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This can be done by restricting the range of integra-
tions over the Feynman parameters in a reasonably
straightforward manner. The diagram Bc has only a
negative z cut and is uninteresting. Another diK-
culty is that although the predicted large z de-
pendence of the amplitude fr —1'1 —1 is 1/z, the
natural order of the various graphs is ln (—s) and
consequently one is not involved with just the com-
putation of the dominant contribution from the
various graphs. It is unfortunately the case that we
have not yet been given su%.cient "running time" to
have completed the measurement of the requisite yy
scattering amplitude. Consequently we cannot re-
port the evaluation of the trajectory.

It is not profitable to speculate about the outcome
of the calculation at any great length. We have seen
that the idea of having a vacuum trajectory gen-
erated by the exchange of two massive vector bosons
is consistent with elastic unitarity. One of the more
interesting questions is to locate the place where
6 = o. —1 goes through zero. We can, of course,

calculate Im 6 from unitarity as we have shown,
but it is precisely the unknown subtraction question
that forces our yy-scattering experiment. Perhaps
the nicest result would be for 6 to be zero at W' = 0,
as the fabled Pomeranchuk trajectory is supposed to
behave. We have verified that as the boson mass goes
to zero this is indeed the case. It could of course also
be that 6 goes to zero at W' = 0 only when the
coupling gets strong, or perhaps for some special
value of the mass ratio, X/m, other than the zero
value we have mentioned.
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High-Energy Proton-Proton Scattering

ROBERT SERBER*
Physics Department, Columbia University, Nem York, New York

The optical model for high-energy proton —proton
scattering which has been proposed in an earlier
paper' predicts that, for large momentum transfers,
the dependence of the elastic cross section on the
square of the momentum transfer is approximately
an inverse sixth power law. This prediction is borne
out very well by the new measurements of Cocconi
et at.' for their highest proton energies, near 30
BeV. The prediction has been checked down to
cross sections as small as 2 X 10 " of the forward
scattering cross section and to center-of-mass scat-
tering angles as large as 82'. For lower energies the
measured cross sections deviate from the theoretical
curve, becoming larger as the center-of-mass scatter-
ing angle approaches 90'.

The cross section for large momentum transfers
depends on the behavior of the absorptive potential
near r = 0, while that for small momentum transfers

*This work was supported in part by the United States
Atomic Energy Commission.

r R. Serber, Phys, Rev. Letters 10, 357 (1968).
~ G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R.

Rubinstein, D. B. Scarl, W. F. Baker, K. W. Jenkins, and
A. L. Read, Phys. Rev. Letters ll, 499 (1968).I am indebted
to these authors for making available some additional in-
formation before publication.

V(r) = ge "/r. (2)

This leads to a cross section formula

(1/I')&-/d~l = (1/A')&(t/A')', (3)

with t the square of the momentum transfer. Numeri-

depends on the behavior for large r. A potential can
be constructed to Gt the observations for the entire
range of momentum transfers. This is of Yukawa
form for r ( 0.33 X 10 " cm, and of Gaussian form
for r ) 1.1 )& 10 " cm. The range of the Yukawa
potential is determined by the width of the diffrac-
tion curve for large momentum transfer, the range of
the Gaussian by the width for momentum transfer
near zero.

The general features of high-energy elastic proton-
proton scattering with large momentum transfer have
been explained' in terms of a simple optical model.
The change in wave number in the region of' inter-
action was described by an absorptive potential,

k' —k = iV(r)

and V was supposed to be of Yukawa form,
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TABLE I. E(Z).

0
0.0625
0.25
1

9
16
25
86
49
64

100
200
850

1.419
1.880
1.058
0.5800
0.1082
2.889 X 10 2

6.264 X 10 3

1.984 X 10 3

6.666 X 10 4

2.806 X 10 4

1.287 X 10 4

8.185 X 10 5

8.691 X 10 6

6.557 X 10 7

For this qualitative comparison, the remaining
parameter A. was chosen to fit the observed total
cross section. While (3) then reproduced the empirical
t ' law fairly well, the width of the predicted scatter-
ing curve was too great, as shown in Fig. 1 of H,ef. 1.
To get a more quantitative description of the large
momentum transfer measurements, one should choose
the scale factor in (3) to fit the observed width. The
scaling law given by (3) can be described as follows.
Make a log—log plot of the measured values of
(4pr/ko&. t)'do/dQ vs t, as in Fig. 1 of this paper. On
tracing paper, make a similar log—log plot of
[F(t/AP)/F(0)]' vs t, using the value A' = 0.1750
(BeV/c)' of Ref. 1. If the tracing paper is superposed
on the plot of experimental points, we get the com-
parison used in Ref. 1. To change the scale factor cV,

shift the tracing paper on a 45' line upwards and to
the left, or downwards and to the right.

The result of such a rescaling is shown in Fig. 1.
For values of the ordinate between 10 ' and 10 ' the
experimental points of Diddens et at.' show no
significant dependence on the laboratory proton

3 A. N. Diddens, E. Lillethun, 0. Manning, A. E. Taylor,
T. G. Walker, and A. M. Wetherell, in Proceedings of the In-
ternationaL Conference on High Energy NucLear Phy8ic8,
Geneva, Ig68 (CERN Scienti6c Information Service, Geneva,
Switzerland, 1962), p. 576.

cal values of F, for q = 1, are given in Table I for a
greater range of the argument than was covered in
Ref. 1. For f/A' ) 100, the asymptotic expansion

F(z) = (25.878/z') (1+ (9/z) flu z —x]I
is in error by less than 2.5%.For the particular value
p) = 1 it was shown that (3) gives a good qualitative
account of the observed cross section over a range of
/for , which do/dQ varies by a factor of 10'.

momentum pp foi' pp between 18 and 26 BeV/c. The
calculated curve was therefore adjusted to fit
smoothly to the measured points in this interval. It
is represented in Fig. 1 by the solid curve for ordi-
nates less than 10 4, and the dashed curve for ordi-
nates greater than 10 '. The shift was such that
t = 1 on the tracing paper fell on t = 0.4 on the
experimental plot, meaning that the proper scale
factor ls

A' = 0.4 && 0 175. (BeV/c)' = 0.070(BeV/c)',

A. = 1.341(10 cm) '.
In the following, lengths are always measured in
units of 10 " cm. For ordinates less than 10 ', the
theoretical curve is roughly a t ' law.

The CERN points at highest energy follow the
theoretical curve quite well down to ordinates of
10 '. Our calculations were made prior to the recent
Brookhaven experiment of Cocconi et at. ,

' so that
for ordinates below 10 ' the curve can fairly be de-
scribed as a prediction of the theory. For laboratory
momenta greater than 26 BeV/c, the new experi-
mental results follow the curve down to an ordinate
of 2 g 10 ".The measured point of highest t repre-
sents pp = 31 BeV/c scattering at 82iz' center-of-mass

angle, and exhausts the capabilities of presently
existing accelerators. For lower energies the measured
points deviate' above the curve, the deviation becom-

ing quite large as the center-of-mass scattering angle
approaches 90'. In Ref. 1 it was suggested that the
optical model, which contains in itself no prediction
of any dependence on energy, gives the limiting
behavior for very high energy. This idea is borne out,
to the extent that the higher the proton energy, the
further down the scattering follows the predicted
curve before the deviation sets in.

A word must now be said about the meaning of the
scale factor A', determined as described above. The
Yukawa form of absorptive potential is only nominal;
the scattering for large momentum transfers is deter-
mined only by the behavior of the potential near
r = 0. If (2) is expanded in a power series,

V = pi[(1/r) —A+ ~z A'r+ ],
the essential parameters are the coefFicient of the 1/r

4 For scattering near 90', i.e., for f/2ks near 1, the cross sec-
tion should be taken in symmetrized form. Denoting the
ordinate of Fig. 1 by F'(t)P, this amounts to replacing F'(tie by

F'(t)P + F'(4ks —f)P —F'(t)F(4ks —f) .
This leaves the 90' scattering cross section unchanged.

Fre. 1. Log —log plot of F' = (4v/kpt, ,t) do/dn vs t. The experimental points are labeled as follows: Foley et al. ,7 pp = 19.6
BeV/c ~,pp = 16.7 BeV/c o, pp = 10.8 BeV/c &; Diddens et aLs )&; Cocconi et al.p Cl. The numbers next to the points
give pp in BeV/c, and in a few cases the center-of-mass scattering angles.
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term which must be taken to be q = 1, and the ratio
of the term linear in r to the 1/r term, which deter-
mines the scale factor. A more precise statement of
the relationships involved can be obtained by con-
sidering an absorptive potential of the form

V(r) = rt(A)(e "/r)dA.

Let us define the moments

(4)

~(A)d~,

rt ln A&
—— rt(A) ln AdA,

~(t1)X'dA .

As before, st and rths determine the 1/r and the r
term in the power series expansion of V(r). The
logarithmic moment arises in the evaluation of the
phase shift as a function of the impact parameter
p, ~(p) = &x(p)

rV (r)
s (r —p)'

parameters would not be uniquely defined, since one
could always make a displacement parallel to the
straight line representing the t ' law. It is for this
reason that we have included the next largest term
in the asymptotic expansion, to show that no new
moments of the distribution occur, and that the
determination of the parameters is, at least in
principle, possible. In adjusting the optical model
curve to the experimental results we have not, how-

ever, taken advantage of this extra freedom.
In comparing the optical model calculation with

the measurements, we have identified the variable t
which appears in formulas such as (3) and (8) with
the square of the invariant momentum transfer.
Some question may be raised as to whether this is
the correct comparison when the scattering angle in
the center-of-mass system is not small. The Coeconi-
Orear experiments extend to 90 scattering in the
center™of-mass system. The choice we have made
corresponds to taking the scattering amplitude in the
center-of-mass system to be

(1 —e '"'")Js(2kp sin -', 8)pdp, (9)

whereas in H,ef. 1 the argument of the Bessel function
was written in the small-angle approximation as kp9.
Equation (9) is obtained f'rom the expression

For small p,

x(p) = —v(1+ s A'p')» (s V~v) (6)

plus terms of order A.'p'. Here In y = 0.557 is
Euler's constant. These logarithmically singular terms
in x(p) in turn determine the leading terms in the
asymptotic form of the scattering amplitude for
large t [see (18) of Ref. 1],

g (2l + 1)(1—exp ( —2@&))(Pi(eos 0)
f 1

i=a

(10)
by replacing the sum by an integral, using the con-
nection l + —', = Icp, and by making the approxima-
tionF(t) = —— ' I'(1 + st)' sin srrt

1 + (1 + st)' —ln —,+ 0A. t A

t

—I'(2 + rt) m.rt eos m.rt
—1 + (2 + rt)

(g)A'

P~(cos 8) = Jo((l + s)2 sin —', 0) . (11)
One argument that this is a judicious choice of
variables is that (9) then gives the proper Born
approximation result for x& (& 1.'

For the Yukawa potential (2),

(7) x = I& ((1+ l)A/lc), or x(p) = &.(~p) (12)

For g = 1, (7) reduces to

I"o) = Sv', (
—

) 1+ 9 —ID —,+ 0 (
—

)
(8)

The occurrence of the factor (Ai/cV) in (8) shows
that we have more freedom in our scaling law than
was indicated in our earlier discussion. In fact, we
may change the scales of ordinate and abscissa
independently, thus determining both h.' and A&. If
only the leading term of (8) were considered the two

With this choice of x, we have re-examined the
evaluation of the asymptotic form of f for large
momentum transfers, including the higher terms in
Macdonald's expansion, of which (ll) is the leading
term. ' This investigation indicates that (7) and (8)
are correct to within a factor [1 + 0(sin'-,'8)].

As a further check, both of (11) and of replacing
the sum by an integral, we have calculated (10)

5 See also the discussion by R. J. Glauber, High, Energy CoL-
lision Theory, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1959), p. 345.

s See G. N. Watson, Theory of Bessel Functions, (Cambridge
University Press, New York, 1962), p. 158.
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numerically, using A/k = 0.12, which corresponds
to a proton of momentum p, = 11.26 BeV/c. In this
calculation we kept terms up to l = 110. The result
for f} = 90' was F'(f) = 2.01 X 10 ', whereas the
evaluation of (9) gave P(t) = 1.99 X 10 ' [F'(f) is
defined by (15)].

Another question about the optical model when
large angle scattering is considered concerns the
integration of the phase shift along a straight line

ray. If we suppose our scattering problem to be the
solution of a Elein —Gordon equation, i.e., (20) of
Ref. 1, this is equivalent to keeping the first term in
the expansion of the %EH expression for the phase
shift in powers of V, or g. A question arises because
the leading term in (7) vanishes for g = 1, so that
even a small correction to the effective value of q

would be multiplied, in comparison to the second
term, by a factor f/4A'. However it is not difficult

to evaluate the %KB phase shift exactly for small p,

and show that the leading term in the phase shift,
the —rf ln p term in (6), has no corrections to any
order in g. An interesting point is that it is essential
to keep the V' term in the Elein —Gordon equation
to get this result.

We turn now to a discussion of the observed scat-
tering for small momentum transfers. As a result of
the scale change needed to fit the data for large t the
range of the Yukawa potential has been increased

by a factor 2.5. This would lead to a total cross
section 2.5 times the correct value, and to an increase
in the forward scattering cross section, which is
proportional to o-t.t', by a factor 6.25. It is easy to see

what change in the model must be made to bring its
predictions back into agreement with the facts. The
high t scattering is determined by the behavior of

V(r) near the origin; the contributions to the total
cross section, on the other hand, come mostly from

large impact parameters. The Yukawa potential has
too much long-range tail; by chopping off the tail we

can come back into agreement with the observed
total and forward scattering cross sections, without
affecting the cross section for large t. In addition,
since the integrand in the expression for O,.t is
proportional to (1 —e '""'), while that for o.& is

proportional to (1 —e '""')', reducing x(p) for large

p, where x(p) « 1, reduces o ...more than o.). Cutting
off the tail will also serve to raise o..&/o... from the
value 0.185 given by the Yukawa model, to the value

o;&/o...= 0.244 & 0.012 observed by Lindenbaum,

Yuan, et a/. ' for ps ——19.6 BeV/c.

7 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J.J.
Russell, s,nd L. C. L. Yuan, Phys. Rev. Letters 11, 425 (1968).

It is not difficult to determine the form of V(r)
needed to fft the small 1, measurements, if it is sup-
posed that the scattering amplitude is purely imagi-
nary. For then f(t) is determined directly by the
experimental results, f(t) = i(do/dQ):, and (9) can
be inverted to determine x(p) . This method has been
used by Erisch, ' who considered 16 BeV/c scattering,
and showed that x(p) agrees with (12) for small p,
but falls off more rapidly as p increases. The in-
version formula for (9) is

() f(y) J (
Q Zk

where y = t'* = 2k sin —,
' 8. We can rewrite (13) as

F'(y') J.be)y dy, (14)

with' F'(y') = 47rf(J')/ika, .„or
F'(f) = [(4s/leo. ..)'do/dQ]* . (15)

The form (15) of P (t) is the one used in making the
connection with the experimental results. It is just
the square root of the ordinate of Fig. 1, or the ordi-
nate itself if the spacing between the horizontal lines
is read as one decade rather than two. In passing
from (13) to (14) and (15) we have not used the
optical theorem for the forward scattering amplitude,
but simply introduced 0-~t to obtain a convenient
measure for do/dQ.

For p = 0, (14) gives"

1 —e '"'" = "-' P (f)dt . (16)

Equation (16) expresses the opacity for a central
ray directly in terms of experimentally measured
quantities. Since the integral on the right is largely
determined by the scattering for small t, it provides
a critical test of our model, that is, of our supposition
that the large t behavior of the scattering requires a
1/r absorption, which gives x(0) = ~, and

1 = =' F'(t)dt.
8x 0

Some uncertainty is introduced, however, by the
assumption that the scattering amplitude is purely
imaginary. Lindenbaum and Yuan' find, for their
highest momentum, p, = 19.6 BeV/c, F'(0)' = 1.20

s A. D. Krisch, Phys. Rev. Letters ll, 217 (1968).
s The function F'(t) differs from the F(C/hs) of (8) by a

factor,
F'(t) = (4~/a, .&'}F(t/4') .

With A = 1.341, Otot ——39.5 mb,
F'(/) = 1.769 F(t/As) .

ic Note that the scaling law of (8) leaves the right hand side
of (16}invariant.
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& 0.20, the error including the uncertainties in the
absolute scale of the scattering cross section, in the
extrapolation of the cross section to t = 0, and in the
total cross section. . If the amplitude were purely
imaginary we should have P(0)' = 1. There is some
indication in the results of Lindenbaum and Yuan
that the deviation from the optical theorem is still
larger for smaller values of p&, and thus that f has a
real part which decreases as pc increases.

If f(t) = f,(t) + tf;(t), (16) should be replaced by

00

(1
—2x(0)) b&t P(t) ] + fr( )

8s o f,.(t)'

If f„(t)/f;(t) were independent of t, (18) would say
that P(t) should be renormalized to P(0) = 1 before
making the comparison (17). On the other hand, if
f,(t)/f;(t) decreases rapidly with t, (17) would be
unaltered. The latter situation corresponds to the
phase shift having a real part only for large impact
parameters. In this circumstance it is easy to see
that the scattering amplitude coming from small
impact parameters would be modified only by
multiplication by a constant phase factor, and the
scattering cross section for large t would be un-
changed.

In Fig. 1, the solid curve for ordinate greater than
10 ' represents the parametric fit given by Linden-
baum and Yuan' for their p, = 19.6 BeV/c data,

Notice the one-sidedness of this expression, V(r)
depends on the values of x(p) only for p )~ r.

For p near zero we have already determined x(p)
by fitting the large t scattering. To terms of order
A'p2)

x(p) = —(1+ -'. ~'p')1 l vttp+ -'~'p' (22)

Figure 2 shows how the curve of g(p) calculated

2.0

I.9—
I.8—
I.7

l.6—
1.5

l.4

l3

l.2

I.I

I.O—
0.9—
0.8—
0.7—
0.6—
0.5 —.

0.4—
03—
0.2—
O. I

do/dt = As '"", 0
0 0.5 I.O 1.5

with A = 96.5 mb/(BeV/c)', b = 10.48(BeV/c) ', c
= 2.25(BeV/c) '. The optical limit value of A would
be A = 79.7 mb/(BeV/c)', taking a-... = 39.5 mb.
On carrying out the integration in (17), using (19)
for F") 10 ' and the optical model curve for F"
& 10 4, we 6nd

P (t)dt = 0.96 & 0.08 .
Sx p

(2o)

The error has been estimated on the basis of Linden-
baum and Yuan's statement of the errors in their
experiment. The agreement between (20) and (17)
assures us that we can determine a x(p) from (14)
which will reproduce the experimental scattering
curve well within the experimental errors. Given

g(p), the corresponding absorptive potential is
readily found, since (5) can be inverted to give"

p(10»cm)
FIG. 2. x as a function of p. The dashed curves give the con-

tinuation of (22) to larger p, and the continuation of the
Gaussian, (23), to smaller p.

numerically from (14) for larger p joins smoothly to
that given by (22). The dotted portion for p ) 0.33
is the continuation of (22). For p ) 1.1, the numeri-
cal results for z(p) ean be represented very well by a
Gaussian dependence

x(p) = As "'"

with 2 = 0.454, X' = 1.224. The continuation of
(23) to smaller p is also indicated by a dotted line
in Fig. 2.

Using (21) and (23) we find

rV(r)dr = x([r'+ s']')ds.
T 0

' See Ref. 5, p. 386.

(21)
V(r) = (2/s-')AXe " '

= 0.567 e ""'",
p ) 1.1. (24)

Over the region for which (23) holds, x(p) ( 0.1.
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Thus the Born approximation is valid, which suggests
an immediate connection between X' and Linden-
baum and Yuan's parameter b in (19). For small t,

dc/df = A exp (—bf), which is the Born approxima-
tion scattering from a Gaussian potential of range

1.0—

0.9

0.8

X = 1/2b . (25)
0.7

Expressed in (10 " cm)', rather than (BeV/c) ', b

= 0.4080, and (25) gives X' = 1.225, in excellent
agreement with the value obtained from the numeri-
cal integration.

For small r,

V(r) = e """/r, r & 0.88. (26)

For 0.88 & r & 1.1, rV(r) was calculated by numeri-

cal integration of the right side of (21), followed by
differentiation to give rV(r). The results are shown

in Fig. 3.
In summary, we have shown that it is possible to

find an absorptive potential which will represent the
data well for both large and small f For sm.all r, V(r)
behaves like a Yukawa potential with a range deter-
mined by the width of the scattering curve for large

t, while for large r it behaves like a Gaussian with a
range determined by the initial rate of decrease of
the scattering for small t.

0.6

0.50
L

Og

0,3

0.2

0. 1

0
I

0.5
I

1.0
r(10 Scm)

I

l.5
I

2.0

Fxa. 3. rV(r) as a function of r. The dashed curves give the
continuation of the Yukawa potential (26) (times r) to larger
r, and the continuation of the Gaussian potential (24) (times r)
to smaller r.

High-Energy Collisions of Strongly Interacting Particles

L. VAN HOVE

CEB1V, Geneva, Su&i tzertand

1. INTRODUCTION

We are concerned in the present paper with the
theoretical analysis of strongly interacting particle
collisions in the multi-GeV energy range (laboratory
energy above 5 GeV). While one has expected for a
long time that the gross features of such collisions

would be qualitatively very simple, progress in their
detailed experimental and theoretical study has been
extremely slow. Reliable and accurate accelerator ex-
periments have started quite recently and have

mainly elucidated some of the basic properties of
small angle elastic scattering up to 30 GeV. The
work on inelastic collisions is only at its most timid
beginnings. The systematic study of the most com-
mon type of inelastic collisions, often referred to as
jets, has hardly started at accelerator energies and
is strongly limited by the short-comings of most pres-

ent detectors (what is required is identification and
momentum determination of all pions in the three
charge states, for inelastic collisions in pure hydro-

gen). Regarding our theoretical understanding,
fundamental theory has essentially failed to make
any progress despite many attempts. It is striking in
this context to read over again the early and most
interesting paper devoted in 1948 to multiple meson
production by Lewis, Oppenheimer, and %outhuy-
sen, ' and to compare it with recent attempts at ap-
plying field theory or dispersion techniques to this
subject. The difhculty to explain even the most pre-
dominant features of high-energy collisions remains
as great as it was sixteen years ago.

It is in our opinion unavoidable that progress in
theoretical understanding of these phenomena will

' H. W. Lewis, J. R. Oppenheimer, and S. A. Wouthuysen,
Phys. Rev. 73, 127 (1948).


