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with Eq. (8.7). However, E(g,0) has a logarithmic
branch point at q = 0.

Equation (8.7) is the analog of the relation gk/m «
1 which in 8"-field theory' defines the "low-energy
regime" (g = meson lepton coupling constant, m
= W mass), and F(q,0) is in fact the analog of the
zero-energy Bethe —Salpeter amplitude discussed in
reference 3. While we know little about the high-
energy regime in 6eld theory (gk ))m), it is inter-
esting to note the high-energy exponential damping
exhibited in the potential problem by Eq. (8.8).

Unlike the W-field theory, the amplitude for a
power potential has only a leading singular series
for k = 0, no subsequent summations are called for
at fixed energy. This is because we only have one
constant g in the potential case, while there are two

(g and m) in field theory. We can also study potentials
with more constants. Take for example singular
short-range potentials like

V, (r) = —g(e "'/r") (8.9)

By power counting one readily verifies that the
zero-energy scattering amplitude for Ve(r) is a good
approximation. to the one for V„(r)as long as g and

p satisfy

In conclusion we wish to emphasize that for
singular power potentials the peratization program
is completed once the case k = 0 haa been under-
stood. This is so because the knowledge of the zero-
energy wavefunction makes it possible to reduce the
integral equation (1.8) for k W 0 to one which now
is "regular" in the sense that the Neumann series
does exist.

We show this for the case m = 4 and limit our-
selves to the S-wave case. Once the zero-energy
solutions are known one can obtain a regular Volterra
integral equation for the nonzero energy case."The
zero-energy solutiona of (1.7) in the present case
are xe ' "and xe+' '. If we now write

f(k,0,r) = re ' "f(k,r),
we get for f the integral equation

k'
f(k,z) = 1 —— y'dyf(k, y)

+, ydyf(y)e' * ' " . (8.11)
2g 0

This is an iterable Volterra equation and leads
to a function analytic in k'.

1/{m—2) (( ) (8.10) is E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962).
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In considering the reactions

8~1+2+ ~ ~ ~ +n (1)

8+ 1 i2+8+ ~ +n, (2)

it is oftentimes natural to express probabilities, (i.e.,
square of matrix elements) in terms of the scalar
products of the 4-momenta of the particles involved.
(For particles with spin, a similar situation obtains
after averaging over the spins of the particles in-
volved. ) Denoting by Iz,j}the scalar product of the
4-momenta of particles i and j, one may ask whether
it is possible and convenient to pursue subsequent

calculations (such aa for the total probability) en-
tirely in terms of these quantities Ii,j}.These con-
siderations' led to the investigations described in the
present paper.

We discuss the following three questions.
(a) What are the kinematically allowed values of

the variables Ii,j}for reactions (1) or (2)?

~ For somewhat related discussions, see V. E. Asribekov,
Zh. Eksperim. i Teor. Fiz. 42, 565 (1962) [Eng1ish Transl.
Soviet Phys. —JETP 15, 394 (1962)];J. Tarski, J. Math. Phys.
1, 149 (1960); B. Jacobsohn, Bull. Am. Phys. Soc. 7, 503
(1962); and D. Hall and A. S. Wightman, Mat. Fys. Medd.
Dan. Vid. Selsyn 31, No. 5 (1957).
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(b) For a given assignment of values for {i,j}
which is kinematically allowed, how many Lorentz-
transformation-inequivalent kinematic configurations
describing reactions (1) or (2) are there that realize
this set {i,j}'?

(c) In terms of the variables {i,j},what is the
volume element

We assume throughout this paper that the particles
1,2, ~ ~ n have fixed nonvanishing masses m&, ms,
~ m„.Consider the real symmetrical matrix

m~{1,2} . {1,n}

2{n1} . m.

(3) By the space OR. we mean the Cartesian space

for reaction (1), and what is the similar expression
for reaction (2)?

The quantities {i,j} are clearly not all independent.
In discussing questions (a) and (c) defined above,
one can choose to regard some of them as independ-
ent, and the others as dependent. We follow in this
paper, however, the principle of seeking for symmet-
rical expressions in terms of the indices i and j. It
will be seen that the resulting volume element dv

assumes a remarkably simple form. The derivation
we give in t,he present paper, starting from the sym-
metrical expression (3) and ending in the symmetri-
cal expression (79), goes through a route utilizing
intermediate steps in which symmetry is not main-
tained. This is perhaps not desirable, but we have
not yet found a proof that maintains symmetry
throughout. [Since the invariant volume element is a
measure of the kinematic configuration, it is perhaps
not very surprising that the resultant expression

(79) is so simple. But we have no nonpedestrian
understanding of (79).]

It is proved that for large n the allowed values for

{i,j} are superconical singularities, of an algebraic
surface. The geometry of this surface is closely re-
lated to a mapping of its points to the kinematics of
reactions (1) and (2). It is also proved that in terms
of the geometry of one universal algebraic surface the
problem for all nonvanishing masses m; for the n
particles can be formulated.

In the main part of the paper we discuss reaction

(1), returning to reaction (2) in Sec. 9.
To study the geometry and the mapping men-

tioned above it is convenient to study not only the
physical 4-dimensional space, but the general space'
of dimension D.b. Thus in Sec. 1 we discuss problem

(a) in general dimensions with arbitrary mass m~.

Starting from Sec. 2 the discussions are limited
mostly to dimensions D», i.e., one time component
only.

All quantities in this paper are real.

We use the notation dimension D,b or D,b dimension to
denote a vector space with a diagonal metric consisting of
+1 n, times and —1 b times. Physical space is D».

where 1 ~ i & j ~ n.
The matrix 3f„hasreal eigenvalues. A point in space
OR. and its corresponding matrix 3f. are said to be-
long to the region r.b if 3I has c positive nonvanish-
ing eigenvalues, 6 negative nonvanishing eigenvalues,
and n —a —b eigenvalues which are zero.

We show now that the division of the space 5R.
into regions r.& is closely related to the realizability
of the matrix 3I in terms of vectors. From such a
relation we obtain in Theorem 5 information about
how many disconnected parts each of the regions r.b

possesses.

Theorem 1. If a point of OR. is in the region r.b, it
is realizable in D., dimension with n vectors of which
a + b are linearly independent. If' it is also realizable
in dimension D. b, then

a'&a, b'~ b.

Proof. The first part of this theorem is obvious

by diagonalizing the matrix 3'. by a real orthogonal
transformation. The second part is easily proved
with the aid of Lemma 1 of Appendix A.

By the second part of this theorem, since the
momenta vectors of the particles 1, ~ n in (1) are
realized in dimension D», the corresponding matrix
M„must be in a region r.b with a & 1, b & 3. Since

Trace&„=g ribs ) 0,
at least one eigenvalue of 3I. must be ) 0. Thus
a = 1. Hence the physically realizable M for reaction

(1) is within r», r», r», and r». The latter regions

represent, respectively, cases where the 4-momenta
vectors span 3, 2, 1, or zero space-like dimensions.

Theoren 8. Consider n vectors in dimension D.b

of lengths m&, m&, m„for which a + b are linearly

Realization in terms of, or realization by, n vectors means
the n vectors give scalar products that correspond to the point
in ~, their lengths being given by the diagonal elements of
(4). Realization in D,b dimensions means that the n vectors
are in the dimension D,f, dered in Ref. 2. We sometimes refer
to the n vectors as the realization.
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a~a', b~ b'.

Hence a = a', 6 = 6' which proves this theorem.

Theorem 8. Consider a matrix M. in the region r.&.

All realizations of 3/I. by n vectors in D.p dimension
are Lorentz transformable' into each other

Proof. (a) By Theorem 1 there exists a realization
Bp with n vectors in D.b dimension. Let the first
a + b of these be linearly independent. Consider the
first diagonal minor M.+p of dimension (a + b)

X (a+ b) of M.. Any realization B& of 3/I„ in D.&

dimension gives also a realization of M.+~ by its first
a+ b vectors in the same dimension. Focussing
attention only on the realization of 1I/I.+& it is readily
proved that the first a + b vectors of B, and of R
are transformable into each other by a Lorentz
transformation.

(b) As for the other n —a —b vectors, they are
linearly dependent on the first a + b, and their pro-
jection on the first a + b are fixed by the elements
of M.. So the last n —a —b vectors of Bp and of B&

are transformed into each other by the same Lorentz
transformation.

independent. The matrix M. constructed from these
vectors by Eq. (4) is in the region r.&.

Proof. Since a+ b of the vectors are linearly
independent, the rank of M. as defined by (4) is
clearly a + b. Now let M. be in the region r. & . An
orthogonal transformation leaves the rank of a
matrix invariant. Thus the rank of M. is a'+ V.
Thus

a+ b = a'+ V.
But by the second part of Theorem 1,

To apply a Lorentz transformation to R to reduce
it to Bp with two redundant dimensions requires a
Lorentz transformation with the velocity 1 which
exists only as a limit.

(ii) The above mentioned complication does not
arise, however, if we confine ourselves to dimensions

D.& only. In fact we have

Theorem $. Consider a matrix 3I/. in the region r.p.

Any realization B& of it by n vectors in D.& dimension
[b' ) b] can be transformed by a Lorentz transforma-
tion in D.& dimension to n vectors occupying only
D.p dimension with components zero in the remaining
b' —b dimensions.

Proof. (a) This part is entirely similar to part (a)
of the proof of Theorem 8. One concludes that there
exists a Lorentz transformation I in D.b dimension
that transforms the first a + b vectors of B& into the
first a + b vectors of the Bp of Theorem 3 with zeros
added as components of these vectors in the re-
dundant b' —b dimensions.

(b) Apply I to all the n vectors of B&. The com-
ponents of the first a+ b resultant vectors are
[according to (a)], written in a + b rows,

where the size of ri is (a+ b) X (a + b) and that
of 0 is (a+ b) X (V —b) Let the .components of
the remaining (n —a —b) resultant vectors be

(6)

The corresponding components of the vectors of Bp

are

Remark. (i) If one wants to generalize this theorem
to realizations in. higher dimensions than D.b, one
has to be careful about situations as illustrated in the
following simple example:

and

Evidently

det A WO.

(6')

is realizable by

Bp.' the vectors (1), (1) in dimension Dlp,

or R: the vectors (100), (1, 1, 1) in dimension Dpi,

v ith metric

4A Lorentz transformation in D b is a transformation
described by a matrix I so that, LgL = g, where g is the metric
of the space D b.

Bp and the I transformed B~ share the same 3/I.
Identifying the scalar products between the vectors
of (5) and those of (6) with the corresponding scalar
products between the vectors of (5') and (6') one
obtains

Now the components in 0 of (6) all have negative
signature (i.e., are space-like). For the vectors (6)
to have the same lengths as those of (6') one must
have 0 = 0. This completes the proof.

Theorem 8'. For a & 1, the region r.b of BR„is a
connected region. For a = 1, the region r» of 91t.
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consists of 2" ' disconnected parts, each being a con-
nected subregion.

Proof. Theorems 1 and 2 establish the correspond-
ence of the points in the region r.l, of 5K. with a set of
n vectors in D.b dimension, of which a + b are linearly
independent. This correspondence is a continuous
one. Starting from any point in the region r.f, of 5R,
one could reach another point in the same region if,
and only if, the corresponding set of n vectors can be
continuously deformed from the one to the other,
subject to the conditions (1) a+ b of them are
linearly independent, and (2) the length of each
vector remains unchanged. U a & 1, such deforma-
tion is always possible. For a = 1, a time-like vector
could be forward time-like or backward time-like.
Since the masses are )0, a forward time-like vector
cannot be continuously changed into a backward
time-like vector. Thus, the space of n vectors in DIb

dimension is divided into 2" disconnected regions
according to the sign of the time component of the
vectors. But, a reversal of the signs of all components
of all vectors does not change the matrix M„.We
thus have Theorem 5.

This proof of Theorem 5 also shows that for a = 1

the region r&~ is divided into 2" disconnected sub-
regions' according to the signs of the scalar products

{l,iI, i = 2 n. This follows from the fact that the
scalar product of two forward time-like vectors is
always positive (masses being )0).

In Sec. 4 the case n = 3 is discussed in detail,
illustrating the above theorems.

and 80' are related to each other by a space reAection.

Theorem 7. Consider a matrix 3II. in the subregion
r', &. Consider any realization 8& of M„byn forward
time-like vectors in DIl, dimension, b' & b. These n
vectors can be simultaneously transformed by an
orthochronous proper Lorentz transformation in D1~

dimension to the realization B0 described in Theorem
6 occupying only D» dimension with components 0
in the remaining b —b dimensions. It could also be
transformed by an orthochronous proper Lorentz
transformation in D&f, dimension to the realization

8,' described in Theorem 6 occupying only D» dimen-

sion with components 0 in the remaining b —b

dlIIleIlslons.

These two theorems can be proved in a manner

con1pletely similar to the proof of Theorems 3 and 4.
The physical Lorentz transformations are in D»

space. We thus have the following conclusions:
The n momenta of (1) real2ze a matrix lV„2n tAe

0 0 0 0region r13, r12, r11, or r10.
Each matrix M„inr» is realized by two kinematic

configurations describing the n momenta of (1) 2oh2ch

are space reflections of each other. All other realizations
can be obtained from these tlo by orthochronous proper
Lorentz transformations.

Each matrix 3'„in r», r», or r10 is realized by one

kinematic configuration describing the n momenta of
(1).A/1 other realizations can be obtained from this by

orthochronous proper Lorentz transformations.
These results completely answer questions (a)

and (b) in the Introduction.

In this section we specialize to the case of one
time-like dimension, i.e., a = 1. Also, since only
reaction (1) is considered, all the n vectors are
forward time-like. %e thus confine ourselves to sub-
regions discussed in Theorem 5 which are denoted
bv r', ~, i.e., for which'

{ill &0.
We are interested in orthochronous proper Lorentz
transformations only. Theorems 3 and 4 appear now
as

Theorem 6'. Consider a matrix 3I. in the subregion
r». Consider any realization Bj of 3II. by n forward
time-like vectors in D&~ dimension. These n vectors
are simultaneously transformable by an orthochron-
ous proper Lorentz transformation into either of two
specific realizations 80 and 80. The realizations B0

5 %e use the notation r» to denote that subregion of r1g in
which {i,j 1 & 0. rL is a connected subregion, by the proof of
Theorem 5.

In this section we establish a theorem which gives
the algebraic description of the region r&. in terms of
polynomial invariants constructed out of the matrix
3f .

We define the invariants 6& by

&i = (—1)' ' g det of all (l X l)

diagonal minors of M„.

A. = (—1)" ' det M. .

Theorem 8. A necessary and sufhcient condition
for a point of 5K to be in rI, is

=a =0
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Proof. If (9) is satisfied, the eigenvalue equation r„arethose points on this surface satisfying
of 3I. is ~ &0, ~. &0, A. &0, a. &0,

a~1, b~ a.
Clearly a W 0, since Trace 3III ) 0. Thus a = l.
Thus

(—1)' ' det M( ~ 0 .

We need then only prove that for each t ~ s+ 1

some diagonal minor M & has a determinant WO. Now
since 1 + s of the vectors in 8 are linearly independ-
ent, one can always find t of them that are linearly
independent. Let the corresponding M~ be in the
region r» of OR&, 1 + ti ~ l Applying .Theorem 4 one
concludes that linear independence of the l vectors
requires 1+ b = L Thus det M~ W 0 and we com-
plete the proof of Theorem 8.

The points of rI, satisfy

a,+2= ~,+3= = a„=0.
But not all points on (ll) are in r&., since the in-
equalities of (9) may be violated. The boundary of
ri, on the surface (ll) must evidently be points at
which at least one additional eigenvalue of 3II„
vanishes. Thus the boundary of r&. satisfies

5,+I = 0.
Specializing to s = 8 and combining with previous
results, we have the following theorem:

Theorem 9. The n momenta of (1) realize a matrix
M„which is in r» or on its boundary. The region r13

is connected and is on the surface

= 0

X" —Agan"
' — —A.+,X" ' ' = 0. (10)

This equation has exactly n —s —1 eigenvalues 0.
To study the other eigenvalues, write X = 1/p, then

~.+is* + ~.u + + ~e —1 = o

This equation has exactly one positive solution for
p because of condition (9). We have thus established
the suKciency of (9).

To prove its necessity we use the first part of
Theorem 1. If M„is in rI„M„is realized by n vectors
8 in D&, dimension of which 1 + e are linearly inde-
pendent. Thus all its diagonal minors of size larger
than (1 + s) X (1 + e) have det, = 0. Hence D.+&

+& ~ ~ ~ g 0
Now take any diagonal minor 3II& of size t X l of

M„,with t e+ 1. It is realized in dimension D~.
by a subset of B. By the second part of Theorem 1

the minor V~ is in the region r.f, of 5R~ where

and

Iz,j}& 0.
The boundary of r]3 satisfies

D4 =0.

C, : (x,y, z) =
Cg. (x,y,z) =
C.: (x,y, z) =
Ca. (x,y,z) =

(m2m3 m3ml mime) (18A)

(m2m&, —m»n&, —m&m~), (18B)

(—m2ma, mgmg, —
mmmm~), (18C)

(—m2, m, ,
—

mmmm, ,m, m2) . (18D)

Call the surface 8. It consists of five pieces. One
central piece 80 is a closed surface contained wholly
in the rectangular parallelpepiped whose 8 vertices
are

(~ m2ma, + m&m~, & m&m2) . (14)

This central portion contains the 4 points C and, in
fact, contains the 6 straight line segments connecting
these four points which form a tetrahedron.

In addition to this central piece 80, 8 has four
horns Ho, HI, H2, H3 growing out of the four points
C. The horn Ho grows out of C0 and has its x,y, z co-
ordinates all ~ that of Co. H& grows out of C~, and
has its x, —y, —z coordinates all ~ that of C&, etc.
The 6ve pieces 80, Ho, H~, H2, and Ha do not intersect
except at the C's which are conical points. The
division of the x,y, z space by these pieces of the
surface A3 ——0 is schematically illustrated in Fig, l.

The regions of 5K3 are:
r3p The connected region inside 8&.

r». The region outside of So and outside of all
horns. It is connected.

r12.' The inside of the four horns. '
r2&. The surface 8& excluding the four points C'.

r11. The surfaces' HQ, HI, H2, H3 excluding the
points C. Ho = r', ~ (both exclude Co).

r10. The four' points C. Co = r'„.
Its division into four disconnected subregions is in ac-

cordance with Theorem 5.

IV.

In this section we consider in detail the geometry
of the case n = 3 which is the well-known Dalitz-
Fabri problem. Writing the matrix Jtd3 in the form

2
mI Z y

2
m2 X

2
y X m3

one obtains the surface 63 ——0 as a cubic surface
with four conical points at



600 REVIEws oF MoDERN PHYsrcs ' APRIL 1964

The physically realizable regions for reaction (1)
are r'„,r'„and r'„,which are the inside, the surface,
and the vertex of the horn H, . For fixed mass m~ for
reaction (1), however, one has the additional con-
dition

(15)

a + y + z = -,'[m~ —m1 —m2 —m3] . (16)

(16) is a (111)plane. Its intersection with the inside
of the horn Hp is the Dalits region. Its intersection
with the horn Hc is the boundary of the region. If it

Horn Ho

Theorem 10. Consider the Cartesian space OR4 of
six dimensions. Consider the surface

det 3SI4 ——0 . (17)

(i) It consists of regular points which form the
regiOnS r33 (COnneeted), r21 (COnneeted), and r,s (8
separate subregions, each connected);

(ii) conicaP points which form the regions r22 (con-
nected) and r11 (eight separate subregions, each con-
nected); and

(iii) superconicaP points of order 3 which form the
region r12 (eight separate points).

Proof. The surface (17) represents the points
where one or more eigenvalues of 354 is zero. It con-
sistsevidentlyof theregionsr30 r21 r12 Tsp& rll andrlp.

Hor

'lk"
%SRSSS223

err
'

3 I I 3 13li l'hajj"

Fra. 1. Schematic diagram of cubic surface det M3 = 0.
The surface consists of Bp and the four horns. Bp contains on
its surface the six straight line segments forming the tetra-
hedron CcC1C2C3. These four vertices are the only singular
points on the surface. They are conical points. The different
regions r,q in relation to this surface are described in full in
the text. The intersection of Hp with any plane gives a curve
which is the boundary of a Dalits region with appropriate
masses. Conversely all Dali' region boundaries with non-
vanishing masses can be obtained in this way, from this single
horn Hp. See Sec. VIII for this discussion. See Fig. 2 for
photographs of a model of horn Hp.

does not intersect Hc, the mass m~ is too small to
allow for reaction (1).

Plane (16) also intersects the inside of horn H, .
The intersection may represent reactions

1y A~2+3
ol

V.

Much of the geometry discussed above can be
generalized to cases n & 3. In particular, the sur-
face det 3/I3 = 0 consists of regular points which
are r22 and r», and conical singularities C which are
r~p. This fact is generalizable.

„a,
"i+p$g

Fra. 2. Two views of a model of horn Hp of universal sur-
face (80) for decay into three particles. Surface (80) is a
specialization of the one schematically represented in Fig. 1 to
the case m1 = m2 = m3 = 1. The base of the model is the
plane x + y + z = 63, which is the Dalitz region for m1= m2 = m3 = 1, mg = (129)k. The model was made by

Benoit, A. Lemonick, and Theodore Forseman of
Princeton University.

To prove the local property of (17) in each of these
regions the procedure is similar. We illustrate by
considering a point (M&)2 in r». By Theorem 1 it is

~ The exact de6nition of conical and superconical points of
various orders appears later in the proof.
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realized in D11 by four 2-vectors. In other words

(M4)2 ——Ug U, U = 4 X 2 matrix, (18)

g = metric of D» . (19)

Consider the 2 columns of V as vectors in Euclidean
space, (i.e., D43). There obviously exist two or-
thogonal normalized vectors $ and 4I in this space
orthogonal to these two vectors. Let

F1 = ll(all = 4 x 2 matrix,

and I'2 be a 4 g 2 matrix such that

F = llF, F.ll

(2o)

(21)

is proper and orthogonal. (That is, det I' = 1, I' F
= 1.) Then

2 = I'[M4 —(M4)3]F (23)

[where F is de6ned above for the fixed point (M4)2].
The elements of e are homogeneous and linear in the
deviations in space OR4 from the point (M4), . To
study loca/ properties we only calculate quantities to
the lowest nonvanishing order of the elements of e.

By (22)

(IU=2X2). (22)

By Theorem 1, V is of rank 2. Thus det W / 0.
Now de6ne

In Appendix B it is proved that the quantities e11,

el2 and e22 are linearly independent. The surface (30)
is a cone.

The connectivity of the regions were derived al-
ready in Theorem G.

For the other regions the reasoning is entirely
similar. In the neighborhood of a point ln ~1p e.g. ,
the surface (17) is, to the lowest order, of the form

~11 ~12 ~13

e12 822 |'23

&13 ~23 &33

[These e's are however not the same as those of (28).]
Such an equation with linearly independent variables
e (to be shown in Appendix B) is what is called a
supercone of order 3. Its vertex is called a super-
conical point of order 3 in the statement of the pres-
ent theorem. Thus we complete the proof of Theorem
10.

The generalizations of the statement of this
theorem to cases with n & 4, of its proof, and of Ap-
pendix 8 are straightforward. We see that, e.g. , for
n = 5, the physical region r'„consists of regular
points of det M5 = 0. For n = 6, the physical points
r» are conical points of det 3f6 = 0. For n ) 6, the
physical points r» are superconical points of order
n —4 of the surface det 3f. = 0.

F(M.).F =
0 0

0 Q

We now describe the calculation of the volume

(24) element (3) for reaction (1). It is to be expressed in
terms of the variables {i,j},subject to the condition

where

Thus (23) gives

q = det Q W 0 . (25)

or

m'. = gm';+ 2 g {i,j},

Hence

r3f.I =
62

22 43+

g {',j} = —; m'. ——; g m', —= Z.
(26) Thus we seek to find the factor I'„,4 in

(32)

~11 ~12

we have, near (M4)3,

12 ~22

det M4 ——q(e11e22 e12) + 0(4 )

Thus (17) becomes, to lowest order,

~11 ~12

&12

det M4 = q(det 21) + higher order in 2.
If the elements of e1 are The factor M&2 is included for convenience.

For n = 3, the standard Dalitz —Fabri uniform

(28) density gives

F3,4 = Sm

For n = 4, we have, using the coordinate system
in which A is at rest

dT4, 4 = d pld p2d p35(EA E1 E2 E3 E4)

X (E1E2E3E4) ', (35)

(30) where p; and E; are the 3-momenta and energy of
the ith particle.
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Define spherical coordinates for p3.

8(ps,.p, + p2) = angle between ps and pi + p&, (86)

and

we obtain"

16'' g d {i,j} 8(g {i,j}—K)

~' «t I1,2,8,4I
(45)

F4,4 = 16''(d,4) &. (46)

(87) In (45) and (46) we have included an extra factor of
2 to account for the 1 to 2 relationship between M4
and kinematics discussed in Sec. 2. The same factor
2 is included in all subsequent calculations for dw„,,
for which n & r.

For dr, 4 with n ~ 5, the evaluation of dr goes
through the following steps:

(1) We have in the center of mass system of A

plane.

The d0 integration cancels the 6 function of
yielding

d'ps'(Eg —Eg —Es —Es —E4) (EsE4) '

= [dE ~4(y;y + p,y)l,'p + p. l
'.

To express dg in more convenient coordinates, we
keep' p&,p&, lysi and 8(ps, p& + y&) fi~ed. Then d r.,4

——d'p. d'p. , d'y, b(E& —E„—E„, E,)

g(p, ;p, + p, ,p&) = azimuthal angle of ps with z axis or equivalently

parallel to pi + ps and p»n z—x

d{1,8} = Ip~l Ipsl sin8(p&, p, + p, )

X sin8(p, ,p, + y, ) sing dy. (89) Define
X (E. .E) '. (47)

Now an explicit evaluation gives'
det

I p~ + p2 ps + p4 p~ psl = E~lp~ + ys I Ip~ I

X lp, I
sin 8(p„p,+ p, ) .sin 8(p„p,+ p, ) sin y .

(40)

Equations (88), (89), and (40) give

d'ps&(E~ —R —Es —Es —E4) (EsE4) '

= E'~dEsd{1,8}[det lp&, ps p3 p4I] '. (4l)

We now evaluate

Then
pA=rlt+ps+p +sf ~4

(4:8)

(49)

d p28(EA E ' ' ' El) (E2E1)
= E~dEs~{2 8}[«t le~, 2,8,l4I] '.

Now write
(5o)

We treat g, , ps, ps, and l; in the same manner that we
treated p4, ps, pi, and ps in the discussions of (86)—
(41), obtaining

= (d'p/E)(&'y /E. ) {Eq (41)} p~ = rt. + ps + p. + s .
by first fixing pi, {1,8},Es, and integrating over the Ch h

'
l d' t f d + g

azimuth of p2 around p1

E, 'd'y, = 2s-lp,
l dEsd{1,2} . (42)

Fixing E~, E,, {1,2}, {1,8},and Es we can integrate
over the direction of p& in space

Eg d pg = 47rlygldEg . (48)

Multiplying all factors and using

Eg ——Mg

3I&E; = Q {ij},

E3 Gr ps —lp. ldE, d cos 8(ps, p4 + is)d@(ps,y4 + |s,p'4)

The evaluation of this dp follows the same method
as described in (89) and (40). d8 is easily expressed
in terms of d {8,1;} giving

Es'd'ys = E~[det les, 8,4,f'I] 'dEsd{8,4}d{8,t4} (52)

Similarly we can evaluate E4'd'p4, etc., up to
E„2dp.2. The last two 3-momenta integration
d'p„,and d'y. are similar to (42) and (48). The final
result is, for n ~ 5,

n—2

s It is obvious that fixed p~, ps, ~ p&
~
(by energy conservation)

implies fixed E4, and hence fixed 8{p8,p1 + p2).
9 det here means the determinant formed by the 16 com-

ponents of the four 4-vectors in the argument. ~o Where there is no confusion possible, we write i for pi.

16 ' lldE' lid{ +1} II~{,l'. } (~.)" '
(58)

g«tl~', +I, +2,l-'.
I

1

(2) Using (44) one can reduce all the differentials
in (58) into sums of d{i,j}.The result isexpressed in
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scalar products, but is not symmetrical with respect
to permutations of the labeling 1 ~ n.

To obtain a symmetrical expression for the volume
element we consider in 5K. the neighborhood of the
point (llf )c realized by the n 4-vectors pi. p„in
question. Assume" (3II„)cto be in rc». The arguments
(18) to (27) can be generalized in a straightforward
way. The matrices Q and s& are now of the following
dimensions

Q=4X4
ei = (n —4) X (n —4) .

e& is a real symmetrical matrix. Its elements e p,

[a 5 P; n, P = 1 —+ (n —4)] are, according to Ap-
pendix B, linear in [i,i} and are independent.

Now consider at (M„)&&on the one hand the differ-
ential volume

~ = IId[ti]
i(j

and on the other hand
c)s ——[the difn. vol. in RHS of (53)]

6„,= qT„s+ higher order in c

where

Ds ——qT& + higher order in e

64 ———q + higher order in s, (59)

(61)

T~ ——(—1)' " P det. of all (I X l)

diagonal minors of ci . (60)

Now consider the relationship between T and the
elements e p. If all TI, -. ,T. 4 are zero, the eigen-
values of e1 are all zero, so that all e p

——0. This fact
suggests Theorem 12 below. To obtain this theorem
we need first

Theorem 1l. Consider a real symmetrical matrix
si =

( ~e p~ ~

of dimension p X v, with distinct eigen-
values ) &, ,X,. There exists a real proper orthogonal
matrix A., determined up to some ~ signs, so that

Xd ij —K de p.

asap

(55)

ij —K bep82.
i&j'

asap

Writing 8, = JB& and substituting into (53) one ob-
tains

Or, comparing with (33), one obtains
(57)

~..= 2" '(A.)-'"-"' ll 6(c.,) . (58)
a~p

(3) We now express the factor gb(e p) in (58) in
terms of

8& =—B(A() .

By the generalization of (26),

A„=qT„4+ higher order in s

This represents no loss of generality since the regions
r12, ro», and r, 0 are of smaller dimensions than r» and are
irrelevant to the volume element calculation.

It is shown in Appendix C that the Jacobian at
(3II.)c is

2n—4 n—3

....g. II det ln', i+ I,i+ 2,i'+. IM" ' (a.)'" " '
(56)

Now
difH. vol. in RHS of (53)

Then (a)

II de., = dT, dT„dA,
a&p

where T is defined in (60) and dA is the group vol-
ume element of the orthogonal group formed by A.,
normalized so that near the identity element

dA = g d (all independent off diagonal elements).

(b) The correspondence s& A is 1 2" '.
This theorem is quite well known in the literature. "
Theorem 18. Consider a real symmetrical matrix

s& ——
) ~e p( ~

of dimension i X v. I et T~ be defined by
(60). Then"

~~ See C. E. Porter and N. Rosenzweig, Suomalaisen Tiedea-
katemian Toimituksia AV1, No. 44 (1960); N. Rosenzweig
snd C. E. Porter, Phys. Rev. 120, 1698 (1960); F. J. Dyson,
J. Math. Phys. 3, 140 (1962).

~3 Notice that the number of b functions on the two sides
of (62) are different. The exact definition of the right-hand
side of (62) is

V

lim II p(Tg —t(),
l=1

where t& ~ 0 along any path so that the equation

V —t&V-~ — —t„=0
alwayshas~realsolutions. [E.g. for v = 2, t& ~0, t~ ~0 such
that t~+4t, ~0.]

The meaning of (62) is as follows: Let its left-hand side be
denoted by LHS. Let F(e p) be a function of all e p which is
continuous in the neighborhood of the origin e p = 0. Then

~

~ ~

~

~

V

(LHS)P II de p
= lim 7 II p(T( —tg)II de p, (62')

a~p t—4 l-I a~p
where t —+ 0 along a path subject to the condition above.
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O' "G„II h(e. ) = II h(T ), (62)

where

6, = total volume of the group of proper

orthogonal real v t& v matrices .

The explicit expression" for G„is

t1= 1,

G. = IIs, , (64)

It is obvious that the above can be generalized in
a straightforward manner to any space with one
time and r —1 space coordinates. For reaction (1)
one then writes, in place of (8) and (88)

d -. = (II d'p')[II 3(p' — ')13"[(2p') —p]-
(68)

dr„„=F
„ II d{i,j} 8 Q {i,j} —K M& '. (69)

It is easy to prove that for n ~ 3, r ~ 2,

n & r, F... = f.„(D,)'" " " '(G. ,) '3,+i8„2 3„,

.2 28„=surface area of sphere x, + . . + x„=1

= 2(s.)" '/r (-,'v) . (65)

These two theorems are proved in Appendix D.
Applying Theorem 12 and Eqs. (59), one obtains

II~(- ) = (2" '/G-- )(A.)" '&.~' 3- (66)
a(P

So we have finally by (66) and (58), for n ) 5,

F„,, = 2" Y(64)'" ' [G. 4] 8s56 8. . (67)

[The region where the volume element dr„,4 is ap-
plied to was stated in Theorem 9.] We see that aside
from the 8 functions which define the surface of the
physical region in OR., there is also a density factor
proportional to (6&) '" "".At the boundary of the
physical region

density = 0, for n & 5

density = ~, for n = 4.
For n = 5 the density factor is a numerical constant
throughout the physical region.

n = r, F„,„=f.,„A,',
n (r, F„,, =f„,„A„

(71)

(72)

where f.„arenumerical factors.
(72) is interesting in the following way. Consider,

e.g. , case n = 3, the Dalitz —Fabri case. The allowed
region of OR3 for all r & 3 is the same as that for
r = 3:namely r'„,r'„,and r'„.This fact merely rejects
the possibility of embedding any kinematic con-
figuration for n = 3, r ~ 3 in the space r = 8, as
proved in Theorem 4. But the phase-space density in
the Dalitz region is, by (72), only uniform for
r —n —1 = Q. That is, r = 4. For higher and higher
dimensions, the points with sm, ctl 68, i.e., points neer
the DaLite boundary (or points representing aLmost coL-

Linear momenta) are weighted Less and Less.

{n,1}'
A{ = (—1)' ' P det. of all (Z X L) diagonal minors

of M', etc.
It is clear that

a. = U'a„',
~= II- (75)

The spaces OR. and OR„' are related to each other by a
simple scale transformation. Since 6„=0 is equiva-
lent to 6„'= 0, Theorem 10 and its generalizations
have entirely similar counterparts for the surface
det M„'= 0 in OR„'.Since 3II„'does not depend on the
masses of the particles, the surface

det 3'„'= 0 (76)
is universat, and can be used for any nonvanishing
masses.

Thus the physical region is represented by regular
points or conical points or superconical points of the
universal surface (76). We now show that the volume
element d r can also be simply expressed in the primed
space even though 6',/h~ is not in general simple.
Write

The diagonal elements of M„arethe square of the
masses. By the transformat. ion

{ij}= m;m, {ij}' (78)

we can go into primed quantities, which are physi-
cally scalar products of velocity 4-vectors. We define
other primed quantities starting from {i,j} . Thus

~4 See, e.g. , F. J. Dyson, J. Math. Phys. 3, 140 (1962), Eq.
(108).

dr, 4 = F.',4 II d{i,j} 3 Q {ij}'m,.m, . K 3II„
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so that by (75), F„',4 ——F.4U,
" '

(34) and (46) lead to

F8,4 ——8m'(Q m)',

F.',, = 16 '(~.')-:(Q m)'.
For higher n values we have

The volume element for (2)

(78) can be simply obtained from the expression (3) by
not including the last integration (d pi)/Ei which
contributed the factor (43). Thus

TA,eorem 28. For n ~ 5, the volume element d7- is
given by (77) where

~2n —5 2 g I q (n—5) /2
Fn4 = 2 3 (A4)

X [G. .j 'b(al)S(~.') . &(~.')(g m)',
and 6 was defined in (68)—(65). ACKNOWLEDGMENTS

d~'4 = [5(K + c~)/4&lp~l] X Eq. (7'7), (82)

where c& and lp&l are the energy and momentum of 1
in reaction (2) in the Lorentz system in which A is

(79) at rest.

This theorem is proved in Appendix E.Notice that
what corresponds to Theorem 9 for OR„' states that
the physically allowed region is a connected region
ros (in OR„') and its boundary. r» are those points on
the surface

satisfying

= 6„'=0

and

a,' & 0, 6,' & 0, 4.' & 0, a.' & 0

Ii jI' & 0.

IX.

For reaction (2) one still has p~ ——g p;, but the
four-vector p& is now backward time-like. These n
vectors therefore realize a point 3I.which is in a dif-
ferent subregion (i.e., horn) of ri~ than r', ~ (see
Theorem 5), 5 = 3,2, 1,0. Reaction

1 —+8+2+3+ . n (81)

is also realized in the same subregion. Also in the
same subregion there are points realizing (2) [or (81)]
with a 4-vector momentum for A. which is space-
like and, therefore, unphysical.

Its boundary satisfies 6,' = 0.
For the special case of n = 3, the surface

1 8 g
~ =0

g x 1

is the universal surface. For a given set of m1, m2, m3,
all ) 0, the Dalitz boundary is the intersection of
Horn Ho of (80) with the plane

1 2 2 2 2
m]m2e + m2max + m, m, y = —, [m~ —m~ —m, —maJ

The Dalitz region is within this boundary on the
plane. (Cf. Fig. 2.)

One of the authors (CNY) takes this opportunity
to thank the Physics Department of UCLA for the
hospitality shown him during his visit there in the
summer of 1963 when this work was started. Both
authors wish to thank J. W. Benoit, A. Lemonick,
and Theodore Forseman of Princeton University for
making the model for Fig. 2.

APPENDIX A

Lemma 2'. Let A and 8 be two real symmetrical
matrices and TA T = 8, where T is a real rectangular
or square matrix. Let aA, aB be the number of positive
nonvanishing eigenvalues of A and 8; bA, bB the num-
ber of negative nonvanishing eigenvalues of A and
B. Then

GA QB,

~A —~B ~

If T is square and det T g 0, then the equalities in
(Al) hold.

The lemma is well known and is easily proved.

APPENDIX B

This appendix proves the linear independence of
the elements of e1. We focus on the example discussed
in the proof of Theorem 10.

It is obviously possible to choose the last column
of 1'2 of (21) so that none of its elements are zero.
Such a choice does not effect F1, hence it leaves ~1

unchanged. The elements e of e in (23) are linear in
Ii,j}with coefficients quadratic in the elements of 1'

Be p/8{i jI = 1';,1',p + 1';e1', . (Bl)

The number of Ii,jI, i ( j, is —, n(n —1). Consider
the collection (e) of e e, 1 & n & P & n —l. The
number of e's in this collection is -', n(n —1). The
collection includes all elements of c1. We can apply
Lemma 2, below, to this problem (0 = P = 1') and
calculate the Jacobian. The factors on the right-hand
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ae.p/8{i,j}= 0; y,p+ e~pp, .
The Jacobian is given by

J = 8(all e)/8(all {i,j})= 2" [1,2, n —1]

X [1,2, (n —2),n]

X [1,2, . . . (n —3), (n —1),n]

[2,3, . n],
where the [ ]'s are defined so that, e.g. ,

(B2)

side of (B3) are, by Lemma 3, equal in magnitude to
the elements I'&„,F&„,. , F„„,all of which are non-
vanishing. Thus J 4 0 and all elements of e& are
linearly independent.

Lemma 8. Consider quantities e p and {i,j}with

1&dr &P&n —1

1~z& j ~n.
e.p depend on {i,j}so that

I emma 8. If I' is real orthogonal, complementary
minors of I' have determinants that are equal in
value but may have opposite signs.

This lemma is easy to prove.

APPENDIX C 5

82 ——d'(23, 34,45,56,12)d'(l3 + 23,14 + 24 + 34,

X 15 + 25 + 35)d'(E2, Eg,Ed,E5)

x d'(E, , E.)d(pij —K) 11de
a~P

(C1)

Define

&3 = d (allis except 24,25,26,35,36,46)

where

X d (24,25,26,35,36,46) (C2)

To prove (56) we take, e.g. , the case of n = 7. The
general case is entirely similar.

(i) We relabel the indices 1 —+ 7 by 7 —& 1 in (55):

galea2 ' ' ea (n—1)

obl.ob2 ' eb (n,—1 )
ab = ab —1b —a7 + 17 . (C3)

[c,b, . d, e] =
Pdlg~d2 ' g4 (n—1 i

/el/62
' ' '/cia —1)

(B4)

Define Fi, to be a -', n(n —1) X 1 column matrix with
elements —,

' P„-',P„.—', g, gig2), (f.-~f. i).Then
the element in the row {i,j}of d]Fi, is

(Z- ~'A-) (Z- 4 A-) (I)
(ii) Consider J as a polynomial in the elements of

8 and p. If [1,2 n —1] = 0, there exists a column
vector P so that

P&0, Q 8;ijd =0.
Thus gFi, = 0. Hence J = 0. Thus J contains as a
factor [1,2, ,n —1].

(iii) We can prove similarly that J contains the
other factors displayed in (B3). To determine the
coeKcient, we take

4'iP ~id—iiP ~

and evaluate J and the factors, obtaining (B3).

(unbarred indices refer to &, barred to P).

Proof. (i) Write the Jacobian as a determinant of a
matrix g, with rows labeled by {i,j},columns by e p.

Consider any (n —1) X 1 column matrix P.

Now write J as the determinant of a matrix d} with
the rows labeled by ij, i ( j, and columns by the
differentials of (Cl) in the order exhibited. Let
J, = 8&/8& and let dI& be the corresponding matrix,
with the rows labeled by ij, and columns by the
differentials of (C2) in the order exhibited. Thus

1 X

0 1

where the upper 1 is of dimension 15 )( 15, the lower
6X6.

(ii) Now it is straightforward to show that in a
corresponding division

A, A,
0 A2

It is further easy to evaluate det A& by successive
expansion according to its first, second, columns:

det A, = 3I~'.
Thus

J = detg, g = M„'detA, . (C4)

(iii) Now the elements e p of e were defined in (23).
It is clear that A2 is quadratic in the elements of F.

» In Appendix C we write ij for {i,j}.
i6 In this appendix we refer to Eq. (18) to {28),meaning

generalized versions of these equations, which have the same
form.
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That is

(24I~ le-p) = r..r., + r..r.p

—(same with 24 ) 14)
—(same with 24 ~ 27)

+ (same with 24 —+ 17)
= (r0. —r1.)(r4p —rap)

y (r., —r„)(r..—r,.), (C5)

Proof. By Lemma 3,

FdsF„
Ff5

F,5

Fda Fdv

F F„
Ffg Fg7 .
Fgo Fg7

V= F = FR'.0
W

F,.
Fe4

(abc) = a r~,
Fg4

Now (22) gives

(C10)

etc.
We can thus directly apply Lemma 2 for the evalua- Taking the d, e,f,g rows of this and evaluating the de-

tion of det A2, with the correspondences: terminant, one obtains, using (C10),

n=4,
eau ~ cap )

24, 25, 26, 35, 36, 46 here —+ I 1,2 }, I 1,3}, (1,4 }, ( 2,3},
I2,4}, I3,4} of Lemma 2,

(r. —I'1 ) here —+0; of Lemma 2,
(r» —r7p) here —& p;p of I.emma 2,

(C5) ~ (B2) .

Thus

det ld, e,f,gl = &(abc) det W.

Now the Q of (24') is, by definition,

Thus

det Q = —(det W)'.

But (24) shows that

A0
———det Q.

(C11)

(C12)

(C13)

Collecting factors we obtain Lemma 4. The signdet A2 = 8 )C four determinants each being 3 X 3.
choice was inherited from (C10) and Lemma 3. Since

(C6) det I' = 1, one proves the sign choice quite readily.

(iv) A typical example of the determinants in (C6) APPENDIX D
IS

F„—F„
F31 —Fll
F41 F11

F„—F,.
F32 —F„
F42 —F„

F23 —F13

F33 F13 ~

F43 —F13 (C7)

Proof of Theorem 11. (i) By direct evaluation one
obtains

(DI)
The transposed of (C7) is equal to

(234) —(231) —(134) —(214)
(ii) To prove part (a) of the theorem we evaluate

the Sacobian
where

F,l
(abc) = r.,

F,3

Fbl

Fb2

Fb3

Fcl

Fc2 ~

F,3

J = d(all e p)/(II dX )dA.
a

Let us evaluate J at
(c9)

(D2)

Using Lemma 4, below, one can reduce (C8) to

(I/&, &) det ll + 2+ 3+ 4,5,6,7l .

The other determinants in (C6) ean be processed in
a similar manner. Using (C6) and (C4) one arrives at
(56).

To state Lemma 4 consider any permutation
abcdefg of 1 ~ 7. Then

Lemma $.

(64)&(abc) = &det ldefgl

with +(—) sign for even (odd) permutations.

(01)0 AO

Consider the transformation

From the equation

—1
g = AP elAP.

2 2Trace g = TI'ace 61 )

one concludes that the transformation from

e», e„„,v 2e10, V2e1,, v'2e( 1)„,

(D3)

(D4)
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to the corresponding elements of q is an orthogonal
transformation. Let q =

~~g p~~. Thus

APPENDIX E

(i) To prove (79) we need only prove that

J = d(all g p)/(P dX )dA .

To first order the two types of variations dX an
induce, respectively, variations in only the diagonal
and only the off-diagonal elements of q. For the
variations dX this is obvious. For the variations dA

this follows from (iii) below.
(iii) Consider any parameter $ of A. At A = Ao,

Apply (66) to the left side of (El) and a correspond-
ing (66') to the right side. (El) becomes

&(6,')b(a.') p(z.') = U" '(a./a,')'" " 's(z, ) 8(z„),
ddA (El)

8$ 8$

(ii) To prove this we first study the relationship
between e'

p and e„p.By" (22),

Now A is orthogonal, so A ' (BA/8&) is antisym-
metrical. Thus at A = h,o

Now

where

f' V = 0. If is (& —4) X &].

V' = (1/m)V,

(E3)

(E4)

(iv) Consider the off-diagonal elements of (dg)A, '

X (BA/Bg) 0 as the components of a vector. The collec-
tion of such vectors for different P form a parallele-
piped whose volume is by definition the group vol-
ume element at h.0. This leads to a direct evaluation
of (D5):

(Dl) and (D2) now give part (a) of the theorem.

ml

(E5)

The matrix I'lm I'l is positive definite. Thus there
exists a matrix L of dimension (n —4) X (n —4)
so that

LI'lm'I'll = 1, detL w p.

The matrix LI'lm is real orthogonal, and can be taken
(v) To prove part, (b), one uses the fact that A

can be transformed by

since it satisfies

r,' = LI',m, (E7)

without changing (6&).

Ii/ y/ 0

Thus the definition (23) of p gives

Proof of Theorem 18. We need to prove (62') of
footnote 18. Its left-hand side is

2' "G„F(0).
since

„'= r,'[3l„'—(3f„').]r,' = L.,L,

m&V'm = M„.

(E8)

To evaluate its right-hand side we use Theorem 11.
For infinitesimal T~ = t~, e p

—0 and the right-hand
side becomes

E'(0) f dh. .

(iii) We now prove that

II d~ p
= [det L] II de

a$P
(E9)

But the same e space is covered, by Theorem ll,
2" ' times when we allow A. to go through all proper
(i X v) orthogonal matrices. Thus we have Theorem
12.

This is obvious by (ES) if I is diagonal. If I is not
diagonal, it can be transformed into a diagonal from
Ld..

lLd+2 )
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L4 = (—1)"L4 det s& + higher orders .
Similarly

where 7& and ps are orthogonal matrices. But we have Using (C13) one obtains,
already proved by the argument after (D3) that
orthogonal transformations

~1 ~ Pl~lgl )

/ /
~l ~ +2~1+2 p

do not change volume elements II de. Thus (E9) is
true in general.

(iv) Now in the neighborhood of the point in ques-

tion, by (59)

= (det Q)(det s~)(—1)" + higher orders.

6' = (—1)"i14det s~ + higher orders .

Taking the ratio of these two equations and using
(E8) and the fact that at alt points, by definition,

a„=U'a.',
one obtains at the point in question

det I. = (S./a.') U '. (E11)
(Eg) now yields the desired equation (E2).
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INTRODUCTION

Hypothetical vector gauge fields have been intro-
duced in order to give a deeper dynamical foundation
for such internal properties as isotopic spin. An es-
sential aspect of isotopic spin is electrical charge, and
there is no doubt about the dynamical relation of
this property to the electromagnetic field. Do these
different types of vector Gelds simply coexist, or can
they be combined to form a more unified theory of
vector gauge fields? An integrated formulation can
indeed be given, and it is not a trivial one since there
are definite dynamical implications with regard to
electromagnetic properties and the structure of the
non-Abelian transformation group. The unification
can encompass all fields that partake in both strong
and electromagnetic interactions. ' This success poses
a physical problem, however. As one member of a
set of gauge fields, the electromagnetic field is not
physically distinguished and fails to perform its
physical role of destroying the conservation of iso-

topic spin. Perhaps it is in this apparent dilemma

that we find the clue to the existence in nature of
other sets of Gelds which possess electromagnetic in-

* Supported in part by the Air Force OIIIi.ce of Scientific Re-
search under contract number AF49(688)—689.

i C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1964).
2 The problem of compatabiliI;y has been given a more re-

stricted discussion by R. Arnowitt and S. Deser, to be pub-
lished.

teractions, but no strong interactions. Is it the pres-
ence of charged leptonic fields that denies the higher
symmetry transformations, relating the electromag-
netic field with the non-Abelian fields, and gives to
the electromagnetic Geld its characteristic physical
inQuence~

The inclusion of electromagnetic lepton interac-
tions produces a new difhculty, one of consistency.
The gauge invariance of all terms in the Lagrange
function save one contradicts the principle of sta-
tionary action. Another term that violates gauge in-
variance must be included. The simplest choice is a
mass term in which the mass constant is presumably
small, on the scale of strongly interacting particle
masses, if a domain of approximate gauge invariance
is to exist. And this modification raises again the
physical mass problem of gauge fields: Are unit spin
particles of small mass implied by the theory?

UNIFIED THEORY

The Lagrange function of a non-Abelian vector
gauge field coupled with a spin —,

' Geld is'

z = ——', (:""[a„@,—a„y„+(y„it'y„)]+ —,'( ""(;„„
+ rs iPn" (8„—i T'P„")lt + rs imPPP,

where the matrices t' and 7." include coupling con-

3 The notation follows J. Schwinger, Phys. Rev. 125, 1043
(1962}.




