PO represents the outside incident wave vector.
The deviation from the correct Bragg angle, Af, is given by
LP/k. The real parts of each of the inside incident wave vectors
K’ and K’os thus have the same surface tangential component
as has the outside incident wave vector K.

2.5 FIELD AMPLITUDES

The field amplitudes at any point in the crystal
depend on the ratio of the field amplitudes associated
with the tie point describing the waves, the amount of
energy assigned to the inside incident wave by the
boundary conditions, and the absorptive losses in the
medium. If we know % for the tie point (both real
and imaginary parts) Eqgs. (23) and (14) would give
us the wave vectors, and Eq. (24) the ratio of the
field amplitudes, and then from the value of the fields
at the entrance surface, we could evaluate the fields
at every point in the crystal. No matter how a certain
tie point on the dispersion curve is selected, the properties
of the waves associated with that point are invariant.
Nonetheless, since the incident conditions select the
tie points, it is, perhaps, most useful to calculate &
[from Eq. (21)] for certain common experimental
conditions. The two factors of importance in the
incident conditions are: how far off the Bragg angle
is the ray? At what angle does the ray strike the surface?
We now derive expressions relating & and &y to these
boundary conditions.

The real parts of & and £g, &’ and £’ are most con-
veniently handled geometrically.

In Fig. 10 the vectors from 0 to a point in the vicinity
of the dispersion surface are parallel to within a few
seconds of arc as is also the case for those vectors from
H. Treating them as parallel, we see from the figure
that

(a) Kf=k—q'kn-s,,

(b) Kg'=PH—¢'kn-s, 27
where S§; and § are unit vectors in the incident and
diffraction beam directions and Egs. (27) are the
geometrical interpretation of Eq. (26a). n-s;=+, and
n-s=+vygy, where v, and g are essentially the direction
cosines of the incident and diffracted beams with respect
to the incident surface.
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F16. 10. Geometrical constructions used to derive expression
for dispersion surface parameters £, in terms of entrance surface
boundary conditions. See text.

Now, from Fig. 10,
PH=k+LP sin 20=k— kA0 sin 2, (28)

where A6= LP/k and is negative in this figure. Com-
bining (23), (27), and (28), we have for the real parts

&' =3kTFy'— g’k
¢y’ =3kTFy — ¢ kyn— kA6 sin 26.
For the imaginary parts we need simply combine
Egs. (23b) and (26b) taking cos 8=+ and obtain
& =3kTFy"—q" ko,
¢y =3kTFy" — ¢ kyn.
Thus, we can write in combined (complex) form:
(a) &=3%kTFo—qgkyo

(b) Eg=2%kTFo—qkyn— kA0 sin 26. (29)

We have thus, quite accurately, expressed & and &g
in terms of Af and the entrance surface direction co-
sines, using the parametric variable ¢. Combining (29)
with (21), eliminating ¢ and solving for & alone, we
obtain

£+ (vo/vu) [3ET Fo(1—vya/vo) — kA sin 26]
=i (vo/ym) B PT*FrFa=0 (30)
or that
(a) &=3%k| Pl| b PT[FuF7 [y (n*+b/ | b|)1],
(b) tx=31k| P (T/|b ) [FuFz]

X[+ (n2+5/ 18 ])HT,  (31)
where,
b=vo/vn
and
n==[bA8 sin 20+1TF,(1—b)]/T | P || b P[FuFz].
(32)

Given A6 and b, we can now, through the parameter
7, calculate the real and imaginary parts of & [Eq.
(31)]. Now Egs. (23) and (14) permit us to deter-
mine the real and imaginary parts of the wave vectors,

and Eq. (24) the ratio of Ex to E,. With these we can
calculate the value of the fields anywhere in the crystal.
Equation (31) is rather complicated since it is perfectly
general, but simplifies a great deal if we consider sym-
metric cases. For the symmetric Bragg reflection,
b=—1 and for the symmetric Laue case, b=+1. In
fact, & negative indicates a Bragg reflection, entrance
and exit beams through same surface, and & positive
indicates a Laue case, entrance and exit beams through
different faces. Note that for the Bragg case increasing
glancing angle means decreasing %. Asymmetric reflec-
tions, b1 have many interesting properties’; and
pathological cases, =0, «© (n perpendicular to K¢ or
koi+H) have to receive special treatment. However,
we treat mostly the Laue case where b= +1. It really
doesn’t matter which case is treated, since once the
properties of the waves associated with certain tie
points on the dispersion curve are understood, the con-
sequences of any incident conditions can be generated
by determining which tie points they select. The sym-
metric Laue configuration, however, has an entrance
geometry that selects tie points in a particularly simple
fashion so that this case permits a straightforward dis-
cussion of the characteristics of the waves associated
with particular tie points. Where appropriate, however,
we write down the general expressions.

2.6 FIELDS AND TIE POINTS

As long as b is positive (Laue case) then 8/ |b| =1
and in Eq. (31) a convenient substitution for 4 is
n=1(e’—¢™?) = sinh .

(33)

With this definition, = (n>+1)*==e¢* and we can
write for &

to=£1k | P || b PT[FuFgle; (34)
and from Eq. (24)
Eg__[|P|b|"|[FuFial

For the symmetric Laue case (b=+1) these equations
have the same form except that now Eq. (32) for g
simplifies somewhat. Fundamentally, 7 is just a large
constant (complex) times Af. While A may range
over a few seconds of arc, n may vary between zero and
plus or minus a small integer. Expressions (34) and
(35) are then, through (33), functions of Af for this
geometry. Figure 11 shows the relationship between
the entrance points, the P’s, and the tie points for the
symmetric Laue case. The surface normal is parallel
to LQ so that the entrance point P selects tie points on
the line through P parallel to the line LQ. Any length,
LP is, of course, proportional to A8. When P coincides
with L, the diameter points are selected; A0=0, y=0,



and v=0. Thus, for the diameter points

bo=én=3k| P|T[FuFi]t (36)
and
Ey___ | P|[FuFil
E—o——:F P —‘——‘FH_ (37)

The positive sign is associated with the tie point on the
a branch. Since &’ is defined to be positive on the «
branch, the positive sign indicates that for the a branch
points, one lakes one of the square roots of the complex
number FuFi such that its real part is positive. With
this choice, the determination of the actual phase of
the ratio Ex/Ey[Eq. (37) ] depends on the polarization
factor and Fj itself. If the crystal is centrosymmetric,
then Fp=Fj, for an origin at a symmetry center, and
| Eg | = | Eo| . This result is very nearly true for any
structure. Thus, for the diameter points, the field
amplitude of the diffracted field is essentially equal to
that of the inside incident field. From Eq. (37) we see
that whatever the phase between Eq and Ex on the o
branch, it changes by 180° for points on the 8 branch.

In Fig. 11, lines have been drawn along the wave
vectors to represent the relative strength of the fields
E, and Eg. For points such as P; or P4 which are meant
to be well off the Bragg condition, geometrically, we
expect either & or £g to go to zero for the associated tie
points. To show this behavior of & more clearly, we
set b=-41 in Eq. (30) and write out the step before
Eq. (31), namely

£="1kA0 sin 2041 2AQ® sin? 20+-k2P*TFuFg . (38)
In the limit that A#?sin? 203> PT'FyF 3, i.e., well off
the Bragg angle: £§—31%A0 sin 20-1% | A9 | sin 26 or
£/—0, +k | A9 | sin 26,
&'—0.
Thus, for the tie points A; and Bs, £—0; therefore,
Ex—0 with respect to Eq. That is, no diffracted wave is

generated for these two tie points and only a single
wave E,, propagates through the crystal. The real

Fic. 11. Schematic representation of ratios of field strengths,
Eg to E,, for different tie points, using the symmetric Laue
entrance conditions.
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Fi16. 12. Schematic representation of absorption associated with
each tie point. The absorption depends on the difference between
the solid curves and the upper dashed curve. The absorption is
least for the « branch diameter point.

part of the wave vector for these single waves, from
Eq. (23),is

Ky=8"+k(1—3TF/)—k(1—3TFy),

which is just the vacuum value corrected for the average
index of refraction; the imaginary part is, from Eq. (23)

Ko" COs B= %kFFo"— Eo’l*‘)%kFFoN.
The absorption factor for these waves then is
exp (—27K,"”r) = exp [—2x(3kTFy")¢],

where ¢ is the distance in the ray direction. Since the
intensity loss goes as the square of the amplitude,

exp (—2wkTFy't)= exp (—uut),
and the linear absorption coefficient then becomes

,Uz=/.to=2’lrkPFO”. (39)

For the tie points By and A4 £4—0, which implies
that an infinitely large Egx would be excited by the
presence of any Eq, or essentially, that E;.—0. That is,
no incident wave can really excite these wave points.
Thus, beginning at a point Py, well off the Bragg angle,
with A@ negative, only tie points on the « branch are
excited and only a transmitted beam exists. As we
approach the center of the dispersion sheets, tie points
on both branches become active, the diffracted beam
grows in strength and |Eyx || E¢| at the diameter
points. For points with Af large and positive, only
wave points on the 8 branch are active, and again, only
a transmitted beam exists.

From Eq. (38) we see that for the diameter points
(A6=0), &, is proportional to the square root of a com-
plex constant, [FuFi]. As we move away from the
diameter points, a rapidly increasing real part is added
to the complex constant before taking its square root.
Thus, the imaginary part of &, &’ becomes increasingly
less important until it essentially is zero, well off the
Bragg angle. These conclusions are sketched out in
Fig. 12 for the imaginary parts &'. For the diameter
points & '==41k| P|T9[FrFg} (where d means
imaginary part) and then it goes to zero well off the
Bragg angle. A line equal in value to $kT'F,” is sketched
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in. From Eq. (23) we see that the effective absorption
coefficient is proportional to the difference between this
line and the corresponding &'’ curve.

Since there is always absorption (and not amplifica-
tion) of the waves in the crystal, $kT'F,” is always
larger than &. It is possible, however, for them to be
almost equal at the diameter points, giving very low
absorption for the « branch.

We can now write down expressions for the fields in
the Laue case in some detail. From the boundary con-
ditions on amplitudes (details in Appendix B)

E0i=E0a+E0ﬁy O=EHa+EH‘3' (40)

For the variation of E, along the hyperbola in Fig. 11
we can write:

Ey.= Eyi(e7?/2 cosh v) ; Eos= Ey(e?/2 coshv) (41)

where these results are separately true for each polar-
ization state. Note that Eo, goes to zero for the points
at high angle on the « branch, and goes to Ey? for points
at low angle. The opposite is true for Ey. The boundary
conditions thus distribute the input energy to the
various tie points and not every point on the dispersion
surface is excited, even though selected. Thus, the
complete expression for the separate fields can be
written as

—V

(a) 80,,=E0’52 b P (2mwivt) exp (—2mwiKos '+ 1)
X exp (—27Ky' 1),
Ef | P] [FuFa} .

= 2 Ny p AL v (2arint

(b) 2coshv P o] Fy exp (2mil)

X exp (—27iKp 1) exp (—27Ky,'' 1),

(c) 805=E0"2 C(e)sh ~ exp (2wivt) exp (—2wiKos' 1)
X exp (—27Ke"'+1),
Ei |P| [FuFglt .
= 1T B exp (2mint
(d) &as 2coshy P 2] Fgu exp (2mist)

X exp(—27iKgg' 1) exp (—27Kgs’ 1), (42)

where the wave vectors can be related to the incident
conditions and crystal structure through Egs. (26),
(29), (34) and (39).

2.7 DISCUSSION OF FIELDS

So far, plane wave solutions of Maxwell’s equations
in a medium of periodic dielectric constant related to
the periodic electron density have led to permitted
wave vectors differing little from the vacuum values,
but described by the dispersion surfaces in reciprocal
space, and to field amplitude ratios and absorption
factors generally summarized in Figs. 11 and 12. Al-
though the equations in the section above, for the Laue

case, give the fields explicitly, the general nature of the
fields associated with any tie point on the dispersion
surface can be understood from Figs. 9, 11, and 12.
For a ray entering the crystal well off the Bragg angle,
a tie point close to the asymptote described by the
sphere about the origin of the reciprocal lattice is
selected and only one wave is excited. This wave travels
substantially in the incident beam direction, which, as
seen from Fig. 12, suffers the normal photoelectric
absorption. On the other hand, for a field whose tie
point is a diameter point on the a branch, two waves
are excited; one in the “transmitted” direction and one
in the “diffracted” direction. These are coherently
related; that is, have essentially equal amplitude and
wavelength, and suffer less than normal absorption.
When two such waves exist in a common region, as we
shall see more explicitly in Sec. 2.10B(2), the resulting
pattern contains nodal planes of electric field intensity.
These statements also hold for fields described by a
diameter point in the 8 branch, except that this struc-
tured field now experiences even greater absorption
(Fig. 12) than that of a single plane wave. Although a
great deal more can be said about the structure of the
resulting fields, in both the Laue and Bragg cases, a
more fruitful line of questioning would be to first
examine the energy flows. After all, diffraction is, in
general, thought of as a transport problem. The ab-
sorption properties, which are the most interesting
aspect, turn out to be most easily discussed in terms of
the energy flows, or Poynting’s vectors. In the next
few sections, we consider these aspects before going on
to calculate the diffracted-beam line shapes and inte-
grated intensities.

2.8 ENERGY FLOW AND POYNTING'S VECTOR

The energy flow in the crystal is described in terms
of the Poynting vector for the total wave field. We
continue to work with infinite plane waves, such as
given by Eq. (42); the limitations of this assumption
is discussed in Sec. 2.9. The instantaneous Poynting
vector of an electromagnetic field is given by Sy=8 x 3¢
and represents the energy flowing across a unit area
perpendicular to S in a unit time. The instantaneous S
at every point r may be quite complicated and is of
little use; instead, we are more concerned with certain
averages. The time average of S, (S) is averaged over
the spatial unit cell and finally averaged over a volume
related to the interchange of energy between two
directions as a function of depth. In this section, we
are mostly concerned with the directional properties
of this kighly averaged energy flow which are essentially
independent of absorption, and in Sec. 2.10 consider
the absorption as a function of flow direction.

The time average of S is given by™:

(S)=3q[8 x3e*],

14 Reference 12, p. 103.

(43)



where R (& x3C*) represents the real part of this ex-
pression. & and 3C describe the total fields inside the
crystal. We continue to use the field expressions for
the Laue case, Eq. (42), to illustrate various points
and thus & and 3¢ can be thought of as sums of the
individual waves of (42) associated with all the tie
points of the dispersion surfaces selected by the in-
cident boundary conditions. If the index w describes
the particular sheet of the dispersion surface, i.e.,
w=a, (3, etc., for the polarization ¢ or = state, then

exae*= > > exp[—2mi (Ko, —Kpp') 1]
X exp [— 2 (Ko +Kou) 1]Y X (Bary xHirs®)
2 "

X exp[—2mi(H-H')-r], (44)

where we have used the Bragg relation Kz,=Kg,+H
in (42).

This expression simplifies ifwe average over a unit
cell. Although von Laue'® carries out the averaging in
detail, if one assumes that the absorption per cell is
negligible, i.e., exp [— 27 (Ko, +Kopw'’) 1] is constant
over the cell, then the variation of the first exponential
of (44) over a cell, where Kq,’—Kq," is the order of
the diameter of the dispersion curves, is also negligible,
and in integrating the last exponential over a cell we
get zero contribution unless H=H'. Thus, the average
over a cell of the time averaged Poynting’s vector
becomes

((S))=3q{ E Z exp[— 271 (Ko’ —Kow’) *R]
X exp [— 27 (Ko +Kow'") ‘R]zH:(EHw xHg,*) 1,

(45)

where we have replaced r by R to signify that with
respect to energy flow, variations of this term within a
cell are negligible.

From the structure of the field as given in Appendix
A, Eg xHp,*=0if w and w’ refer to different polariza-
tion states, and we can, therefore, treat the energy
flow of each polarization state separately. Also, we
have, in general, that

Ernw xHuw =[eo/wo ]t | Exw || Enw™ | s,

where we have used Eq. (A4) to relate the magnitudes
of |E| and | H|, taken Sy as a unit vector along Kz,
and made the following assumptions: (1) we neglect
the imaginary parts of Ky when discussing directions
and (2) we neglect the small correction to.the magni-
tude of (46) due to the index of refraction, i.e., let
| Kz’ | be the vacuum value. Actually, we need only
assume that the differences in the | Kz’ |’s are negligible
so that we can factor out a [€/uo* in the equation to
follow.

(46)

15 M. v. Laue, Acta Cryst. 5, 619 (1952).

B. W. BaTTERMAN AND H. CorLE Diffraction of X Rays 693
From (45) and (46) we have, for the case of one
active reciprocal lattice point and two tie points

[uo/e((S))=1% exp (—47Ko'-R)
X (| Boa | 80+ | Erra [ 811)
+3 exp (—47Ky"*R) (| Eos [ 8o+ | Ens * 811
+ exp [— 27 (Koo' +Kos'’) -R]
X { | Eoa || Eos | o+ | Erre || Eas | 821}

X cos 2n[ (Koo' —Kos") -R], (47)

which we write as
=[uo/e((S))=Sat+Ss+Sus.  (48)

This quantity can be considered as the vector sum
of the effective Poynting’s vectors of three wave fields
in the crystal. S, and Sg are the effective energy flows
each with its own absorption, associated with a tie
point on the a and B branches, respectively. S.s rep-
resents a coupling term between the two. We consider
these terms in some detail again for the Laue case.

A. Pendellosung

The absorption factors for the three Poynting
vectors in Eq. (48) do not, in general, affect the
directional properties. At this point, for convenience
of discussion, we assume that the crystal is nonab-
sorbing and consequently set Ko./=Kg''=0. As a
result of this, S, and Sg are independent of depth below
the surface of the crystal while S,z has a sinusoidal
dependence. The boundary conditions demand ' that
the vector (Koa—Kgs) be perpendicular to the entrance
surface of the crystal [this can be seen geometrically
in Fig. (9)], and hence, S.s is constant in planes
parallel to the crystal surface, varying sinusoidally
with depth with period

P=1/(Ko'—Kod'). (49)

For the symmetric Laue case at the center of the range
of reflection, (1/P) is simply the diameter of the hyper-
bola of the dispersion surface, so that P is the order of
102 cm. Equation (47) shows that S.g shifts the energy
flow around the average direction S,+S; periodically
with the depth beneath the crystal surface. This is the
phenomenon of Pendellgsung, a term used by Ewald
because of the mathematical similarity between the
variation of the energy flow of the wave field in the
crystal and the energy transfer between two weakly
coupled pendulums.

If the wave field inside the crystal described by Eq.
(42) is substituted in Eq. (47) the explicit behavior of
the coupling vector S,s is made clearer. Using the ab-
breviation a=3% cosh (v) and for Fy=~Fg, grouping
the terms as in (47) we have:

Srvia? | By [ e 2'sg+bsy | +3a? | Eof Iz[ezv'so-l—bsgj
- +a? | B¢t |¥[8o— b8z ] cos 2z (Z/P), (50)
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Fr1c. 13. Vector diagram
used in discussing Pendell6-
sung effect. See text.

where Z is the depth below the surface of the crystal.
At the depth for which cos 2w (Z/P)=1, the compo-
nent of Sy in the diffracted beam direction just cancels
the corresponding contributions from S, and Sg and
all the energy flows in the primary beam direction S,.
When the cosine term is'— 1, half a Pendellssung period
further in Z, the beam in the diffracted direction is
strong while in §; the intensity is proportional to
sinh?/cosh v which is zero when the incident beam
exactly satisfies Bragg’s law at the center of the range
of reflection. Thus, the energy swaps back and forth
as a function of depth, extinguishing completely in the
sy direction and very nearly in the 8§y direction, with a
period P. Note, however, that this swapping requires
the excitation of a tie point on both the « and B
branches.

From Eq. (50) it can be seen that S, has the direc-
tion of the vector yuSo—v¢Sy. Figure 13 shows the
vectors yuSo and —v,Sy relative to the surface normal.
It is evident that the vector S.s is parallel to the
crystal surface and does not contribute to energy flow
through the crystal.

B. Direction of Energy Flow

The net direction of energy flow, determined finally
by averaging Poynting’s vector over a Pendellosung
period is, from Eq. (47)

Sr=S.+Ss=( l Eo. 12 So‘f‘ l Exe [2 Su)
+ (| Eog [*So+ | Emg [*su), (51)

where again the absorption does not significantly affect
the directions. Equation (51) represents a complete
decoupling of the four plane waves which comprise the
two wave fields. The decoupling arises because Sr
represents an averaging over the regions where inter-

F1c. 14. Averaged energy flow associated with the points A and
B. Poynting’s vectors S, and S for the flow of each tie point is
perpendicular to the real part of the dispersion curve at that tie
point.

action takes place. For example, the two plane waves
of wave field , E, and Eg, interact within regions the
size of a unit cell, and this average has been taken in
reaching Eq. (47). The two wave fields « and 3 interact
over a Pendellosung period, and this has been averaged
to obtain (51) so that the total Poynting’s vector in
(51) is just the sum of the individual Poynting’s vectors
associated with each of the four plane waves.

A simple and elegant property of the energy flow Sy
has been first proven in the general case by Kato®;
namely, that the direction of energy flow corresponding
to a tie point on a particular sheet of the dispersion
surface is that of the normal to the surface at that point.
This result can be obtained by deriving an expression
for the normal to a point on the dispersion surface and
showing that it agrees with the direction of S, or Sg.
Thus, S, is perpendicular to the hyperbola at A and
Ss at B in Fig. 14. The energy flows along the atomic
planes for the diameter tie points. This condition
exists, for example, in the symmetric Laue case when
L is the incident point. For any other incident point,
there are two flows: S, and Sg (Fig. 14), one directed
above the atomic planes and one below.

F16. 15. Schematic representation
7= of the separation of the energy flows
in the crystal for a narrow beam off
(=7 the Bragg angle but within the range
> of reflection.

In an actual experiment, where the incident beam
has a cross section small compared to the thickness of
the crystal, for a ray slightly off the Bragg angle, a
decoupling can take place between the two wave fields
because of a physical separation of the two flows within
the crystal. This is shown schematically in Fig. 15.
The only interaction between the fields occur near the
entrance surface where the fields of S, and Sg actually
overlap. Outside of that region the energy flows inde-
pendently along paths determined by the Poynting
vectors associated with the tie points on each branch
of the dispersion surface.

The direction of S, depends upon | Eg | and | Ex |
which in turn, by Eq. (35) depends on the deviation
of the angle of incidence from the exact Bragg condi-
tions. It can be seen from Eq. (47) that the direction
of each S, depends only upon the ratios of intensities
in the primary and diffracted beam directions. This
result is true irrespective of whether the crystal is or
is not absorbing.

2.9 LIMITATIONS OF THE PLANE
WAVE THEORY

The treatment thus far has assumed that the in-
cident beam can be considered an infinite plane wave.

18 N, Kato, Acta Cryst. 11, 885 (1958).



Kato' in a series of papers has investigated the validity
of this assumption. We only sketch his arguments and
present the conclusions pertinent to the present
treatment. )

One of the conditions for a plane-wave approximation
to be valid is that the angular width Q, of a coherent
incident wave at the entrance surface must be smaller
than Af, the angular width of the reflection. Af is
usually the order of 10~° rad while @, for fairly typical
experimental conditions (source to crystal distance of
10 cm and beam width at the crystal of 10—% cm) is
greater than 10~% It follows that the basic condition
for a plane-wave approximation is usually not satisfied,
and one cannot consider different tie points to be in-
dependently excited. In a typical experiment the entire
dispersion surface is, in a sense, illuminated with co-
herent radiation, and in principle, interference is pos-
sible between waves arising from any pair of points on
the dispersion surface whose fields are superposed in
the crystal. The usual incident beams then produce
wave fields which fill the full 26 range between Sy and
So. This region is called the “x-ray fan.” A range of
incident angles the order of a few seconds of arc pro-
duces an angular spread of 20 within the crystal.

Kato shows that the true incident beam can be
represented as a superposition of plane waves each of
which produces a set of waves in the crystal which can
be calculated from the plane-wave treatment we have
been considering. These plane waves superpose to
create wave bundles within the crystal. The wave
bundle associated with the vectors terminating in the
region d= of the dispersion surface in the neighborhood
of point A (Fig. 16) can be shown to propagate in a
direction normal to dv and consequently perpendicular
to the dispersion surface at A. This is in agreement
with the results in Sec. 2.8. The basic difference between
the spherical or wave-bundle approach and the plane
wave treatment shows up when one considers the
angular range and lateral width of the coherent bundles
emanating from the region dz. These are, in typical
cases, small enough so that, except for regions of the
crystal quite close to the incident surface, the bundles
from regions adjacent to dz are separated physically in
space, and, as a result, propagate independently of one
another. For this reason, the Pendellssung phenomenon
described in the previous section between points A
and B does not often exist because the wave bundles
from these points do not superpose in a common
volume of crystal. However, since the normals to the
dispersion surface of points A and A’ are parallel,
Pendellgsung interference is observed between these
points. This has been experimentally verified by Kato
and Lang.!® A direct proof of the separation of the
energy propagation has been demonstrated in an in-
genious experiment by Authier.?

17 N. Kato, Acta Cryst. 13, 349 (1960).

18 N. Kato and A. R. Lang, Acta Cryst. 12, 787 (1959).
19 A. Authier, Compt. Rend. 251, 2003 (1960).
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F1c. 16. Energy flows | = %%, z,
important in the discus- 5 s

sion of a spherical en- dat X
trance wave front.

Concerning-integrated intensities the spherical wave
treatment gives results essentially identical to that
calculated from the plane wave theory.

2.10 ABSORPTION

The most interesting aspects of the dynamical
diffraction theory are those dealing with the effective
absorption. For this reason, we treat the absorption
phenomena in some detail and from several points of
view. In Sec. 2.10A we deal with the formal expressions
relating the absorption to the direction of energy flow
and in 2.10B a physical interpretation of the results are
discussed in terms of the nodes of the field patterns
and the distribution of absorbing matter in the crystal.

A. Formal Absorption Factors

The absorption factor for each wave within the
crystal is expressed through the imaginary part of the
wave vector, —K’' and is explicitly indicated in Egs.
(42) and (47). As expressed in Eq. (42), the absorption
is a function of the incident condition which selects a
tie point on the dispersion surface. As we saw in the
last section, however, the direction of energy flow de-
pends only on the ratio of the field amplitudes which,
according to (24), depends only on the tie point on the
dispersion surface. Intuitively, we would expect the
absorption for a given flow direction to depend only
on that direction and not on how the direction was
established. Thus, the absorption of each of the internal
beams corresponding to a given tie point should be
independent of how that point is selected by the external
parameters of angle of incidence and orientation of the
crystal surface. We derive the absorption coefficients
on this basis from the dispersion surface properties in
terms of the complex variables & and &p.

From Eq. (42) the absorption factor for the intensity
(the square of that for the amplitude) is given by

exp (—47Ky":R). (52)
Ky, as we have seen, is directed along the surface
normal. The planes of constant absorption are parallel
to the physical surface, and the absorption coefficient
for distance along this normal is

pn=47Ky". (53)

If we consider absorption along some other direction
the absorption coefficient is smaller since the absorption
itself only depends on depth from the surface. Thus,
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F16. 17. Geometry used in derivation of energy flow as a func-
tion of angle A, between flow direction and atomic planes. The
Poynting’s vector is the vector sum of the individual flows.

the absorption coefficient along any direction X is
-given by

Mz= tn COS (n; X): (54)

where (1, X) is the angle between n and x.
We must now evaluate Ky”’. From the definition of
& and &g [Eq. (23)7:

(a) &'=K/—k(1—3TF),
tn'=Kug'—k(1—3TFY),

(b) &"'=—K"vo+3kTFy",
EH”Z _KH”’YH+%kI‘F[]”- (55)

We have discussed the absorption qualitatively in
Fig. 12 using (55b). The salient point of the formal
development to be presented here is that we can express
&' and the ratio of the field amplitudes, in terms of &’
which is uniquely associated with a point on the dis-
persion surface. That is, we can express the imaginary
part of the £ in terms of the real parts and express the
ratio of the field amplitudes in these terms also. This
implies physically that the absorption is determined
inherently by the field strength, which in turn, is fixed
by the tie point through Eq. (24), and so the absorption
also must be fixed solely by the tie point. Writing the
fundamental equation of the dispersion surface (21)
in terms of real and imaginary parts, we have

(a) &'tn’—&"t"=C®Ry
(b) &'tw"+&"tn"= C*n, (56)

where C=%| P | k' and Gy and 9y are the real and
imaginary parts of FgFg.

It can be shown from (55) that &ty is small
compared with &'ts’, to second order in (Fy/Fy')
and it is neglected. With this approximation and since
K'=Kpy", inserting Egs. (55) in (56) gives

(a) &'tn’ = C®p,
(b) =Ky (&'yuttn"yv0) = C¥9n— (&/+4u") kT F,",
(87)

We have thus expressed Ko/ in terms of &’ and the
structure factors. The direction cosines, v, and vz are
still in the expression but these drop out later.

Turning now to Eq. (24) for the ratio of the field
amplitudes, multiplying each term by its complex
conjugate to get absolute values and then multiplying
the terms together, we obtain

| En/Eo |* = (&t0*/tutu™) (FuFu*/FgFg*).

The ratio of the structure factors is unity for centro-
symmetric crystals and departs slightly from unity for
polar crystals, and then only if the radiation is close to
an absorption edge. Taking this term as unity and
using the same approximation on &''/&' as we did
before, we have

(58)

l EH/ E, lz = Eol/ &'

Now combining Egs. (57) and (59), setting wo=
2wk Fy" we can express p,=47K," as

. —,u( E2+Eg >[ ([P]gH\ | Eo || Ex | ]
m vrEs+viEe® Fy'®ut) |Eo |+ | Eq 2}
(60)
This is an intermediate expression for w, in terms of
the field strengths. The absorption coefficient is more
conveniently expressed if one uses a coefficient s,

taken with respect to the direction of the energy flow
S. That is, from expression (54)

(59)

ps= iy cos (0, S). (61)

From (48) we have that S= |E|2sy+ |Eg sy
(Fig. 17) and the dot product of S with n gives

S:n= l Eg |2 Yo+ l Ex }2 YH= ’S I COS (n,S). (62)

The dot product of S with a unit vector (u) lying
in the diffracting planes, gives

S-u=(|E¢ >+ |Eg ) cosf= |S|cos 4, (63)

where A is the angle between S and lattice planes.
From (62) and (63) we have that

"YOEOZ”"YHEH?‘) cos A
E2+Ex: /cos *

Substituting this into expression (61) and comparing
with (60) for u., we see that the direction cosines drop
out giving

cos (n,S) =( (64)

cosAf __|P|gu [EoHEH|) (65)
cos\  F'®ut |Eo P4+ | Eu |

Ms= Ko

A further simplification results if we introduce the

parameter p, given by

p=(tan A)/(tan9), (66)

which is zero for the diameter points and goes to plus
or minus one at the wings of the dispersion surface.
From the geometry shown in Fig. 17 we see that

p=(1EaP = | EP)/(| Ex P+ | E ).  (67)



Substituting (67) into (65) we have

cos A/ Pdy )
F 1—p2)%,
cosO\ ' 2F) ®ut (1—27)

We see from (68) that the absorption coefficient of the
wave field is indeed independent of incident conditions
and is a function only of the angle A, between the
direction of energy flow and the net planes. Since S is
perpendicular to the real part of the dispersion surface
at the tie point [Sec. 2.8B] this angle A is solely a
property of the dispersion surface which is determined
by the internal crystal structure.
We define a quantity € as

€= 511/2Fo”(ﬂ]{§.

MS= Mo (68)

(69)

In order to reduce expression (69) to somewhat
simpler terms, we recall that Fy=Fg'+iFy" where
the primed quantity refers to the contribution from the
real part of the afomic scattering factor, and the double
primed to the contribution from the imaginary part.
Since the structure factor may also be complex from
the geometrical arrangement of the atoms and/or
choice of origin, we have in detail that

Fp=Fg'+iFy"
= (Fu"),+i(F') i +Hi[ (Fu"") i (Fe") ],
Fg=Fg +iFg’
= (Fr'),—i(Fy') i+l (Fe"),—i(Fe") ],
and
FuFi=Q®u+idn
= | Fg' |? — | Fa" |* +2i[(F&') (Fu")+
+(Fu')«(Fu'"") ).

If the crystal structure is centrosymmetric and the
origin for the structure factor is taken at a center of
symmetry, then (Fg’);= (Fg"");=0, and

Fp=(Fy'),+i(Fu'"),= Fa=Fu'+iFu",
or
FuFi= (Fu')1— (Fu")*/ (Fu')*+2iFy" /Fu'].

Generally, Fg''<0.1Fg’; therefore, neglecting the
square, we have

®n=(Fx')?

Making the same assumption for the general case gives

In=2[(Fu')(Fr" )+ (Fu')«(Fr"):].
Hence, we have for the centrosymmetric case

e=Fy"/F, (69a)

an expression which is also quite accurate for the
general case.

Returning now to the symmetric Laue case, the
effective absorption coefficient in the primary beam

9u=2Fy'Fy".

®u= | Fu' [*,
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F1c. 18. Schematic representation of absorption associated with
the points in the « branch as a function of the angle A, that the
energy flow makes with respect to the atomic planes. The smallest
absorption coefficient is for flow parallel to the net planes.

direction is given by wo(eff) = u, cos 6/cos A or
po(eff) =pmo[1== | P | e(1—p?)].

Equation (70) formally explains the Borrmann effect.
For those reflections where all atoms scatter in phase,
e reduces to [ Af”(28)/Af"”(0)], the ratio of the
imaginary part of the atomic scattering factor at dif-
fracting angle 26 to the value for forward scattering
(we assume one atom type). This quantity usually
departs only slightly from unity so that ue(eff) for the
o polarization state (P=1) becomes zero or 2u, for
energy flow along the net planes (p=0). The wave
field of the & branch (upper sign) thus traverses the
crystal along the net planes with very low absorption.
As the energy flows at greater angles to the net planes,
the absorption coefficient increases arriving at the
normal value, uo, when p=-=41 and the energy flows
either in the primary or diffracted beam directions. A
schematic representation of absorption of the a branch
in the general case [Eq. (68) ] is given in Fig. 18 where
the vectors in the x-ray fan are inversely proportional
to the absorption coefficient. If the crystal is sufficiently
thick, only those rays traveling parallel to net planes
will survive and exit from the back face of the crystal.

We can now relate the absorption coefficient within
the x-ray fan to the incident conditions. For simplicity,
we restrict ourselves to the symmetric Laue case,
(b=+1) and a centrosymmetric crystal. From (35)
we have

(70)

| Bx |/| Bo | =€t (71)

From the definition of # for the symmetric Laue case
(with Fy'’<<Fg’), Eq. (32) becomes

Afsin 20 = Afsin 20Fgy"
T|P|Fy/ T|P|F4

= sinh v= (72)

: — w4
Since v=1"-+1v",
n= sinh v= sinh 9’ cos v"/4¢ cosh 2’ sin v"’. (73)

If we compare the imaginary parts of (72) and (73)
we see that sin v" and hence, v/, are small quantities,
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ATOMIC PLANES e 2(1-p)
(a) (b) (c) (d)

F1c. 19. Possible configurations of the standing wave patterns,
assuming that the nodes of the a branch pattern, ¢ polarization,
coincide with the atomic planes. (a) « branch, o polarization (b)
B branch, ¢ (c) « branch, = state (d) 8 branch x state.

is unity. We have, then

(74)

and to second order, cos v
7'= (sinh v)’= sinh v'= ( Afsin 20) /T | P| Fr’'|.
Comparing (71) with (65) we have

|Eo||Ex| 1 1 1

E¢+Ex?  evtet CO+ ()’

and from (65), (67), (70), and (74)
wo(eff) = uo{17F | P | /[1+(n')* ]}

From (74) we see that 7’ is a function of the angle
between the incident beam and the exact Bragg angle.
At the Bragg angle (A6=0), (75) reduces to its
extremal values and the energy flows along the net
planes; while for | A@ | large, the energy flows at the
edges of the fan with the normal absorption coefficient.
Comparing Egs. (75) and (70) we see that as Af
varies over the range of reflection (the order of seconds
of arc), the energy flow direction varies through 26
(the order of several degrees).

2 cosh v

(75)

B. Physical Interpretation of Anomalous Absorption
(1) Special Case

The results of the formal derivation of the effective
absorption coefficients for the different wave fields and
different polarization states have a relatively simple
explanation in terms of the positional dependence of
the electric field intensity in the unit cells of the crystal.
First, we show physically how the extremal values for
the absorption coefficients arise. These values are those
obtained formally from Egs. (70) or (75) with o=
A=p=0. In this case, for Fg=Fj, the two coherent
plane waves from a diameter point on a branch of the
dispersion surface have amplitudes equal in magnitude,
which for illustration are considered as real quantities.
The total electric field is then the sum of the two co-

herent plane waves:
&= exp(2wivt)Eg exp (—2wiK, 1)
+ exp(27ivt)Eg exp (—27iKg-1r). (76)

These two waves add together to give a traveling wave
moving along the bisector of the angle between K,
and Ky, and a standing wave at right angles to this
direction.

The field intensity, &-&* is

(a) |&2=|Eo|2+ | Ex |> +2E-Eg cos 27zH-r
(b) =2|E¢ |2 (1=£P cos 27H 1), (77)

where we have set Ko+H=Ky and Ey-Ez="P | E, |?
and where P=1 for the o and cos 26 for the = states of
polarization. The (&) sign takes into account the two
cases where the two plane waves have relative phases of
Z€ero or .

We see from (77) that planes of constant intensity,
ie., the standing-wave pattern, occur when H.r=
const, and hence, are parallel to the diffracting planes
and are spaced duu= | H |~* apart. From the field in-
tensity we can see simply why anomalous absorption
can occur. The photoelectric absorption of an atom is
proportional to the electric field intensity at the atom.
If nodal planes of the electric field are coincident with
the atoms of the diffracting planes, much smaller than
normal absorption occur. On the other hand, if the
antinodal planes are at the atom sites an anomalously
high absorption takes place. In Fig. 19 we give a
schematic representation of the distribution of electric
field intensity for the four possible cases described by
(77). Figure 19a represents the o polarization state
(P=1), for the situation where true nodal planes of
the field from one branch of the dispersion surface co-
incide with the planes of atoms and (b) is the field
from the other branch where antinodes are at the atoms.
(a) is then the case of minimum and (b) that of
maximum absorption. In (c) and (d), the corre-
sponding situations for the = polarization are shown.

Note that the P= cos 20 term prevents the electric
field from going to zero at the atomic planes. We can
see then, in terms of the field distribution, that even
for the branch which produces nodes at the atoms,
there is a higher absorption for the = state of polariza-
tion than for the o state.

For both states of polarization the Poynting’s vector,
& x3C* has true nodal planes, so that the average
energy flow in all the cases depicted in Fig. 19 is along
the atomic planes. Of course, the nodal pattern aspects
of the two coherent waves of equal amplitude and
frequency are perfectly general, and are not the result
just of the dynamical diffraction theory.

(2) Relation Between Atomic Planes and Nodal Planes
of the Wave Field

In the section above, we merely assumed that the
nodal planes were coincident with the atom planes and



that all the planes of atoms were also nodal planes of
the electric field intensity. In this section, we investigate
this in more detail. In the general case, the electric
field associated with each tie point again is the sum of
two plane waves with complex phase relationships
between them. The field for a single point can be
written, from Eq. (42) as

&= exp (2mivt) exp (—2miK,1)E,
X[14(Eu/E,) exp (2miH-1)],

where Eg and Ep are complex amplitudes.
The field intensity from (78) is proportional to a
quantity R, defined as

R= |14 (Ex/Ey) exp (2miH 1) |2 (79)

As before, we see that planes of constant intensity,
R= const, are parallel to the diffracting planes and
periodic in the d spacing of the (%kI) reflection involved.

It is obvious that the relationship between the posi-
tion of the nodal planes and the atomic planes must be
invariant with respect to the choice of origin for the
position vector r. We see from (79) that r appears
directly in the exponential and indirectly in the ratio
Epy/ Ey, since the latter by (24) depends on the struc-
ture factor, which is affected by the choice of origin.

We can conveniently arrive at the position of any
nodal planes, R=0, by making use of the invariance
with respect to choice of origin. First assume that a
nodal plane exists, then let the origin of r be in this
plane and see what restrictions are imposed on Ex/Ey,
and the structure factor, to make R=0. From (79) it
follows that we must have Ex/Ey=—1 for R to have a
zero value when r=0. Unless a choice of origin can be
found for the structure factor such that Ey/Ey=—1,
no nodal planes exist. For the Laue case (b=-1) the
ratio of field amplitudes (35) is

=13
Ea__ | PI[PuFi
E,y P Fyu

If the crystal has a center of symmetry then Fy=Fg,
if the origin is chosen at a symmetry center. Under
these conditions, (80) equals unity only when the exact
Bragg conditions are satisfied (v=0). R equals zero
for one branch and has a maximum value for the
other. The sign of Ey/E, determines which branch
produces the nodal or antinodal plane passing through
the center of symmetry; although the minimum ab-
sorption is always associated with the o« branch. For
example, for the (220) type of reflection in the diamond
structures, Fap= —8f and the & branch [upper sign in
(80) ] has an antinodal plane at the center of symmetry
while the 8 field produces a node. For the (440) reflec-
tion Fuo=-+8f and the o branch has the node. In both
cases, reference to the actual structure shows that the
« branch suffers the least absorption.

Generally, the strongest anomalous transmission
occurs when all of the atoms in the crystal lie on nodal

(78)

(80)
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Fic. 20. Geometry
used to calculate the
absorption of an atom
in a standing-wave pat-
tern.

planes of the electric field intensity. Since the spacing
of the nodal planes is d(%4kl) it follows that only those
reflections for which all the atoms scatter in phase,
and hence lie in the planes of the set (4kl) can satisfy
this condition. We call these reflections full reflections.
Invoking the invariance with respect to choice of
origin, we now let r=0 at an atom position and, as
before, a node occurs at the atom if Ey/E,=-—1.
Because all atoms are in phase in full reflections,
Fy=Fg when the origin for the structure factor is
taken at an atom, and Fgy is positive. According to
(79), only the @ branch has nodal planes through the
origin atom, and hence, through all the atoms of the
crystal. The wave field of the 8 branch produces anti-
nodes at all the atoms of the crystal and thus is highly
absorbed.

We can sum up these results as follows:

(a) Regardless of crystal symmetry, the maximum
anomalous transmission occurs for those reflections
where all the atoms scatter in phase.

(b) The wave field with least absorption is described
by a point on the branch of the dispersion curve nearest
the Laue point (L). This condition was first pointed
out by Ewald.

(c) For centrosymmetric crystals, the symmetry
center is on a nodal plane with the nodes of the other
field 1d(kkl) away. The branch of the dispersion surface
producing the node at the center of symmetry depends
upon the reflection involved.

(3) Calculation of the Absorption Coefficient in the
General Case and the Physical Significance of e

We now generalize our qualitative treatment for the
case where the energy flow is not parallel to the dif-
fracting planes and see how the actual absorption co-
efficient of an atom depends upon its position in the
wave field.

The wave field is again assumed to be the sum of
two coherent plane waves of real amplitude Ey and Ex
which are not necessarily equal. E? is still given by
(77a) or (78) since Ko+H=Kpy. For convenience in
calculation we use complex notation (remembering
that we are only concerned with the real part) and
(77a) becomes

|& 2= |Eo|* + | Ex |2 +2Eo-Ex exp (—2xiH-1). (81)

In Fig. 20 let 1, be the position of the nucleus of an
atom in the wave field and r the vector to the volume
dv. Let 'u(r,) dv be the contribution to the average
absorption coefficient of the volume dv of the atom,
i.e., uo=fu(rs) dv. Assuming that the absorption co-
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efficient at any point in the wave field is proportional
to | & |2 the absorption coefficient of the atom at 1, in
the field is

(a) wu(ro)=T[&(r)u(r,) dv

(b) =T{(E/+Er’) [u(ra) dv
+2Eo-Ey [ exp (—2wiH-1)u(r,) dv}
(C) = T{ (E02+EH2) /.lo+2Eo‘EH exp (27(‘1.H‘ro)

X [ exp (2wiH 1,)u(r,) dv} (82)

where the integral is over the volume of the atom and
T is a proportionality constant. The average of u (o)
taken over all positions in the field gives the average
absorption coefficient of the atom uo, and the propor-
tionality constant becomes T'=(Eg2+Egn?)~L. If the
last integral in (82c) is abbreviated as woz and we take
the atom in the plane H-r,=0, (82c) gives the absorp-
tion coefficient in the field of (81):

2 ! E, H En l I~‘O_H>
EoZ'i‘EH2 Mo
where we have set Eg-Eg==+P |E||Ex|.

We now make a comparison of the formal results in

Sec. 2.10A. Combining (70) and (67) of that section,
we have

p= yg(lﬂ:P (83)

2| Eo||Ex | ) (84)

from the formal theory.

We see that (84) has the identical functional form
as (83) which was derived simply from the absorption
of a pair of coherent plane waves by an atom. Thus,
the variation of absorption coefficient with the angle
of propagation of energy flow in the x-ray fan can be
explained in the same way as the extremal values ob-
tained when the energy flow is parallel to the net
planes. As the energy flows at greater angles from the
net plane, | En|/| Eo| departs further from unity,
and the electric field at the atom will increase from zero
for the « branch while it decreases from its maximum
for the B branch. When the deviation of | Ex |/| E, |
from unity is very large, the energy flows in either the
primary or diffracted beam directions and u approaches
wo for either branch.

Comparing (83) and (84) also gives us a feeling for
the physical significance of e. We see that our semi-
quantitative treatment relates e with the quantity
uorr/ ko which, defined in (82c) is related to the weighted
distribution of absorbing power within the atom.

(4) Effect of Thermal Vibrations

It is apparent from the above treatment that the
effective value of e depends on the thermal vibrations
of the atoms. Very simply, the larger the amplitude of
vibration the more deeply the atom penetrates into
the higher field intensities and the greater is the ab-

sorption. At the present time, however, no rigorous
theoretical treatment is available to describe quan-
titatively the effect of thermal vibrations on e.
Experiments have recently been performed to obtain
the temperature dependence in anomalous transmis-
sion.?:?t Okerse? has shown the temperature depend-
ence behaves simply as the Debye-Waller factor, i.e.,

(85)

e=ee M,

where M is the usual factor related to the mean square
amplitude of vibration. This is suggested by the ex-
pression e=Fg”//Fy’ if one naively assigns a Debye—
Waller factor to F irrespective of where it appears.

Batterman has shown® that such a form for e can
be obtained from a derivation similar to that in the
above section, by allowing 1y, the position of the center
of the atom, (Fig. 20) to vary periodically as in thermal
motion. The derivation however, is not rigorous. There
is also the question whether the nodal planes of the
wave fields are themselves vibrating with respect to
the static lattice.

If one treats the evaluation of ¢ classically?? one can
readily show that ¢ is related to the distribution of
absorbing power in the atom [as in the physical inter-
pretation of (83)7] directly through the form factor of
those electrons in the atom which photoelectrically
absorb the xrays. However, experiment indicated
that the variation of ¢ with sin 8/A is much less than
one would expect from the form factor and implied
that a quantum mechanical treatment was necessary.
Such a calculation was made by Wagenfeld® who ex-
tended Honl’s original treatment of anomalous disper-
sion. The new theoretical results were in much better
agreement with experiment than that obtained clas-
sically. We thus have direct experimental and theo-
retical verification that the imaginary part of the atomic
scattering factor has only a small variation with
scattering angle. We give a more detailed discussion of
this variation in Appendix C.

2.11 EXIT BEAMS

A. Boundary Conditions on Exit Surface

The wave vectors of those rays which exit the crystal
must have exit points on the spheres which pass through
the L point. The entrance condition of continuity of
wave fronts selected the active tie points on the dis-
persion surface. In a similar manner, the tie points of
the exit beams are selected to maintain equal tangential
components of the wave vectors of the internal and
external beams. This is illustrated in Fig. 21.

For simplicity, we have indicated only one of the
polarizations of the a branch.

20 B. W. Batterman, Phys. Rev. 126, 1461 (1962).
2 B. Okkerse, Philips Res. Rept. 17, 464 (1962).
2 B. W. Batterman, J. Appl. Phys. 32, 998 (1961).
% H. Wagenfeld, J. Appl. Phys. 33, 2007 (1962).



The tie point A was selected by the incident wave
vector Ko, by constructing from the entrance point P,
a line along the normal n to the entrance surface. The
intersection of the exit surface normal n, through A
with the spheres about (000) and (%k!) define termini
of the exit beam wave vectors; viz: a forward diffracted
wave K¢ and a diffracted wave Kg¢. It follows then
that, in general, each branch of the dispersion surface
produces two exit waves and that, in general, eight
exit waves are produced, four of each polarization. For
the case of Laue diffraction where the exit surface is
taken to be a plane parallel to the entrance surface,
ko (exit) are the same as Ky’ (entrance), since the
exit point for the forward diffracted beam coincides
with the entrance point P.

The choice of boundary conditions on the field
amplitudes depends on whether or not the outgoing
beams overlap physically at the exit Laue surface. For
the practical cases usually encountered in Laue diffrac-
tion, the incident beam cross section is small compared
to the path length in the crystal so that the internal
waves do indeed travel separately in the crystal and
do not overlap at the exit surface. This is a departure
from the infinite plane wave we have heretofore con-
sidered. It allows us now to treat each internal wave
separately so that intensities rather than amplitudes
are added for the exit beams.

A generalized ray diagram is shown in Fig. 22 for a
reasonably symmetric Laue case, for a parallel-sided
crystal slab. The incident ray Ko is assumed slightly
off the Bragg angle but within the range of reflection
( Af),. This ray produces the two flows, S, and Sg
which, if not completely absorbed, arrive at the exit
surface and split into the diffracted beam and the
forward diffracted beam. We thus see that the inten-
sity of each exit beam is composed of the sum of the
intensities for the two associated interior wave fields,
if the fields do not overlap. That is, again assuming
that the fields just inside the boundary equal the fields
just outside, we have for the diffracted beam intensity

|Ex® > = |Ene |* + | Eng |2 (86)

evaluated over the exit surface. A corresponding expres-
sion holds for the forward diffracted beam and each

S b
S T0(000)
Sa

F16. 21. Determination of exit wave vectors k¢®kg¢ in the Laue
case.
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F16. 22. Ray diagram of energy flows for small cross section,
divergent, input beam.

polarization state. If the fields do overlap, then
|Ep* [* = | Ega+Epg |* (87)

The evaluation of this expression is essentially the
same as that encountered in discussing Pendelldsung,
and its value varies with crystal thickness, as is dis-
cussed in the section to follow.

B. Field Amplitudes at Exit Face

We discuss qualitatively the nature of the fields at
the exit surface, using again, the symmetric Laue case
for illustration. The Bragg case is considered in Sec. 3.0.

Since the ratios of the field amplitudes are fixed by
the tie points selected, and their relative values are
set by the entrance conditions on the field amplitudes,
the only way the fields at the exit surface can differ
from those at the entrance surface is through absorp-
tion losses or Pendellssung effects. That is, the dif-
fracted beams exist at the entrance surface and then
suffer some changes or attenuation in passing through
the crystal.

If the crystal is very thin with respect to a Pendel-
losung period, then, using the entrance conditions (40),
and the exit conditions (87), we see that there is no
diffracted beam. As the crystal thickens until it is
one-half of a Pendelldsung period thick, as we have seen
in Sec. 2.8A, all of the energy for the ray making the
exact Bragg angle is flowing in the diffracted beam
direction. This energy flow becomes progressively
smaller with greater deviation from the exact Bragg
angle. There thus is an intense, narrow (angle-wise)
diffracted beam giving a certain integrated intensity.
When the crystal gets to be a full Pendellésung period
thick, there again is no diffracted beam. This oscilla-
tion in diffracted intensity with thickness keeps up
until absorption kills the g field, or the fields separate
physically, or irregularities in the thickness produces
an averaging effect. The averaging effect of the thick-
ness irregularities, mathematically, is equivalent to
separation of the flows. Thus one goes, as the crystal
thickens, from exit condition (87) to exit condition
(86), where the diffracted beam intensity is made up
of the sum of the intensities of the « field and the 8
field.

Because of the absorption factor, all fields eventually
die out with increasing thickness. Thus, physically,
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F16. 23. Energy distribution, as calculated by Kato, across exit
beams for small cross section, divergent, input beam. (uof=2).

there is some thickness at which the experimentally
observed diffracted intensity is maximum. Zachariasen
shows that the expressions for the integrated intensity
in this physically thin region agree with those of the
kinematical theory. Since, in the kinematical theory,
the crystal thickness for maximum diffracted intensity
is the reciprocal of the linear absorption coefficient
(tn=1/uo), which generally speaking, is ten or so
Pendellosung periods, we would expect that normally
the kinematical theory is still applicable up to about
this thickness. We treat, however, in detail, the case
where the product uef is indeed zero; but we assume in
the next sections that ¢ itself is large enough to permit
use of exit condition (86).

With respect to the exit beams, we are interested in
three aspects, namely: (1) what is the spatial intensity
distribution across the beams within the 20 fan of Fig.
22; (2) what is the shape of the rocking curve, i.e.,
intensity vs rocking angle; and (3) what is the inte-
grated intensity. We consider these points in the above
order.

C. Intensity Distribution Along Exit Face (Special
Case)

The energy distribution along the exit face for the
case of small incident beam cross section has been con-
sidered in detail by Kato.?* We qualitatively discuss
some interesting aspects of his results. The essential
parameters are given in Fig. 23.

The incident beam is assumed to have uniform power
per increment of Af within the incident angular range
for reflection. The parameter along the exit surface is
given by p= tan A/tan 6 such that p=-1 corresponds
to either end of the x-ray fan. The distribution of
energy at the exit surface for different values of uot
calculated for the forward diffracted and diffracted
beams is given in detail in Fig. 24, but we have sche-
matically shown the distribution in Fig. 23 for ugf~2.
The forward diffracted beam is most intense along the
edge closest to the incident direction, and its intensity
falls off in the direction of the diffracted beam. The
diffracted beam has ‘“hot edges.”

In Fig. 24 we see the diffracted beam distribution in
more detail. For thin crystals (ugf/x0) the edges of the

24 N. Kato, Acta Cryst. 13, 349 (1960).

beam have greater intensity than the center. The
reason for this can be seen qualitatively by referring
to Fig. 11. If we have a uniform distribution of incident
points P we have a “pile up” of Poynting vectors S
(which are normal to the curve) in the 8, and sy
directions because of the curvature of the dispersion
surface. Since for thin crystals there is little absorption
to attenuate this flow near the edges of the fan, the
power is predominantly shifted to the beam edges. As
the crystal gets thicker and absorption becomes more
important, we see from the variation of absorption
coefficient in the fan (Fig. 18) that the central region
remains strong but the wings die out and in Fig.
24(a) the distribution for uet=10 is peaked in the
central region. This explains the phenomenon of
“double Laue spots” that has puzzled investigators
for some 30 years. In a transmission Laue photograph
of a relatively thin crystal it had been observed that
some of the diffraction spots appeared double. It was
originally thought that the effect was due to mosaic
layers on the faces of the crystal giving enhanced
diffraction. We can see now that this is a dynamical
effect due to the curvature of the dispersion surface
producing enhanced diffracted intensity at the edges
of the x-ray fan.

In Fig. 24(b) we see that the transmitted or forward
diffracted beam is asymmetric even for crystals as
thick as pef=10. It is only for considerably thicker
crystals that the diffracted and forward diffracted
beams are of identical shape and intensity.

D. Diffracted Intensities: Laue Case

Using the boundary conditions (86) where the exit
fields are separated, the intensity of the waves described
by Egs. (42) at the exit surface (r=r,) is given by:
](}we_ | E(yw |2 __1

6~2v'

—_— = —_ _ ",
(@) Io | E¢ |2 4]|coshul? exp (—4rKo," 1.)
Imw |Em? 1 |0]
Hw_ == — 47K o1,
() 7= TR~ 2 oo OP (74K r)
(88)
ID
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37 Fot=0,
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F1c. 24. After Kato. Energy distribution across diffracted beam
(a) and forward diffracted beam (b) for the situation of Fig. 22,

with respect to uef. Note that for small uo#, the diffracted beam
has “hot edges,” a result of the curvature of the dispersion surface.



where w represents a particular polarization of either
the « or B branch, I, the corresponding incident in-
tensity associated with that polarization and where
for the diffracted beam we have set | [FaFg }/Fg| =1.

For the symmetric Laue case which we discuss in
some detail, these can be expressed in terms of the
incident conditions through 7’ using the approxima-
tions discussed in Eq. (73). The absorption coefficient,
47Ky’ is also given in terms of %’ by expression (75).
Thus:

@ F={~arr)
X exp [— ’%(1?61—{%%;})],

IHw 1 1 [ [.Loto( ]Ple )]
b) —=-———exp| — —(1F—7——=] |, (89
® T mim e L W\ T/ b
where %o is the thickness of the crystal, the negative

sign refers to the « field and 7’ is related to the relative
angle of incidence, Af by

7= (Afsin20)/| P|T|Fa'l. (90)

Expressions (89) give the theoretical rocking curve
line shapes on an 7’ scale. Conversion to the usual 4
scale is made through (90) ; this is a linear relationship.
The integrated intensity is the area under the curves
given by (89). We discuss the line shapes first. A more
complete discussion of the effect of the various param-
eters on the line shape and integrated intensities is to
be found in the article by Hirsch.

(1) Rocking Curve Line Shape: Symmetric Laue Case

Diffracted beam. From Eq. (89) we see that if uei<<1,
the so-called thin crystal case, then radiation from both
the a and 8 branches is present in the diffracted beam,
and on the %’ scale, the peak shape is given by the
simple expression:

In(a+B)/Io(c or =) =%{1/[1+(")*]}.

This is shown as the upper curve in Fig. 25. For
radiation making the correct Bragg angle (n'=0;
A0=0), Iz/Iy=3%, and all the crystal does is act as a
beam splitter, for each polarization state, diverting
one-half of the incident beam into the diffracted beam.
This is true independent of the structure factor or
strength of the reflection, but like all peak height
effects, it is difficult to observe. It should be noted
that this limiting form for pet<<1 is not reached by
allowing t—0. Obviously, as {—0, Iz—0 since there is
no crystal to do any diffracting. Equations (88) are
valid only when the crystal is large enough so that
physical separation of the wave fields can take place.
The limit uet—0 is arrived at by keeping ¢ sufficiently
large and allowing the absorption to approach zero.

(1)
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T16. 25. Peak shape on an 7’ scale, for the diffracted beam in the
symmetric Laue case as a function of uf. Since 3’ is a linear func-
tion of A6, this is also essentially a plot as a function of Af.

The integrated intensity (the observable) does
depend on Fy through the peak width. The half-width
Q on the 5’ scale is @=2 or on the 6 scale

(A8)e=2|P|T| Fg' |/sin 26. (92)

We see from (89b) that as uef gets very large, that
is, uot>10, radiation associated with the 8 branch of
both polarization states generally is completely ab-
sorbed and for the a branch the = polarization state
(P= cos 20) usually also is completely absorbed, so,
at most, for an unpolarized Iy, % of Iy appears in Iy at
the peak height. For pet>10, the thick crystal case,
(89b) thus reduces to

In(a,0) 11 el e
T, —81+<n')2eXp[ o (l [1+(n’)2])]'
(93)

This is represented by the lower curve in Fig. 25
where we have assumed exZ1 so that Ix/Iy=% at A=0.
The absorption term in (93) sharpens up the peak. If
(93) or the more general expression (89b) has appre-
ciable value only for (n")?<1, then for an unpolarized
I, for either polarization state it may be approximated

1 Mobo
—_—t == - —1-|P
Iy 4exp[ 70( | IE)]

Holo

€0

P e-(nl]. (94)

X exp [— 2

The peak drops to half its value when

3 (uoto/70) | P | e(n')?=In2,
and so the half-width, on the 6 scale, is given by
21P|1“1FH'1[ 21n2 ]%
Af) o= . . (95
( )ﬂ Sin 20 l P I e(,uoto/‘)/o) ( )
Forward-diffracted beam. The line shape of the for-
ward-diffracted beam is best understood by considering

the a and B branch contributions separately. For the
thin crystal case where ut—0 (89a) may be written
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F16. 26. Peak shape, on an 7’ scale, for the forward diffracted
beam, symmetric Laue case, for zero absorption. The contribu-
tion from the points on the individual branches of the dispersion
surface are shown dotted.

for each polarization state, as
If(c or ) _1(1_ 7 )2
Iy A [1+0)E

1 7’ )2
) ©

The first term on the right represents the a branch
and the second the B branch. The behavior of these
terms as a function of (y’) is shown dotted in Fig. 26.
The solid curve is the sum. For 5’ large and negative,
we get 1009, transmission described by a tie point on
the a branch. At '=0, ( A§=0), the forward-diffracted
beam is (%) Io, one-quarter contributed by each branch.
For n’ large and positive, the point on the 8 branch
describes the whole process. The solid curve of Fig.
26, the sum of the dotted curves, is merely the equiva-
lent curve (ut<X1) of Fig. 25 turned upside down.

As ugt increases, (89a) goes through an interesting
sequence. The 3 contribution dies out faster than the
a contribution, and the wings of Fig. 26 die out faster
than the middle. The result is shown schematically in
Fig. 27. At intermediate values of u, there is an asym-
metrical sum curve as shown by the middle curve in
Fig. 27.

As pot becomes larger than 10, the thick crystal case,
only the o polarization state of the o branch remains,
and

-

<en| =5 )} @

which is the same as (93) for 75/1,, except for a slight
asymmetry with respect to n’ due to the coefficient
before the exponential. That is, the forward diffracted

beam peaks at a slightly negative value of 4. As u
increases, the values of 7’ for which (97) has ap-
preciable values become much less than unity, so that
the forward-diffracted beam and the diffracted beam
become equivalent.

(2) Integrated Intensities

The integrated intensity is usually measured by
rocking through 6. On the @ scale, this quantity pg is
given by

TgA

22 g,

Tods (98)

PH=

where A, A, are cross sections of the beams. For the
symmetric Laue case, the cross sections are equal. Con-
verting the intensity ratios on the 5’ scale to a 6 scale
is more difficult than changing the integration param-
eter in (98) from 6 to 5’. We thus calculate py using

I(n') db (dﬁ) I(n')
=[—L —dn'=(— /_ dn’
pH 1o N an To U

where, from (90),

d§/dy’= | P| T | Fu' |/sin 26. (99)

Diffracted beam: symmetric Laue case. For the thin
crystal case, integration of (89b) with respect to 7/,
(the area under the upper curve in Fig. 25) gives
pu (") =1m for each polarization state; then from (99)

pH= (l P I r [ FH/ ]/sin 20)%7!’ (100)

This is the integrated intensity for a perfect non-
absorbing crystal for the stated polarization state, in
symmetric Laue diffraction, and it corresponds to the
Darwin expression for the Bragg case. It is equal in
value to one-half the integrated intensity in the Bragg
case.

e
Io

Io fot=0

Hot™1

N

I\ o

= -2 A 0 i 2
FORWARD DIFFRACTED BEAM

31’/

Fi16. 27. Peak shape, on an 9’ scale, for the forward diffracted
beam, symmetric Laue case, as a function of ugf. The lower curve
is the anomalous transmission.



For the thick crystal, numerical integration of
(89b) should be carried out for precision results. How-
ever, using the approximate expression, Eq. (94)
which can be integrated directly, we have for each
polarization state

_|p;r|pH|[ o ]é
P 4 sin 26 I P l 6(#010/’)’0)
X exp [— M’yﬁo(l— | P| e)]. (101)

This expression is usually quite adequate for survey
studies of the Borrmann effect and applies to the
forward-diffracted beam as well as to the diffracted
beam. Although the effective absorption coefficient in
(101) may be zero for the o polarization state and «
branch, the integrated intensity for this state does
differ from that of the true no-absorption case, expres-
sion (100). As long as uof is finite, the peak shape is
sharpened by an exponential dependence on 7'.

Forward-diffracted beam. For the thick crystal, Eq.
(101) usually satisfactorily indicates the values ob-
tainable from a numerical integration of (89a). It
should be noted from Fig. 27 for thinner crystals,
that if exp (—uof) is measurable, a uniform contribu-
tion of this amount should be subtracted, otherwise the
integral is infinitely large. Thus, for the thin crystal
case, the integrated intensity for the forward-diffracted
beam is the ‘“negative’ of that of the diffracted beam.

A detailed discussion concerning the numerical
evaluation of both diffracted and forward diffracted
beams is given in the Appendix.

3.0 THE BRAGG CASE

For the Bragg case of reflection, the diffracted beam
exits from the same face that the incident beam enters.
This is the classic case, picked by Darwin in 1914, who
was the first to investigate scattering from a perfect
crystal. His treatment was geometrical in that he con-
sidered partial scattering and transmission through a
plane of atoms and took into account the fact that
rays Bragg-scattered from lower planes satisfied the
reflection condition for backscattering from the upper
planes. He therefore did consider the dynamical prob-
lem simply and clearly, and his results are correct.
However, the dynamical theory, as subsequently
developed by Ewald and von Laue, gives not only
Darwin’s results but develops a description of the
distribution of x-ray energy inside the crystal and
permits inclusion of the effects of absorption in a
straightforward way.

Although the Bragg case was treated historically
before the Laue case, we approach it in terms of the
dispersion surfaces and the point of view developed in
the previous sections primarily for the Laue geometry.
In Fig. 28, the vertical surface on the left represents
the familiar symmetric Laue entrance surface, and the
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Fi16. 28. Boundary conditions for the symmetric Laue case and
for the symmetric Bragg case. Note that the tie points selected
by a given set of incident conditions in the Bragg case lie on only
one branch of the dispersion surface.

tie point A; is selected by the entrance point P1. (Also
the tie point B;.) If one imagines the entrance surface
pivoting clockwise about the point C, then an inward
surface normal passing through ‘A, would require en-
trance points P moving up the Ewald sphere through
the Laue point. As soon as we pass the entrance point
Ps, which represents the condition that PyA; is essen-
tially perpendicular to Ky, we enter the Bragg region,
since now, for the first time, one of the wave vectors
points back out the entrance surface. As the entrance
surface becomes horizontal, in Fig. (28), we have the
symmetric Bragg case. One of the important differences
between the nearly symmetric Bragg case and the
Laue case is that an incident point in the Bragg case
selects two tie points on the same branch of the hyper-
bola, for a given polarization state, as opposed to one
tie point on each branch.

In Fig. 29, for the symmetric Bragg case, we also
note that there is a range of incident points, P, through
P3, which produce no intersections with the dispersion
surface. That is, over this range of incident angles, no
propagating solutions would be expected to exist. This
is the region of “total” reflection. The incident point
Py, (A9=LP,/k) selects the tie points T, and T; on
the o branch. The incident vector Ko and the diffracted
exit vector Kpy® are indicated. Not only does the exit
vector ky¢ intersect the entrance (and exit) surface,
but the whole energy flow S, perpendicular to the dis-
persion surface at Ty, flows outward across the surface.
This is a general situation; for any Bragg case the flow
of one tie point is into the crystal and the other tie
point will have its Poynting vector pointing out of the
crystal. This outward flow is not the generator of the
diffracted beam. In fact, Kohler® has proven that only
one of the two tie points gives a physically meaningful
solution, and that is the one associated with the internal
flow. Thus the tie point T is not excited. S, signifies
an energy flow taking place in the entire crystal, ir-

2 M. Kohler, Ann. Physik 18, 265 (1933).
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F16. 29. Detailed selection of tie points in the symmetric Bragg
case. Only tie points on the hatched region correspond to per-
mitted solutions. The entrance conditions between entrance points
P: and P; correspond to the region of “total reflection.”

respective of depth, directed toward the outside. In
order to have a finite S, at the entrance surface of the
crystal, we require deep within the crystal a very large
S: because the wave field loses energy by absorption
as it flows toward the surface. This would require, as
we let the crystal become infinitely thick, an infinitely
strong field to give a finite field at the entrance surface.
This, of course, is physically unreasonable, and, hence,
the field associated with the tie point T, cannot be
excited. This qualitative proof of the excitation of only
one tie point in the Bragg case is due to Authier® and
the argument is interesting from an historical point of
view. As the dynamical theory advanced, stimulated
to a large extent by the experimental discovery of the
Borrmann effect, more emphasis was placed upon the
direction of energy flow, and many of the features of
the wave field interactions in the crystal could be more
easily visualized in these terms. Thus, for the sym-
metric Bragg case, only tie points on the hatched parts
of Fig. 29 can be excited.

The nonexcitation of the tie point T in the Bragg
case differs from the nonexcitation of similar tie points
high up on the « branch in the Laue case. There, since
Ey becomes considerably greater than E, FE, was
quenched by assigning less and less of the incident
energy, Fq' to it, as can be seen in Eq. (41). The par-
titioning of the incident amplitude is quite different in
the Bragg case. Since there is only one excited tie point

Ei=E,, Euw=En, (102)

where j represents the single appropriate tie point.
Thus the inside incident amplitude is the same as the
outside incident amplitude, and the outside diffracted

2 A. Authier, J. Phys. Rad. 23, 961 (1962).

amplitude is identical with that of the inside diffracted
field at the surface. The diffracted beam then is more
truly a reflection; it is not generated by any flow reach-
ing the surface and splitting up, as in the Laue case.
Outside the range of total reflection, (the region be-
tween P and P3 in Fig. 29), an incident beam strikes
the crystal, a flow into the crystal and a reflected beam
are generated. The ratio, Ey/E,, is the same in both of
these effects. The internal flow eventually is completely
absorbed, if the crystal is thick enough. Equation (24),
for Ep/E, then gives the reflection coefficient,
| Ex®/Eq’ . Multiplying the two expressions in Eq.
(24) together, we have
EaY'_& Fu_ 2yl

() = 0] (-2, (103
where we have used Eq. (31) in order to express & and
& in terms of . Equation (103) is perfectly general,
the only change in going from the Laue case, Eq. (35),
to the Bragg case is to replace (3?4-1)? by (y2—1)%. For
a centrosymmetric crystal Fy=Fg, (which is often a
good approximation in any case), and then the reflec-
tion coefficient becomes

| Ene |2
| Egt |2

= [bllnE@@—1F (104)

A. No Absorption

For the symmetric Bragg case, b= —1; and if there
is no absorption , [Eq. (32)], is real, and is given by:

n=(—A0sin 20+TF,)/| P|TFx,  (105)

where Foand Fy are real.

If A6 is large and negative, 5 is large and positive.
The point is well down on the low-angle side on the «
branch, and the negative sign in (104) gives us
| Ex /| Eq =0, i.e., no diffracted beam. Only the
transmitted beam, Ey, exists. As 5 reduces to +1, Af
going through zero and becoming positive, we have
that Afsin 20=TF,— | P| T'Fyu,and that | Ey [2/| B |?=
1. This corresponds to the incident point Py, Fig. (29),
which excites the diameter tie point on the a branch
and is the beginning of total reflection [see Fig. (30) ].

L r——=1
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F Fic. 30. Shape of the Bragg reflection from a perfect crystal,
on an 7’ scale. The upper dotted curve is for zero absorption
(Darwin curve) and the lower curve is with absorption (Darwin—
Prins curve).



The S vector, now, is along the atomic planes and also
along the physical surface.

If one visualizes the incident plane wave as bounded
by slits, then when this beam enters the crystal and
discontinuously changes its flow direction to be more
parallel to the surface, the cross section of the flow
inside the crystal steadily reduces to zero as S becomes
parallel to the surface. Thus at the beginning of total
reflection, the cross section of the flow in the crystal is
zero. There is, however, an exponential damping of the
fields with depth in the crystal; an extinction at right
angles to the flow direction, which is equivalent to the
usual skin-depth concept, in the region of total reflec-
tion. We consider this further in 3.1.

At 9=-—1,

Al sin 20=PFO+ I P ] PFH, [ EH Iz/l Eo 12

is still unity, and we are at the diameter point on the
B branch. Thus, now with the positive sign in Eq. (104),
as Af increases, 7 becomes increasingly larger and
negative, until | Ex |?/| Eo |* goes to zero again. We
have just traced out the sides of the Darwin reflection
curve, as shown in Fig. 30 upper curve.

Equation (104), for the reflection coefficient, con-
tinues to give unity for all values of 5 between 41 and
—1. Thus, even though there are no tie points on the
dispersion surface, Eq. (31) for & and &y in terms of
the boundary conditions, still leads to valid descriptions
of the fields in the crystal. The “solution surfaces,”
as discussed in 3.2, which reflect the boundary condi-
tions, thus overlay the dispersion surfaces, which are a
function of crystal structure and relative absorption.
Thus we have in Eq. (104) a perfectly general expres-
sion for the shape of a Bragg peak on the 5 scale. Since,
in general, # is a function of absorption, we have an
“automatic” way of including absorption effects on
Bragg peaks. Before moving on to the case with ab-
sorption, we might note that the center of the Darwin
curve, which occurs at =0, occurs at a Af sin 20=TF,,
where Fy is real, it can be seen that this angular dis-
placement of peak position is due to an index of re-
fraction effect.

B. With Absorption

If we assume, as in previous sections, that Fg''/Fg’
is small enough compared with unity to neglect second-
order terms in this ratio, then, for %, from Eq. (32), for
the symmetric Bragg case (b= —1), we have

1]/‘—" (—AB sin 20+PF0,)/[ P ! PFH,,

n'=—(Fy"/Fu') (#'—=1/| P|e), (106)
where e again is Fg''/F,".

The Darwin-Prins curve can be obtained directly
from Eq. (104) using 'the complex 5 defined in the
above equations. A typical curve is shown in Fig. 30
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curve (b). From Eq. (106) we see that ’ is essentially
the same parameter that was used in 3.1A in discussing
the Darwin curve. Thus the general features are similar.
We note also that 5" is a linear function of »’, with a
small slope and with an intercept at '=1/| P | e. Since
7'>0 for 4’’=0, the Darwin-Prins curve matches the
Darwin curve only at a point close to the low-angle
slope of the peak. It is less than the Darwin curve at
all other points. Aside from a general lowering of the
reflection curve, the effect of absorption is to enchance
the reduction of the diffracted intensity at the high-
angle side of the range of “total” reflection, producing
an asymmetric reflection curve. Some physical insight
as to the reason for the asymmetry is brought out when
we discuss the fields in Sec. 3.2. The only subtle variable
in the calculation of the values of (104), with absorp-
tion, is e. Fy” can be determined directly from the
linear absorption coefficient, but Fg” is still of concern.

In Appendix C we go into a detailed discussion of
the evaluation of (104). However, we notice that for
the weaker reflections, i.e., as Fu’ becomes smaller,
the range of total reflection gets smaller. The dispersion
surface hyperbolas come closer together and closer to
the Q point. Also, for n’=0, which still is closely the
“center” of the curve, we have that 4'=F,”/| P | Fx'.
Since the greater 9"’ at this point, the greater the devia-
tion from total reflection, we see that the ratio of the
absorption to the strength of the reflection (i.e.,
Fy'/Fy’) determines whether the peak needs to be
described by the dynamical theory or the kinematical
(mosaic) theory.

As opposed to the symmetric case with no absorp-
tion, there is never total reflection since | Ex [?/| Eo [2<
1, and so there must always be some energy flow into
the crystal. This follows from energy conservation. In
other words, energy never flows parallel to the crystal
surface when an absorption process is allowed, with
any penetration of the fields into the surface. We can
see this formally from Egs. (66) and (67) which,
when combined, give:

_ | Ea /| B2

WA B Y B P

tan 6, (107)

where A is the angle of flow with respect to the atomic
planes. Since | Ex [2/| Eo |2, by Eq. (104) is always less
than unity, A is never zero. Thus, although we may
think of approaching the diameter points in Fig. 29,
the effect of the boundary conditions on the field
amplitudes at the crystal surface prevents the region
near the diameter points from being excited. The effect
of absorption is to force a small flow into the crystal
and so the “solution-surface” leaves the dispersion
surface at the appropriate value of A. The important
thing in the Laue case was the attenuation of the flows,
and small variations of Eg/E, due to boundary condi-
tions were not too significant. In the Bragg case, the
amplitude ratio at the surface is critical.
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F1c. 31. Plot of real part &’, and imaginary part &, of & as a
function of 5’ for the no-absorption case and symmetric Bragg
conditions. The curved parts of £’ correspond to points on the
dispersion surface. The linear portion represents points between
the diameter points of the dispersion sheets. This “solution sur-
face” thus departs from the dispersion surface. The values of
&'’ give the extinction depth, or skin depth, for the penetration
of radiation during total reflection.

3.1 PRIMARY EXTINCTION

In order to get a feeling for the penetration of the
fields during the angular range over which ‘total”
reflection is occurring, we consider the symmetric
Bragg case with no absorption, and a centrosymmetric
crystal (Fg=Fg). From Eq. (31) we have for & with
b=—1

fo=3k | P | TFu[n=+ (»—1)%], (108)

in which all parameters on the right are real because of
no absorption. & is real outside the total reflection
range, | 7| >1, and within the range (—1<7<+1),
has the real and imaginary parts:

Eo,z%k I p I PFH"):
f=21k| P|TFu(1—9%)k (109)

In Fig. 31 we show a plot of &' and &’ as a function
of 9. (Note that increasing # means decreasing glancing
angle Af so that the a branch is on the right.) Within
the range of total reflection &’ varies linearly with
Af. The imaginary part is zero outside the range and
varies parabolically inside having its greatest magnitude
in the center of the Darwin curve. The curve in Fig.
31 can be thought of as a “solution surface” which
overlays the dispersion surface in Fig. 29, but provides
a connection between the diameter points.

From Eq. (23) we can relate &' to attenuation of
the wave field and determine the extinction factor
which describes the skin depth of the probing field.

From Eq. (23) with Fy’’=0 we have
&/'=—K," sin 6, (110)

and the extinction factor for intensity is then, combining
(109) and (110),

exp (—47Ky"-r)
= exp {[—2nk | P| TFy(1—7%)¥/sin 6]z}, (111)

where z is depth in the crystal. At the edges of the total
reflection range (y==1) the extinction factor is unity
and is maximum at the center of the range n=0. The

average value of the extinction factor over the range is
exp [(—%7% | P | TFy/sin 6)z]. (112)

[Average value of (1—%?)* in range, —1<y9<+1,
is 4.7

In the usual case, this attenuation is many times
greater than that produced by normal photoelectric
absorption so that within the total reflection range,
only a thin surface layer contributes to the diffraction.
It is for this reason that the integrated intensity for a
crystal with absorption does not differ greatly from the
Darwin value where absorption has been neglected.

The ratio &'/’ is not small in the region of total
reflection and the approximations leading to Eq. (57)
are not valid. Thus the energy flow is no longer per-
pendicular to the &' curve. However, the situation
shown in Fig. 17 is valid and the flow direction is
given by | Ex |2sg+ | Eo |2So. When absorption is pres-
ent, | Ex |[< | E¢| and a flow is forced into the crystal.
With absorption, the curves shown in Fig. 31 also
deviate from the dispersion surface in the region of the
diameter points, and the points which would normally
predict flow along the surface are not excited.

3.2 WAVE FIELDS IN CRYSTAL

As discussed in Sec. 2.10, for full reflections the «
branch tie points produce minimum field intensity at
the atom sites, while the 8 branch tie points have a
maximum. The structure of the fields is still given by

R= | 14 (En/E,) exp(2riH-1r) 2,  (113)

where the strength of the maximum or minimum is
given by Eg/E,. Since the tie points on the a branch
correspond to the low-angle side of the Bragg peak
and the tie points on the 8 branch to the high-angle
side, we would expect that the high-angle side suffers
greater absorption.

If En/E, is actually evaluated in the range of total
reflection for the nonabsorbing crystal as a function of
depth in the crystal, von Laue® has shown that a
wave field with nodal planes is formed throughout
this range. Since | Ex/E,| =1 in this range, Eq. (113)
is a sine wave with a period equal to the d spacing
giving an intensity variation as in Fig. 3. The nodes
are situated in the atom planes at the beginning (the
low-angle side) of the total reflection range, and as the
glancing angle increases, the nodal plane moves linearly
with angle, until the antinodes are at the atoms at the
high-angle end of the range.

The quantity R, proportional to the electric field
intensity at an atom, near the surface, is plotted as the
solid curve in Fig. 32 as a function of the Bragg angle
n’. For a full symmetrical Bragg reflection with no
absorption, at low glancing angles, the tie point is on
the hatched portion of the « branch (Fig. 29), and the
intensity and direction of energy flow at the atoms is

2 M. y. Laue, Ann. Physik, 23, 705 (1935); or Ref. 5, p. 431,



that of the incident beam. As the reflecting region is
approached, a weak diffracted beam appears, and the
interaction of these two beams reduces the intensity
at the atoms. The direction of energy flow in the crystal
alters towards parallelism with the Bragg planes. As
the tie point moves up the « branch to the diameter
point, the intensity at the atoms reduces to zero (as
Ep—E,) and total reflection takes place. As the total
reflection range is crossed, the field intensity at the
atoms increases from zero to four times its value when
no diffraction is taking place. That is, an antinode is
at the atoms at the high-angle end of the range. As
the angle increases, the tie point moves up the 8 branch
and the intensity at the atoms is always higher than
the value for no diffraction.

For atoms somewhat below the surface, the intensity
is the same as at the surface (again we neglect photo-
electric absorption) outside the total reflection range.
Within the range, however, the extinction factor dis-
cussed in the previous section comes into play, and the
fields are attenuated at right angles to the flow. The
dotted curve in Fig. 32 gives the field at an atom plane
somewhat deeper in the crystal.

We now consider the corresponding situation when
the crystal is absorbing. As we approach total reflection
from the low-angle side, the nodal features appear and
the effective photoelectric absorption coefficient be-
comes less than its normal value. It approaches a
value the order of uo(1— Pe) near the beginning of total
reflection. Since, for full reflections, ¢ can be close to
unity, the absorption is low, as in the Borrmann effect.
However, since the energy flow is fairly parallel to the
surface, there is no great depth of penetration, but
there is a lateral penetration with respect to the point
of incidence. This is not a very pronounced effect,
from power considerations based on the cross section
of the beams, but Borrmann®? and Authier® have
observed this weak anomalous beam by allowing the
incident beam to fall near the edge of the crystal and
recording the radiation leaving the side face.

F16. 32, Field intensity at an atom for a full reflection with no
absorption in the Bragg case as a function of ’. The nodes at the
atoms, @ branch (p=+-1), move linearly with glancing angle,
until antinodes are at the atoms, 8 branch (p=—1). The solid
curve is for surface atoms, the dashed curve is for atoms deeper
in the crystal. The marked lowering of intensity in the total re-
flection region is due to extinction.

28 G. Borrmann, Naturwiss. 38, 330 (1951).
(12; (;r Borrmann, G. Hildebrant, H. Wagner, Z. Phys. 142, 406
955).
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REFLECTION
MoK,

FLUORESCENCE

GeKg

F16. 33. Fluorescence measured during a rotation through a
Bragg peak, used as a measure of the field strengths shown in Fig.
32. See text for discussion.

As the Bragg angle is swept through the now not-
quite-totally reflecting range, the x-ray intensity at
the atoms increases in this probing, attenuated field,
and at the end of the range, the linear absorption co-
efficient has changed from very nearly zero to
wo(14-Pe), or very nearly fwice the normal value. Thus
at the high-angle end, a higher than normal absorption
takes place at the atoms. Since more energy is absorbed,
less is diffracted, and the reflection curve is asymmetric,
with less diffracted intensity on the high-angle side.

A rather direct verification of the nodal picture
described above was given by Batterman® who used
the secondary fluorescence emission as a probe of electric
field strength (and absorption) at the atom. This
technique is conceptually similar to the work of
Knowles,® who used a nuclear neutron-induced vy-ray
emission to study the distribution of neutrons in a
perfect crystal while neutron diffraction was occurring.
In the x-ray case, Mo K, radiation is sufficiently ener-
getic to excite the K fluorescence of Ge, which, itself is
of sufficiently short wavelength to readily escape from
the crystal and be easily detected. Thus, if the Ge K,
fluorescence radiation is measured while a perfect
crystal of Ge, exposed to a beam of Mo K, radiation is
slowly rotated through a strong Bragg reflection, the
field at the atoms can, essentially, be determined. In
the experimental curves in Fig. 33, the upper curve is
the Bragg reflection of the Mo K, radiation, while the
lower curve is the Ge K fluorescence. The reflected
beam shows the asymmetry of the Darwin—Prins
curve, which is due to absorption. The features of the
fluorescence curve correlate with the structure of fields
within the crystal, as discussed above. Far off the
reflection, further off than shown in the figure, the
background fluorescence I, the horizontal solid line in
Fig. 33, is produced when all of the primary beam is
absorbed within the crystal. As we move to a given
diffracted intensity on the low-angle side of the peak,
corresponding to a tie point on the « branch, field

3 B. W. Batterman, Appl. Phys. Letters 1, 1962; Phys. Rev.
(to be published).
% J. W. Knowles, Acta Cryst. 9, 61 (1956).
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I16. 34. Asymmetric Bragg reflection. Note that in this case the
angular width with respect to the incident beam, PyPy, is less
than the angular width in the diffracted beam ExZE.. At the
same time, the cross section of the diffracted beam is less than
that of the incident beam.

intensity is shunted away from the atoms and so the
primary beam penetrates more deeply before it is
absorbed. The self-absorption of this deep-generated
‘fluorescence radiation in getting back out of the
crystal causes the drop in the measured fluorescence.
For a corresponding diffracted intensity on the high-
angle side of the peak, the same amount of fluorescence
radiation is generated, but now it is all generated very
near to the surface because of the high fields at the
atoms, and so it experiences little self-absorption in
.leaving the crystal. This produces a measured fluores-
cence which is even more intense than that observed
when all the energy is absorbed with the crystal well
off the diffracting condition, i.e., 7p. This enhancement
of the fluorescence due to surface generation is shown
in Fig. 33. The large dip, and asymmetry, in the central
region of the fluorescence curve is in effect a mirror
image of the diffracted beam, since the predominant
change in the fluorescence is due to the fact that energy
is prevented from entering the crystal and is diverted
instead into the diffracted beam. The quantitative
comparison of the fluorescence generated with that
predicted using the nodal patterns given by Eq. (113),
with corrections for self absorption in leaving the
crystal, is very good.

A final point with respect to the Bragg case, for
asymmetrically cut crystals, is illustrated in Fig. 34.
The left-hand side of this figure shows the dispersion
sheets and, with the physical surface cut so as to be
more perpendicular to the incident beam, we see that
the o branch tie point at the onset of total reflection
(71) has moved up the dispersion curve; S;, however,
is still parallel to the crystal surface. The important
feature is that the angular range of total reflection, the
entrance points P; to Pe, is now less than that for the
symmetric case, whereas the angular range in the dif-
fracted beam, the exit points Ex; to Exe, is now greater
than that for the symmetric case. Thus the half-width
of the reflection with respect to the incident beam is

reduced, but more divergence exists in the diffracted
beam. The physical situation shown in the right-hand
side of Fig. 34 is the reverse, where we see that a broad
incident beam is condensed to a narrow diffracted
beam. The asymmetrically cut crystal, used in this
orientation, thus accepts less divergence from a broad
incident beam and gives more cross-fire in a narrowed
diffracted beam with respect to the behavior of a
similar symmetrically cut crystal. These interesting
condensing and collimation and power gathering effects
of asymmetrically cut perfect crystals used in Bragg
diffraction have been pointed out by Renninger®? and
Kohra® and have been used by them to experimentally
measure a single unconvoluted Darwin—Prins curve.

The reflection coefficient, | Ex |2/| Eo |2, for tie point
Ty, may be greater than unity. In fact, for very small
absorption, it becomes unity on the low-angle side of
the peak, for an entrance point which would select the
diameter tie point. Thus the diffracted field amplitude
may be greater than the incident amplitude; this is
consistent with the change in beam cross section as
shown in the right-hand side of Fig. 34, where, if there
is total reflection, the reduced cross section must be
accompanied by an increase in field strength so that
incident and diffracted power are the same.

4.0 SPECIAL TOPICS

The concepts developed in the general theory with
respect to energy flows, standing waves, absorption
and integrated intensity have been confirmed by a
number of experiments.®343 We consider briefly
certain points which have proved of special interest.

If we consider the absorption terms in detail for a
particular symmetric Laue transmission case, say the
(220) reflection (a full reflection) in Ge with Cu K,
radiation, for a crystal slab 1 mm thick, then wo=350
cm™, 26=45° ¢=0.95 and we have:

Normal absorption: g h0t0/70 = g—350(0.1/0.924) — 38

o polarization, a branch: ¢%8¢—0.9%)=¢19
w polarization, o branch: ¢=331=07000.85)] = g—12.5
m polarization, 8 branch: ¢ #81+0.7000.9)] = ;—63.5
o polarization, 8 branch: ¢ 380+0.99) = 74

It is quite obvious from the above that only radia-
tion of ¢ polarization, & branch will get through the
crystal. This implies of course, that the Borrmann effect
can be used as an x-ray polarizer. Since the above
calculations refer to the forward-diffracted beam also,
the polarizer-monochromator can be inserted in an
x-ray beam without appreciably changing its line of
action and if the crystal is rotated about this line, the

3 M. Renninger, Z. Naturforsch. 16a, 1110 (1961).

3 K, Kohra, J. Phys. Soc. Japan 17, 589 (1962).

# G. Borrmann, Z. Phys. 127, 297 (1950).

% G. Schwarz and G. L. Rogosa, Phys. Rev. 95, 950 (1954);
G. Brogren and D. Adell, Arkiv Fysik 8, 97 (1954).

38 G. Borrmann, Z. Krist. 106, 109 (1954).

8 W. H. Zachariasen, Proc. Natl. Acad Sci. U. S. 38, 378 (1952).



E vector in the beam can be rotated to any desired
angle. These polarization effects have been verified by
Cole et al.®

The anomalous absorption effects predicted by the
general theory for x rays should also hold for other
types of waves such as neutrons or electrons. Dynamical
effects are the rule in electron diffraction. This is be-
cause the number of atomic planes necessary for perfect
crystal diffraction is much smaller than in the x-ray
case since the scattering amplitude per plane is very
high for electrons. (Electron diffractionists would say
that the extinction distance, which is proportional to
the reciprocal of the scattering amplitude per plane,
is very much smaller for electrons than for x rays.)
Anomalous transmission effects are much more difficult
to observe because the absorbing power is more uni-
formly distributed between the planes. Recently,
however,3—# electron diffraction effects have been ob-
served which can be traced directly to the difference
in absorption between the two types of wave fields. In
an experiment which is the electron analogy to the
fluorescence experiment described in Sec. 3.2, Dun-
cumb* has observed enhanced x-ray emission from
extinction contours indicating the presence of the anti-
nodal wave field.

For the case of neutrons the dynamical effects have
been verified. Knowles’ experiment® (which was sug-
gested by Ewald) which we have also mentioned in
Sec. 3.2, detects the presence of one of the wave fields
through an incoherent scattering. In this case, he chose
a crystal for which there is a nuclear reaction (y-ray
emission) between the neutrons and nucleus of one of
the matrix atoms. During diffraction, the standing
wave pattern reduced the neutron intensity at the
nucleus and a corresponding reduction in y-ray output
was observed.

The presence of the Borrmann effect is indicative of
crystal perfection; the absence of the effect in full
strength should be a useful measure of crystal defects.
Hunter*? began to explore these ideas by observing the
Borrmann effects in elastically strained slabs of single-
crystal Ge. This work was continued, and a theory of
the transmission through strained crystals, was worked
out by Polder and Penning® and further experimental
work was performed by Okkerse and Penning.4

A recent series of papers has been published dealing
with dynamical diffraction in slightly deformed crystals.
Howie and Whelan® have developed a theory for

3 H. Cole, F. W. Chambers, C. Wood, J. Appl. Phys. 32,
1942 (1961).

3 M Hashimoto, A. Howie, and M. Whelan, Proc. Roy. Soc.
(London) A269, 80 (1960).
(1406213. B. Hirsch, A. Howie, M. Whelan, Phil. Mag. 7, 2095

962).

4 P, Duncumb, Phil. Mag. 7, 2101 (1962).

£ 1. P. Hunter, J. Appl. Phys. 30, 874 (1959).

4 P, Penning and D. Polder, Philips Res. Rept. 16, 419 (1961).

“ B. Okkerse and P. Penning, Philips Res. Rept. 18, 82 (1963).

4 A. Howie and M. J. Whelan, Proc. Roy. Soc. (London)
A263, 217 (1961).
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electron diffraction by a kinematic “column approxi-
mation” which allows for the inclusion of displaced
atoms. Two papers by Kato® deal with the same prob-
lem from the x-ray viewpoint.

Photographs by Borrmann¥ and others made using
the anomalous transmission have revealed dislocations
and other elastically strained regions in crystals. The
strained regions undergo enhanced absorption and cast
shadows in the anomalously transmitted and diffracted
beams. Patel and Batterman®® have used anomalous
transmission to detect the presence of 1 part in 108 dis-
solved oxygen in highly perfect silicon. By appropriate
heat treatment, the precipitation of the oxygen strained
the lattice enough to completely destroy any anomalous
transmission. By proper solution heat treatment, the
original anomalous transmission could be regained.

In the special case of a bar cut for symmetrical Laue
diffraction elastically bent so as to ““fan out” the atomic
planes from front to back, no change in Borrmann effect
for a perfect crystal should take place. This is due to
the fact that the changing d spacing through the thick-
ness of the bar and the changing Bragg angle that
results, is just compensated for by the changing angle
of incidence as the radiation penetrates into the crystal.
However, the exit Bragg angle is different from the
entrance Bragg angle, and this change, although small,
was measured by Cole and Brock* and affords the
possibility of producing slight “focusing” of an x-ray
beam,

5.0 SUMMARY

The radiation field inside a periodic scattering and
absorbing medium is a remarkably structured entity.
This can be shown in a straightforward way by solving
Mazxwell’s equations in a medium with a periodic di-
electric constant, taking into account the conservation
of momentum for waves scattered by waves (Bragg’s
Law). When nodal patterns in the time-averaged field
coincide with density concentrations in the medium,
startling results are obtained with respect to absorp-
tion, and other physical phenomena which depend upon
field strengths. Many of these effects can be observed
in x-ray, electron, and neutron diffraction when suffi-
ciently perfect crystals are available.

Note added in proof. R. W. James has recently pub-
lished and extended treatment in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1963), Vol. 15.
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APPENDIX A: WAVES SATISFYING BRAGG’S LAW
AND MAXWELL’S EQUATIONS

The assumed solution for the wavefield in the crystal
which satisfies Bragg’s law and Maxwell’s equations is
taken as a sum of plane waves. The field vectors are
then written in the form

A= exp (2mivt) Y Ay exp (—2xiKg-1), (A1)
H

where A stands for §, D, or #¢. Note that if (A1) and
(14) are combined, we have

A=[> Anexp (—2niH-1r)]
73

exp (—27iKo 1) exp(2mwivt)

which is, in form, a Bloch function, the form known to
be correct for wave solutions in a periodic medium. It
is a wave of wave vector K¢ and amplitude expressible
as a Fourier series. Taking the curl of (A1) and writing
it explicitly in terms of &, we have

V x &= — (2ri) exp(2wivt) Y (Ku xEg)

X exp (—2miKg-r). (A2)

And taking the time derivative of (Al), expressing
the result in terms of 3¢, we have

83¢/0t= (2mi)v exp (2wivt) Y 3y exp (—2miKy-1).
H

(A3)

Inserting (A2) and (A3) in Maxwell’s equation
(13a) results in an equality which must hold at all
points and at all times, and thus must be separately
true for each term in the summation (each Fourier
component). We obtain, then, the condition that

KH X EH= VM()HH. (A4>

Similarly, from the second of Maxwell’s equations,
(13b), and the appropriate forms of (A1), we have that

KH XHH= —VDH. (AS)

Except for the very small imaginary parts of the
wave vectors, Eq. (A4) states that Hy is perpendicular
to Kg, and Eq. (AS) then implies that Ky, Hy, and
Dy form a mutually orthogonal set. Eg, although in
the plane of Ky and Dy, is not necessarily along Dy,
i.e., it may have a longitudinal component.

From the relation ®=«e8, Eq. (7) for k, and (A1)
for the assumed form of ® and &, we have for the rela-
tion between ® and &, that

> Duexp (—2wiKgr) =¢[1—T Y Fyr
H H!

X exp (—2xiH’ 1) ]ZEH exp (—2wiKy-r), (A6)
H

where the index H’ is used to distinguish it from H.
After appropriate changes in indices of summation
and using the fact that Ky +H=Kpg. 5 [from (14)],
the infinite double sum on the right side of (A6) can
be rewritten to give

ZQH €xp ( - 27riKH'r) = G()ZEH CXp(— Zﬂ'iKH'r)
H H
—el' Y (O Fu_rEp) exp (—2xiKy-r). (A7)
H P

Again, since this relationship must hold for all r it
must hold for each Fourier component, and we have

Vu=eBu—e&l' ) Fy_rEp
P

=¢(1—TF)Eg—el') Fy_pEp.  (A8)
Px=H

Dy is thus predominantly ekoEx, but modified slightly
by small contributions from the other Fourier compo-
nents of the electric field.

By taking the cross product of Ky with each side of
(A4), and substituting in (A5), we obtain

Ky x (Kz xEg) =vu(Kg xHy) = —v2uDg.
If we now substitute from (A8), we obtain
KH X (KH XEH> = —V2M0€0 (EH— PZFH—PEP) , (AlO)
P

(A9)

where, in making the substitution, we have neglected
time derivatives of Fg in taking 0®/di. Since woen=
1/¢* and »*/c*=F?, (A10) can be written as

Ky x (Kg xEgx) +BEg—FT Y Fy_pEp=0. (A11)
P

Using the vector identity for a triple cross product
Ku x (K xEy) =— (Ky-Kp)Ex+ Kg-Ex)Ky
we have
[ (1—TFo) — (Kg-Ky) JEg— kT ) Fr_pEp

P#H

+(Ku-Ex)Kp=0. (A12)

This is the fundamental set of equations describing
the field inside the crystal. For each amplitude Ey,
this is a complex vector equation. The set of equations
must hold then for the real and imaginary parts, and
for each component of the vectors, separately. The real
and imaginary parts need not be separated until the
end; however, we need to discuss the different compo-
nents of Ex separately.

We only consider the case where one reciprocal
lattice point is near enough to the Ewald sphere to give
any appreciable diffraction. That is, let all the field
amplitudes be negligibly small except for two, Ey and
En. We were not free to make this restriction to just
two waves earlier, since then the terms in the infinite
double sum (A6) could not have been converted to
the form (A7). Physically, all waves exist in the crystal,



but we assume that only two are of appreciable ampli-
tude. The wave vectors Ko and Ky of the two waves
define the plane of incidence. We then discuss the com-
ponents of Eg and Ex in terms of the components which
are normal to this plane, the ¢ polarization state, and
those that are parallel to this plane, the 7 polarization
state.
For the o polarization state, Eq. (A12) becomes

(a) [B(1—TF,) — (Ko Ko) JE— BT FgEp°=0,
(b) —RETFES+[k(1—TF) — (Ky-Ky) JEz=0.
(A13)

This pair of equations has a nontrivial solution for
the ratio Eg®/Ey only if its determinant is zero. How-
ever, before investigating the restrictions imposed by
this condition, let us consider the = polarization state.

The field vectors Eq and Ex each have two compo-
nents in the plane of incidence: a longitudinal compo-
nent along their respective wave vectors, and a com-
ponent at right angles to their wave vectors. The longi-
tudinal components can be seen to be negligible by the
following: If Dy is dotted into Eq. (A12) and (A8)
substituted, we see that

eBn-Du=[(Kz-Kpg)/k) IDg-Dp.

Since the dielectric constant differs from unity by
one part in 10°, Kz -Ky/k? differs from unity by this
order, so that the component of ¢Eg not along Dy is
of this order. Secondly, if Ky is dotted into Eq. (A12),
we have

KH'EH(I'— PFO) = I‘E FH__P(KH'EP)
P=H
which again, since yF~1075, implies that the compo-
nent of Ex along Kz may be neglected.

Also, this last condition implies, from (AS8), that
V-®=0, rather than V-®=p(r). This is consistent
with the assumed high-frequency behavior, where the
positive charge does not play a role, and so the positive
charge may be distributed in the same manner as the
negative charge, leading to zero net-charge density.

Neglecting the longitudinal components of E, the
remaining 7 components lie in the plane of incidence
and are perpendicular to their respective wave vectors.
Taking the angle between the directions of Ko and Ky
to be 20 we can now write a pair of equations like (A13)
for the = components, namely,

(a) [A(1—TF,) — (Ko Ko) JErm
—k?(cos 20)TFgEg™=0,
(b) —k%*(cos 20) T FuEy+[k*(1—TF,)
) — (Ka-Ky) JEz™=0. (A14)
Letting

P=1 or cos?26. (A15)
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The determinant of either (A13) or (A14) may be
written as

k2<1_F0) “‘K()'K(; '—kZPI‘Fﬁ
(A16)

—2PTFy B(1—TF) —Ky-Ky

which, when set to zero, gives the permitted wave
vectors.

APPENDIX B: BOUNDARY CONDITIONS

We wish to match a set of plane waves outside a
plane surface to a set inside where there is no change
in amplitude or frequency in crossing the surface. For
a single plane wave crossing the surface under these
conditions we have only to satisfy a condition on the
wave vectors outside K;, and inside, K,. From the
expressions for a plane wave, we have the condition
that:

(B1)

where the origin has been chosen in the surface and =
is a vector in the surface. To satisfy (B1) at every
point on the surface (every value of =), we must have
that k;+e=K,+« which restricts k; and k, to:

ki= kp-i-an, (BZ)

where n is a unit vector along the surface normal, and
a is determined by other considerations. That is, the
wave vectors of related waves can only differ by a
vector along the surface normal, or, in other words,
their tangential components must be equal. Physically,
this condition assures the continuity of phase fronts in
crossing a surface.

For a set of plane waves on each side of the boundary,
(B1) becomes

>"E;exp (—2nik; %)= D E, exp (—2rik,-z). (B3)
7 ¥4

exp (—2wik;z) = exp (—2mik,z),

Using the principle of superposition of waves, we need
apply (B3) only to the waves that are physically
related, or coupled. The sets that we are interested in
are the ones which satisfy Bragg’s Law. From one of
these sets we divide the waves inside into two groups:
those whose wave vectors end at the origin of the
reciprocal lattice, the “inside incident” waves, and the
“diffracted” waves related to these through Bragg’s
Law. Let the “inside incident” wave vectors be given
by Ko; where 7 is a running index whose values may
depend on how many reciprocal lattice points are on
the sphere of reflection and how many such waves may
be associated with each reciprocal lattice point. For
convenience, however, we assume that only one lattice
point is on the Ewald sphere. The “diffracted” waves,
from Bragg’s Law, are then described by the wave
vectors Kg;=Kg+H. We can sort out the related
outside waves in the same way. Letting ¢ be a running
index, we can write any K; as a Ky, an “incident” or
“transmitted” wave, or as Ko+H’, a ‘“diffracted”
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wave. H and H’ differ because of the index of refrac-
tion. We can now write (B3) as

2 exp (—2miKog =) [Eog'+Eny' exp (—2mil <) ]
q
= z : €Xp (—“ 27r’iK0j' ‘:) [on—|—E}1j exp (—- 2mwiH- ‘:) __J
7 .

(B4)

Because the reciprocal lattice vectors are nonzero
constants, (B4) is separately true for each value of H
(each Fourier term). Thus

> Eogiexp (—2mikog 7)) = Eon exp (—27iKo;x)
q J

(B3)

with corresponding expressions for each Eg. Since the
field amplitudes are nonzero constants, (BS) requires
that the tangential components of all these “incident”
wave vectors, inside and outside, independently of the
“diffracted” waves, must be equal. If, for example, we
consider a single outside incident wave Z¢?, the other
wave vectors can be written as

k()'”—"'— Koj‘{‘dojﬂ. (B6)
And from (B4), we have that
=H+Cyn. (B7)

Corresponding relationships to (B6) exist between
the tangential components of the outside “diffracted”
wave vectors and the inside “diffracted” wave vectors.

With these relationships between the wave vectors,
we have from (BS5) and (B4) that

2.Eoi=2_Ey;, (B8)
q J
ZEHqi= ZE}]]'. (Bg)
q J
These last conditions say wsimply that the “inside
incident” field amplitudes add up to the “outside

incident” field amplitudes and that the “inside dif-
fracted” amplitudes add up to the “outside diffracted”
field amplitudes, for each active reflection H. (B8)
also applies equally well to the “transmitted” beams
leaving an exit surface.

APPENDIX C: NUMERICAL EVALUATION OF
INTEGRATED INTENSITIES

1. The Laue Case

For the symmetric Laue case, the intensities of the
diffracted and forward diffracted beams are obtained
from the sum of the contributions from the two wave
fields (== sign) in Eqs. (89a) and (89b), giving:

IHe__lexp (— pot) ,uothle
702w M (1)
It 1exp (—u) (uozlPIe )

L2 1t P\t D

where cosh X=1-+42(%")%, t=1/v, and X has the same
sign as 7’. The integrated intensity R? on the 8 scale is
related to the value on the " scale, (R") by (90)

NN (e*/me*) | Fa || Pi

p(? T Sll’l 26 (Cs)
and
h {B/[14(7')*
pa"= exp (—uot) cosh B/ Co[sl_}_(n/E?ii_c(()z}zg }
(C4a)
o (142(y')?
0 — — ol h B <__)
po"' = exp (—pot) cos ,/; { 1+ (4")?
cosh {B[1+ ()P} 2 } /
X cosh B cosh B 'y (C4D)

where B=pgt | P | ¢, and the term 2/cosh B in (C4b)
subtracts the background transmission present when
the crystal is off the diffracting position.

For large values of B, Kato® has derived asymptotic
expansions of the integrals as

wt exp [-mi(1— | 2|97 )

><<1+15 9 00732

| eee
85 1288° " B ) (C5a)

po"= exp [—uet(1— | P | e)](ger—y

X(l

The equations for the diffracted beam (C5a) is ac-
curate to better than 19 for B>3. Equation (C5b)
for the transmitted beam is in error about 39, at B=6
and is progressively better, the higher the B value. For
large values of B, Kato’s equations reduce to Eq. (101).
A tabulation of the integrals in (C4a) and (C4b),
evaluated with a computer is given in Ref. 20 for
values of B from 0 to 30. The table can be interpolated
to give accurate results in the low range of B where the
asymptotic formulas break down.

Note that Egs. (C4a) and (C4b) are for a glven
state of polarization so that the integrated intensity
depends upon the degree of polarization of the primary
beam. If 7, and /™ are the intensities of each polariza-
tion in the primary beam, then the integrated intensity
is

17 | 5.32 1859
8B ' BN B

) ((;5b)

(Ips+1o™px) / (T +17). (Co)

The important parameter e needed to calculate the
intensity is discussed in Sec. 3 of Appendix C.

Pa+1r0 =

% N. Kato, J. Phys. Soc. Japan 10, 46 (1955).



2. The Bragg Case

The calculation of integrated intensity for the Bragg
case is more involved than in the Laue case. In prin-
ciple, the intensity can be calculated directly from the
complex form given in Eq. (104), choosing the sign in
such a way as to keep the reflectivity less than unity.
Another form of this expression has been given by
Miller,* which eliminates complex variables and the
sign ambiguity. Although Miller’s expression is more
complicated, it provides an easier form to carry out
the integration. For a centrosymmetric structure and
reflection condition d=—1 (surface parallel to dif-
fracting planes) we have

(En*/Ee)*=G(n) —[G*(n) — 1}, (C7)
where
Gy T HXHDP = (L = 2P P2X (4 2) T
! 115
(C8)
and

X=F,"/| P|Fy', Y=Fy"'/Fy', Z=|P|Fy'/F.
(C9)
The integrated intensity pn’, for polarization P is
N(e/m)N | Fa' || P| [{Ea®\?
a2 E/mAN | Py | |/<E—H> dn. (C10)
0

7 sin 20

The integral in (C10) reduces to § when absorption is
zero (Fy’=Fg''=0) giving Darwin’s result.

The parameters X, ¥, and Z can be obtained as
follows: Fg' is derived from the structure and the
calculated free-atom form factors. For greater accuracy,
one would include the Honl correction to the real part
of the scattering factor. Thermal motion is included
through a Debye-Waller factor on the scattering

amplitudes
f7(20) =1'(20) exp [—M (26) ],

where fi'(260) is the free-atom form factor and M (26)
that portion of the Debye-Waller®? factor depending
on the mean square vibrational amplitude. Fy"’ is ob-
tained from the linear absorption coefficient according
to Eq. (11). The only subtlety is the quantity Fgz”
which involves the angular dependence of the imaginary
part of the scattering factor with its temperature de-
pendence. This is discussed in more detail in Sec. 3
in terms of e= Fg'//F,”. For the reflection case we are
considering here, a simplifying assumption holds quite
accurately; namely, that there is no angular depend-
ence to the imaginary part of the atomic scattering
factor fo”’(26). In the particular case of germanium
reflections, Batterman® has shown by direct evaluation
of (C19) the accuracy of this assumption. The thermal
* st F. Miller, Phys. Rev. 47, 209 (1935).

% B. W. Batterman, Phys. Rev. 127, 686 (1962).
8 B. W. Batterman, J. Appl. Phys. 30, 509 (1959).
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factor is accounted for as before so that f#''=
fi'" exp (—M) and fy’’ is obtained from Eq. (11)
through the tabulated atomic absorption factors.

The reason the integrated intensity is not sensitive
to e can be readily seen physically. In the Bragg case,
there exists a region of nearly total reflection. This
means that because of extinction there is very little
penetration into the crystal, and that true photoelectric
absorption is a relatively small perturbation on the
diffracted intensity (see Sec. 3.1).

Hirsch and Ramachandran® have developed an
empirical formula for pg" '

e w14+ (Fa""/F)*]
P Sexp [— A+ (Fa"/F)) (g | +C) 1+ | g1} °
(C11)
where
1—-b R .
g:—2k I (I b |)%_Im [1+(FH'//FH/)2}’

C= log, (32/3x).

Expression (C11) is accurate to 29, and allows calcu-
lation for the nonsymmetric case where % —1.

Detailed consideration of integrated intensities in
the Bragg case, for noncentrosymmetric crystals near
an absorption edge has been given by Cole and
Stemple.®* They have used the change of integrated
intensity as one crosses an absorption edge to deter-
mine the polarity of a gallium-arsenide crystal.

3. Evaluation of ¢

Recent experimental work by Okkerse,” Hildebrandt
and Wagenfeld,”® and quantum mechanical calculations
of Wagenfeld® have shed considerable light on the
significance of e. From the treatment in Sec. 2.10B3,
we see that e is related to the distribution of absorbing
power in the atom and the vibrational amplitude in
the lattice. Okkerse’s and Hildebrandt’s experimental
results for germanium indicate that the correct tem-
perature dependence is the same as for the Bragg case,
namely, exp (—M); ie.,

e=¢exp (—M).

The intrinsic value of €, like the form factor, must
be evaluated for each element. The added complication
is that since absorption is involved, € for a given ele-
ment is wavelength dependent. A truly accurate value
for ¢ can only be obtained from a quantum mechanical
calculation such as Wagenfeld’s® for germanium.

There are however, reasonably good approximations
that can be made which would be sufficiently accurate
for the Bragg case since the intensity is quite insensi-

5 H, Cole and N. R. Stemple, J. Appl. Phys. 33, 2227 (1962).

5 G. Hildebrandt and H. Wagenfield. Paper presented at
Sixth International Congress of the International Union of
Crystallography, Rome, Italy (September 1963).
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TaBLE 1. Wagenfeld’s® calculated value of € and ¢ (6=291°K)
for germanium with Cu K, and Mo K, radiations.

Cu K, Mo K,
hkl € € € €
220 0.989 0.959 0.998 0.964
400 0.978 0.913 0.997 0.931
422 0.968 0.872 0.995 0.896
440 0.957 0.834 0.994 0.867
444 0.936 0.762 0.990 0.806
& See Ref. 23.

tive to e. For the thick crystal Laue case where the
anomalous transmission effect predominates, (uof>2)
the approximation to be described below can produce
sufficient uncertainty in ¢ to cause errors in the calcu-
lated intensity greater than that of the experiment
and serves only as a first approximation.

€, in general, departs very slightly from unity—
much less than one would expect from the form factor
of those electrons involved in the absorption. For low-
order reflections from germanium, for example, most
of the deviation of e from unity is due to the Debye-
Waller factor. Table I gives Wagenfeld’s results for €
and the total ¢, using a Debye temperature of 291°K.
For germanium a fairly reasonable approximation
would be to let e=1.0 so that e= exp (—M). Okkerse
pointed out an empirical relationship between the
values of ¢ as a function of order of reflection. He found
that the deviation of ¢ from unity follows closely a
linear dependence with 1/d? [or (sin 8/A)%]. Thus,

1—e(hkl) B (WET)
1—e(WEYV)  d2(hkl)

The calculated values of ¢ in Table I closely follow

this dependence. If one has an experimental value for

€ for a low-order reflection, the value for a higher order
can be obtained using this relationship.

NOMENCLATURE

A x-ray wavelength

d interplanar crystal spacing

0z, 6 exact Bragg angle, general glancing
angle to planes -

Io, Ip, I7 x-ray intensity in primary, diffracted
and transmitted directions

ko, K wave vector of vacuum-incident wave,
and wave in crystal

m linear photoelectric-absorption  co-
efficient

to, ¢ crystal thickness of parallel plate,
thickness in incident direction

p(r) electron density in lattice at position
vector r

H reciprocal lattice vector of Miller

indices i, k, I; | H | =1/d

Fy=Fy'+iFy"’ structure factor for the %kl reflection
(generally complex)

fa atomic scattering factor for nth atom
in unit cell

7.= (e®/4meymc?) classical electron radius

K dielectric constant

T=r\/xV proportionality constant between
Fourier coefficients of charge density
and dielectric constant.

14 unit cell volume

Ex Hth component of electric-field ampli-
tude in crystal

P(=1orcos20) polarization factor

&, En parameters of the dispersion surface.
Difference in magnitudes of wave
vector permitted in the crystal and
that corrected for the average index
of refraction

n unit inward surface normal

gk magnitude of vector along n connect-
ing ko' and K,

Yo, YH direction cosines of incident and
diffracted beams with respect n

b=2o/vu ratio of direction cosines, =—1 for
symmetric Bragg case and =1 for
symmetric Laue case.

n=n"+iy" A generalized coordinate related to
glancing angle. n” is proportional to
Af

S, Poynting’s vector for field ¢

A angle between S; and atomic planes

P= tan A/tan g

®Ru, Iu real and imaginary part of FyFi

€ generally the ratio of the imaginary
part Fy'’ to the imaginary part, F,"”

a polarizability of medium

Equation List (Numbers refer to equations in text)

_ Charge density

p(r)=V1D> Fyexp (—2miH-r) (1)
H

Structure factor

Fu= Y fnexp (2mH-1,) (2)
Dielectric constant
k(r)=1—T2_Fy exp (—2miH-r) @)

H
Absorption coefficient
Moo= (2#/}\) I‘Fo” (11)

Dispersion surface

EQE[‘{:%}Z?P?PZFHF}? (21)



Dispersion surface parameter
&'=Ko—k(1—3TFY)
&' ==Ky vo+3kTFy"

Field-amplitude ratios for tie point of coordinate & on

(23)
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Dispersion-surface parameters in terms of incident
conditions
fo=3%k | P|| b P T[FuFa[n+(r*+b/| b ])],
tn=%k | P | (Y/| b [)[FuFa Pl (r+0/ b))}

dispersion surface (31)
Ex 2 bAG sin 20+iTFo(1—b
2= e (20) 9= i) (32)
Ey kPTFi T'|P|lbPFaFal
Massive Condensations in Interstellar Matter
and Stellar Associations
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SUMMARY

The very massive, expanding H 1 clouds and high-
velocity “runaway” stars that accompany expanding
associations of young stars have led to the suggestion
that stellar associations originate in the nuclear ex-
plosion of massive condensations. To assess this idea,
we develop a theory of the evolution of massive gravi-
tational condensations (without the usual fragmenta-

The first part of this paper surveys other works and
draws heavily on them, particularly to estimate M
and «s. This review material should also serve as a brief
introduction to the problems of star formation.

I. INTRODUCTION

Blue giant stars have main-sequence lives as short
as 108 yr, and are ordinarily found in spiral arms amid
clouds of dust and gas (see, e.g., Spitzer 1963, in press;



