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INTRODUCTION

It has been shown recently by several authors' '
that, under adequate assumptions on the interaction
potential, the virial expansion has a finite radius of
convergence. Two essentially different methods have
been used. In Ref. 1, the absolute integrability of the
Ursell functions was established, in Refs. 2 and 3 the
boundedness of the correlation functions was used.
The aim of this note is to prove a property of absolute
integrability similar to that obtained in Ref. 1, but
valid for a larger class of potentials. This property is
the cluster decomposition property, or cluster prop-
erty, of the correlation functions. To derive it we will
use the ideas and results of Refs. 2 and 3. Further-
more, we will need an algebraic apparatus which we

new element P g A defined by (1.3) we will write

4 =&*A. (1.4)

crp = 1, a(x). = lI a(x;), (1.5)
i=1

where n(x) is Lebesgue-integrable. To any ilr g A we
may then associate the formal power series

It is easily seen that the product (1.4) is associative
and commutative and defines on A a structure of in-
tegrity ring with unit element 1.We will call A+ the
ideal of A formed by the elements P such that Pp = 0,
then A is the direct sum (as vector space over the
complex field) of A+ and of the subspace generated
by 1.

Let n be a sequence of functions cr(x)„defined by

(1.7)

4 = (4(x).)p~&- The verification is immediate (see Ref. 4).

of classes' of bounded (Lebesgue-) measurable We de6ne now a mapPing P from A+ to A as the

functions p(x)„. The 0-th component it,p of p is thus restriction to A+ of the exPonential

a complex number. If X is any finite sequence of
vectors in v-dimensional Euclidean space we may
write X = (a&, ., a.) and define

y+ ~+4 4 +4 *4*4+ (18)3f

Obviously P maps A+ onto 1 + A+ and has a unique
inverse 1' '. It is easily seen (see Ref. 4) that
(I'p) (x). is the sum of the products

P(X) = tt(a). . (1.2)

Let now/& g A, Ps g A, we write

proceed now to describe (see also Ref. 4).
(a,f)(s) =

i
d(x)„n(x)„it (x). . (1.6)

r. THE MAPPING r n=p

W lid ot b (*).t f
following identity between formal power series holds:

vectors x; in v-dimensional Euclidean space. Let A
be the complex vector space of all sequences P (-,~)() = (-,~.)()&-,~.)() .

4(X) = ZA(Y)A(X —Y)
Y t=X

(1.3)

i l. Groeneveld, Phys. Letters 8, 50 (1962).
s D. Ruelle, Ann. Phys. 25, 109 (1968).
s O. Penrose, Z. Math. Phys. 4, 1812 (1968).
4 D. Ruelle, Lecture notes of the Theoretical Physics Insti-

tute (1968), University of Colorado, Boulder.
s Z. L. Lebowits and O. Penrose (to be published).
6 Two functions are said to belong to the same class if they

diQ'er only on a set of Lebesgue measure zero.

where the summation extends over all subsequences
Y of X and X —Y is the complement of the sub-
sequence Y in X, i.e., the sequence of the elements
of X not contained in Y, in the same order. For the

V(X.) "e(X.)
corresponding to all partitions of (x)„ into subse-
quences Xi, ~ ~ X, for 1 ~( r ~( n. From (1.7) and
(1.8) we obtain the following identity between formal
power series

( I'&)(s) = exP K A)(s)1 (110)
We define now a derivation D, in A by the rela«

tion'

(D.P)(x). = P(x,xi,x., ~,x.) . (1.11)
7 Actually D p does not make sense at a point z, one should

consider the expressions D&P = f dx 7(x)D,& de6ned for
Lebesgue-integrable y.
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It is easily seen that D. is linear and satisfies

D.(~.*~.) = (D.~.) *~.+ ~. *(D.~.),
and therefore also

D.(r4) = D.4* r4.

(1.12)

(1.18)

Let f = rp and define

(e'())(X) = (',D ~)(z).
Applying (1.18) repeatedly to (2.6) we find

4'(z) = rI:4'(z)l

(2.10)

(2.11)
If we write

1+p = r(y),
(1.14) it follows from (2.7) and (2.11) that

Dxf=D D P

More generally if X is the sequence (ai, ,a.) we
write

(2.12)

2. GRAND PARTITION FUNCTION AND

CORRELATION FUNCTIONS

We assume that a sequence of real functions

U(x). = U(x.. .x.)
is given such that Ue ——0 and

U(x). & nB, —

(2.1) D*4 = 4 '*DA = 4i*) ~

3. TVfO-BODY POTENTIALS

(2.14)

We assume from now on that the potential energy
U(x)„ is given by a two-body interaction

x (x). = z"n (x).(y (z))(x). . (2.18)

Notice finally that because of (1.18) we have

where B is a nonnegative constant. U(x)„ is sup-
posed to be measurable and may take the value

+ ~. We write

4(*).= (2.8)

where P is positive. U(x)„ is interpreted as the poten-
tial energy of a system of n particles located at the
points xi, xs, ~ ~, x. and P as 1/kF, where T is the
absolute temperature. It follows from (2.2) that (1.6)
defines an entire function (n, P&(z) with value 1 for
z = 0. Its logarithm is thus holomorphic in a neigh-
borhood of the origin and it follows from (1.10) that

=- = (-,~)() = "p I(-, r-V)()~. (2 4)

If os(x) is the characteristic function of a sphere h,

= = ( 'A&() (2.5)

is called the grand partition function of A. Let

(4'(z))(X) = = '(~',D 4&(z) (26)
then, the correlation functions are defined by

p (x). = z"u" (x)„(P (z))(x)„, n ) 0. (2.7)

They are meromorphic in z, without pole on the
positive real axis. We will by convention put p, = 0
so that ps g A+.

Let us define an element px, X N g, of A+ by

4x = P '*Dxit (2.8)

e'())(X) = =- '(-',~ (~-"D--~))()
= =" '( ',&&( )( ',e ' * D &&( )
= (~'A&(z) . (2.9)

We have then the following identity between power
series convergent in a neighborhood of the origin

U(x). = g C (x; —x;),
1-i&j—n

(3 1)

e(p) =

for some P & 0. (8.8)

(4 1) is simply a repetition of (2.2); it implies that
C (x) is bounded from below and therefore (8.8) holds
for any P ) 0.

Define

(3.4)

v*(*)- = II (
""*' —1).

i 1

We have then, with the previous definitions,

(8.5)

(DA) (x). = e "'*'"4 (x'). (3.6)
—t)v (x)n g z(s) (3.7)

SC.(x)n

where in (8.7) the sum extends over all subsequences
S of (x).. Let x g Xand X' = X —(x), we have then

4x = P '*Dx4 = P '*DDx'f, (8.8)

8 This condition is natural physically but mathematically
unnecessary. As pointed out by Penrose (Ref. 3), one might
also use a v-dimensional lattice Z instead of v-dimensional
space 8".

where C (x) is a real measurable function which may
take the value + ~ and depends on IxI only, ' where

I*I is the Euclidean norm of x.
let us impose the following requirements on C

(see Refs. 2 and 4)

(C 1) U(x)„&~ nB, for som—e B &~ 0, (3.2&
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where

(D.D )f)(x)„= e
' ' 'e "g(X', (x).) .

Therefore, using (3.7)

@x(Y) = QP '(Y —Z)D.Dxg(Z)
ZcY

g P &(Y Z)&
P)' —(x ) P)'*—(~) (XI g)

ScY

s P&*(~ ) g P
—

&(Y g)
—1)' (&)P(Xv g)

ZcY

= c ""'Z Z0 '(Y —Z)v*(S)4(X',Z)
Zc YScZ

= c-'"")g &'(S) P P-'(Y —Z)y(X', Z) .
ScY ScZc Y

(3.10)

The conclusion follows by taking the geometric mean
e '~ 'x"N & t, 'P~ of the factors e ~~*'x' for the dif-
ferent choices of x in X. However, if M = 1, then
V (X') = 0 and, from (2.14), we get

& (n —1)!e ' '{(,' '( '
exp [C(P)&]}"'. (3.15)

By a more careful majorization we would obtain,
following Penrose [see Ref. 3, Eqs. (6.10) and (6.11)j,
instead of (3.12) and (3.15) the inequalities

sup d(y). Iy(, ) (y). l
& m(m + n)" '

(x)m

X ~""'"""[C(p)]", (3.16)

If we write T = Z —8 we obtain Anally

~-(Y) =~-'""'Z. (s) Z~ '(Y-s--7)
ScY Tc Y-S

dx. . ah„ly(x, ,x„,x.) I

m—2 2(n —2)PB[Cy)]n
—1 (3.17)

X )f (X',S,T)""'Z v*(s)i; (Y —s)

From (3.11) we will now derive by induction on
m + n the inequality

sup a(y). I4(*)-(y)-I & ~!P '

l~l & 8 '"exp [—C()3)8. (4.1)

If we choose g = [C(P)] ', this condition becomes

4. THE CLUSTER PROPERTY

It follows from (3.12) that the power series
(n~, Px)(z) representing (P(z))(X) in a neighborhood
of the origin converges uniformly provided

(o n

(~())(X) = Z-„'-, d(y).~-(y).

and provided (4.1) holds, we have

I(~())(*).l &
"'"'",'„"."'"' '

. (4.4)
1 —Isla

'e' exp [C(P)$]

4.2
&& {s'Y'exp [C( )8} '" '

(3 12)
If (4.2) holds, the following series also converges uni-

for any positive $. Notice first that for m + n = 1,
i.e., m = 1 and n = 0, the left and the right-hand
sides of (3.12) are equal to 1. Let now X = (x)w,
Y = (y)~ and let (3.12) hold for m + n & 3f + N.
Then

as l&*(s)l a(Y —s) Ij(. »(Y —s)l
ScY

N

[Cy)]((~ l) t~&I+(—2

X {c' '5 exp [C(P)&]}

& c '"X!PM '{e'"P '-exp [C(-P)~] }
'"+'-'

&«xp [—C(&)H Z t, (3 13)

Therefore, by (3.11), for any x g X

aYly (Y)l & ~
"' '. '"x!

It has been shown in Ref. 2 (theorem 1) that when
the radius of the sphere h. , centered at the origin,
tends to infinity, the functions p (x) defined by
(2.7) converge uniformly on the compacts to limits
p(x)„. The same holds therefore also for the co-
eS.cients

"Ã) f&(u) '(u).e*(u).

of their expansions in powers of z, which must then
have the limits

&& { '"~ '-p [C(~)H}"'"'. (3.14)
1

d(y)-0 (y)- (4 6)
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This shows that the correlation functions for infinite IzI & e 's '[C(P)] '

volume p(x) introduced in Ref. 2 are defined by

p(*)- = z"(4(z))(x)- dxs dx
I x (x)

, ( —1) I I
-'"[I

I
'""'C(~)]™-1

[1 —
I I

'""c(P)j"
We would now like to prove a "cluster property"

(see Ref. 4) of the p(x) „,i.e., a property of "decrease
at infinity" of the functions x(x) defined by

(4.15)

& + p = I'(x) .
Notice that if C has finite range B, (t)(x(, . , x )

(4.8) vanishes for Ixs —x1I & (m —l)B, hence, for in-
stance

e() =1(~()) (4.9)

It is equivalent to use the functions (p(z))(x)„de-
fined by

Ix,-*,l &ma
dh, Ix(x„x )I ~& IzIe

' Q (n+ l)t"+'

= IzIe's'[m(l —t) '+ (1 —t) 'jt +' (4.16)

where t = IzIe's +'C(P) & 1, an exponentiaL decrease
((t (z))(X) = g t

d(y)„D~(t)(y)„(4.10) in )( = mB as one might expect. The implications of
this fact for the analyticity of the Fourier transform

[compare with (2.11)]because

x(*)- = (~( ))(*)- 111) X(P) = (1 ) '"Jd(z, —z, )e '"" "'g(x„z.) (4.17)

Since (()I)(z))(X) is a finite sum of products of func-
tions (P(z))(Y), the series (4.10) converges uni-
formly in X if (4.2) is satisfied. On the other hand,
putting $ = [C(P)] ', we obtain from (3.15)

dx d „l()I)(x) I & (m —1)!e [e C(P)]"

5. ANALYTICITY PROPERTIES

It is easily seen that the above theorem remains
true if 4 is allowed to be complex and satisfies in-
stead of ((I) 1) the condition

( )
(C'1) Re U(x)„&~ —nB, (5.1)

Therefore (p(z) )(x)„is a Lebesgue-integrable func-
tion of x2, , x:

dx, dx l(y(z))(x) I

& -"'ZI.'I, ( + -1) [""'C()]-"'

( —1)! '"['""'C(~)]™1
(4.13)

where we have used the formula

g( +", "'t-= ™"', ItI&1. (4.14)
n=O 6 0 (1 —t)"

From (4.11) we obtain then immediately:

Theorem. The functions p(x)„have the following
cluster property: If we put 1 + p = I'(x), the func-
tions x(x)„are Lebesgue-integrable as functions of
the differences between their arguments x; for

while (C 2) remains formally unchanged.
We will instead investigate the possibility of tak-

ing P complex for a real potential C satisfying (C 1)
and (4 2). If Re P & 0 and C(P) is defined by (3.3)
then (3.12), (3.15), (3.16), and (3.17) remain un-
changed except for the replacement of e2~B by
exp [2(Re P)B]. Therefore, if the conditions

ReP &0, IzI &e"'" '[C(P)] '
(5.2)

corresponding to (4.2) are satisfied, the power series
defining P(z), (t (z), p, and x converge.

If one notices that (8/())P)e —e = (8/ctP)(e s —1)
is both bounded and integrable one sees easily that
))t (z) and p(z) are vector-valued analytic functions of
P and z in any domain for the complex variables P
and z such that the conditions (5.2) are satisfied.
We refrain from a formal definition and proof. Let
us however notice that if P is real and (4.2) is satis-
fied for some z, then (5.2) is also satisfied if' P is given

Results in this direction have also been obtained by J.
Groeneveld (J. L. Lebowitz, private communication).
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a suKciently small imaginary part, therefore, if (4.2)
is satisfied f(z) and g(z) are analytic functions of
both the complex variable z and the real variable P.

This applies in particular to the first component
of p, thus to the density and by integration to the
pressure. This is the main point of this section: The
density and the pressure are analytic in both the

complex variable z and the real variable P ) 0 if
(4.2) is satisfied.
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Approxiuiation Method in Collision Theory

Based on R-Matrix Theory
C. B. DUKE* &ND E. P. WIGNER
Palmer Physica/ Laboratory, Princeton University, Princeton, ¹mJersey

We report on numerical calculations using an ap-
proximation method for calculating scattering and
reaction cross sections. The method is suggested by
8-matrix theory and consists in the use of an B mat-
rix calculated with the first Rayleigh —Schrodinger
approximation for the resonant energies and reduced
widths. Similar to the Born approximation, the
method can be applied rather directly to any prob-
lem, but it necessitates more calculating than Born's
method. The calculations reported on were carried
out for a simple potential well. In this case the ac-
curate phase shifts, the Born approximation, and
the approximation here considered can all be ob-
tained with relative ease. The approximation method
here considered is quite accurate for weak potentials
down to zero energy. For larger potentials, which
produce several bound states, neither the present,
nor the Born approximation is accurate at low en-
ergy; all of them work at high energy. The region. of
validity of the approximation method here considered
extends, however, to lower energy

INTRODUCTION

If the states (i.e., wavefunctions) of the colliding
and separating particles are known, the Born ap-
proximation provides an expression for the cross sec-
tion in terms of a single definite integral' This is the
great practical advantage of the method. Its draw-

*Present address: General Electric Research Laboratory,
Schenectady, New York.

See, for instance, N. F. Mott and H. W. S. Massey, The
Theory of Atomic ColMsions (Oxford University Press, Oxford,
England, 1983), or 2nd ed. , 1952. An approximation method,
similar to the one here proposed, has been considered also
in the Master's Thesis of D. F. Hubbard at the University
of Virginia. We are much indebted to Professor A. Altman
of the University of Maryland for providing us with a copy
of this thesis.

back is, as that of most approximation methods, that
it gives accurate results only for a restricted class
of problems. This shortcoming is rejected also in the
nonunitary nature of the collision matrix given by
the Born approximation. We have endeavored to
develop an approximation method which can also
be applied with relative ease to any problem and
which does yield, at every stage, a unitary (and sym-
metric) collision matrix. The present article describes
the method and a test thereof. Its application is much
more complex than that of Born's method, but the
fact that the approximate collision matrix which it
furnishes is always unitary suggests that it is, per-
haps, as a rule more accurate than the Born approxi-
mation. ' The unitary nature of the approximate col-
lision matrix is, on the other hand, not necessarily
an advantage: A gross departure of the collision mat-
rix obtained by Born's method from a unitary matrix
gives at least a sufGcient criterion that it is inaccurate
and one can hope, conversely, that if the collision
matrix obtained is nearly unitary, it is also reason-
ably accurate. No similar criterion is known to us
with respect to the method to be described.

Another limitation of the method to be described
is that it assumes, as does 8-matrix theory, ' that the
interactions extend only over a finite range or that,
if they have infinite range (such as the electrostatic

s See, for instance, the second author's Review of Collision
Theory in the Solvay Report for 1962 (Interscience Publishers,
Inc. , New York, 1964).

3 See, for instance, A. M. Lane and R. G. Thomas, Rev.
Mod. Phys. 30, 257 (1956); or E. Vogt's article in Nuclear
Reactions (North-Holland Publishing Company, Amsterdam,
1959), p. 215 iI., or G. Breit's article in the Encyclopedia of
Physics [Springer-Verlag, Berlin, 1959), Vol. 41/1, p. 274 ff.J,
or, for a short review, L. Eisenbud and E. P. Wigner, Nuclear
Structure (Princeton University Press, Princeton, New Zersey,
1958), Chap. 9.


