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Thus the Born approximation is valid, which suggests
an immediate connection between A and Linden-
baum and Yuan’s parameter b in (19). For small ¢,
do/dt = A exp (—bt), which is the Born approxima-
tion scattering from a Gaussian potential of range

No=1/2b. (25)

Expressed in (1072 cm)?, rather than (BeV/c)™, b
= 0.4080, and (25) gives N> = 1.225, in excellent
agreement with the value obtained from the numeri-
cal integration.

For small r,

V@) =e"™/r, r<0.33. (26)

For 0.33 < r < 1.1, rV(r) was calculated by numeri-
cal integration of the right side of (21), followed by
differentiation to give rV(r). The results are shown
in Fig. 3.

In summary, we have shown that it is possible to
find an absorptive potential which will represent the
data well for both large and small ¢. For small r, V' (r)
behaves like a Yukawa potential with a range deter-
mined by the width of the scattering curve for large
¢, while for large r it behaves like a Gaussian with a
range determined by the initial rate of decrease of
the scattering for small .
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High-Energy Collisions of Strongly Interacting Particles

L. VAN HOVE
CERN, Geneva, Switzerland

1. INTRODUCTION

We are concerned in the present paper with the
theoretical analysis of strongly interacting particle
collisions in the multi-GeV energy range (laboratory
energy above 5 GeV). While one has expected for a
long time that the gross features of such collisions
would be qualitatively very simple, progress in their
detailed experimental and theoretical study has been
extremely slow. Reliable and accurate accelerator ex-
periments have started quite recently and have
mainly elucidated some of the basic properties of
small angle elastic scattering up to 30 GeV. The
work on inelastic collisions is only at its most timid
beginnings. The systematic study of the most com-
mon type of inelastic collisions, often referred to as
jets, has hardly started at accelerator energies and
is strongly limited by the short-comings of most pres-

ent detectors (what is required is identification and
momentum determination of all pions in the three
charge states, for inelastic collisions in pure hydro-
gen). Regarding our theoretical understanding,
fundamental theory has essentially failed to make
any progress despite many attempts. It is striking in
this context to read over again the early and most
interesting paper devoted in 1948 to multiple meson
production by Lewis, Oppenheimer, and Wouthuy-
sen,! and to compare it with recent attempts at ap-
plying field theory or dispersion techniques to this
subject. The difficulty to explain even the most pre-
dominant features of high-energy collisions remains
as great as it was sixteen years ago.

It is in our opinion unavoidable that progress in
theoretical understanding of these phenomena will

1H. W. Lewis, J. R. Oppenheimer, and S. A. Wouthuysen,
Phys. Rev. 73, 127 (1948).
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require a very close interplay between phenomeno-
logical analysis of sufficiently accurate experiments,
mainly in terms of various tentative models, and
application of the few general theoretical principles
which seem to be well established. This is the way in
which our present knowledge of low-energy nuclear
physics was reached both with regard to nuclear
structure and nuclear reactions, and it is more likely
to be successful than an approach based on some
fundamental theory of strong interactions guessed a
prior: in absence of clear experimental clues. The
phenomenological approach here advocated was tried
in the past in the extreme form of statistical and
hydrodynamical models for multiple particle produc-
tion. That these first guesses met with very limited
success means only that high-energy phenomena are
not to be understood in full ignorance of the dynam-
ical interactions involved, so that one has good
reason to hope that their elucidation will eventually
reveal unexpected and interesting dynamical fea-
tures. As experimental work and theoretical analysis
proceed, one can expect to obtain a reasonably clear
understanding of high-energy collisions, and this will
undoubtedly add an essential part to our knowledge
of strong interactions as it is being elaborated at
present in the low and intermediate energy region up
to a few GeV.

The general theoretical principles on which the
analysis of high-energy collisions thus far relies are
very few: in addition to Lorentz invariance (which is
of limited help because each collision naturally fixes
a special system of coordinates, the center-of-mass
system) one has only unitarity and crossing sym-
metry of the S matrix. While the former property
simply expresses probability conservation, the latter
states certain analyticity properties of the S-matrix
elements and certain relations between them, which
are believed, and proved in a few special cases, to be
consequences of the local nature of basic interactions
when expressed in terms of fields.

That a theoretical discussion is possible on the
basis of principles so few in number and so general
in contents is related to the near constancy at high
energy of the total cross section o, as well as of the
differential elastic cross section do.i/dt for 0 <
—t < 1(GeV/c)? (this is the only domain of ¢ values
where do.i/dt is appreciable: as usual, —¢ denotes the
square of the center-of-mass momentum transfer).
As has been realized recently, this empirical fact im-
plies, through crossing symmetry and under plausible
assumptions, that the elastic scattering amplitude 7
has a much larger imaginary than real part at high
energy (Sec. 2). The latter property, the validity of

which is not in disagreement with the rather incom-
plete experimental evidence on this point, implies in
turn that elastic scattering is the shadow of inelastic
collisions, and the unitarity condition then allows us
to study mathematically how far the leading features
of the former can be understood in terms of simple
assumptions regarding the latter.

From the theoretical work done up to now on
these questions one important indication emerges.
Recent experiments have shown that do./dt has a ¢
dependence of the form

doe/dt = (doer/dt) o exp (at + bi?),  (1.1)
with
0<bla*<k1. (1.2)

It is found to hold in an interval a|ff S 10. This
simple ¢ dependence can be accounted for theoret-
ically if the secondaries of inelastic collisions (i.e.,
the particles in inelastic final states) are rather
numerous and are emitted with only weak correla-
tions beyond the obvious correlation imposed by
energy—momentum conservation. That absence of
correlation in the inelastic final state implies ap-
proximate linearity of In (do.i/dt) in ¢ has been veri-
fied for various models of jets and is very likely to be
quite a general feature of statistical nature. A rather
realistic class of models will be discussed in some de-
tail in Sec. 3. Its shadow scattering is calculated and
compared with experiment in Sec. 4.

Further progress seems difficult without using
more detailed properties of jets than are known at
present, but it is clear a priors that the approximate
independence of do.i/dt upon the energy must limit
in some way the energy dependence of multiplicity
and momentum distribution in jets. This effect has
been studied for jet models in which the transverse
and longitudinal momenta of the secondaries are sup-
posed uncorrelated, with the remarkable result that
the energy variations of longitudinal momentum dis-
tribution and multiplicity are found to be severely
limited. The limitations found are compatible with
the experimental evidence from cosmie rays (Sec. 5).

Most of the material reported in Secs. 2 to 5 sum-
marizes and extends already published work. We
mention in a brief closing section some experimental
questions regarding inelastic collisions which come
up naturally in the present type of analysis.

2. APPROXIMATE ENERGY INDEPENDENCE OF
CROSS SECTIONS AND IMAGINARY CHARACTER OF
THE SCATTERING AMPLITUDE

Let T'(st) be the scattering amplitude for the elastic
scattering 4 4+ B — 4 + B, s being the square of



the center-of-mass (c.m.) energy and —¢ the square
of the c.m. momentum transfer from 4 to B. Our
problem is to show under plausible assumptions that,
at very high energy, approximate energy independ-
ence of total cross-section o, and differential elastic
cross-section do./dt requires 7 to be almost purely
imaginary. This has been done in two recent notes?:?
for the case where ¢, and do../dt tend to nonvanishing
limits as s — + o, analyticity of 7'(sf) in the upper
half s plane being exploited through the dispersion
relation at constant ¢ in the fashion first shown by
Pomeranchuk when he derived his famous theorem
on total cross sections of crossed reactions.* Under
slightly modified assumptions, use of the dispersion
relation in establishing theorems of the Pomeranchuk
type can be replaced by a very elegant application
of the Phragmén—Lindel6f theorem,® a method which
allows us also to discuss the case where the cross sec-
tions do not become constant at high energy.® The in-
vestigations just referred to dealt mainly with the
problem of the relation between A + B— A + B and
the crossed reaction 4 -+ B — 4 + B. Our purpose
here being different, we present the argument anew.
Spin, which is no essential complication for these
questions,® is neglected.

QOur first and main assumption (assumption a) is
that the contributions to A + B — A + B of ex-
change of the charge conjugation quantum numbers
C = =1 in the ¢ channel (4 + A — B + B) have
different asymptotic dependences on s, such that one
is negligible compared to the other for s — + « and
tin a given interval t, < ¢ < 0. It is an assumption
of nondegeneracy between the asymptotic behav-
iors of C = 1 and C = —1 contributions in the ¢
channel: They for example should not go with the
same power of s or In s as s — + «.? Denoting by
T (st) the scattering amplitude for the crossed process
4 + B— 4 + B, this assumption means

liIP T(st)/T(st) = 1, tL<t<0 (2.1)
the = sign corresponding to dominance of ¢ = =1
exchange. We now remember that by the unitarity
of the S matrix (optical theorem) Im 7'(s0) > 0 un-
less o, = 0, and similarly for 7. As a consequence,
unless o vanishes identically above a certain finite
energy, we can only have the + sign in (2.1) and the

2 L. Van Hove, Phys. Letters 5, 252 (1963).

3 L. Van Hove, Phys. Letters 7, 76 (1963).

471. Ya. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725
(1958) [English transl.: Soviet Phys.—JETP 7, 499 (1958)].

5 N. N. Meiman, Zh. Eksperim. i Teor. Fiz. 43, 2277 (1962)
[English transl.: Soviet Phys.—JETP 16, 1609 (1963)].

6 A. A. Logunov, N. van Hieu, I. T. Todorov, and O. A.
Khrustalev, Phys. Letters 7, 69 (1963).
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dominant exchange in the ¢ channel is therefore
C = 1. We thus have’
lim T(st)/T(st) =1,
8—+w0
Crossing symmetry expresses 7 in terms of the
analytic continuation of 7' in the upper half s plane

T(st) = T*(ut),

h<t<0. (22)

u = 2mhy + 2mp — s — t,
s> (ma + msz)’ (2:3)

so that assumption (a) gives rise to the following

equation:

lim T*(©2m% + 2m%s — s — t,t)/T(st) = 1.

83—+
Here, and further on in the present section, ¢ is in the
interval £, < ¢ < 0.

The usual analyticity properties postulated for T,
analyticity in s and majorization by a polynomial in
s in the upper half s plane, are obviously insufficient
to derive from (2.4) what is the phase of T' as
s — + . We need an assumption on the high-en-
ergy behavior of 7' (assumption b). Its detailed con-
tents depend to a certain degree on the method fol-
lowed to exploit it. Following Meiman® and Logunov
et al.® we use as the main tool the Phragmén—
Lindelof theorem. We then choose to formulate as-
sumption (b) as follows:

lim s7*“(In s)™? T (st) = c(¢)

(2.4)

(2.5)

s—+w
with «(f) and B(t) real, and ¢(f) complex nonvanish-
ing. It is a rather general ansatz for the high-energy
behavior of T at fixed ¢ (for further generalization
see below). We rewrite it as

lim T'(st)/e(st) =1 (2.6)
§—rF0
with ¢ a function which can be chosen to be
o(st) = ¢(®)(s + 0 “ln (s + 9" . (@7)

We take the cut of ¢ to be s = —iz, © > 1. From
(2.4) one derives

liIII T(st)/o*(—st) = 1. (2.8)
But from (2.7)
lim ¢*(—s,0)/e(s1)
= [¢*(t)/c(t)] exp [—ima(®)] = v(&) . (2.9)

7 A slightly different proof is given in Ref. 3. Theorems on
possible dominance of the exchange of certain quantum num-
bers in elastic scattering have been given for pion—pion scat-
tering by D. Amati, A. Stanghellini, and S. Fubini [Nuovo
Cimento 26, 896 (1962), Eq. (9.20) and thereafter]; for gen-
eral isospin values by L. L. Foldy and R. F. Peierls [Phys.
Rev. 130, 1585 (1963)]; and for general groups by D. Amati,
L. L. Foldy, A. Stanghellini, and L. Van Hove (to be pub-
lished).
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Hence,

liI_n T (st)/e(st) = v(t) . (2.10)

The function 7'/¢ is analytic in the upper half s plane
and |T/¢| increases more slowly than an exponential
exp (L|s|) with L > 0, ¢ < 1. According to the
Phragmén—Lindel6f theorem applied to 7/¢,* Egs.
(2.6) and (2.10) then imply v(¢) = 1. This deter-
mines the phase of ¢(¢), and hence of 7'(st), to be
—ira(t) + nw, n =0, 1.

But the energy variation of cross sections at high
s is given by

oy« s ImT(s0), doo/dt « s |T(st)|”. (2.11)

Clearly, slowly varying cross sections at high energy
correspond in (2.5) to a(f) close to 1, and hence to
almost purely imaginary scattering amplitude 7'(st).
It is remarkable that this conclusion, being inde-
pendent of 8(f), is unaffected by logarithmic varia-
tions of the cross sections at large s.

The above reasoning could be extended to more
general forms of the asymptotic behavior of 7' as
s— + . One can repeat the argument for any
function ¢ such that 7/¢ has the properties men-
tioned immediately after (2.10), and such that

* M + 2ms — s — tt)/o(st)  (2.12)

has a finite limit y(¢) for s — + «. The value of
v(¢) is then 1 by virtue of the Phragmén—Lindelof
theorem, and this uniquely fixes the phase factor of
o(st) for every t.

Instead of relying entirely on the Phragmén—
Lindeldf theorem one could have used it only to
prove that 7'/¢ is bounded in the upper half s plane,
and then proceed by writing down a once subtracted
dispersion relation in s expressing Im (7'/¢) in terms
of Re (T/¢). By the original method of Pomeranchuk
one then obtains y(f) = 1, but finds in addition a
sum rule for Re(7/¢), which is an extension to
arbitrary particles of the sum rule d({) = 0 obtained
in Ref. 2 for pion-nucleon scattering (sum rule of
Goldberger, Miyazawa, and Oehme).

3. A CLASS OF UNCORRELATED JET MODELS

The present Section is devoted to a class of un-
correlated jet models and prepares the calculation

8 For a convenient formulation of the Phragmén-Lindelof
theorem for our purpose, see N. N. Maimann, loc. cit., Sec.
2, A and B. As mentioned there, the theorem also applies
when the function becomes unbounded on a finite interval of
the real axis. It has, however, to be analytic on the real axis
outside of such an interval. Another useful reference for the
theorem is E. C. Titchmarsh, The Theory of Functions (Ox-
go&i University Press, London, 1939), 2nd ed., Sec. 5.61 to

of the corresponding shadow scattering. We recall
first the formulas needed for deducing the shadow
scattering; they follow from unitarity of the S
matrix and are derived in some detail in an earlier
paper on this subject.® The partial wave amplitude
for angular momentum [ is denoted by .° The
quantity #;, which is real under our assumption of a
purely imaginary scattering amplitude, is related
to the inelastic collisions by the set of equations

m—%n =, (3.1)

i (2l + l)flPl(COS 0) = F(k@) y (32)
F(k0) = 2rkerer(er + )"

X (f(&)] IOI 8(aP" — po)| f(k)), (3.3)
IOIﬁ(P" —po)|f(&) = 1 — Q)S|k,— k). (3.4)

All symbols refer to the c.m. system. |k, — k) de-
notes the incident state in which particles 4 and B
have momenta k and —k, respectively, and energies
a=myi+1):, e=ms+E), k=k. (3.5)
The corresponding final state S|k, — k) has an
elastic component @S|k, — k) in the channel where
4 and B but no other particle are present (Q denotes
the projection operator on this component). The
sum of all inelastic components, to be called inelastic
final state, is the vector (3.4) where the four delta
functions express energy—momentum conservation.
P* (u=0,1,2,3) is the total energy—momentum
operator, p§ its value in the incident state
pg=8%=€1+€2, Po=0. (3.6)
f(&') in (3.3) relates to the inelastic final state of a
collision with incident state |k’, — k’), where k’ has
the same length as k and forms an angle 6 with it.
F has the significance of an overlap function between
inelastic final states of two collisions with the same

total energy and momentum. Unitarity requires the
equivalent inequalities

11— <1, 0<fi<t. (3.7

In high-energy collisions the differential elastic
cross section

dO'el ™ ddel m

2
Tl Z(Zl-l—l)sz(COS@) )

t =2k (cos6 — 1) (3.8)

9 L. Van Hove, Nuovo Cimento 28, 798 (1963), hereafter
referred to as I. See also L. Van Hove, “Strong interactions
at very high energy,” course given at the Cargése Summer
School, Corsica, 1963.

) 10 The corresponding expectation value of the S matrix is

— .




is only appreciable at small angles. The main region
of experimental interest for our considerations is
[t} ~ ko < 1 GeV/e, in which the differential cross
section is approximately energy-independent and
has the shape (1.1), (1.2) with* a ~ 10(GeV/c)™2.
Hence similar properties have to hold for F(k,0) (see
Sec. 4 for more details), and both »; and f; are smooth
functions of [ approaching zero for I>> k/m,. This
requires n; to be the smallest of the two roots of
(3.1)

mo=1—(1—2f) 3.9)

We also write down in our notation the total, total
elastic, and total inelastic cross sections

oo = 2a/k") X (21 + D)y, (3.10)
o = (r/k%) 22 2L+ L)yt (3.11)
owa = 2n/k") D 2L+ 1)fi = Cr/k")F (k0) . (3.12)

Selecting a jet model means selecting a model wave-
function for the inelastic final state (3.4). A most
interesting example based on field theoretical con-
siderations is the multiperipheral model of Amati,
Stanghellini, and Fubini.’? Its shadow scattering,
calculated by Amati, Cini, and Stanghellini,” gives a
differential cross section satisfying (1.1) and (1.2).
The diffraction peak, however, is found to shrink
indefinitely for increasing energies (¢ — + o for
s — 4+ ») whereas experiment suggests constancy
of a to be the most common asymptotic behavior.!!
In an attempt to study more generally how qualita-
tive properties of jets reflect themselves in the be-
havior of shadow scattering, we have considered in
I° two classes of jet models which contain arbitrary
functions. In one of them, |f(k)), is assumed to be a
product wavefunction of N identical bosons, all in
the same single particle state characterized by its
wavefunction in momentum space ¢(q). The second
one is much more realistic, its main assumption is
lack of correlation between secondaries in different
intervals of longitudinal momentum. As its earlier
discussion was very sketchy, we shall give a more
complete treatment presently. Our aim is to show
that at high energy and small angles the overlap
function has the following angular dependence

F(kg) = F(kO) exp (—A6), (3.13)

11 For a recent review of the experimental situation, see
A. M. Wetherell’s report on Experimental GeV Physics, In-
ternational Conference on Elementary Particles, Sienna
(October, 1963).

12 D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento
26, 896 (1962).

13D. Amati, M. Cini, and A. Stanghellini, Phys. Letters 4,
270 (1961); Nuovo Cimento 30, 193 (1963).
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or, in terms of ¢ ~ — (k6)?,
F(k6) = F(k0) exp (At/k?). (3.14)

A is a large positive quantity (4 >> 1) which we shall
calculate in terms of the inelastic final state. The
simple angular dependence (3.13), which has been
found also in the two other jet models mentioned
above, is a manifestation of the lack of correlation
between secondaries and is therefore expected to
hold quite generally for weakly correlated jets of
appreciable multiplicity. It is shown in the next
section to imply for the elastic cross section the form
(1.1), (1.2), with a simple relation between a, b, and
A. This will provide experimental information on 4,
especially on its variation with incident energy,
which will then be discussed in Sec. 5.

Our assumption concerning the inelastic final state
(3.4) can be formulated as follows. We_ call longi-
tudinal momentum ¢, of a secondary the component
of its momentum q along the incident direction,
which we take to be the direction of k. The interval
of possible values of ¢;, which is —k < ¢: < k at high
energy, is supposed to be divided in n > 1 subin-
tervals

q(i—l) < @< q(j) , j = 1,' N (3.15)
q(O) = —k < q(l) < .- .q(") =k, (3.16)
and |f(k)) is supposed to have the product form

170 = ]I:Iigxk)im,

where |0) is the vacuum state and g;(k) is a poly-
nomial in creation operators of particles with longi-
tudinal momenta in the interval (3.15). Inserting
into (3.4) we see that the only correlations between
secondaries belonging to different longitudinal mo-
mentum intervals are the ones imposed by energy-
momentum conservation.” From (3.17) we have

156 = TTa:)10),

where g;(k’) is obtained from g;(k) by the rotation
of angle 8 which brings k on k'.

We must study for large n the angular dependence
of

F(k8) = c{0] I] g#(&") IT6(P* — p8) 11 9:()10),
(3.19)

14 Compatibility of cosmic ray data with an uncorrelated
jet model of the type here considered has been established in
0. Czyzewski and A. Krzywicki, Nuovo Cimento 30, 603
(1963), and in A. Krzywicki, “A possible interpretation of
ultrahigh energy experimental data,”” CERN preprint (Octo-
ber, 1963). Our treatment does not include the excited isobars
produced by incident nucleons. They can be inserted simply
as additional factors in the product (3.17).

(3.17)

(3.18)



660 REviEws oF MopERN PHysics - ApriL 1964
with ¢; a proportionality factor independent of 6.
The only difficulty involved is caused by the delta
functions for energy—momentum conservation. It is
an experimental fact that the secondaries of inelastic
collisions have transverse momenta

q.=q — qgk/k, (3.20)

which do not increase with increasing incident
energy. But, as mentioned before, the relevant values
of the angle 6 decrease as k™. This allows us to make
the approximation that g;(k’) only creates particles
within the same momentum region (3.15) as g;(k).
As a consequence (3.19) can be written as

F (ko) = /Iﬂla (Ej‘,p}‘ —p$> L17:@50) dvf
3.21)

fi(@"6) = Olg#®) I, 6(P* — p")g;®)|0),

j=1,---m. (3.22)

In these equations the dependence of f; on k and k'
has been condensed in a dependence on 6 only (see
below).

Equation (3.21) is very similar to Eq. (3.3) of I.
The effect of energy—momentum conservation has
there been handled under the simplifying assumption
that all functions involved are real and positive; it
was then sufficient to use the central limit theorem
of probability theory. For 6 £ 0, however, the
functions f; defined above are, in general, complex,
and this complication must therefore be taken into
account. We follow a method inspired on the stand-
ard proof of the central limit theorem. By Fourier
transformation (3.21) becomes

F(k) = (2m) . f dau exp (—i }M:u“p::) IJIf,-(uu,e),
(3.23)

Ji(uw) = / exp <@ ;uup“> fi(0"0) dap . (3.24)

We need an asymptotic estimate of F# for large =,
i.e., for the case where the product in (3.23) contains
many factors. The procedure to be followed is to
determine the values 4, of u, which make IT;|f;(u,,
6)] maximum (%, depends on 6), and to expand
each In f, in powers of u, — 1, up to second order.
For the expansion coefficients we write

of + 185 = o(In J;)/ou,
¥ i = 9*(n i)/ 0w, du,  (3.25)

for u, = #,, where all ¢, 8, v, and § are real functions
of 9. The condition of maximum for I[;|f, deter-

mines the four numbers @, to be roots of the equa-
tions

Sidi=0, u=0123. (3.26)

For 6 = 0, all f;#(p*0) are real positive and %, = 0
gives the maximum. For § 5 0, we shall have in
general @, % 0 (in I we had treated the case @, = 0
for all #). If (3.26) has more than one set of roots,
the correct choice of %, can be made by continuity.
Inserting the power expansion of In f; in (3.23) one
obtains by integration the asymptotic estimate

F(k0) = (3 m)’a D™ [1L, Ji (@.,6)]

exp [~ 20, mph + ¥ 2w (T + 1) (96 — 6°)

X (po— B8] (3.27)
D is the determinant of the 4 X 4 matrix > (v
+ ¢6%%), the inverse of this matrix is written Ty,
+ 7A,,(I" and A real), and 8* stands for > ;8%.

The cylindrical symmetry of the inelastic final
state (3.4) around k implies symmetry relations for
the functions f; and their Fourier transforms f;. To
formulate them simply we select special orientations
of k and k’ in momentum space, corresponding to the
coordinates

B o=k"=keos (30), Kk = —k”=ksin(0),
B=k=0. (3.29)

It is on the basis of this choice that f; and f; can be
regarded as functions of 0 rather than k, k’. The
angle 6 is now allowed to take negative as well as
positive values, and the definition of F(kf) is ex-
tended to negative 0 by taking this function to be
even in . The symmetry relations for f; are

fi (poypl) _p2’p3,0) = fi (pU’pl}p2’p37 —"0>
=} 0'p0'0),
ff (poapl)pz) —p370) = fi (po)pl;pz;pgya) )
and similarly for f;

(3.29)

i (o, s, — ua,us,0) = J; (o, s, uz,us, —6)

= J?;k(—uo,—ul,—ltz,us,e) ,

fi (uoyul)u2y°—u3;0) = fi(uO)ulxu%u(*:e) . (330)
As a consequence it can then be seen that @, verifies
ao=ﬁ1=ﬂ3=0. 331)

Only 1, is, in general, nonvanishing and it is to be
found from the u = 2 equation of the set (3.26), the
other equations of the set being automatically satis-
fied. One can see that . is an odd function of 4,
which implies that f;(#,,0) is real and even in 6.



Further consequences of the symmetry relations are

Bi=6=0, £=5=0;

8 =0foru, »=01, 8 =68"=0;

VP = y¥ =0forp=0,1,

i+ 485 = i + 48" = Oforu = 0,1,2;

Ay =0forpupy =01, Ap= As;z=0;

Pyz = sz = OfOI‘pL = 0,1 s

r,,3 + ’L.Aua = I‘s’,, + ’L.Aa,‘ = 0 fOI' M= 0,1,2 .
One also verifies that all nonvanishing 8, v, and T
are even functions of 6, whereas the nonvanishing §
and A are odd. The determinant D is then real and
even in 6. Using (3.6) and all consequences of the

symmetry relations we find for (3.27) the simplified
expression

F(k6) = (3 =)’cl DI 1L Ji(@,0)]
X exp [% , ;1 T, (p6 — B°) (ps — B")] . (3.32)

We can now show that the angular dependence
of F is in agreement with (3.13). To this end we
consider f;(@,,0) to lowest nonvanishing order in 8

Ji(@,0) = J;(0,00(1 — a6?) . (3-33)

From the Schwarz inequality a; is easily seen to be
non-negative. Since 7 is large we can write

1L 7i(@.0) = (11, 7:(0,0)] exp (—46% ,

A=2DGa. (3.34)
We shall calculate A explicitly below and verify that
it is positive. The approximation (3.34) is valid in
the following range of variation of the exponent

A46° < 2(X ) 2 a5 = 2na’/a’,
=t 2yal. (3.35)

As will be seen later on, we expect at very high
energy the asymptotic behavior A « k* and we
shall be able to select n — « in such a way that
n @*/ o tends to infinity with k. The approximation
(3.34) thus becomes increasingly accurate. The
relevant range of 6 varies as 6 «—~ A7} « k71,

These facts allow to neglect the 6 dependence of
the other factors in (3.32). For 8 = 0 one easily
calculates from (3.22) and (3.25)

85 = G,(0lg¥(k)P"g;(k)|0) , (3.36)

v = —G{0lg} &) (P* — 85 (P — B7)g:(k)|0),
(3.37)
G;' = (0lg¥ (K)g;(k)|0) . (3.38)
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From the latter equations it is natural to expect the
v to remain finite at high energies. Hence we take T’
of order n*. From (3.36) and (3.37) one finds that
foro =0

g = 258 = (WP 7))/ (W) f) . (3.39)

In the spirit of the ansatz (3.4) and (3.17) for the
inelastic final state one can naturally assume (3.39)
to be the energy—momentum value p§ of the collision.
Consequently g* reduces to p§ + b“6* for small 0
and the exponent in (3.32) becomes

16" >, T .
From (3.37) the quadratic form is negative definite.
We make the following order of magnitude estimates:
I'« n™, b « k, and therefore obtain for the ex-
ponent n7'k?0* « n'k™? in the relevant angular
range 0 o« k7'. This quantity is obviously negligible.
The last factor of (3.32) which depends on 6 is the
determinant D. One can estimate dlnD/3(6?) at
6 = 0. It turns out to be of order @, while 6 is of

order (n @)™, so that we can replace D by its value
at 8 = 0. We are left with the very simple result

F(k,0) = F(k,0) exp (—A6%) , (3.40)
— > [9 1n f;(,,0)/8(6%)] (3.41)

We finally calculate the explicit value of 4. From
the symmetry properties of f; one immediately gets
to second order

7:(00%,00) = f; + % [@2(9°f;/duz)
4+ 20:0(8°;/9u200) + 6°(8°,/96°)] (3.42)

where in the right-hand side f; and its derivatives
must be taken at u, = 6 = 0. We recall that . is
obtained from the equation

It gives to first order, by means of (3.42),

el D J7(9%Fi/0u2)] + 612 J7(9°Ti/0u200)] = 0.
(3.44)

A= for6 =0.

(3.43)

Substituting back in (3.42) we obtain
24 = —[ 22, ] (97:/067)]
+ [ 2557510/ 0wd0))’ [ 22, F57 (0°:/0ua)) ™
(3.45)

Here again f; and its derivatives are to be taken at
u, = 6 = 0. To pursue the calculation further one
must go back to the explicit expression of f, as given
by (3.22), (3.24). We shall limit ourselves to the 0



662 ReviEws oF MopERN Prysics - Aprin 1964

and 1 particle components of ¢;(k), many particle
components being treated in identical fashion,

0) = ¢° + [ ¢ @At +- -

A¥ is the creation operator normalized to a- delta
function in the three-momentum q. The function
¢g® is cylindrically symmetric around k and vanishes
for the longitudinal component ¢; of q outside of the
interval (3.15). Denoting by ¢. and ¢s Cartesian
coordinates in the transverse plane, one finds after
some calculation

(3.46)

A=A4,+ 4., (3.47)

24, = Z /(Re ¢:)’p; dsq ,

24, = [Z / (Im ¢,)’°p; dsq:l
- [Z f Im ¢;zps daq:|2 [Z f G2ps d3q:|_1 (3.49)

o= PP + [l @ e} @0

¢; = [0 1n g (@)/9¢s] — [0 In g§°(q)/9g1] - (3.51)
While A4 is entirely independent of the phases of the
wavefunctions g{*’, these phases are responsible for
A. Both quantities are non-negative and 4, is easily
seen to be positive for any reasonable choice of g*’.

(3.48)

4. SHADOW SCATTERING OF UNCORRELATED JETS

In the previous section we have obtained for the
overlap function the angular dependence

F(ko) = F(kO) exp (—A6?), A>1. (4.1

We believe it to have a validity much more general
than the jet models considered to derive it. We expect
in fact that it should hold for all weakly correlated
jets of appreciable multiplicity. We now proceed to
discuss the implications of this simple angular de-
pendence for elastic scattering, assuming the latter
to be shadow scattering (i.e., to have a purely
imaginary amplitude) in line with the arguments of
Sec. 2.1

Because of 4 >>1, the partial wave expansion
(3.2) of F is calculated using the familiar equations

iim P.(1 —2?/21%) = Jo(x), (4.2)

/:eXp (—32")Jo(@E)rde = exp (—3 &) . (4.3)

15 The subsequent calculation is of course quite analogous
to the shadow scattering computation for the multiperipheral
model which also obeys (4.1), see Ref. 13.

One finds
Jfo=F(,0)/44 , (4.4)
fi = foexp (—1?/44) . (4.5)
The unitarity requirements (3.7) are satisfied if
0<f<3. (4.6)

The partial wave amplitude 7n; for elastic scattering
is given by (3.9). We expand it in powers of f,¢

n = Zlcmf? (47)
=1, ¢a=13--2m—3)/m! for m>1.
(4.8)

Inserting (4.5) and using (4.2), (4.3) we obtain for
the elastic scattering amplitude

T(st) = ¢ 21 (21 4 1)n.Pi(cos 6)
=44 > mcafs exp (At/mk")  (4.9)
1
with, as usual,
t = 2k*(cos 0 — 1) ~ — (k0)>.

The total cross section is obtained from (3.10)

o = SwAL™ 2 m cafs
1

fo
= 81rAlc"2_/ [1— @1 —-2nftdf
16rAk ™ {In [3 + & (1 — 2/0)}]
— 1 —=2f)+1}. (4.10)
(3.12) and (4.4) give the total inelastic cross section
O inel = Sﬂ'Ak—zfo (4.1].)

from which o.; is obtained as ¢; — owe. The ratio
oe/ay is a function of the dimensionless parameter
fo. As fo increases from 0 to its maximum value %,
oa1/ 0y increases from 0 to a maximum, which is found

to be

max (oei/oe) = (0er/04)smy =1 — (4 — 4In2)7"
=0213. (4.12)

This is quite a low value, and it is remarkable that
measured values of g.1/c, are close to it or somewhat
smaller. We thus expect actual values of fo to be
rather close to %. This will be confirmed later.

16 All series to be considered are convergent when fj is within
the limits (4.6).



To discuss the differential elastic cross section we
first write (4.9) in the form

T(st) = T(s0) exp [z + @2® + ---], 2= At/k
(4.13)
the coefficients a; are functions of fo which are given
by
aQy = o1yp, QA2 = (a2/2ao) —_ % (12;,' e (414:)
with
= 2.m eafo; i=012---.

m=1

(4.15)

For all allowed values of fo, a. is close to 1 and az,- - -
close to 0. For example,

fo=1, =08, a =003, a = —0.005,
as = 0.0003 ;  (4.16)
f0=0, (1121, a2=a3=--'=0. (417)

The differential cross section becomes

doo/dt = (61/167) exp [2a:x + 205" +---]. (4.18)

Its value in the forward direction follows from the
optical theorem under our assumption of purely
imaginary scattering amplitude. We rewrite (4.18)
in the form (1.1) suggested by experiment

door/dt = (3/167) exp (at + bf")  (4.19)

and find
a = 2aA/k, (4.20)
b/a® = as/2403 . (4.21)

High-energy experiments tell us that both o, and
@ remain constant or vary at most very slowly with
energy. Going back to equations (4.10) and (4.20),
which determine the basic parameters 4 and fo of
our theoretical description, we conclude that the
dimensionless quantity f, and the area A/k* are
essentially energy independent. Experiment gives
a =~ 10(GeV/c)™? = 4 mb both for pp and =*p scat-
tering."* Combining (4.10) and (4.20) we have

oy = S8manAk ™ = 4n(ap/au)a . (4.22)

From ¢, ~ 40 mb and 25 mb we obtain aj/a1 ~ 0.8
(pp) and 0.5(wp). The ratio aj/cu, which is fo, at small
fo, takes the value 0.74 at fo = 3. While the situation
is quite comfortable for =p, suggesting a value of fo
close to 0.4, we find that o:/a is too large by about
69, for pp scattering. If we remark that it is precisely
for pp scattering that experiment revealed a slow
shrinking of the diffraction peak, corresponding to a
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slow increase of a, while o, was found to remain quite
constant, it is tempting to speculate that this tend-
ency will maintain toward somewhat higher energies,
giving rise to a further slight increase of a and a
corresponding decrease of a,/a. A possible reason for
the different behaviour of =p and pp scattering in
this respect may be that, because of the abundant
excitation of nucleon isobars in inelastic collisions,
correlations in jets remain important in pp collisions
at higher energies than in 7p collisions.

We finally discuss the result (4.21) for the ¢* term
in In do.i/dt. The important point is that (4.21) is
small for all allowed values of f,. Its value at fo = 3
is found to be 0.02. Although experimental results
for b are still rather uncertain, most measurements
seem to give b “~ 210 3 (GeV/c)™, so that b/a* “~0.02
to 0.03 in good agreement with our value. It may be
of interest to contrast this number with the value of
b/a® obtained for an optical model assuming a totally
absorbing sphere; it turns out to be —% = —0.17,
wrong both in order of magnitude and sign (of course
the black sphere value of c./o: = % is also far too
large). The very fact that b/a? is so small will require
more accurate experimental work, especially at very
small values of ||, to go further with the above con-
siderations. One might hope to obtain at the same
time information on the real part of the scattering
amplitude which may well play a much bigger role
than the 29, effect just discussed.

5. MULTIPLICITY AND MOMENTUM DISTRIBUTION
OF UNCORRELATED JETS

The analysis of elastic scattering just made has
revealed that the quantity A% is required by experi-
ment to be essentially constant at high energy. This
quantity has been calculated in Sec. 3 in terms of the
model wavefunction adopted for the jet, see Kgs.
(3.47) to (3.51). We now investigate what restrictions
the constancy of Ak~ imposes on the properties of
the jet. Since we know very little on the detailed
structure of jets our discussion will not go beyond
the exploration of what seem to be promising indica-
tions. We shall reach them through some simplifying
assumptions.

We first determine the leading contribution to 4
using the fact that for most secondaries the longi-
tudinal momentum ¢; is much larger than the trans-
verse one q. = (¢ + ¢2)}. We approximate (3.51) by

¢; = i[9 In g5 (@)/9¢s) (6.1

and we neglect the second term in 4, on the ground
that a large compensation between positive and



664 ReviEws oF MopERN PHYsicS - APRIL 1964

negative ¢; must occur in the quantity

Z]_: [ Im ¢;qzp; dsq - (5.2)

Then
4= /q%lﬁjpf dsq (5.3)
¥ = |01n g;°(q)/9gsl” . (5.4)

From (3.46) the density distribution of secondaries
in momentum space, ie., the average number of
secondaries per unit volume in q space, is seen to be

N(q) = pi(q@) (5.5)

where ¢% 1 < g < ¢9. Introducing the average
multiplicity of the inelastic collision

V= [N@da= 3 [a@da, GO
we can write (5.3) in the form

A = N{q) (5.7)

where ¥ = ¢(q) is the function defined by (5.4) in
each longitudinal momentum interval and the aver-
age is taken over all secondaries. Let us also write
down the condition (3.39) for u = 0, which states
that the average energy in |[f(k)) is equal to the
incident energy e + e =~ 2k. It is

2k = Z/%Pi dsq = N{qo) ,

¢o denoting the energy of a secondary of momentum
q. From the preceding equations we find a simple
expression for Ak™2

AR = (4/N)(d)/ o))

or, since ¢; =~ qo,

AR = (4/N) (g)/{g)") - (5.9)
This is the quantity which has to be constant at high
energy. The multiplicity N is of course known to
increase with energy, and we conclude that (giy)/
{q0)? must increase at the same rate as N.

With the exception of ¥, Eq. (5.9) only contains
simple quantities. From (5.4) ¢ is clearly related to
the logarithmic slope of the final state wavefunction
in the transverse direction. We shall continue our
discussion under the assumption that ¢, or at least
its average over transverse momenta at fixed longi-
tudinal momentum ¢, is independent of ¢; as well as
of incident energy. Roughly speaking, this would be
true if the transverse momentum distribution is
independent of incident energy and if there are no
correlations between longitudinal and transverse

(5.8)

momenta (except the over-all correlation imposed by
energy—-momentum conservation). Would experi-
mental work reveal that such correlations exist, the
following considerations will have to be revised.
Under our new assumption y is treated as a constant
in (5.9) and we have

AR = (49/N) (g6)/ (@) - (5.10)
Since we have assumed ¢ to be independent of %, the
dependence of A%~ on incident energy is now entirely
determined by the & dependence of the energy distri-
bution w(q) of secondaries. We indeed know from
(5.8) that the multiplicity & is entirely fixed in terms
of w(qo).
Energy and momentum conservation implies that
no secondary can have an energy larger than k. We
thus can put

w(qo) = 0 fOI‘ Qo > ]C . (511)
Hence, using (5.8),
(g = f gow(go) dgo < kb / got (g0) dgo = T{go)
= §N(w). (5.12)

This means that in our model 4%~ can certainly not
increase with k. In other words, shrinking of the
diffraction peak is impossible. Furthermore, when
the energy variation of w(g) is such as to give N
— o, the corresponding value for Ak~ will in
general tend to zero as k — «. Only special types
of k& dependence for w(q) will give at the same time
constant A%k™2 and increasing N. What is required is
to have {(q)/k approach zero while (g3)/k(g) tends to
a nonvanishing limit. The ratio {g3)/{(g)* must in-
crease, so that the distribution must grow flatter
toward large ¢. We have tried the following ansatz®

w(qp) = c(k)gp® for q <k,
=0 for go>Fk. (5.13)

¢(k) is determined by the normalization condition

fw(qo) dgo = 1.

The exponent «, which might in principle vary with
k, is limited to the interval 1 < a < 2 by the re-
quirement that (¢3)/{(q)* — «. We assume for sim-
plicity that it becomes constant at large k. One then
finds (A’ = positive constant)

Ak — 4’ , NxInk for a=1,
A2 — A’ , N « >t for 1 <a<2,
Ak? « (Ink)™, N « k(Ink)™ for a=2.

(5.14)



It is remarkable that constancy of Ak is achieved
for all « satisfying

1<a<2, (5.15)

an interval compatible with cosmic ray evidence
concerning the increase of N (which seems to favor
1< aS$). Also the corresponding distribution
(5.13) for secondaries is compatible with cosmic ray
data.¢

The last point we have to check is whether the
distributions (5.13) and (5.15) allow the exponential
approximation (3.34) to be made. We have to show
that the quantity n @%/a?, defined in (3.35), tends to
infinity for some reasonable law of increase for n.
Actually n cannot increase faster than k& if the length
of the longitudinal momentum intervals (3.15) is to
remain finite. Under the assumptions made in the
present section a; is of order of p;[¢%]?, hence

" =n" Y af « f %" w(g) dgo .

We then readily calculate
a" « F"/Ink

"« | for

(X a)/ X af =n""a} /o]
« (n/lnk)"" for a=1,

< (n/E*)"™ for 1<a<2.

This tends to infinity for all m > 2 if we take n « k*
with @« — 1 < e <1, a rate of increase which is
entirely reasonable.

for a=1,

1<a<2;

6. CONCLUDING REMARKS

As was stressed in the introduction, our theoretical
analysis of high-energy collisions is strongly phe-
nomenological in character, in the sense that we
relied heavily on experimental indications. We there-
fore conclude by mentioning a few questions on
which further experimental work is highly desirable.
In the course of our discussion we established logical
connections between approximate constancy of cross
sections, imaginary character of the elastic ampli-
tude, linearity of In (do.i/dt) in ¢ and various jet
properties such as lack of correlations, multiplicity
increase, and energy distribution of secondaries. One
aspect of jet structure which played a central part
in our discussion is the assumed uncorrelated emis-
sion of secondaries, which was found to account for
the linearity of In (de.i/dt) in t. It is on this random-
ness in the emission process that the need for even
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crude experimental data is felt most severely.

Except for the requirement of energy—-momentum
conservation, we assumed lack of correlation between
secondaries emitted in different intervals of longi-
tudinal momentum. This is a natural assumption
which could be tested experimentally (actual tests
have been proposed at the end of I). If correlations
are found, two possibilities are still to be considered.
Either jets are uncorrelated when analyzed in some
other grouping of the secondaries, or the correlations
are present in any set of variables. The latter would,
for example, be the case if a strict fire-ball model
would hold, in which a small number of fire balls
with uniquely defined mass, charge, and spin would
be formed in all or most inelastic collisions. The
former possibility would occur in a modified fire-ball
model where the fire balls would be no more than
clusters of weakly correlated secondaries.

The considerations of Sec. 2 show that, under
plausible assumptions, slow energy variation of total
and elastic cross sections implies an almost imaginary
elastic amplitude. Even weaker assumptions are
known to imply that total and elastic cross sections
become equal for the processes A + Band 4 + B.2*
These features of high energy collisions are qualita-
tively supported by experiment. They raise the
question of the relation between inelastic collisions
of an incident particle 4 and its antiparticle 4 on
the same target particle B. One wonders how the jets
formed by A + B compare with those formed by
A 4 B. The most natural assumption is that the
nature of the incident particle A or 4 reflects itself
only among those secondaries in the jet which have
their longitudinal momentum closest to the one of A
or A. This is realized in the multiperipheral model'
but could hold true in many other models if they
ensure retention of charge, baryon number, and
strangeness of the incident particle A (or B) by the
group of secondaries with longitudinal momenta
closest to the one of A (or B). There is already clear
experimental evidence in favor of such a behavior,
but much more detailed work is possible and desira-
ble. Also from the theoretical standpoint, one should
include this effect into the discussion of shadow scat-
tering given above.

In addition to these questions, which all belong to
jet physies, continuation of the very interesting work
done up to now on elastic collisions will of course be
most useful. One can hope to develop gradually in
this way a rather definite theoretical description of
high-energy collisions, which is probably a necessary
prerequisite for a deeper understanding of strong
interactions at very high energies.



