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independently by two different groups. ""Their re-
sults are in substantial agreement:

A+(Na") + 0.10$ & 0.088 (63);
+ 0.081 & 0.017 (64),

A (AP4)' —0.089 & 0.0Ã (63)
—0.088 & 0.08$ (64) .

Therefore, it implies that ti decay in complex nuclei

64 E.L. Hasse, H. A. Hill, and D. B.Enudson, Phys. Letters
4, 888 (1968).

L. 0. Mann, S.0. Bloom, A. Scott, R. Polichas, and J.R.
Richardson, in Proceedings of the Manchester Conf. on Low-
and Medium-Energy Physics, 1968; and also Phys. Rev. (to
be published).

is consistent with CVC theory well within experi-
mental error. However, it is not necessary to imply
that it is in disagreement with the old Fermi theory
since the Fermi matrix element, due to mesonic ef-
fect, could be very small. On the other hand, the
isotopic spin purity seems to be definitely better than
theoretical estimate by the j—j coupling model.
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B„I'"=J
B„F""= 0,

where F "is the dual field:

FRp 7 cL' p pvp
pv ~

(A)

(B)

The conservation of electric current follows from

& A. Salam and J. Ward, Nuovo Cimento 11, 568 {1959).
2 N. Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147

(1962).

1. INTRODUCTION

Since it is possible that the weak interactions are
mediated by vector bosons, associated with a con-
served vector current, it is of some interest to investi-
gate a possible genetic relationship between these
hypothetical particles and the photon. In particular
it has been conjectured that the photon is the neutral
member of a multiplet which embraces the charged
W-mesons. ' Since one is then faced with a parity vio-
lating generalization of quantum electrodynamics, it
is perhaps also natural in such speculations to ex-
amine the possibility of magnetic poles which, like
the W-mesons, may also violate parity' and may also
be produced only at very high energies. In a theory of
this kind it is clear that the existence, or the non-
existence, of magnetic poles would have important
implications for the structure of the weak inter-
actions.

The Maxwell equations may be written

I'
p

——8 Ap —BpA (1.2)
This representation is invariant under gauge

transformations:

A.' = A. + a.A . (1 3)
In this way the nonexistence of magnetic poles leads
to the gauge group. If one generalizes either by
allowing magnetic poles or by expanding the gauge
group, the single 4-vector potential must be replaced
by a field with more degrees of freedom.

2. GEOMETRICAL BASIS

Since the electromagnetic field is so important for
determining our present ideas about physical space
time, one would expect any generalization of the
former to have important geometrical implications;
or turning the argument around, one might seek a
geometrical basis for generalizing Maxwell's equa-
tions. In the context of general relativity this has
often been done, but until recently without reference
to the weak interactions.

In this paper we postulate a local gauge group
which is non-Abelian, compact, and contains the
electromagnetic gauge transformation. Therefore a
general vector field may be designated by A„~ where

the first equation since F s is antisymmetric. Equa-
tion (B) directly expresses the nonexistence of
magnetic poles and permits the usual representation
of the six-vector field F tt in terms of the four-vector
A.
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p is the usual vector space —time index and iV is the
gauge index labeling some irreducible unitary repre-
sentation of the gauge group. The operator A„M,
assigned to a pair of indices ()aM), then depends on
both the coordinate system and the local gauge and
transforms as follows:

A'„M = A,~(&)x'/&)x" ),
~ pM ~ pN~NM ~

(2 1)

(2.2)

The gauge indices are suppressed in the rest of this
paper.

Because both coordinate and gauge transforma-
tions are position dependent, it is not possible to
assert the equality of fields at remote points in an
invariant manner. In order to define equivalence at
nearby points one introduces the concept of parallel
transfer

SA" = —A L."pSxp, (2 8)

where L"p is the displacement Geld or the connection
of the space.

We assume that the geometry is entirely character-
ized by the connection L"p and g P, which delnes the
light cone and generalizes the metric tensor. Both
of these objects are gauge variant, as follows:

L"p = V 'I "pV —5"V '&]pV, (2.4)
ap' V-z apV (2 5)

The transformation law (2.4) is required in order that
the fundamental equivalence (2.8) be gauge in-

variant. The corresponding relation (2.5) is postu-
lated for g'P in order that it transform like the
bilinear combination (A )j'AP (where the dagger
indicates adjoint and we assume a unitary represen-

tation of the gauge group).
Instead of L"p we may use the connection density

U"p defined as follows:

U.", = L,.", —5"pL'...

In terms of U"p, the Ricci tensor is

L~p ——&]pU~p —U~,Upp + s UapU.'p

with the gauge transformation law

L'p = V 'I pV.

(g(-p)~g) p) = (g(-p), Uip) = o, (8.5a)

(U(" p),g, ) = (U,"p„U', ) = 0. (8.5b)

We assume that the antisymmetric part of the
field describes, after quantization, particles of unit
spin:

U(-p] = 5-"Dp —5ID-. (8 6)

After these special assumptions I~ simplifies as
follows:

6 = Tr g L p
= g'" '~( p) +» g' 'I&'(-p] ~

where

(8 7)

8( p)
——BpU(.p)

—U(,)U(.p) + —', U( .)U(pp) (8.8)

We consider theories with the Lagrangian density

L = Tr [L pg
—'Ag. pg ] . (2.11)

3. GENERAL FORMULATION OF VECTOR THEORIES

Since the basic Geld variables g
P and U"p are

neither symmetric nor Herrnitian the resulting theory
is very general. In order to arrive at a more familiar
situation we now make certain special assumptions.
In the erst place we describe a generalization of the
symmetry condition, which is similar to transposition
invariance, and will be called conjugation invari-
ance. '

Denote conjugate field variables by (+) and (—).
They are related by definition as follows

g. (-) = ~g. (+)~',
U-"p (—) = I:Ul- (+)]', (82)

where the symbol j means Hermitian adjoint. We
now impose the conditions

U."p(-) = U."p(+) = U."p,

g-p (-) = g-p (+) = g.p.
A.ccording to these assumptions the symmetric

parts are Hermitian while the antisymmetric parts
are anti-nermitian.

As usual we interpret the symmetric structure in
terms of the gravitational Geld. We also provisionally
assume that the gravitational variables are gauge
invariant:

The following traces'

Ig ——Tr L pg

ap
I2 ——Tr gapg

(2.9)

(2.10)

are invariant under gauge as well as space —time
transformations.

~(-p] = ~-Dp —~po-+ (&-»p)
The Lagrangian (2.11) becomes

L = '1r [g I&!(&p) + )(lg P fap] Xsg g[&p]
(ap) [apl [apj

g(~p)j ~ (8.10)

3 Here the notation Tr means a normalized trace so that
Trl =1.

4 A. Einstein and B.Kaufmann, Ann. Math. 62, 128 (1955).
s R. Finkelstein and W. Ramsey, Ann. Phys. 21, 408(1968).
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where

4 = 1, 4 = Xs = X. (3.10a)

Since the four parts of (3.10) are irreducible, it is
also possible to assume arbitrary values of X&, X&, and
4. However, we shall here assume (3.10a) in agree-
ment with (2.11).

4. EQUATIONS OF MOTION

The independent variables are g' P' and U&uP& on
the one hand, and g~ ~~ and 5 on the other;and the
corresponding equations of motion following from
(8.10) are

bZ/8g' ' = 0 or [8/Bg' ' ——', g(.P&jL = 0, (4.1)

~&/»&-P& = o or gI. = g'. = o, (4.2)

8Z/bg' ' = 0 or g1.P&
——X Bi~p&, (4.3)

SZ/m. = 0 or g~'PP& = 0, (4.4)

where we have denoted the covariant derivatives
with respect to the symmetric connection by g ~.~
and with respect to the total connection by g p), .
These two kinds of derivatives are by definition the
following:

where

&&&-P& = t~/dg'" —
2 g&-P&j Tr g'"lf&'1-P& —

"g1-P&~ ~

(4.10)

Therefore Eqs. (4.1) and (4.2) are the usual equations
of gravitational theory, where 7.' p is the energy
momentum tensor of the antisymmetric Geld. Carry-
ing out the operation indicated in (4.10) and using
the equations of motion (4.3), one finds

+~~P 6~ Tr fPlu&&g g(uP& + 4 g(~P&g(&u&g ] ~

(&v) I I:~v]

(4.11)

The antisymmetric field is determined by the
vector potential D". According to (4.3), the field

strengths are represented by either g~ p~ or R~ p~,

which differ only by a scale factor. Except for gauge
structure (4.11) is of course just the usual Maxwell

energy momentum tensor.
We have just seen how (4.1) may be written in a

form such that the right-hand side represents the
source of the g& P& field. In a similar way (4.4) may
be written. so that the right-hand side represents the
source of the g~ p~ field, as follows:

0 d
gP~u ~ugP L gP g (LP)

~o'
gaP~y ~CcgaP & apgoP gas~ Pp. ~

(4.5) g;„"'=S,
where the current is

(4 4)'

Here g p(„ is constructed in such a way that it trans-
forms properly under changes of gauge as well as
changes of coordinate system. That is

In Eq. (4.6), C"P is the symmetric Hermitian part
of I "p.

The special form of Ig p following from our assump-
tions about U"P in paragraph 3 is

S" = —(g'"',D„) . (4.12)

While (4.1)' is a single scalar equation, (4.4)' is a
matrix equation and the current 8 has as many
independerit components as there are independent
parameter's df the gauge group.

The covariant divergence of the left-hand side of
(4.1)' and (4.4)' vanishes identically and therefore
in the limit of Oat space

L"P = C"P + f'&"DP,

and therefore by (4.5)

g«P~u = guP u+ (guP)Du) . '

For the symmetric part of g p we have

(47)

(4.8)

OPT =0, 8 S =0.
These equations give the conservation of energy—
momentum and of charge —current for the D-Geld.

5. THE DUAL FIELD AND MAGNETIC CURRENTS

C(.pi
= [."pj,

where I "PI is the Christoffel connection.
Equation (4.1) may be written as

(4.9)

(gi.P&,D„) = 0,
so that the two covariant derivatives of g( p) are
equal.

Equation (4.2) may be solved for Ciup& in the usual

way and one Gnds

EaP] Z aP& yI 5 + gr&el (5.1)

Except for gauge properties all. the preceding
equations are the same as one would write for the
Maxwell field. In particular, the currents (4.12)
represent a generalization of the electric current.

We now consider the source of the dual field, which
provides the analogue of the magnetic currents. The
dual field is'

~(aP) ~ It 0(aP) — +7 aP ~

6 Throughout this paper the. dual Geld will be denoted by
4.1) boldface symbols.
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Its covariant divergence is

where
(5.2a)

gk)viv gh)vvv + (gka)Dv) v (5 3)

Rvv = g[iv] lv + g[)a] IX + g[vX] I)v
= Q g[X)v] Iv (5.2b)

and P' means the cyclic sum.
The general form of the covariant derivative is

which vanishes by the Sacobi identity.
In the Maxwell case we know that the divergence

of the energy momentum tensor gives rise to the
Lorentz force working on the external source (5.7).
If the original Lagrangian is complete then j
vanishes, there is no Lorentz force, and the diver-
gence of T„„vanishes. In the general case when j
does not vanish, consider the following matrix whose
trace is the energy momentum tensor:

but

Therefore,

I
g[xv] vv

= g avg[xv] ~

(&u) 1 [Xa]
eap = g[ax]g g[)vp] + x g(ap)g[xv]g v (6 3)

where

) Q'g[), „]I„=Q'a„Ia)D„—a+), —(D)„D„)I

+ 2' (fa~D. —aP~ —(D~ D.) I».)
by Eqs. (4.3) and (3.9) or

& Q' g[~,] I, = —Q [a.(Di,D.) + (»D, —a.D~,D.)]
with the aid of Sacobi's identity. We conclude

Then
F p= TrOP. (6.3a)

ap [a~] [apl [a&] [pp]
e[p = g g(& )glp + g]p g(& )g

(exp) [Xo] [Xa]+ x g [g[~.][pg + g[Wg'Ip ]v
~p 1 fXv]Tr eI p =

~ Tr [g[a)] Iv + g[va] I) + g[) v] la]g

+ Tr g'"'j„,

or
Z g[&a]lv = 0 (5.5a)

[+4'] 0 (5 5)

The expression (5.5) is of the same form as (4.4).
The corresponding magnetic currents are

where j„is given by (5.7). Therefore

Tr e~ p' ——Tr g'P]jp

by the identity (5.5).
Since

(6.4)

(5.6)

In the case of the Maxwell field the gauge group
is Abelian and both S and u vanish.

An important difference between (5.5) and (4.4)
is that (5.5) vanishes identically, while (4.4) vanishes

only if the D-field is free: If the D-Geld is coupled to
a fermion field then (4.4) becomes

Tr e[,' = Tr [ape.'. + (e.'.,D,)] = a, Tr e.'. ,

we have the result by (6.3a)

gyp T [P] (6.5)

'7. FERMION FIELDS

where the right-hand side is the generalization of the
Lorentz force and vanishes if jp

——0.

g~ =j
but (5.5) remains unchanged.

6. CONSISTENCY OF CONSERVATION LAWS

(5.7) We consider a fermion field which is a gauge
multiplet and adopt a representation where local
spacetime rotations work on the left and gauge
transformations on the right:

a.s = a.(g'"',D„) = 0, (6 1)

The divergence of the left-hand sides of (4.1)' and

(4.4)' vanishes identically. Let us verify that the
div(. cogence of the right-hand sides also vanishes.
Consider (4.4) first. The consistency condition is

then

@' = 8%' local ennuple rotation,

+' = +V local gauge transformation .
(7.1)

(7 2)

+ is of course invariant under global coordinate
transformations.

Let the covariant derivative of 0' be
or

ol

2(a g'" ',D„) + (g'" ', a D„—a„D ) = 0,
2«g["',D.),D.) + (g'"', (D.,D-)) = o,

e[. = a.e + r.e ~ eD. , (7.3)

where I' is the spin connection and D is the gauge
connection which we have been discussing. Then
we have

((g'"',D-),D.) + ((D-,D.),g'"')

+ ((D.,g'"')»-) = o, (6.2)

+' = 8+, I". = SI'.8 '+ 8(a.8 '),
D' =D, %I. = 8+I (7.4)
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under local rotations, where 8 is the spin representa- Here
tion of the rotation. Similarly,

e'= eV, r.'= r. ,

D.' = V 'D.V —V '8.V, +~. = +~.V,
under local gauge transformations.

The simplest choice of fermion Lagrangian is

(7 5)
1

(B")=
v2 Pv

~ B„„
—kf" &'

(8.2a)

(8.2b)

gL"i = c'I:~,D. —~.D. + (&.,D.)], (8.3)

where we have put 'A = a '. Then

f„, = B„A, —8,A„—(ie/Pic) (B„B„*—B„B„*),
(8.4a)

» +7 +~) (7 6) Then by (3.9) and (4.3)
The complete Lagrangian density describing fermi-
ons, vector bosons, and the gravitational field is

B(~p) + l~)g ~[~m + ~2g gt~pl
(aP) taP] taP)

+ ~g p( e) + ~+r +~)u] (7 7)

We then find (5.7) instead of (4.4) with

(7.8)

The equation of motion for the fermion Geld itself is
where

B„„=V„B„—VB„)
B„*„=V*B*—V*B*

(8.4b)

(8.4c)

7"W]„=0, (7.9)

8. THE ELECTROMAGNETIC FIELD

Since the antisymmetric Geld equations are the
same as for the electromagnetic field it is possible
to assume that the electromagnetic field is already
included as the neutral member of the gauge multi-
plet.

As the simplest example let the gauge group be
SU2 and consider the three component 8-Geld whose
neutral component is the electromagnetic potential.
Ke introduce dimensional Gelds B„and B„,as follows:

D„= (ie/hc)(B„),

g(„„i ——(ie/hc) a'(B„,),
where a is a length.

(8.1a)

(8.1b)

y"(8„++ I'„4 + @D„) = 0. (7.9a)

The F„couplings are gravitational and the D„
couplings represent the gauge generalization of the
usual minimal electromagnetic couplings.

V„= 8„—(ie/Ac)A„,

V„* = 8„+ (ie/hc)A„.

Consider the gauge transformation

Then

-iq /2

V—
0

0
e 'q /2

D„' = V 'D„V —U 'B„V, (8.6)

A'„= A„+ B„y,
B'„=B„e '",

(8.6a)

(8.6b)

BQI (8.6c)

Therefore V has the significance of an electro-
magnetic gauge transformation which combines
gauge transformations of the first and second kind.
It is also clear that f„.and B„„are invariant under
this transformation.

The charged 8-particles carry electrical currents
which may be calculated from (4.12) and (8.2)

—I:B""(B.)* —(B ")*B.] —.'. If "B.—B "A.]—'[(& ")"&.—f "(&) 1 —; t(& ")"&.—(& ")(&) )) ' (8.7)

The neutral component of (4.4)' reads One may now ask about the possible existence of
magnetic currents. One finds according to (5.6)

where S, is the neutral component of the currents: Bof = 'M3 (8.9)

8, = —('e/Ae) [B""(B„)*—(B ")*B„], (8.8)

which is just the usual expression for the electric
current carried by vector particles of charge e (and
—e).

(8.9a)u = —(ie/hc) (B ",B„) .
The magnetic current is

ua ———(ie/Ac) Tr (B ",B„)r,
= (ie/Pic) [B "(B„)*—(B ")*B„]. (8.10)
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In particular

(8.12)

momenta and therefore has a continuous spectrum.
In fact it, follows from (S.lla) that

div H = —(ie/h, c)[B'"B.* —(B ")*B.], (S.ll)
corresponding to

div E = (ie/Ac)[B'"B„* —B'"B„].
where

B =H+4ml, (8.12a)

Therefore

(B'")(B.*) = ""(B.)*(V'B ) .

divH = (ie/hc)[(V x B) B* —(V x B)* B] .
(S.1la)

It has been pointed out that the electrical charge
density in Eq. (8.12) is just what one would compute
for charged vector mesons. Since this expression in-
volves conjugate momenta (B'"), it is quantized.

In contrast the effective magnetic charge density
given by (S.ll) or (S.1la) does not involve conjugate

4+I = —(ie/Pic)(B x B*) .
Therefore the source of div H represents magnetic
moment and does not arise from magnetic poles.

The asymmetry between the electric and magnetic
charges results as usual from the fact that the
magnetic equations (5.5) are identities while the
corresponding electric eqs (5.7) are true equations
of motion.

9. MAGNETIC MOMENT OF VECTOR MESONS

In order to check the interpretation of I as mag-
netic moment consider the equations of motion of
the complete D„-field, as determined by (4.4)' and
(8.7)

1 faa
1 ap

i BaPB4 (Baa))IcB

~s [(B ")'A. —(f ")B*.l

If Eq. (9.1) is replaced by

(8„—(ie/he)A„)B "+ (ie/hc)f "B„=0, (9.1) (a„—(ie/Ac)A„)B "+ (ie/hc)Zf "B„=0, (9.6)
then this new equation describes a particle of gyro-
magnetic ratio 1 + K. The particular theory we are
describing is therefore characterized by gyromagnetic
ratio 2.

Although the natural choice of the neutral field
component is f p, it is also possible to write the final
equations in terms of

(8„+ (ie/Ac)A„) (B ")*—(ie/he)f "B*„=0; (9.2)

in addition to the earlier equation

B„f " = —(ie/hc)[B "B„*—(B ")*B„]. (9.3)
These equations of motion follow from the La-
grangian

L = —k (B')*(B-p) + k (B"')*(V-Bp—VpB-)

+ k (B') (V-Bp —VpB-)*

+ —', (ie/hie) f (BfBp
—B.Bp*) . (9.4)

The preceding expression may be compared with
our initial Lagrangian where the dimensions
made explicit by the introduction of the cha
and the length a:

L = e'u Tr [L—, p,
g'" ——', a 'g,.p, g'"],

L(.p)
= B.Dp —BpD. + (D.,Dp),

which gives

L = (e'/Ac)'a'1 —
~ f„pf + 2 [8 A p

—8pA ]f
—k B-p(B')'+ 2 [(V-Bp —VpB-) (B')*
+ (V-Bp —VpB-)*B']
—(ie/hc) (B Bp* —BpB*)f } .

0

fap = ~aAp l9pAa ~

Then

f-p = f-p —(&e/&c) [B-Bp —B-*Bpl

10. MODIFICATION OF LORENTZ FORCE

According to (6.5)

(10 1)

V„B "+ (ie/he)f "B„—(ie/hc)'[B (B")~
g (B )sBaa]B 0

B„f " = —(ie/Pic)[B "B„*—(B"")*B„]

+ (ie/hc)8„[B (B")*—(B )*B"].
(9 5)

Thus, if f P is used instead of f P, it is then necessary
to modify the current by a perfect divergence and
to add direct pair interactions.
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if the D„-field is free. The energy momentum tensor which the geodesic distance increases as the path
in (10.1) is by (6.8) parameter increases. Then

where

~(0)
~ y (cha rged)

ap = op ~ ep (10.2)
U

' = exp
0

DIJ( {gS (» 2)

y(cherged) B (B)r ) g + i (B ) (B e) gr

+ (B-~)*(B."p) + -' (».)*(B"')V-p

(10.2a)

&-"p = f-4'p + d f~.f"g-p (1o 2b)

B„U= D„U,
U-1 U

—1D

DeGne new fermion operators

(11.8)

(11.4)

Let 8„ indicate differentiation with respect to end
point. Then

(Ifras)(charged) ~ (yaP)0

We now calculate

(10.8)

The charged component 7.' p""g' ' is obtained by
making the substitution B„Bp —BpB ~ V Bp-
VpB in the usual energy momentum tensor of an
uncharged vector field. According to (10.1)

or

+(x,P) = P(x)U(x, P) .

8„%'(x,P) = (B„P)U(x,P) + QB„U(x,P)
= ~~.O+ &D.]U(»)

(11.5)

&p(&')' =f )s'+ s [~pf ), +())fp + ~.f) p]f '.
(1o 4)

ln the Maxwell case, the bracket vanishes and the
right-hand side gives the Lorentz force. Here there
is an additional force, namely:

(11.6)8„@(x,P) = P(„(x)U(x,P) .

In this way a correspondence is set up between the
ordinary partial derivative of the path-dependent
field and the covariant derivative of the path-inde-
pendent Geld.

The corresponding construction for the field
strengths is

$„,(x,P) = U '(x,P)B„,(x)U(x,P), (11.7)

a),(a„, = U 'B„„(gU, (11.8)

(11.88)B„(),= ~),B„+(B„,D~) .

s [~.f),p+ ~)fp. + &pf.)]f"
= (ie/2)ic)[8 (BpBf —B~pB),)

+ ~.(BpB.* —BpB-) + ~p(B-Bf —B-*B~)]f'
= (ie/Ac) If""g + f"'8" —f"'8"]8,(B„*B„). (10.5)

where
The additional term may be rewritten to modify the
energy momentum tensor and the current.

ll. NONLOCAL REPRESENTATION OF OPERATORS

With the aid of a nonlocal formalism similar to
that proposed by Mandelstam for electrodynamics'
it is possible to eliminate the connection from the
equations of motion. Define

U = lim U(s„) ~ ~ U(s, ),
where

The equations of motion then become

8$(81,$ = 6%'Pp'Il' )

~xyx 0 )

(11.9)

(11.10)

y"8„%' = 0, (11.11)

where the covariant derivatives of the path-inde-
pendent variables have been replaced by ordinary
partial derivatives of path-dependent quantities.

U(s.) = e"'"',

))(s„) = D„(s„)hx",

(11.1b)

(11.lc)
12. GAUGE TRANSFORMATIONS

The nonlocal representation just given may be
shown to be gauge invariant as f'ollows. By (ll. lc)

U(e,P) = erp f D de"„
0

(11.1)

)' S. M(Lndelst(Lmr Ann. Phys. (N. Y.) 19r 1 (1962).

where the integration is along a space-like path I',
and the ordering is with respect to geodesic distance
from the origin. As paths we allow only curves for

g)((() = D„(s„)hx".
Then under a gauge transformation one has

g((()' = V„'g()()V„—V„'(V„—V, ,),
where

V„= V(s„) .
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Then
I"'"' = ~ p [v. ' ( )v.] ~ p [—v. '(v.—v. ,)]
= exp [V„'q(~)V.] [1 —V„'(V„—V„,)]

= (V„'e"'"'V„)(V„'V„,)
to terms of lowest order, or

n(&) TT—1 n(&) TT

and where a(l), b(1), a(2), b(2) are constructed for
the sides of' an infinitesimal parallelogram as follows:

a(1) = D.(1)a, b(1) = D„(1)b,
a(2) = D.(2)a, b(2) = D„(2)b.

Here a and b are the dimensions of the parallelogram
in the x and y directions. Then

Therefore

and

Similarly

'rf(N) ~ g(1) TT—I r q(N) q(1)a Tre

O' = V 'UVo,

(U ')' = Vo U V~.

(12.1a)

(12.1b)

U = 1+ [B.D„—B„D.+ (D.,D„)](ab) (13.3)
and Eq. (13.1) follows.

According to (11.5), a change in path induces the
transformation

4(x,P') = %(x,P) exp B~„„~ dS"" (13.4)

and a corresponding equation for B„„.
For consistency we require

+(x,P) = $(x)U( Px),

4(x,P)' = [f(x)V(x)][V '(x) UV(0)]
= %(x,P)v(0),

exp Rt„,3 d8"" = I (13.5)

where I is the unit matrix if the integration is over
a closed surface. If the gauge group is SUl, then

(13.6)

e

Ac
f(„„) dS = 2n~ .

V(0) = 1.

B„„(x,P) = U (x,P)B„„(x)U(x,P),
B. (*P)' = [V '(0) U 'V(x)]BI (*)[V '(*)Uv(o)]

= V '(0) [U 'B„„(x)U] V(0) OI

= V '(0)B„,(x,P)V(0) . (12.3)
It is possible to normalize the gauge transformation
by choosing This integral represents magnetic Qux over a closed

surface and therefore measures the enclosed magnetic
(12.4) charge, if any. If the magnetic charge is Q, then'

Then

+(x,P)' = @(x,P),
B„„(x,P)' = B„,(x,P) .

13. PATH DEPENDENCE eQ /Ac = 2' . (13.7a)

eQ /fir = 2wn. (13.7)
(12.5)

The minimum possible value of Q therefore satisfies
(12 6) the Dirac condition

The present description is gauge-independent but
not path-independent. In fact

In the case of a general gauge group, we may ex-
pand the magnetic Aux matrix as follows:

U(x,P') = U(x,P) exp B[pp3 cE8 (»1) 8,„„, dS"" = i g ) .e. (13.8)

exp R~„„, dS"" = g [expiX,]e,

when the integration is carried out over any surface where the e, are the idemPotents:

bounded by the space-like paths P and P'.
The curve P' may be obtained from P by repeated

small deformations. Ea'ch such deformation will en.-
close an element of surface for which (13.1) may be
proved as follows. Let:

(13.9)

where

U = U. (1)Ug(l)U. '(2)Ug (2)

U. (l) = 1+ a(1), etc. ,

(13.2)
In order to satisfy (13.5) one must choose

X, =2n,m)

(13.10)

(13.11')
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and therefore

Ac
Bt„„l d8"" = 2s g n,e, .

Again the integral represents magnetic charge, which
is now the matrix

Q = Pic/e)2s- g n,e, .
The eigenvalues of Q„are

Q' = (Ac/e)2' g n, c', (13.12)

where e,' = 1,0. Equation (13.12) is the generalization
of the Dirac condition to the case of an arbitrary
gauge group. '

14. MAGNETIC POLES

AVe have seen that the Yang —Mills Geld whose

s 8. Mandelstam, Ann. Phys. (N. Y.) 19, 1 (1962).

neutral component is the electromagnetic field does
not admit magnetic poles. However there is also
a theory in which the neutral component is dual to
the usual electromagnetic field. In the one case the
charged bosons carry electric charge, magnetic
moment, and no magnetic charge. In the dual theory
they carry magnetic charge, electric moment, and no
electric charge. In the latter case the fermion sources
are also magnetic monopoles, and the magnetic
charge is always given by (13.12). If both classes of
particles exist the observed electric (magnetic) fields
are due to electric (magnetic) monopoles at, rest and
magnetic (electric) monopoles in motion.
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1. INTRODUCTION

It has recently been shown that the conventional
field theory of vector bosons (y) interacting through
a conserved current with spin one-half fermions (X)
(i.e. quantum electrodynamics with massive photons)
possesses several remarkable and hitherto unexpected
properties. First, it appears to have finite nonper-
turbative solutions, as shown by Johnson, Baker, and
Willey. ' Second, as shown by Marx, Zachariasen, and
the present authors, ' the spin —,

' particle, which in
second-order perturbation theory appears as a fixed
singularity in the angular momentum, is, as a result
of radiative corrections, found to lie on a H,egge
trajectory

I= J —-', =a(W),

*Supported in part by the U. S. Atomic Energy Commis-
sion and the Air Force Office of Scientific Research.

~ K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters
11, 518 (1968).

2 M. Gell-Mann, M. L. Goldberger, F. E. Lour, E. Marx,
and F. Zaehariasen Phys. Rev. 133, 145 (1964) (hereinafter
referred to as III).

where W is the total energy and cx(m) = 0, with m
the fermion mass. The function n(W) has a power
series expansion in the coupling constant, called y,
such that a(W) ys as 7 ~ 0.

In this paper we investigate the generation of a
Pomeranchuk-like (or I') trajectory in the same
theory. This differs from the previously discussed
fermion trajectory problem in several ways. The I'
trajectory in no way corresponds to an elementary
particle of Geld theory but is more analogous to the
well understood trajectories of potential theory (or
ladder approximations in field theory) with the dif-
ference that it approaches J = 1 as p' ~ 0 rather
than J = —1 as in potential theory. This is due to
the spin of the particles involved. Another difference
from the fermion trajectory is, as we shall see, that
J —1 —= A(W') y' as y —+ 0.

The processes whose asymptotic behavior at large
z is determined by the P trajectory are y + p ~
7+ p, X+ 7 —+X+ Xandv+ y~X+ Ã.
The latter amplitude can be calculated in order y',
the two former ones in p'. The generation of a H,egge


