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and therefore

Ac
Bt„„l d8"" = 2s g n,e, .

Again the integral represents magnetic charge, which
is now the matrix

Q = Pic/e)2s- g n,e, .
The eigenvalues of Q„are

Q' = (Ac/e)2' g n, c', (13.12)

where e,' = 1,0. Equation (13.12) is the generalization
of the Dirac condition to the case of an arbitrary
gauge group. '

14. MAGNETIC POLES

AVe have seen that the Yang —Mills Geld whose

s 8. Mandelstam, Ann. Phys. (N. Y.) 19, 1 (1962).

neutral component is the electromagnetic field does
not admit magnetic poles. However there is also
a theory in which the neutral component is dual to
the usual electromagnetic field. In the one case the
charged bosons carry electric charge, magnetic
moment, and no magnetic charge. In the dual theory
they carry magnetic charge, electric moment, and no
electric charge. In the latter case the fermion sources
are also magnetic monopoles, and the magnetic
charge is always given by (13.12). If both classes of
particles exist the observed electric (magnetic) fields
are due to electric (magnetic) monopoles at, rest and
magnetic (electric) monopoles in motion.
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1. INTRODUCTION

It has recently been shown that the conventional
field theory of vector bosons (y) interacting through
a conserved current with spin one-half fermions (X)
(i.e. quantum electrodynamics with massive photons)
possesses several remarkable and hitherto unexpected
properties. First, it appears to have finite nonper-
turbative solutions, as shown by Johnson, Baker, and
Willey. ' Second, as shown by Marx, Zachariasen, and
the present authors, ' the spin —,

' particle, which in
second-order perturbation theory appears as a fixed
singularity in the angular momentum, is, as a result
of radiative corrections, found to lie on a H,egge
trajectory

I= J —-', =a(W),

*Supported in part by the U. S. Atomic Energy Commis-
sion and the Air Force Office of Scientific Research.

~ K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters
11, 518 (1968).

2 M. Gell-Mann, M. L. Goldberger, F. E. Lour, E. Marx,
and F. Zaehariasen Phys. Rev. 133, 145 (1964) (hereinafter
referred to as III).

where W is the total energy and cx(m) = 0, with m
the fermion mass. The function n(W) has a power
series expansion in the coupling constant, called y,
such that a(W) ys as 7 ~ 0.

In this paper we investigate the generation of a
Pomeranchuk-like (or I') trajectory in the same
theory. This differs from the previously discussed
fermion trajectory problem in several ways. The I'
trajectory in no way corresponds to an elementary
particle of Geld theory but is more analogous to the
well understood trajectories of potential theory (or
ladder approximations in field theory) with the dif-
ference that it approaches J = 1 as p' ~ 0 rather
than J = —1 as in potential theory. This is due to
the spin of the particles involved. Another difference
from the fermion trajectory is, as we shall see, that
J —1 —= A(W') y' as y —+ 0.

The processes whose asymptotic behavior at large
z is determined by the P trajectory are y + p ~
7+ p, X+ 7 —+X+ Xandv+ y~X+ Ã.
The latter amplitude can be calculated in order y',
the two former ones in p'. The generation of a H,egge
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trajectory in perturbation theory inevitably requires
first the existence of a "nonsense" channel at the
relevant value of J, which in this case is the two
boson '(J —2)~ state at J = 1. The parity of this
state is (—1)' where even values of J are physical.
The second requirement, as was shown in Ref. 2, is
the factorization of the Born approximation which
holds for the above reactions, at least for the "non-
sense" channel. This peculiar qualification results
from the fact that an investigation of the "sense"
boson states requires a higher order calculation

( p') than we have performed for the reaction

y + y —+ N + N. To order y' it turns out that the
"sense" amplitudes go like

Pg(z) + Pg( z) z——z = 0,
Pz(z) —PJ(—z) 1 —1 = 0,

for large z near J = 1; this has the consequence that
the coeKcients of z and —z cannot be separately and
unambiguously calculated. The nonsense amplitude
on the other hand goes like

P,'(z) + P~(—z) 1/z —1/z

where the 1/z term comes from 1/m' —t and the
—1/z term from 1/m2 —u; these terms can be sepa-
rately identified and their coeffIcients calculated.

We have used the same technique as in III to show

that the existence of a perturbation theory vacuum
trajectory is consistent with unitarity and analytic-
ity. We have throughout considered the theory of
spin -,'fermions, which as stated above shows the
factoring property which is necessary for the success
of' the Reggeization procedure. However, for the
problem of the vacuum trajectory as opposed to that
of the elementary nucleon discussed in III, the scalar
nucleon theory appears to H,eggeize as easily as the
spin -,'theory, since in the former theory the factor-
ization requirement is empty (there being only one

NN helicity state for spin zero nucleons).
Our final formula for the trajectory is

J = 1+ A(W')

where

~(~') = I Z;&;,/Z(V;)'
Here $,$; is calculated from the second order y + 7 ~
N + N amplitude, X;; from the 4th order N + N —+

N + N amplitudes, and 1' from the 4th order

y + y —+ y + y amplitude, all at high z and all using
only the right-hand (positive) z cut (the t cut, in
other words). These quantities will be precisely de-
fined later. The reason why one must discuss sepa-
rately the positive and negative z cuts is given later.

TABLE I. States of the yy system.

State

'(J + ~)~
~(J + 1)g
'(J)~
5(J —1)g
'(J —2)g
'(J'+ 1)z
3(J')~

'(J —&)~

'(~)z

Parity (P)

( —&)'
—( —&)'

( —&)'
-(-&)'

( —&)'
—( —&)'

( —~)'
—( —&)'

( ]}J

Value of J permitted
by statistics

even

odd

even

odd

even

even

odd

even

even

the yp system, together with their parity, and values
of (physical) J allowed by statistics, using conven-
tional L—8 coupling notation. Note that the quintet
spin states are symmetric under interchange of the
y's whereas the triplet states are odd (being essen-
tially the components of the cross product of polar-
ization vectors). These facts must be borne in mind
when verifying Table I.

In Table II we give a similar enumeration of the
XX system and limit our consideration to states with
charge conjugation quantum number (C) equal to
+1, because this is what we are ultimately interested
in. Note that for the NN system the role played by
the statistics for the pp system in limiting physical J
values is taken over by charge conjugation. In con-
structing Table II, one must remember that the
intrinsic parity of particle and antiparticle is opposite
and that the operation of charge conjugation carries
with it an unusual minus sign associated with the
anti-commutation of fermion field operators. Thus
if a'; and b,' are particle and antiparticle creation op-
erators the state a,'bp0) under charge conjugation
goes into b', af,'~0) = —a,'b';i0).

The content of Tables I and II may be conven-
iently summarized as is shown in Tables III and IV.

The number of transition amplitudes of definite J
and P for the process y + y ~ N + N is thus:

N = 4 X 2(even J,even P) + 2 && 1(even J,odd P)
+ 2 && 1(odd J,even P) . (2.1)

2. DESCRIPTION OF THE STATES

The description of the relevant states of the yy and
XN systems is su%ciently involved that we shall give
it in some detail. In order to keep track of all factors
of two associated with particle identity one must be
exceedingly careful.

We start by enumerating in Table I the states of
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The total number of transition amplitudes with even In Tables V and VI we show the pure helicity
J is therefore ten, and with odd J, two. This may be states of the yy and %17 system. (We have not yet
contrasted with the y + X -+ y + X case considered introduced the parity conserving helicity states. ) In

TAsLz II. States of the NN system. TAsr E V. yp-system'. Independent helicity states.

State
Charge Value of J permitted

Parity (P) Conjugation (C) by 0 = +1

s(J + 1)z
'(J)z
'(J —1)z
'(J)~

( —1)'
—( —1)'

( —1)'
—(—1)'

( —1)'
-(-1)'

(-1)'
( —1)'

even

odd

even

even

TABLE III. yy-system: Number of states with given J and P.

HelIcIty State

1 —1)

o o&

I
—1 0)

even

even
odd

even
odd

even

even
odd

even

+I-1-»
+I —1 0)

+I 1 —1)

+I 0 0)

+I —1 0)

+I 1 1)

Allowed J values Parity reflection

Even J
Odd J

TAaI F VI. XX-system: Independent helicity states.

C-reflection P-reflection

TAsLF- IV. XA'-system'. Number of states with given J and P.

Odd P

Even J
Odd J

2&

1)
1)

(-1)'
I 0 k)

( —1)'I —k l)
(-1)'I k -2)
( —1)'

I
—k —ls

( —1)'
I

—
2

—
k&

( —1)'I —k 2)
(-1)'I 2 -4)
(—1)'I l —:)

in III, where there are twelve amplitudes for J either
even or odd. The reduction in number by a factor of
two is a consequence of the identity and charge con-
jugation properties of the y's.

It is useful for our purposes to express the enumer-
ation of states in terms of the parity conserving
helicity amplitudes used in III. The identity of par-
ticles causes certain complications which we must
deal with, so we approach the problem gradually.
We recall from Jacob and Wick' that the exchange of
particles for pure helicity states is given by

Pgsl J3I;&u4) = (—1) ' 'l J3II;4X,), (2.2)

and that the parity operator is

Pl J3I;44) = (—1)' "
"rjgr&sl J3iI; 4 —4), (2.8)—

where s represents the particle spin and g its intrinsic
parity. In our problem the y's have a = 1, q = —1
and the nucleons have s = —,', but for the XX system
gl $2 ———1. Thus in either case gl s2 ( 1) —+1.
Furthermore the charge conjugation operator on a
2 —y state is+1 (hence our obsession with (; = +1)
whereas applied to a XÃ state, C is equivalent to
—I'», the minus sign being the same one discussed
in connection with Table II.

3 M. Zacob and G. C. Wick, Ann. Phys. '7, 404 (1959).

constructing Table V we must remember that we, of
course, limit attention to states of the appropriate
symmetry, namely (aside fro mnormalization), l&u4)

+ P»l'Ai4). If 4 = 4, we must have even J as fol-
lows instantly from Eq. (2.2). If 4 W 4, there is no
restriction on'J and one simply uses the symmetrized
states l44) + (—1)~l44). Now consider the be-
havior of these under the parity operation. We have

PIlx,4) + (-1)'l4&„)}= (-1)'l-4 -4)
+ l

—4 —x,).
In the interesting cases we have either 'Aj ——~1,
X2 ——0 or) &

——1, 4 = —1.In the former case we 6nd

PI l +1 0) + (-1) l0 + 1)}
= (—1) {i&10)+ (—1) l0 ~ 1)},

hence the one state goes into the other with a plus or
minus sign depending on J being even or odd. For
the case)& ——1, ) = —1, however,

P (11 —1) + (-1)'I-1 1)}
= + Il1 —1) + (-1)'l-»)},

for both even and odd J.The verification of Table VI
is simpler; one need only remember that s& ——s2 = —',,
ri, g, (—1)"'* = +1 and (; = —P„.

The eigenfunctions of (; = 1 and P for the yy and
XX systems are shown in Tables VII and VIII. The
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asterisk in Table VII labels the one state of the yy For ease of writing, we consider the reaction
system which does not combine with the C = 1NN NNp + p and find for the symmetrized scattering
system. We show in both cases the parity conserving amplitude

State

i&+

&)

0&+

even

even

even
odd*

even
odd

TAsLr. VII. yy-system: Parity conserving helicity states,
C =+1.

1
fkcla'Xak1 1S f fkgka'XoX1(0)

+ ( 1) "'+""f~ i.;x.i1(~ —~) } (2 9)
To simplify this expression we express the character-
istic functions d~q„(see Ref. 3) by the simpler func-
tions e),„deGned in B,ef. 2:

di„(8) =

(+basin

-', 0) "(&2cos —', 8)
"'"

e&,„(z)
(2.10)

o —i&+ even

even

odd

where z = cos 0. We write x = x. —pb, p, = g, —)&,

and define

fy,y;i, i, (z) = (Q2 sin ~ 0)

X (v'2 c» 9 0) fx.x.;x.i, . (2.11)
TABLE VIII. XX-system: Parity conserving helicity states,

C =+1. Then

State

k)+

2 1)-
—:—1)+
1 1)

even

even

even

odd

S If).x„x.~1(z) =
~2 ff~.x.;).x, (z)

+ (—1) "+ "+"
fx x.;i,.x (—z) } (2 12)

Now the partial wave expansions of the f's are

fi,.),.;).i, (z) = (k/p)' Q (2J + 1)F~.i,„~,.~,e~, (z),

helicity states which are defined in III, Eq. (2.3)
which for the present discussion reduces to

j JM;X,4)~ = -',
f i JM;44) a

i
J'M; —4 —4)}

= -,'f~JM;)„4) ~ (—1)'P~JM;),4)},
since we are concerned here with only integral J's. It
can now be seen that the counting of states with
definite J and P in Tables VII and VIII is identical
to that shown in Tables III and IV. There are again
in the parity conserving helicity representation, in
the reaction y + y —+ N + N eight amplitudes
(J even, P+), two amplitudes (J even, P ), and-
two amplitudes (J odd, P+), just as in Eq. (2.1).

As we have remarked, we deal with symmetrized
two p states and we must now see how this sym-
metrization affects our formulas for the full scatter-
ing amplitude. ' From Ref. 3, Eq. (45) we construct
the appropriate plane wave state (for our problem
where sl = s2 = 1)

ip;44) =
~1 fop;&114)+ (—1)"* "'e "ip;4X1)} .

(2 8)

fkaXeyXgX (1Z)
= (k/p)' g (2J + 1)F~,i,„i,.~,e~ „(—z), (2.13)

where k(p) is the center of mass momentum of the
yy(NN) system, and the F~ are the correctly nor-
malized partial wave amplitudes defined in H,ef. 2.
Deaning

(—1) 1+la+I I

( 1)1
—la+I I

(—1)~ (2 14)

(since X,p are integral in this case), and writing m for
the ordered pair of helicities X.)d, m for)dX. and t for
).Xb we find

f.'. ; (z) = —.', (I/p)' Z (»+ 1)J

eg„(z) + (—1)'e), „(—z) F,'. ; + F=';r
v'2 V'2

e),„(z) —(—1)'e), „(—z) F';i —F;,
V'2 v'2

(2.15)

Now since the symmetrized two y state is

~) 1),) = ~ f~), 4+ (—1)'~4X,)j, (2.16)

we see that the symmetrized F-matrix element is
4 This part of the paper is a must for readers who delight in

ending errors in factors of two. It can be read rather briefly by
others.

F";1 ——~ [F';&+ (—1)'F'-;&, (2.17)
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so that the physical, symmetrized matrix elements are

F",i ——
~2 [F;i+F'-; ]i, J even,

= ~ [F;i —F-;i], J odd. (2.18)

Usi~g the results given in Appendix A of H,ef. 2, we find

'-.(—) = (—1)""'.() (2»)
We note that

'.( ) ~ (—1)' '-.(—)
z

( ) [1 ~ ( 1)J+x+y—!A+Pl]

= '.()[I~ (-1)'] (2.20)

[aince (—1)" " = +1 for n a positive or negative
integer]. It is gratifying, but hardly surprising, that
our formalism has led us to the conclusion that only
the physical, symmetrized partial wave amplitudes
enter the expression for f:

3. THE RELEVANT PARTIAL WAVE EXPANSIONS

We are concerned with the trajectory with quan-
tum numbers C = +1, P = +1, which is physical
for even J. It ia therefore (c.f. Tables VII and VIII)
associated with the ~-,

'
—,')+ and ~-', ——',)~ X7 states

and with the
~

1 l)~, ~1 0)+, ~0 0)p and
~

I —1)+ yy
states. As in III, our method of calculation will con-
sist essentially of evaluating the appropriate f am-
plitudes at large z and extracting from them, by for-
mal projection or informal inspection (in practice) of
the behavior of the PJ+ amplitudes in the neighbor-
hood of the conjectured singularity in the neighbor-
hood of J = l. Since eJ&+„dominates e'„„at large z it
is suKcient to calculate the scattering amplitude
f»,„;~ q, as s ~ oo and deduce the values of the F'+
therefrom.

For the reaction X + X —+ y + y the required re-
lations are (always at large e)

f-'; (ie) = (&/p)' Z (»+1)F-'ie»(e)

where I"„'.
& was defined earlier, Eq. (2.17).

The final step in the procedure is the construction
of the parity conserving scattering amplitudes ac-
cording to Eq. (2.7) of Ref. 2 which may be written
in the present notation as

f ." ."(e) —f.."'. (e) ~ (—1) f .—.; .-. (e),
(2.22)

+
fo o;& -,'

+fio; —, ,

+
0 0&y~ —

~x

+2 (k/p) P (2J + 1)Fo o;, ,eo oJ even

42(lip)' Z (»+1)F";—: —:J even

v'2(A'/p)' Q (2J+ 1)K"~;;—;coo,J even

V2(k/p)' g (2J + 1)F&+&;, ,coo

v'2(l/p)' Z (»+ 1)F.';:—:"',J even

where X = max ((X~, ~ p~). There comes now another
nightmarish encounter with factors of ~2 in order
to insure that the normalization of the Jf'. J~ con-
structed from our rule

J+ JS JS
Fxcxa'xs) s Fkekaikgxs & F i„ioilokq (2.—23—)

has been correctly considered. Taking into account
all peculiarities of the formalism occasioned by the
symmetry of the 7's such as with ), = X&, F .~

= 0
for odd J and is ~2 F~,i for even J, etc we con.clude
finally

+ &2(lo/p)' Q (2&+ 1)K'o;i-,ei"i,
J even

f ~'. —;=&2(1/p)' Z (2J+1)F"i;: -,
e" , o-

J even

f, ,;;;= Q2 (&/p)
' Q (2J + 1)F,",;;;e,"..

J' even

The sign —signifies equality after the large z limit.
We assume, as usual, that the functions FJ+ can be

continued to odd values of J. We may therefore re-
place

(2.24)

f'= &2(&/p)' Z F"e"
J even

(3.2a)

and the sum extends over even or odd integers; pre-
cisely which combinations survive can be deduced by
reference to Tables VII and VIII. With the explicitly
written Q2 all the F+ may be taken to have the
standard normalization adopted in H,ef. 2.

We shall not give the correspondingly ghastly dis-
cussion of the process y + y —+ y + y or the quite
trivial case of XX —+ XX. In the next section we
simply state the results for the cases of interest here.

f' —= ~ (&/p) '[Z F"e"(e) ~ Z F"e"(—e)] ~

(3.2b)

the ~ sign depending on the reQection property of
the e~+ involved. [We recall from III that e~i,+(—e) =
(—1)"+" e~i,(e) where X is the max (~ii~, ~X~)]. The
two terms evidently correspond to a decomposition

f'( )e= f~(e) + f:( ),e
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where f+&has (when the sum over J is replaced by a
Watson —Sommerfeld integral) only a right-hand cut
in z and f+& only a left-hand cut, and fz( z—)
af j(z)

This is most easily seen by noting that, aside from
subtract. ions,

f+( )
dz p(z )

/

dz' p(z')
z'+ z

Because f+(z) is either an even or an odd function of
z, the first term or the second term gives correctly all
the I' J+'s with even J according to the relation

dz' z' p z'

with suitably generalized Qj (see Ref. 2, Appendix).
This separation of the cuts is crucial for our perturba-
tion theoretic investigation of the singularity in the
J-plane near J = 1, since for in any finite order of
perturbation theory the contribution to f+ from
J = 1 precisely cancels, that value of J not being
physical. We must obviously get started somehow
and this is done by seperating the cuts.

We consider next XX scattering for which the
transitions between the states of interest are de-
scribed by

(2J + 1)Fx+x;i iso 0 &J even

Q (2J'+ 1)F',+;;;;(,o i,J even

(2J + 1)Fi+ i;i icy i . (8.5)J even

These, of course, must also be split into right™and
left-hand cut contributions.

Finally, for reasons to be described later, in this
paper we are interested in yp scattering only in the
state which is nonsensical at J = 1, that is ~1 —1)+,
and the corresponding amplitude is

f&+ &;& r —2 g (2J + 1)F~ i;i mezz. (8.6)
J even

4. REGGEIZATION OF THE N + N ~ y + y
AMPLITUDES

We now make the assumption that there exists a
Regge pole with a trajectory given by n(W') = 1 +
h(W') where A(W') vanishes as the coupling con-
stant y —+ 0. For such a pole in the neighborhood of
J = 1 we write the amplitudes F'+ in the form'

With these conjectured forms for the various F'+ we
may compute the asymptotic limit of the f ampli-
tudes for the process in the usual H,egge —Watson-
Sommerfeld way, in which

—„Pj(z)~ ——„P.(—z)
QZ dz" sin mn

d" P.(—z) d" (—z)
(4.2)

where 6 = cx —1 is treated as small. '
The ej+ functions needed for the evaluation of

(8.2b) are:

J+
&oo +J

& J(J+ 1) 2 '

foo;, , =8 2 &00&;; )I + (Z~ —Z)
2p

1
fl 0;» = 8 pro)» — (z + z)

+ — I 8j;::= 20I 0(:: (—~)+(& —&)2p)

j'-.:::—= 0(—,"„)'0 .(:: ( -',)+(-- &),

A:
* 1

,—,) -(--)),2p

k ' —1
fl 0' --* = 8 — 4 0$: —; —(Z —Z)

2p

1
fz ('-' --' = 8 4 &P-' —' — (& ~ z)

2p

k ' —1
fi -i;i -i = 8

2 $x -($*, —; — + (z —+ —z)

(4 4)

J+ Jp// I'J//
(J —1)j(J + 1)(J + 2) 6(J —1) '

j+ Pj + zPj Pj + zPj
J(J+ 1) 2

j+ 2Pj'+ zPj' 2Pj'+ zPj"
J(J + 1)(J —1)(J + 2) 6 (J —1)

The approximations hold near J = 1.
We find, from Eqs. (8.1), (8.2b), (4.1), (4.2), and

(4.8) the f+'s for the indicated helicity states:

j ~ $00& +i~o o;$ ga-
el CX

J A

60k*, +-,
~'s o;~z y-', = J A

~J
& —&'I +i ~6 —&4 +5 (4 1)(J —1)'

We now try to "measure" the products of $'s oc-

5A numerical factor has been dropped in going from
P (—z) to (-z); one ean imagine incorporating it into the
$'s.
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curring in (4.4) by performing the second-order cal-
culation of the X + Ã —+ y + y at high z. The
relevant diagrams are shown in I'ig. 1. The results of

k
2 )

I

l

~k
I

I

k
I

k,

r

FIe. 1. Second-order diagrams for the reaction X + X —+

7 + Y'

the entirely straightforward second-order calculation
are

+
f& o'k 2

+
1 -lid

+
o o~g

+
fxx; —,

f+
1 —1'- ——~ 1 1

~ Q

2
k ' m —2X z+ (z~ —z)
p 4m 8 E'p

k
'*

m v'2X —(z ~ —z)
p 4m% Ek
I~' m

4 8
I ~' mV' —

i
——+ ( —z),&r 4~W k.
2X —(z ~ —z)

p& 4~W mEk

k &' m —v'5.
&r 4W ml

8 )

m E + (z~ —z)
p 4mW mA;z

(4.5)

oo ~~

oo ~-~

1O ~~

$i o$-; —;

$i x$-; -*,

1 —1 ~~

A (2V 6/E'k),
A (2+2%5/mEk),
A (2X a/Ek),
A(2+& ~/mk),

A (6/k),
A (Q2 AE/mk),

A +6/k),
A(+2V6E/mk), (4 6)

where in each f+ the first term comes from the direct
graph and the second (designated by z ~ —z) come
from the crossed graph.

We find, by comparing Eqs. (4.4) and (4.5) the
following results for the product of P's:

where A = y'm/4~W.
Urifortunately, in this second-order calculation, all

of the entries in Eq. (4.5) are in fact zero, so that the
term by term identification just completed may be
meaningless for all but the two nonsense amplitudes

f& i;;;.The point here is that the 1/z in Eq. (4.5)
actually appears as the high z limit of a positive t

pole, (m' —t) ' and the term —1/e as the limit of a
negative t pole, (m' —u) ' which can therefore be
uniquely identified with the two terms in the
asymptotic expressions for f& |;;~; given in Eq.
(4.4). Therefore only the last two of Eqs. (4.6),
namely $»];~*„are surely correct. The others must
be regarded as conjectural, to be verified in the next
order in 6 [since such terms, as our formulas predict,
involve 6 ln (—z) and 5 ln (z) which are distinguish-
able]. It will turn out that 6 p', hence this entails
a sixth-order calculation which is left as an exercise
for the reader.

In spite of the dubious correctness of most of Eqs.
{4.6), it is interesting to observe that they are con-
sistent with the expected factoring: We find that in
all cases

P;;/P;; = +2E/m. (4.7)

5. REGGEIZATION OF THE NN AND gg SCATTERING

AMPLITUDES

fx x;x x —
& ~ (2J + l)Fx —;—xey g

—(z~ 8)
J+ J+

J
(5.1)

We again assume that the various I'J+ have a H,egge
pole in the neighborhood of J = 1 and write

2
J+ ~ zz

z —T 1cJ 0!
2

~+pz (5.2)

We find, for large z,

f .;. ~ ——-', ]' .I z ln (—z) + (z -+ —z) I,
f': ; : —: =——

-. -(-3—/2&2)k.

X Iln (—z) —(z —+ —z) I,

We note that the amplitudes for the process
X + X -+ X + X may be written, according to Eq.
(3.5) as

f;,*; ~ ——, Z (2J + l)F;;;;;e„+(z —+ —z),+ J+ J+
J

f~ x;x ~ —2 Z (2J + l)Ft —i;~;eo i (e ~ &)
J+ J
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Finally we treat the one important
y + p —+ y + p, namely,

amplitude for

fl 1 1 —1:Q (2J + 1)F1 —ill —le22 + (8 ~ 8)

are all of higher order in p',

ImF;;, = kF;;+1 1(F,",+, 1)*,
which leads to

(6.4)

and with'

and

we 6nd

J+ 2
F1 -1;1 -1 = 4 -1~/ (J —12),

2P" + 4zPz" + (z' + 1)Pz
(J —1)J(J + 1)(J + 2)

(J —1)/6z near J = 1,

2
+ 51 —1A

f1 —11 —1= 2 + (&~ &) ~

28

(5.4)

(5.5)

(5 6)

(5 7)

Im(g, t, ) = kg, P,~,). (6.5)

Next we remark that the quantity X;; —= f;&, is,
according to Eq. (5.8), measurable as the coefficient
of z ln (—z) [or ln (—z)] in X17 scattering at high z.
Its imaginary part, we see, is calculable from the
X + Ã ~ y + y experiment performed in Section 4.
Similarly, we see that Y —= g,

' 15 is calculable as the
coefFicient of z ' in yy scattering. Its imaginary part
is also obtained from the X + Ã ~ y + y process,
according to Eq. (6.3). We note that the trajectory
6 may also be expressed in terms of these various
quantities:

or
Im(AQ, ) = pg, P, g, (6.3)

in lowest order. We have used the fact that the
product $1 1$; is real as shown by Eq. (4.6). Simi-

larly, for the XX process, since' the sense amplitudes

This way of writing the Regge pole part of F&+ 1,1 1 is
consistent with the assumption that the trajectory chooses
"sense" at 6 = 0, since the residue of a "nonsense" amplitude
must vanish at such a point (see Ref. 2, Appendix). The
Regge amplitudes for sensible 2y channels would not be
written with a A~ in the factored residue.

7 This follows from the fact that for the sensible amplitudes
there is nothing to cancel the sin m.A in the H.egge pole con-
tribution to scattering amplitude since the pole is really there.
Consequently if we write f,P,'/(J —u) for a E~+, we must
have (g,g,/6) y4 which as we shall see in a moment leads
top ~p4.

6. UNITARITY IN LOWEST ORDER PERTURBATION

THEORY

We know in practice that yy scattering occurs in
lowest order via intermediate XÃ states and that
%f7' scattering occurs in lowest order via two y states
(the contribution of ordinary one and two y poten-
tial scattering is easily seen to be negligible near
J' = 1, or put otherwise, at large z). We may there-
fore directly calculate the imaginary parts of the
products g; ~; $f+1 and t21 1 using our previous
"measurements" of t1 1$; ~;, Eq. (4.6).

Consider first the pv scattering process. The
unitarity relation for F," 1;1 1 takes the form [in
lowest order (4th) perturbation theory]

Im Fl —1il —1 +1@F1-1li(F1 —1ii) 1 (6 1)

where i stands for the two XÃ states, ~-2'-'2)~ and
~-'2 ——',)+. Then in the neighborhood of J = 1,

( )
1 —1 i 1 —1 j 1 —1 i j 1 —1 i

As we have said, Y must be obtained from the 4th
order yy scattering and X;; from 4th-order XX scat-
tering; &1 1$, is known from X+ Ã —& y + y.

We see from Eq. (6.6) that 6 is of order y' since
Y and X;, are both y4 and $1 1$, p'. This implies
that &1 1 is of order y' and p; of order p'.

7'. GENERALIZED UNITARITY

In the previous section we applied the two particle
unitarity condition at J = 1 to lowest order of the
coupling constant. We now wish to extend these con-
siderations by studying the unitarity equations at
J = a and show that our Regge pole assumptions,
embodied in Eqs. (4.1), (5.2), and (5.5), are in fact
consistent to all orders in the coupling constant. The
complete unitarity equations are

ImF;, = kF;pF,*p+ p +1F;1F,*1,

Im F;p ——kF;pF~pp + p +1F;1F~p&,

ImF- = kF-F'. + p Z1 F.1F.*1, (71)
where i,j,l stand for the XX states ~-,

'
21)+ and

~-2
1——,')+,p for the yy nonsense state ~1 —1)+, and we

have dropped the superscript J+. We have not in-
cluded contributions from intermediate yy sense

states, since when we study Eqs. (7.1) in the neigh-
borhood of J = n and expand the residues and the
trajectory in powers of p, one Gnds that sense state
contributions are down by p'. It is important to note
that our procedure is based on writing down exact
unitarity equations, studying them in the neighbor-
hood of J' = n = 1 + 6 and only at this point ex-

panding the P's and 6 in powers of y. The fact that
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p i(

these quantities are being expanded in y does not where U and t/' are the initial nucleon and anti-
mean that we are not checking the unitarity relation nucleon states, respectively, and U and V the final
to all orders of perturbationtheory. We shall be able ones. The mass of the vector boson (y) is X and
to compute only the leading terms in the expansions
of P and 6 but will be able to show that exact condi-
tion implied by Eqs. (7.1) is in fact satisfied by these
lowest order quantities.

All three of Eq. (7.1) are equivalent to the single
relation (or its complex conjugate)

Im 6 = Im a = p g, $,*$,*+It'$, d = p g; X,*, + &&.

(7 2) p t, ( p 1( &Lp

In deriving this result we have assumed only that the
product $,$, is real. We must now check to see if our
perturbation theoretic result, namely,

(a}
FIG. 2. Fourth-order diagrams for the reaction X + 7 —+

X+ Ã.

f;";;;;——(4m'z/2z. W) ln (—z) y'Io (s),
f)+ ';,——(4Em/2mW) ln (—z)y'Io(s),

f;+;;*, ; ——(4E'/2mW) ln (—z)p Io(s), (8 2)

where

s = W'. We now form the appropriate combinations
satisfies this general condition. We have (since $,$, is of the several f to obtain f+s and find
real)

(7 4) (8.3)

which agrees with Eq. (7.2).
This completes the formal part of our work and

we must now turn to experiment to see how things
come out.

8. FOURTH-ORDER MEASUREMENTS AND

CONCLUSIONS

The final step in our procedure is the evaluation of
the 4th-order processes: XTt and py scattering. We
must cheek the factorization of the X + X—+ X + N
amplitude in 4th order since our unitarity calcula-
tion has only verified the factorization of the imag-
inary part. Of course we need the quantity X;; for
the evaluation of 6, Eq. (7.3), and in addition we
need F, associated with the yy scattering.

The X+ 17 —+ X + X amplitude is given, at, large
z, by the graphs shown in Fig. 2, where the positive
t cut comes from 2a and the negative t cut from 2b.
The contribution to the helicity amplitude (i.e. the
conventional Jacob and Wick one) from the first
graph (2a) is, at high z,

f~', .i..;~.x, =
2 ~in( —z) , (U-~,v&i, .)(I'i,.vU-~, )2~%

ds I
4& O' F' s' —s —ie

I
k2

k

k,

k

I
~ kl

/

"2

{a) (b) {c)
FIG. 3. Fourth-order diagrams for the reaction y + y ~

7 + 7~

features of this calculation is the fact that the graph
3b has both a right- and left-hand z cut and these
must be separated before taking the large z limit.

This result confirms the predictions of the H, egge
hypothesis in so far as powers of z and ln (—z) are
concerned and also the factorization implied by Eqs.
(4.7) and (6.5). In particular we see that the quantity
X~;;~; is given by

X;; *„.; = (', , = (4m'/3xW)y'I, (s) (8.4)

and P; .P. ~ and g ~ are given by the previously
noted factorization, Eq. (4.7).

%e turn finally to the evaluation of the quantity
Y which involves the calculation of the y + y ~
y + y scattering amplitude. The graphs for this
process are shown in Fig. 3. One of the complicating
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This can be done by restricting the range of integra-
tions over the Feynman parameters in a reasonably
straightforward manner. The diagram Bc has only a
negative z cut and is uninteresting. Another diK-
culty is that although the predicted large z de-
pendence of the amplitude fr —1'1 —1 is 1/z, the
natural order of the various graphs is ln (—s) and
consequently one is not involved with just the com-
putation of the dominant contribution from the
various graphs. It is unfortunately the case that we
have not yet been given su%.cient "running time" to
have completed the measurement of the requisite yy
scattering amplitude. Consequently we cannot re-
port the evaluation of the trajectory.

It is not profitable to speculate about the outcome
of the calculation at any great length. We have seen
that the idea of having a vacuum trajectory gen-
erated by the exchange of two massive vector bosons
is consistent with elastic unitarity. One of the more
interesting questions is to locate the place where
6 = o. —1 goes through zero. We can, of course,

calculate Im 6 from unitarity as we have shown,
but it is precisely the unknown subtraction question
that forces our yy-scattering experiment. Perhaps
the nicest result would be for 6 to be zero at W' = 0,
as the fabled Pomeranchuk trajectory is supposed to
behave. We have verified that as the boson mass goes
to zero this is indeed the case. It could of course also
be that 6 goes to zero at W' = 0 only when the
coupling gets strong, or perhaps for some special
value of the mass ratio, X/m, other than the zero
value we have mentioned.
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High-Energy Proton-Proton Scattering

ROBERT SERBER*
Physics Department, Columbia University, Nem York, New York

The optical model for high-energy proton —proton
scattering which has been proposed in an earlier
paper' predicts that, for large momentum transfers,
the dependence of the elastic cross section on the
square of the momentum transfer is approximately
an inverse sixth power law. This prediction is borne
out very well by the new measurements of Cocconi
et at.' for their highest proton energies, near 30
BeV. The prediction has been checked down to
cross sections as small as 2 X 10 " of the forward
scattering cross section and to center-of-mass scat-
tering angles as large as 82'. For lower energies the
measured cross sections deviate from the theoretical
curve, becoming larger as the center-of-mass scatter-
ing angle approaches 90'.

The cross section for large momentum transfers
depends on the behavior of the absorptive potential
near r = 0, while that for small momentum transfers

*This work was supported in part by the United States
Atomic Energy Commission.

r R. Serber, Phys, Rev. Letters 10, 357 (1968).
~ G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R.

Rubinstein, D. B. Scarl, W. F. Baker, K. W. Jenkins, and
A. L. Read, Phys. Rev. Letters ll, 499 (1968).I am indebted
to these authors for making available some additional in-
formation before publication.

V(r) = ge "/r. (2)

This leads to a cross section formula

(1/I')&-/d~l = (1/A')&(t/A')', (3)

with t the square of the momentum transfer. Numeri-

depends on the behavior for large r. A potential can
be constructed to Gt the observations for the entire
range of momentum transfers. This is of Yukawa
form for r ( 0.33 X 10 " cm, and of Gaussian form
for r ) 1.1 )& 10 " cm. The range of the Yukawa
potential is determined by the width of the diffrac-
tion curve for large momentum transfer, the range of
the Gaussian by the width for momentum transfer
near zero.

The general features of high-energy elastic proton-
proton scattering with large momentum transfer have
been explained' in terms of a simple optical model.
The change in wave number in the region of' inter-
action was described by an absorptive potential,

k' —k = iV(r)

and V was supposed to be of Yukawa form,


