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I. CHARGE FORM FACTOR OF NEUTRINO

The possibility that the neutrinos may have a
nonzero electromagnetic form factor has been dis-
cussed recently. ' If one assumes the existence of a
charged intermediate boson W+ for the weak inter-
actions, then the neutrino can acquire a current
distribution J ~ through the virtual transition

v&~~l jW+,

where l = e or p . The matrix element of J~ be-
tween states of a single neutrino may be written as

""(1+')F(A, (2)
where g' = (4-momentum transfer)'.

Since the neutrino is a particle of zero mass, its
electromagnetic current distribution has no static
limit. Nevertheless, it is useful to consider the
Fourier transform of F(q') in a system where the
4-momentum transfer q„has no time-like component.
I et

p(r) = (8s-') ' F(q') exp (t'll r)d'g,

where q and r are both B-vectors, ~q~
= (q')& and

~r~
= r. The function p(r) can be regarded as the

"spatial" charge distribution of the neutrino. The
total charge of v& is, of course, zero; i.e.,

and is related to F(q') by

M = —6[ciF/cl(g')j at g' = 0. (0)
From (1), it is expected that the charge distribu-

tion of the neutrino consists essentially of two parts:
a positive core surrounded by a negative cloud. The
explicit form of F(q') has been calculated, ' and the
rnornent 3' is found to be

3I = ea'[s ln (n ) —s ln (ms/m)) —2], (7)
where e is positive, (e'/4s. ) = n = (137) ', a' is re-
lated to the weak interaction Fermi coupling con-
stant G by

a = (8s V2) (3G) —(1.1 X 10 'cm), (8)
and m~, mw are the masses of / and W+, respectively.
The spatial extension of this charge distribution is
= 10 "—10 '4 cm, which is much larger than c.
However, the probability of finding the physical
neutrin. o in its virtual charge state t + W+ is only
= 10 '. Thus, the magnitude of the moment M be-
comes only = ea'. Because of the diIIferent masses of
e and p, the moment 3I for v„ is very diA'erent from
that of v.. If ms is set to be about its current lower
limit' 1.5 BeV, then

3II ——15.1 X ea' for v,

p(r)d'r = F(q' = 0) = 0. (4) 3f ——0.88 X ec' for

The moment of charge 3I of the neutrino may be
de6ned' as

PI = r'p(r)d'r,

*Research supported in part by the U. S. Atomic Energy
Commission and the National Science Foundation.
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2 For a charged particle such as the proton, the notion of
charge radius It' is a convenient one, and is related to the
moment of charge by Bs = (M/e). For neutrinos Bs can be
negative and its magnitude does not correspond to the square
of the physical extension of the charge distribution. It is
possible that the term "charge radius of the neutrino" may
lead to some minor confusion.

The magnitude of 3I becomes larger if mw turns out
to be heavier than 1.5 BeV.

For a static charge distribution which is equal to
p(r), the electromagnetic field at any point outside
the charge distribution is necessarily zero because
of the spherical symmetry of p(r) and the neutrality
condition (4). The electromagnetic interactions be-
tween such a charge distribution and other charge
particles would appear like a contact interaction,
instead of the usual long-range type. The property

3 Proceedings of the International Conference on Ele-
mentary Particles, Sienna, 1963 (to be published).
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that the field vanishes outside the charge distribu-
tion is clearly invariant under any Lorentz transfor-
mation. That it is also true for the neutrino can be
seen by either directly examining the matrix element
(2) or by regarding the neutrino as the limit of a
particIe with a mass m„—+0. The electromagnetic
interaction between the neutrino and any other
charged particle, thus, resembles the usual weak
interaction but with an amplitude about n ' times
weaker.

In this paper we discuss only the emission of soft
photons of energy & to,. The differential cross
section can be written as

Qo' = l&o + do M + (arse + d&sosty )

where d(Tp is due to diagram (i) only, do M represents
the interference term between diagrams (i) and (ii),
do„e is the radiative correction to diagram (i) and
do, .«, is due to the emission of soft photons.

The calculations of these cross sections are
straightforward. Let doc(v, ) and dirc(y. ) denote the
cross sections for reactions (10) and (ll), respec-
tively'; we find

II. SCATTERING OF NEUTRINO BY ELECTRON

The smallness of this electromagnetic interaction
makes it extremely difFicult to be observed. For ex-
ample, the cross section for vi+ p ~ vi + p is ex-
pected to be about n' times that for v~ + n —+ tt

+ p. A possible way to determine experimentally
the moment M for the e neutrino is to investi
the reactions'

(14)doc(v. ) = s. '6'dq'

do&&(y,) = s. '6'[1 —(2mk„) 'q']'dg', (15)

v, +e ~v. +e
Ol'

y. +e ~y, +e

gate
where m is the mass of electron, k„ is the incident
neutrino energy in the laboratory system, and q' is
the (4-momentum transfer)' given by the neutrino
to the electron. Let E be the energy of the final

(ll) electron in the laboratory system, then (fi = c = 1)

In Fig. 1, we list the various graphs for these re- g' = 2m(E —m) .
The integrated values op —=f dop are given by

o,(v.) = (46'/s. ) (m + 2k,) '(mk, )

FIG. 1. Diagrams for v, + e —+ v, + e and ~, + e —+ v,+e.

actions. Diagram (i) represents the process through
the exchange of a W'+ particle and diagram (ii) is
that due to the electromagnetic interaction. The
interference term between these two graphs makes
the effect due to the charge distribution of the
neutrino to be only n ' times smaller than that due
to the weak interactions.

To the same order in n, we must also consider the
radiative correction and the inner bremsstrahlung
process

v, +e ~v. +e +7

oc(y, ) = (46'/x)(m+ 2k„)
'

X [mk'„(I'+ 2mk. + -', k'„)] . (l8)
The interference term do.~ is proportional to the

charge moment 3II of the neutrino:

do ~(v.) = (s
' G'ndg') [(4en') 'M][l —(4k', ) 'g']

(19)

do~(y. ) = (s- 'nG'dg')[(4ea') '3I]([l —(2mk„) 'q']'

—(4k', ) 'g'I . (2o)

The effects of the radiative correction are given by

da,.a(v.) = (s 'nG'dg')

X I I„e —[1 + (4mk'„) 'tt'(m —2k, )][p/sinh 2tv] I

(21)
and

Ol

v. +e ~y. +e +y. do,.s(y, ) = (x 'nG'dg') I [1 —(2mk„) 'q']I, .s
—[1 + (4mk'„) 'g (m —2k„)][tv/sinh 2y] I, (22)

4 The possibility that the processes (10) and (11)can occur & Apart from a misprint of a factor 2, expressions for doc
through the weak interactions have been discussed by R. P. and 0.0 have been given by R. P. Feynman and M. Gell-Mann,
Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1956). Ref. 4.
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where

q' = 4m'sinh'q .

In the above formulas we neglect (q'/ms) and
(&.'/mar) as compared to 1. The calculation of radia-
tive correction is very similar to that in electro-
dynamics. For example, (2s) nI,~ is identical with
the n-order term in the renormalized vertex function'
(excluding the vacuum polarization effect) of the
e —y interaction. As in electrodynamics, I,.& is
infrared divergent. A fictitious mass X;. of the
photon is included in (2B). The infrared divergence
is cancelled by the soft photon emission. " For either
the v, or v. process, the rate of emission of soft
photons with energy ga is proportional to d~c.

dosoftp = 7l AIpdop p (25)

where'

I„= [(tanh 2q ) '4q —2] ln (cv,./X;.) + [1 —2 ln 2]

+ (2 tanh 2y) '{4y[l —2 ln (sinh 2')]
+ [L("') —L(s-")]I, (26)

and I (x) is the Spence function

L(x) = t 'ln (il —ti)dt.

In the above expression we assume the maximum
soft photon energy cu ..is much smaller than either
m or the final momentum of the electron.

The sum (I,~+ Ir) and, therefore, also ( d,.os
+ do,.~&~) are free from infrared divergence. We have

I,~ + I, = [1 —(tanh 2y) '2(g2 ln (m/(a, )
—[1 + 2 ln 2) —P tanh P

+ 2 (tanh 2p) '[—2p ln (2 cosh P sinh 2P)

+ By(l + y) —I.(e '
) —2L( —e

'
)] .

(28)

To obtain the order of magnitude of these cor-
rection terms, we may examine their limiting forms

s See, e.g. , R. P. Feynman, Phys. Rev. '76, 769 (1949).
& F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937);H.

A. Bethe and J. R. Oppenheimer, Phys. Rev. 70, 451 (1946).
See D. R. Yennie, S. C. Frantschi, and H. Suura, Ann. Phys.
13, 379 (1961) for more recent references.

s T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).
S. M. Berman, Phys. Rev. 112, 267 (1958).The I& is identical
with Eq. (C.l.) in the paper by Einoshita and Sirlin.

I.a = —p tanh q&
—(tanh 2y) 4o.'tanll oda

0

+ 2[1 —(tanh 2q) '2q][—1+ ln (m/X;, )],
(2B)

at g' = 0. In this limit

d~c(r.) ~ dop(i, ),

—do ir(p, ) ~ d—rrl(p, ) = —[(4sea') 'nM]doc(p. ),
(BO)

which is ~(8.8 &( 10 ')doc(i, ) provided mir ~ 1.5
BeV. The corresponding value of the radiative
correction is smaller than d~~. As q' —+ 0,

[do.,~(v,) + d~,.i„(v.)] —+ [do,~(i.) + d~,.g„(i „,)]
= —(2s.) 'ndo, (v.) . (Bl)

Assuming that the weak interaction is symmetric
with respect to p, and e, the absolute value of 6 can
be determined from the lifetime' ~„and the mass
m„of the muon:

r„' = (B &&
2'

&& ~') 'm„'6'

X [1+ s (m„/m )' —(8~) 'u(4~' —25)],

(B2)

in which we neglect terms of the order of (m, /rn„)',
o.(m./m„), (m„/ms)'n ln a and o.'. The magnitude of
the charge moment 3' of v. can be determined by
either an absolute measurement of the total cross
sections for reactions (10) and (11),or by a study of
the q' dependence of the differential cross sections.
It must be emphasized that the above expressions
[Eqs. (21)—(28)] for radiative corrections and photon
emissions remain unchanged if we use the usual
Fermi theory, instead of the intermediate boson
theory. This is not unexpected since we neglect
(m', /m'ir) and (q'/m'ir) in our calculations. The
further determination of G from the muon lifetime
removes all the difference between these two theo-
ries. From an experimental point of view, the pro-
posed method of measuring M, although an indirect
one, seems to be relatively independent of our
specific theoretical assumptions.

IIL EXPERIMENTAL POSSIBILITY

The actual determination of the charge moment
of v, is undoubtedly dificult, since neither the
fundamental process (10) nor (ll) has been ob-
served. Nevertheless, we may envisage' using a very
strong K-capture or p~-radioactive source which is

surrounded first by a thick shield and then by a
massive layer of detectors. For definiteness, we may
consider the K-capture of Zn" which emits v, aI

The considerations given in this section are results of our
discussions with 8,. Novick, M. Schwarz, and C. S. Wu.
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1.4 MeV with a 50% branching ratio. A megacurie
of Zn" can give, after a shield of 1 m thickness, a
rate of ~100 reactions per day per ton of detector
weight. If the problem of background can be success-
fully solved, the determination of the moment of
charge of v, may become feasible after an accumula-

tion of about a few times 10' events.
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An Approxiuiation Method for DifFraction Problellis*
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I. INTRODUCTION

Many of the problems of physics result in integral
equations with displacement kernels where the in-

tegration is over some restricted region of space.
Usually a simple closed form solution is not obtain-
able. The best approach, in general, is then probably
to Gnd the solution by numerical computation. How-
ever, in case the region is either very small or very
large (in some sense) it is to be expected that simple
and accurate approximate formulas may be obtained
by analytic methods. The "small" case has been
somewhat more intensively investigated than the
"large" one. It is to the latter that we devote our at-
tention here.

As a kind of "minus first" approximation we might
take the region to cover all space. This is, however,
frequently much too crude. The effect to be investi-
gated is then identically zero. For example, in the
problem of the diffraction by a large circular disk dis-
cussed below such an approximation would consist
of considering the disk to be infinite. Then, of course,
there is no Geld on the side away from the incident
direction. The effects we are looking for exist pre-
cisely because there are edges to the region.

A suitable zeroth-order approximation does sug-
gest itself whenever the boundary of the region is
such that its radius of curvature can. always be con-
sidered "large. " Then, on separating variables, the
problem is roughly that of solving a one-dimensional
displacement integral equation with limits going from
zero to infinity. (The appropriate variable is the co-
ordinate normal to the boundary surface. ) Such

*This work is supported in part through funds provided by
the U. S. Atomic Energy Commission Contract Number
AT(30-1)-2098.

f Permanent address: Department of Physics, University
of Michigan, Ann Arbor, Michigan.

Wiener —Hopf integral equations are known to be
soluble. The approach to be discussed leads auto-
matically to such a zeroth-order approximation.
Higher order approximations are systematically and
simply obtainable.

While the method has been found useful for a large
class of problems it turns out that minor, though ob-
vious, modifications must be made depending on the
particular kernels involved. To avoid cumbersome
general discussions we felt the best exposition would
be a detailed treatment of some of the very simplest
and most familiar problems. These arise in consider-
ing the diffraction of waves by simple obstacles,
[These problems are "simplest" in that: (a) The
necessary Wiener —Hopf decompositions can. be found
by inspection; and (b) The resulting solutions can be
expressed in terms of elementary functions. ]

Accordingly we treat below two problems. The
first involves the diffraction produced by a "large"
slit or strip, i.e., we ask for the solution of the scalar
wave equation subject to the conditions of having a
given incident plane wave and satisfying Dirichlet or
Neumann boundary conditions on a strip (or the
walls of a slit). This problem is discussed in consid-
erable detail. The complete solution is obtained in-
cluding zeroth and first approximations and shown
to involve only known elementary functions. His™
torically, the zeroth approximation obtained here
was first found by Schwarzchild. ' However, Schwarz-
child's approach is so cumbersome as to be difFicult
to carry beyond this approximation. Further, his
method seems not to be generalizable to other geo-
metrical situations.

The second problem we treat, diffraction by a cir-
cular disk or aperture, is designed to show that the

i E. Schwarzchild, Math. Ann. 55, 177 (1920).


