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L4 = (—1)"L4 det s& + higher orders .
Similarly

where 7& and ps are orthogonal matrices. But we have Using (C13) one obtains,
already proved by the argument after (D3) that
orthogonal transformations

~1 ~ Pl~lgl )

/ /
~l ~ +2~1+2 p

do not change volume elements II de. Thus (E9) is
true in general.

(iv) Now in the neighborhood of the point in ques-

tion, by (59)

= (det Q)(det s~)(—1)" + higher orders.

6' = (—1)"i14det s~ + higher orders .

Taking the ratio of these two equations and using
(E8) and the fact that at alt points, by definition,

a„= U'a.',
one obtains at the point in question

det I. = (S./a.') U '. (E11)
(Eg) now yields the desired equation (E2).
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INTRODUCTION

Hypothetical vector gauge fields have been intro-
duced in order to give a deeper dynamical foundation
for such internal properties as isotopic spin. An es-
sential aspect of isotopic spin is electrical charge, and
there is no doubt about the dynamical relation of
this property to the electromagnetic field. Do these
different types of vector Gelds simply coexist, or can
they be combined to form a more unified theory of
vector gauge fields? An integrated formulation can
indeed be given, and it is not a trivial one since there
are definite dynamical implications with regard to
electromagnetic properties and the structure of the
non-Abelian transformation group. The unification
can encompass all fields that partake in both strong
and electromagnetic interactions. ' This success poses
a physical problem, however. As one member of a
set of gauge fields, the electromagnetic field is not
physically distinguished and fails to perform its
physical role of destroying the conservation of iso-

topic spin. Perhaps it is in this apparent dilemma

that we find the clue to the existence in nature of
other sets of Gelds which possess electromagnetic in-

* Supported in part by the Air Force OIIIi.ce of Scientific Re-
search under contract number AF49(688)—689.

i C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1964).
2 The problem of compatabiliI;y has been given a more re-

stricted discussion by R. Arnowitt and S. Deser, to be pub-
lished.

teractions, but no strong interactions. Is it the pres-
ence of charged leptonic fields that denies the higher
symmetry transformations, relating the electromag-
netic field with the non-Abelian fields, and gives to
the electromagnetic Geld its characteristic physical
inQuence~

The inclusion of electromagnetic lepton interac-
tions produces a new difhculty, one of consistency.
The gauge invariance of all terms in the Lagrange
function save one contradicts the principle of sta-
tionary action. Another term that violates gauge in-
variance must be included. The simplest choice is a
mass term in which the mass constant is presumably
small, on the scale of strongly interacting particle
masses, if a domain of approximate gauge invariance
is to exist. And this modification raises again the
physical mass problem of gauge fields: Are unit spin
particles of small mass implied by the theory?

UNIFIED THEORY

The Lagrange function of a non-Abelian vector
gauge field coupled with a spin —,

' Geld is'

z = ——', (:""[a„@,—a„y„+ (y„it'y„)] + —,'( ""(;„„

+ rs iPn" (8„—i T'P„") lt + rs imPPP,

where the matrices t' and 7." include coupling con-

3 The notation follows J. Schwinger, Phys. Rev. 125, 1043
(1962}.
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stants. We now interpret the internal space to be
(n + 1) dimensional and use the notation

G."" = F"", y." = A",
together with

to = eq, Tp = eQ,

t.'= ft. , T.'= fT. , a =1, n.
The total antisynimetry of t.'t,„a, b, c = 0, 1- n,
should not be overlooked, for

(C)ob = (&b).o = —Cob = —(eq).b.

The result obtained by writing the Lagrange function
in terms of the n-dimensional internal space is given
by

Z = —
2 F""[a„A„—a,A„+ (@„ieqy„)]+ —,

' F""F„„
——', g""[(8„—ieqA„)dtb, —(8„—ieqA„)y„

+ (e.if~~.)]
+ —,

' g""g„„+-', g~"(a„—ieQA„—if "Ty„")P
+ —,

' imPPf,
which exhibits the required electromagnetic gauge
structure, and also implies an intrinsic magnetic
moment for the vector field. '

The infinitesimal gauge variations of the unified

theory,

neglect of electromagnetic e6ects is a reasonable ap-
proximation to the complete theory, an n-parameter
transformation group should be implicit in the latter.
We interpret this somewhat vague physical require-
ment to have the following meaning. The group com-
mutation properties of the (n + 1)-dimensional ma-
trices t.',

[]I tI]
c=0

and of the n-dimensional matrices t.,

[t ,tb] = Q t b,t. ,
c=l

are both valid, with e / 0. More symmetrically ex-
pressed, we require the compatability of

Q (td dtgb, + tdbdtg, ~ + td.dt's, b) = 0
g~O

a b c d —0 1 . .n
with

(4.2&db. + 4b.4- + 4 2&2.b) = 0
g=l

c) b, c, d —1 .n
If a, b, e, d & 0 in the (n + 1)-dimensional set of

structure constant equations, the term in the sum-
mation with g = 0 must vanish separately, or

qdaqbc + qdbqca + qdcqab

On setting one of these four variables equal to 0, we
learn that

are written out as

5A„= a„Q.+ (y„ieqQ),
8Q„= ieq Qp p„+ (8„—ieq A„if "tp„")Q—, ,

8F„.= (G„,ieq Q,),
Bg„. = ieq Qo G„. —ieq QF„„+if "t Q,"G„„,

together with

g = (ieQQp+ if "Try") P.
The single functional subgroup of electromagnetic
gauge transformations is evident.

The transformations generated by Q., a = 1 .n
do not form a subgroup, unless e = 0. Yet, if the

4 Et is interesting to encounter here just the special electro-
magnetic interaction that I erst considered in collaboration
with H. C. Corben [Phys. Rev. 58, 953 (1940)],while we were
research fellows at Berkeley. That work was inspired by the
cosmic ray investigations of J. R. Oppenheimer, R. Berber,
bbnd H. Snyder [Phys. Rev. 5'7, 75 (1940)].

[t.,q] = g q.btb,
1

and this exhausts the relations implied by the unified
theory.

The restrictions imposed on the matrix q can best
be appreciated by multiplying the quadratic equa-
tion with q,~ to form

(q')"q '+ (q'). q-+ (q'),.q. = o,
and then summing over g = c, which yields

y2q y2 1 trq2

With the permissible normalization X = 1, the eigen-
values of q, the electric charge matrix of the vector
field, can only be 0, al. Furthermore,

1 = 2 [m(+1) + m( —1)]

where m(&1) are the multiplicities of the respective

q eigenvalues. On invoking symmetry between posi-
tive and negative charge we learn that

m(+1) = m( —1) = 1.
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Thus the vector gauge field contains one pair of imply that
charged components, and all other components are
electrically neutral. With an appropriate labeling of
field components, the charge matrix q is

together with

and it can be verified that the quadratic conditions
on q.& are satisfied.

The structure of the charge matrix asserts that

[Qlt&1 2t2 0 ['Q&t2] 2tl
P [/It+1 0 ) o 3P

According to these properties,

[ta)tb] Q tabctc t~bltl + t~bb4 0
c=e

~, & =3, ~ ~ ~ n,

since the left-hand member commutes with q. The
implied vanishing of the structure constants t.», t.»,
c, b = 3, - .n, also asserts that

[tb&t 1 tbab4, [4&t~] —4atb
&

6 —3&' ' '72

In more detail, these are

and

—i[T,,T,] = T,,

[Tb,Q] = —iT, ,

[Q».l = 0,

a, b =4, ~ n.
Thus, the general commutation relations differ by
the presence of the term (e'/f')Q, added to T&. But,
it suffices to define

Hy performing a linear transformation of the t. it can
be arranged that

Then

t12a = 26~3

[tb, tb] = it2 ) [tb, tb] = itb ) [t, ,t,] = it, ,

in order to regain the commutator structure of the
three-dimensional isotopic spin group for 71,2 3. It
is essential that Q and Tb have the same commuta-
tion properties with F1,2. %e place

while

[tb,2,b to] = 0 g 4 b b on)

Q —Tb ——P'-', F,
which yields

[1 *Tb,b,b] = 0

[t,tb] = Q t b.t.
c=4

a, b =4, n.
Q = *Tb+ —,

' l'

and identifies Y with the hypercharge. Then

Tb 2 = P*T~,b, Tb ——*Tb —(P' —1) -', Y.
Thus the group structure is completely factored into
the three-dimensional isotopic spin group and a
group with (n —3) parameters. According to the
identification

q=t3,

only zero and unit isotopic spin representations are
contained in the vector Geld.

It may appear that these structural results refer

just to a particular group representation rather than
the group, for the general commutation relations of
the unified theory

[T',Tb] = Q t b.T'.
c 0

The group commutation relations govern the con-
served integral quantities of the theory. In the uni-
fied formulation the latter are given by

T.' = («) [6'"it.'yb + —,
' QT.'P],

which includes

Q = («)[6"2V4. + -'4Q4i

T. = dx 6"it. g, e igG" .Af,
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The operators *T&,2,3 that obey isotopic spin com-
mutation relations then appear as

*T, = (dx) [6'"itgyy + -', P *Tan]

Ti,.= (dx)[y 6 ~4,.4~

+ (e/f)y '(G~"iA~ —F"p~ 2i) + —; P 'Ti,.g] .

In the last formula, the lower sign applies to ~T2.

One can hardly fail now to recognize the variables
that make explicit the three-dimensional isotopic spin
invariance of the theory. The fields

*0"= v '[0" + (e/f)A. ]
*63" = 7 '[63""+ (elf)F""]
*A„= p '[A„—(e/f)y„,],
*F""= v '[F""—(eif)6.""],

LEPTON INTERACTIONS

The existence of three-dimensional isotopic spin
invariance is conveyed by the unusual transforma-
tions in which A„, F„„is combined with p„, 6„„.A
purely electromagnetic interaction with another sys-
tem destroys this symmetry and gives the electro-
magnetic field its specific dynamical significance. Let
the Lagrange funct;ion contain additional terms that
are invariant under electromagnetic gauge trans-
fol matlons

Z. + j",A„,
such as those representing charged lepton fields. The
complete Lagrange function responds to an (n + 1)
parameter infinitesimal gauge transformation as

82 = j".(Q„ieq Q.) .

Alternatively, we can write

together with

are such that

p&» p&27

which shows how a preferential direction is intro-
duced in the isotopic space. The response to the
three-dimensional isotopic spin gauge transforma-
tion

*T, = (dx)[*6 it. *pg + ~ f*T.f], 1s again

Q = (dx)[*6"~q *e.+ -'4Q4]

For simplicity of presentation, the transformed
Lagrange function is written without the fields p.", a
= 4- - n, which can easily be reinstated, and omit-
ting the star designation on the fields. The result is

2 = —-,'F""(aQ, —a,A„) + —,
' F""F„,

——', 6""[a„y„—a„y„+ (y„i sty, )] + —,
' 6""6„.

+ —', ipn" (a„—iey —,
' YA„—i fp ""Tg„")p

+ ~2imf3$.

All electromagnetic effects for the gauge field have
disappeared, and the Geld *3„,*F„„is identiGed as a
hypercharge field!

It is tempting to assert that *8„,*I'„„is the hyper-
charge gauge field. The electromagnetic field would
then be constructed as a linear combination of the
hypercharge gauge field and a component of the iso-
topic spin gauge field. The alternative possibility is
to include in the set p.", a = 4, .n, an Abelian
gauge field that is coupled to hypercharge, with
coupling constant g. Then two linear combinations
of the hypercharge fields exist, one of which has the
coupling constant [g' + (-,' e7)'].;, while the other is
completely uncoupled.

since q = t~ and *g„i,2 = p„&,2.

As we have remarked in the Introduction, this re-
sult contradicts the principle of stationary action,
which demands that bZ be zero, to within a diver-
gence term. Another nongauge invariant expression
must be added, such as

82 =j ", (Q„ieq Q, ) —P"mo (a„—ieq A „) Q,

and the stationary action principle asserts that

mo(a„—ieq A„)y" = ieq y„j", .

The field equation that is modified by the mo term
18

(a„—ieqA. —if ty, ")6""
ie qF&„+ A—:"—mop",

k" = —Pn"fTQ .
This can be written as

a,G""+mop" = j",

j" = (6""ift(f.) + ieqA, G"" —ieqF""y„+ k",
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from which we derive

c)„j"= mpcl„y" = ieq(j,"+m', A„)y".
It will be noted how the presence of the mo term is
required to obtain the physically necessary equa-
tions of nonconservation. The corresponding integral
relations are

r), fT = (dx)ieq(j", + m'pA„)y",

which asserts that

cIp *Ty p = ~ (e/f)p
'

(dx) (j", + mpA. „)gp,&

= —i[*T...P'] .

We do not try to discuss here whether this mechanism
implies reasonable magnitudes for the Fp dependence
of mass multiplets.

%e make only one comment about the physical
mass problem. For an Abelian gauge field coupled to
a conserved current, there are sum rules' that require
the existence of unit spin excitations with mass m
less than mo. The sum rules are different, however,
if the current is not conserved, ' or if the field is non-

Abelian. Then, no simple conclusions about the
spectrum in relation to mo can be drawn.

P K. Jphnspn, Nncl. Phys. 25, 455 (1961).
6 D. G. Boulware and %. Gilbert, Phys. Rev. 126, 1563

(1962).

Generalized. Radial Integrals With Hydrogenic Functions
DONALD H. MENZEL
Harvard College Observatory, Cambridge, Massachusetts

The calculation of radial quantum hydrogenic in-
tegrals is an important part; of wave mechanics. The
direct procedure of multiplying, term by term, leads
to long and involved series. These series can be
summed, but the methods employed are too compli-
cated for student application. Textbooks and ref-
erence books have studiously avoided the calculation
except for small specific values of n and t. I have
discovered a simple method for dealing with this
summation problem. The procedure does more than
bring the method within the scope of a student whose
mathematical skill does not go far beyond that of
elementary calculus; it leads to the reduction of gen-
eralized radial quantum integrals.

The one-electron wave equation,

8(l,m) = (—1)"8(l,—m) .
This choice of signs (or phase) is important for many
purposes. P&(cos 0) is the Legendre polynomial. The
radial equation is a function of the radius r,

B(n, l) =- Z(n + l)! ' e
""' 2Zr

-n'a(n —l —].)!- (2l + 1)! na

X,Fr( n+ l + 1,2l—+ 2,2Zr/na) . (7)

1E& is the conQuent hypergeometric function,

n n(n —1)
1!v 2b(v+ 1)

g ( 1)
n! (v —1)!

( - j)! (V - 1+j) I

~F~( n, y, x) = 1——

HP = —(lt,'/sw'm)V' P + UP = EP,
for a Coulomb field,

U = Ze'/r, —
has the well-known solution'

(2)
These functions are normalized to give

where 0 is the angle measured from the pole along a
meridian. Thus

a product function.
P =88C, C (m')C (m) d(p = 5(m', m),

C' = (2') 'e'"", (4)
a function of the longitude parameter @.

((m)+m) 2l+ 1 (l —m)!:
2 2 (l+ m)!

X sin &
I I P&(cos t)) (5)

Im I

d cos0
E. U. Condon and G. H. Shortley, Theory of Atomic

Spectra (The Macmillan Company, New York, 1955), pp. 52
Mld 117.

8(l', m)8(l, m) sin 8 do = 5(l', l),

B(n', l)R(n, l) dr = 5 (n', n),

(10)

where 8 is the Eronecker 8, equal to unity if m' = m
and equal to zero if m' / m, and likewise for t, and n.

In these equations, e and m are the electronic
charge and mass, Z is the nuclear charge, and h is
Planck's constant. a is the radius of the G.rst Bohr


