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tion can lead to fission of the rapidly collapsing core
before collapse of the envelope has reached ap-
preciable velocity. During the development of the
prolate deformation which leads to Gssion, the core
releases nuclear energy in amount ~10 ' Me' ~ 10"
ergs into the envelope. This energy is sufhcient to
meet the luminosity requirement of the radio stars
for 10' to 10' years. Upon fission the binary com-
ponents collapse in 0.1 year to their gravitational
radii. A turbulent, quasi-stable envelope of con-
vecting, radiating material surrounds the rotating
binary system. Other more complicated nonspherical
internal structures could conceivably support the
radiating envelope.

(3) Appropriate choices for the parameters in-
volved can be made which lead to lifetimes for the
binary system also in the range 10' to 10' years. In a
relatively short interval ( 0.1 year) at the end of
this period, gravitational radiation from the rotating
binary, which does have a quadrupole moment, in-

jects energy into the envelope material in amount
10 ' 3A' ~ 10" ergs. It is suggested that the re-

sulting polar explosion may lead to the development

of the strong, extended radio sources with at least
two components.

(4) On the model discussed it is found that the
gravitational resources of a massive star exceed the
nuclear resources by only a factor of ten. Only 1 jo
of the rest mass energy is made available for all forms
of radiation. This and other problems are noted

briefly at the end of Part III.
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The Calculation of Stellar Pulsation'
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INTRODUCTION

In this paper we report methods of computation
which have been developed to provide a theoretical
understanding of the RR Lyrae and Cepheid type
pulsating stars. The results reported are intended to
illuminate the methods of calculation and to provide
insight into the physical processes in these stars. A
survey of pulsation in RR Lyrae models" using
these methods has also been carried out and will be
reported soon in another journal. A. survey of pulsa-
tion in Cepheid models has been initiated and will be
continued. '

* Work supported in part by the OKce of Naval Research
and the National Aeronautics and Space Administration.' R. F. Christy, Astron. J. 68, 276 (1968).' R. F. Christy, Astron. J. 68, 684 (1968).' A. N. Cox, K. H. Olsen, and J. P. Cox [Astron. J. 68, 276
(1968)] have reported some somewhat similar calculations on
Cepheid models. Unfortunately, they have not included the
deeper regions of the envelope or the hydrogen ionization re-
gion near the surface. As a result, their calculations cannot be
compared in detail with the observations.

The methods reported here arose from investiga-
tions' (referred to as I) on the energy transport in the
hydrogen ionization zone of giant stars. In that
paper, some preliminary numerical integrations of
the equations of motion were reported, and the pos-
sibility of spontaneous generation of oscillations or
pulsation was demonstrated. The machine code used
at that time was, however, not suitable for more ex-
tensive calculations and the work reported on here is
the refinement and extension of the earlier calcula-
tions.

The general idea behind these calculations is that
the observed pulsation motions in Cepheids and RR
Lyrae (and other related) stars arise spontaneously
because of the particular physical properties of the
envelopes. The relevant physical properties are the
equation of state and the opacity. The method of at-
tack is to integrate the time-dependent equations of
hydrodynamics (with spherical symxnetry) and heat
Aow by numerical means.

' R. F. Christy, Astrophys. J. 136, 887 (1962).
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Small amplitude linearized calculations on this
problem have been carried out recently by a number
of authors. ' ' These calculations left many questions,
particularly about the role of hydrogen ionization,
unanswered. These calculations were also unable to
achieve results that agreed with many characteristic
features of the observations —such as the phase lag
of the luminosity curve. It was to answer these ques-
tions and to be able to compare the results directly
with the large amplitude observed pulsations that the
present program was pursued.

EQUATIONS OF MOTION

The mass interior to r is given by

M(r) = 4xr"p(r') dr',
0

where p(r) is the density at r. Then the specific vol-
ume

V = I/p(r) = 4z.r' dr/dill .

AVe use Lagrangian coordinates attached to the mass
element r so that r(M, t) is the position of a given
mass element. Then Newton's equation is

B'r GM 1 BP
p Br'

where E is the internal energy/g, we have

BE PBV dI
Bt Bt dM (4)

Energy conservation is vital for a discussion of
dynamics. We can form a mechanical energy equa-
tion by multiplying Newton's equation by r', so

d, .2 GM, . gI'= —4 rr-
dt r

d ~. dl'—(4~r r'P) + P ——.

The left-hand side represents the rate of change of
the kinetic plus gravitational energy per gram. The
first term on the right is the divergence of the flux of
mechanical energy and the second term represents
the work done.

This equation can be combined with the heat equa-
tion to give the over-all energy conservation equation

63.I E 4
4 2.p

where 8 is the entropy/g and Q the heat conducted/g.
writing

7.' d8 = dE + P d V,

B'r GM s BP—= —-- — —4xr,
at' r'

where P is the pressure at 3f.
The heat flow is assumed to be entirely through

radiation diffusion and the total luminous flux at
some level is given by

s 4o d(F')""'- '"
3 (V,~) p()d"

where 0 is the Stefan-Boltzmann constant and
s(V, T) is the (Rosseland mean) opacity in em'/g.
AVe can write

I = —(4~r )—s s4o d(T')
3~ d3II

using M as the independent variable. Then the heat
IIIow equation becomes

~B8 BQ d
'Bt =

Bt
= dM"'

' S. A. Zhsvakio, Astron. Zh. 30, 161 (1953).
'N. Baker and R. Eippenhahn, Z. Astrophys. 54, 114

(1962).' J. P. Cox, Astrophys. Z. 138, 487 (1963).

The above theory is incomplete in that it omits
convection. It is hoped to include a dynamical form
of convection theory at a later date.

EQUATIONS OF STATE AND OPACITY

The equation of state was obtained by assuming a
perfect gas of H, H+, He, He+, He++, and electrons.
Hs (molecules) were ignored as being unimportant in
consideration of the RR Lyrae and Cepheid in-
stability strip. The relative numbers of the various
ions were determined by solving the Saba equations
of equilibrium, ignoring pressure ionization, ionic
interaction, etc. This is a very good approximation
for the very low density envelopes of these particular
stars. The contribution of the various ionic species
to the pressure and internal energy (in.eluding the
ionization energy) was computed.

The opacities used were Rosseland mean opacities
obtained from A.. N. Cox and S. N. Stewart (unpub-
lished) of Los Alamos Seienti6c Laboratory in sum-
mer 1962. %e are very grateful for the use of these
results prior to publication. These calculations in-
cluded the eQ'ects of bound —bound transitions in
addition to the usual bound —free, free —free, and
scattering contributions. The caIculations were aug-
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mented by additional calculations' of the continuum

opacity, excluding bound —bound transitions, in the
photospheric region. Interpolation formulas were de-
veloped to provide a more convenient and continuous
representation of the computed opacities. Details of
these expressions will be published in another paper
dealing with a survey of RR Lyrae stars.

In I (p. 889) it was pointed out that there was a
maximum Aux that could be transported by convec-
tion H. = 10' P ergs/cm' sec, where P is the pressure
at 104 'K corresponding to the extreme of trans-
port of ionized hydrogen at a velocity near sonic.
Also an estimate of P at 10' 'E (the ionization tem-
perature) gave P* = 7[g,/(T, /10' ')fs]. These esti-
mates, if translated to a line on the Hertsprung-
Russel diagram by use of a mass-luminosity relation,
correspond to a line just to the right (or slightly
lower T.) than the line marking the Cepheid vari-
ables and RR Lyrae stars. In fact, the limiting con-
vective flux is about 10% of the total flux of such
variables. %e here use this result to eliminate further
consideration of convection as a means of heat trans-
port for these stars. This omission is probably not
serious in the center or on the high temperature side
of the unstable region. However, a suggestion arises
in this work that it is the onset of effective convec-
tion that determines the low temperature boundary
of instability in the Cepheid and RR Lyrae stars
that we will investigate.

THE BOUNDARY CONDITIONS

The calculation of the motion of the envelope will

be carried out omitting the core of the star where
nuclear energy is made available. This requires
boundary conditions on the mechanics and on the
heat Qow both at the inner and at the outer boun-
dary. It is essential that these boundary conditions
be formulated in such a manner as to not falsify the
damping or undamping of the oscillations.

Rabinowitz' showed for stars with giant envelopes
that the amplitude of the motion is exceedingly small
at small radii. For this reason, he found that the
coupling with nuclear energy generation in the core
was negligible. This suggests treating the central core
as an inert heat source. Ultimately this boundary
condition can be tested by varying the position
where it is applied and checking the lack of sensi-
tivity of the result. The physical properties we assign
to the core are a constant rate of generation of heat
energy and no generation of mechanical energy. It

' I want to thank S. Noble for assistance in performing the
calculations.' I. N. Rabiffowitz, Astrophys. S. 126, 386 (1957).

might be possible to represent these properties in an
adiabatic gas sphere but the complications involved
in a finite velocity of sound have led us to use a rigid
sphere at the center. This means that at r = B~,
U = i = 0. The constant heat source is given by
1(jf!f) = Is. It is clear that the condition U = 0
means that no mechanical energy is transmitted
across the boundary.

At the upper boundary there are also complica-
tions. It is straightforward to propose the appro-
priate treatment of the heat fIow: it should be done

by a time-dependent and wavelength-dependent in-
tegral equation of transfer. This problem has been
examined and it would greatly complicate the subse-

quent calculation. The purpose of the present cal-
culation is to follow the general features of the mo-
tion sufIiciently accurately to compare with observa-
tion, but it is not intended that the calculation should

give all the details necessary for the understanding
of spectra.

The static, gray atmosphere, solution of the equa-
tion of transfer is

T' = -' T'I:r + V(r) j
where r is the optical depth and q(r) is to be found
in Chandrasekhar. "A fairly close approximation to
this expression can be obtained as a solution of the
time-independent diffusion equation. It is

T' = -', T', (r + c),
where c is a constant. We have, therefore, chosen a
boundary condition on the time-dependent diffusion
equation which is consistent with this form for the
time-independent problem. We have taken c = -', .
This condition is written as

d(T )/drj surface 4 Ts T /s ~
surface ~

If we calculate to the strict outer boundary of the
star (where the density vanishes), then the rnechan-
ical energy fIux must vanish since I' = 0. Strictly
speaking, we are not entirely sure ~here this bound-

ary is since the star may be evaporating or losing
mass by more violent means. We have chosen to de-
fine the boundary of the star by J.' = 0 which defines

the outer boundary condition. An accurate dynam-
ical calculation might show that this boundary
steadily expanded and left the body of the star. This
would give rise to a damping of the mechanical en-

ergy by the continual ejection of material. This kind
of result is not precluded by the condition P = 0,
however, the accurate treatment of such a motion
(involving mass ejection), would require the consid-

"S. Charffirasekharr RaChatiffe Transfer (Dover Publica-
tions, Inc. , 1960).
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eration of the motion of very thin layers. Such layers
would be optically thin and all of the basic physics
involved would have to be reviewed and adjusted to
these conditions. For these reasons, we will not at-
tempt the calculation of mass loss in this paper. We
can, however, consider suKciently thin layers in the
atmosphere that the effects of the propagation of
acoustic waves, the formation of shock waves, and
consequent dissipation of mechanical energy are
taken into account.

INITIAL CONDITIONS

The procedure to be followed is the solution of the
time-dependent partial differential Eqs. (2) and (4)
subject to the boundary conditions outlined above.
This is to be a time-dependent solution and will de-
pend on the initial conditions.

We cou1d start from arbitrary initial conditions
for T(3I), V(M), and velocity U(3I): presumably in
the course of time, the solution would settle down to
the correct final state, either static or pulsating as
the case might be. However, it is clear that this would
take a long time since the initial thermal energy con-
tent, being incorrect, would have to relax in the time
required for thermal relaxation of the inner envelope
which is very long compared to the pulsation period.

Since it is known that the amplitudes of pulsation
are small in the deep interior, we suppose that the
solution for T(M) and V(M) do not differ greatly
from the static solution in the inner envelope. We
therefore base our initial conditions for the time-
dependent problem on the solution of the static en-
velope problem for the same star. It would be pos-
sible to use this static solution as the initial condition:
if the envelope was unstable, small errors in the static
solution would initiate a pulsation which would grow
until the amplitude asymptotically leveled off at
some Anal value. This is not, in most cases, a prac-
tical procedure because of the excessively long com-
putation involved.

We have chosen, instead, to initiate the pulsation
by suitably modifying the static solution and follow-
ing the time-dependent behavior. The best procedure
would involve choosing initial values for T(M),
V(3I), U(M) that would be consistent with a natural
periodic motion of the star. This is not possible since
we don't know this motion. Actually, there are many
(in6nitely) modes of motion of the envelope and we
wish to consider only the lowest ones, and only one
at a time. The best way we have found for doing this
is to start with the static solutions for T(M) and
V(M) and superimpose some arbitrary U(3I). This
at least has the advantage that the pressure is

initially in equilibrium so that we do not initiate
arbitrary sound waves and shock waves. A disad-
vantage of this procedure is that the true solution
for a single harmonic never passes through this con-
dition (because of nonlinearities and phase shifts),
especially in the nonadiabatic region. This procedure
necessarily then initiates a mixture of harmonics. Of
this mixture, only the few lowest harmonics survive
very long.

THE DIFFERENCE EQUATIONS

In order to integrate numerically the partial dif-
ferential equations (2) and (4) of motion, it is neces-
sary to express them as difference equations. Al-
though there are many ways of doing this, they are
restricted by the requirements of stability and ac-
curacy. Up to a point, these questions are subject to
analytic examination but in highly nonlinear prob-
lems and in problems involving the coupling of hydro-.
dynamics and heat conduction, as this does, the ap-
proach is in large part based on experience. Richt-
myer" discusses these problems individually but not
coupled. By far the principal experience with the
coupled problem of this kind is to be found at the
Atomic Energy Commission Laboratories at Los
Alamos initially, and also at Livermore: unfortu-
nately, most of this experience has not been made
available. The procedure used here was developed
after reading Richtmyer. A Los Alamos report" was
helpful on hydrodynamic questions, and a paper by
Henyey et a/. ,

"was helpful on the treatment of heat
flow. Although the method developed here seems
satisfactory, it cannot be claimed that it represents
the highest state of the art (and it still is an art),
which remains in laboratories like those mentioned
above.

The variable B(3I,t) is represented by a discrete
quantity P.(I) where the index n (integer) represents
the time t" and the index I (integral) represents the
mass M(I) internal to 8"(I).I = 1 will represent the
inner boundary and I = X the outer. The mass be-
tween I and I —1 is given by

AM(I —-', ) = M(I) —3I(I —1) .
The specific volume of the mass element at I ——,

' is

"R. D. Richtmyer, Difference Methods for Initial Value
Problems (Interscience Publishers, Inc. , New York, 1957).

~2 J. E. Fromm, Lagrangian

Difference

2pprox~mations
for Fluid Dynamics (Office of Technical Services, Department
of Commerce, Washington, D. C., 1961), LA-2585.

'3 L. G. Henyey, L. filets, E. H. Bohm, R. Le Levier, and
R. D. Levee, Astrophys. J. 129, 628 (1969).
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T"(I ——,') and P"(I ——,') are the mean temperature
and pressure (at time t) of the mass element at
I ——

2

For best centering in time, the velocity is defined
at time t" + -', At, i.e. , it is labeled in time by n + &.

It is U"+l(I). Then we have

8" '(I) = P"(I) + At"+'U" '(I)
where ht"+l is the time between t" and t"+'. This is
kept separate from At" which is the time between
t" & and t"+& since dt will be changed from time to
time in order to satisfy the stability conditions. The
time scale is defined by t"+' = t" + At"+l and]"+t =
t" '+ Dt", where ht" = —', (LM" '+ At,"+'). -

Shock waves are treated by the Von Neumann-
Richtmyer method (Ref. 11, p. 216), which involves
the introduction of an artificial "viscosity" which
creates a pressure on rapid compression but none on
expansion. The viscous pressure is given by

Q" '(I —-') C
[U" '(I) —U" '(I —1)]'
&(I —2) + & '(I —s)

if U(I) —U(I —1) & 0,
if U(I) —U(I —1) ) 0.

In this expression, the constant Co is chosen. as a
compromise between the requirements of stability
and accuracy. The effect of the pressure Q is to
artificially spread the shock front over several mass
points. A. larger value of Cq makes a thicker shock
front but greater stability.

The equation of motion is then, for I = 2 to X —1,

U"+'(I) = U" '(I) —Dt"
[&"(I)]'

4~[@"(I)]'
6M (I)

+ Q" '(I + —',) —Q" '(I ——',)]

where

ZM(I) = —', [SM(I + —',) + aM(I ——,')].
The boundary conditions are, at I = 1, U"+&(1) = 0,
and for I = X we define a Gctitious pressure at
X + -', which is the negative of P(X —-,'), thereby
insuring P = 0 at R(X). Then

':()= .—:()-. '. '',
[&"(&)]'

—"'s'""*~» (~--)+ c-:v - -n)DM(X ——,')

HEAT CONDUCTION

%e have used 7."—= 8 as the temperature variable
since it is approximately linear in 3f over much of
the envelope so that the difference equations will be
more exact. It is not known, however, whether this
in fact resulted in any reduction of error. The total
luminous flux through radius 8"(I) is given by

L (I) = I4 [~ (I)] I [~(I )
—~"(I + k)]2F"(I)

where 2F"(I) is a suitable difference approximation
to 4s o/xhM. A possible expression would be

F"(I) = ', o/[~"(-I + ', )AM(I -+ -', )

+8 (I —', ) AilI(-I —-', )]
where «(I + —',) is the opacity in cm'/g at I + -', .

An appropriately centered energy transport equa-
tion is then

(E"' (I + -,') —E"(I + —,') + I-', [P"(I + —,')
+ P""(I+ l)1 + Q"'(I+ l) I[&"(I + l)
—l'"(I+ s)])~M(I+ l) = —: ~~"'[I""(I)

+ I"(I) —I"+'(I + 1) —I"(I + 1)],
which has been time centered at n + -', and space
centered at I + —',. (E is the internal energy. ) This
form of the energy equation, which involves the new

(not yet computed) temperatures at three adjacent
mass points, is an implicit (Ref. 11, p. 91 et seq. ) form

- of the heat conduction equation. " Experience with
linear forms of the equation suggests that this should
be unconditionally stable for arbitrary time intervals.

The solution of this equation for the new tempera-
tures at n + 1 presents an additional problem since
the equation is nonlinear. One possible method
would be to expand and linearize the equation and
solve as a set of X coupled linear equations. XVe have
instead chosen to solve by a process of iteration. The
iteration is continued until the solution converges to
any desired accuracy. This process of iteration, to-
gether with the boundary conditions, and difference
approximations, sometimes fails to converge. Each

'4 The reason that an implicit form of the heat conduction
equation is so necessary for stability as well as to make
physical sense can be understood as follows. The explicit form
of the equation computes the new temperature from knowl-
edge of the old temperature at three adjacent points. Thus,
temperature information is able to propagate at most one
mass point per time cycle. In a region of low heat capacity or
high conductivity (such as near the stellar surface), however,
the heat is able to propagate in fact over what may be many
mass points in one time cycle. The implicit form of the equa-
tion, which makes a simultaneous solution for all new tem-
peratures, clearly permits temperature information to propa-
gate all the way from the boundaries in each time cycle, and
thereby is able to correspond to reality.
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time this situation has arisen, it has been possible to
so modify the procedure as to avoid the difhculty.

In the solution of the E coupled linear equations
which arise in the course of iteration, attention is
drawn to the rapid procedures outlined in H, ichtmyer
(p. 101). Conventional matrix inversion would be
quite unsuitable in this connection.

The boundary condition at I = 1 is

P/T', we see that the solution rapidly tends to

If we use the expression for ~ above, we can readily
solve for P/T4 which tends to a constant, implying
that ~ tends to a constant. AVe are interested par-
ticularly in cases where ~ )) a. There results

—W""(s)]2F""(1)= L.
where I& is the mean luminosisy. This equation
serves to determine W"+'(-', ). The boun. dary condi-
tlonatI = + —

g ls

For the case of 45% He and 0.2% heavy elements
that we will discuss later, these relations give

= 0.13

+ I"(X —1) —204~[R"(X —1)]'W"(X ——',)

—204s.[R"+'(X —1)]'W"+'(X ——',) I .

This expression incorporates the boundary condition
that the luminosity is 20-4mB'T4, where 7, is the
surface temperature. The radius R(X —1) is chosen
rather than R(X) since it, is subject to much less
error and allows to some extent for curvature.

Throughout the setting up of the difference equa-
tions, there are many alternative approaches. To
some extent, these have been explored by others and
the present method has been guided by the Hefs. 11,
12, and 13. However, to a large extent in this prob-
lem, the various alternate approaches have not been
explored. It is not known whether better approaches
exist. The point of view has been to continue adjust-
ing and correcting the procedure until it seemed
satisfactory.

THE MASS DIVISION

In order to explore in more detail the structure of
the envelope, it is useful to examine a simple model—namely a plane parallel example. Let II be the
radiative flux/cm' sec; P is the gas pressure (we
neglect radiation pressure), g is the acceleration of
gravity (assumed to be constant), and m is the
mass/cm' above a certain layer. Then the static pres-
sure distribution is given by P = mg and

—; (o/s)d(T')/dm = II =-(rT'. .

Now we And that a good approximation to ~ at tem-
peratures above 2 && 10' ' is ~ = a + bP(10'/T)'.
If we now consider the equation for the variable

~ = 0.17 g'*(10'/T, )' .

Because of these relations, we have used the variable
W =— T' since it is approximately linear in P and m.

The Courant condition (Ref. 11, p. 218) requires

l = cAt/AR ~& ts ——1,
where c is the velocity of sound. If we approximate
c = (P/p)&, we have

cht Pht mgAt

AB cphd cpm

Thus, if Am/m is kept constant, t decreases slowly as
the temperature increases. A.ctually, where con-
vergence sets in toward the center, l increases again.
For these reasons, we have used approximately
Am/m = const, or what, is the same, the ratio of
successive values of 63f is constant.

Now the number of mass points is proportional to
m/Am and the time to compute one time cycle is
proportional to the number of mass points. I'urther,
At, as restricted by the Courant condition, varies
roughly inversely as the number of mass points and
the number of time cycles per period of oscillation is
proportional to the number of points. Therefore, we
see that the time to compute one period is propor-
tional to the square of the number of mass points.
This means that the mass division and the Courant
condition must be carefully watched and the minimum

number of mass points must be used consistent with
the accuracy required. It was found that 30 to 40
points was sufFicient for a reasonably accurate sur-

vey and, under these conditions, one period of the
motion took about 100 time cycles. Under these con-
ditions, one time cycle took about —,

' sec on a 7090
computer, one period took about 1 minute and a
typical run was 600 time cycles, or about 6—7
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minutes, and covered 6—7 periods of the motion. Oc-
casionally, calculations with up to 100 mass points
have been used but it was, in general, not practical
to follow these for very many periods except for a
very few special cases.

The requirements represented by the Courant con-
dition represent one reason why the core of the star
should not be calculated in detail unless it is the seat
of essential elements of the physics. The velocity of
sound in the core is very great and if it were divided
into suKcient mass points to give some detail in its
behavior, the most severe restriction on the time
interval would arise in the core and the number of
cycles to compute a period of oscillation would prob-
ably increase by an order of magnitude.

In order to cover the envelope in about 35 steps,
since m varies over 7 powers of 10, it is necessary
to use n [= AM(I —1)/ 63f (I)]up to 1.5. This large
fractional change per division might seem too large
for accuracy; however, checks will be shown later
which demonstrate the validity of the results.

In the region around 104 ', the opacity law changes
abruptly from a strongly increasing function of tem-
perature in the photosphere to a decreasing one in
the region of higher temperatures discussed above.
Associated with this abrupt change in opacity, we
also have hydrogen changing its ionization state. The
net result of these conditions is that a static integra-
tion shows the temperature increasing very abruptly
with depth in this region (see Figs. 3 and 4). U the
mass is divided according to the discussion above,
we find a near discontinuity in temperature, internal

energy, opacity, at this point. The variable W = T'
jumps by a factor of &10 and, at most, one mass
point lies in the region of partial hydrogen ionization.
At just the same region (actually for F just below
10' '), the addition of the electrons to hydrogen
causes a very rapid increase of density by a factor
approaching 2 as the temperature falls, providing
hydrogen is abundant. This increase of density of the
higher layers is, of course, also responsible for the
violent convective instability of this region. This
density increase also reduces AB suddenly so that if
n is constant, the most severe limitation on ~t from
the Courant condition arises just in these same layers.

This now poses a quandary: on the one hand, the
accurate treatment of radiative transport demands
an especially small AM just in the hydrogen ioniza-
tion zone. On the other hand, the requirements of
rapid calculation and stability demand an extra large
dM in this zone. We have chosen an approximately
constant value of o. in this region in order to make
rapid calculations and have given special attention

to the energy transport so that a satisfactory treat-
ment could be found in spite of the discontinuity in
physical properties associated with the relatively
large DM.

The method of treating the heat transport equa-
tion is discussed in the next section. It has the prop-
erty that the relation of temperature change to heat
Row across this region is not precise under most con-
ditions but is accurate on the average. As a result, if
the zone of discontinuity —which moves up and
down during the pulsation —moves over several mass
zones during one period, then the average behavior
of the discontinuity zone is correct. During a period,
the temperature oscillates as the discontinuity moves
across a mass zone but if there are several oscillations
to a period, they can be averaged out.

The condition that the discontinuity cross several
mass zones during a period prevents these calcula-
tions giving accurate results on the luminosity curve
except for fairly large amplitude motions. Thus, it is
not easy to extend the calculations accurately into
the very small amplitude range where the linear
theory should be correct.

This condition that the region near 10' ' should
cross several mass zones is also related to the eK-
ciency of convection. Thus the number of cycles to
ionize one mass point is q = elm/Hht, where e is
the ionization energy/g and we require q not too
large. Also, t = cd, t/DR ~( pcAt/Am. A ratio that
is relevant in the eSciency of convection is the ratio
of the velocity of ionized matter required to trans-
port the heat Aux to the velocity of sound. This ratio
tl should be small if convection is to be able to trans-
port the heat. We have

H Hat am 1

pic d,m pc At qt

Therefore, for t fixed ~(lo, the requirement of effective
convection (P small) is that q should be large. Thus,
where our method works well is just the region where
convection is unimportant, which justifies our neg-
lect of convection. Where, on the other hand, our
method becomes poor, because q is large, it is also
suggested that convection. can no longer be ignored.

THE DIFFERENCE EXPRESSION FOR
RADIATIVE TRANSPORT

We have seen that the temperature undergoes a
very abrupt increase in the neighborhood of 104 '. In
order to find suitable difference expressions for F,
defined earlier by a relation equivalent to

H(I) = 2F(I)[W(I —-', ) —lW(I + 4)1,
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we have made approximate integrations of the static
equation for the various regimes.

At the photosphere temperatures where ~ increases
approximately as ~ 2"', the static heat Bow
equation

H = -', (a/K)(dW/dM),

with

r, = W'/a

has the solution

HM = const ——; o.(o/2W')

and we can form the difference equation

H(M, —M, ) = -', o (Wi/W2~& + W2/Wi~ )(W2 —W&).

On the other hand, where ~ = b/W, the equation

integrates to

HM = 3 (a/b)(W'+ const),

so

H(3II, —3',) = -', o(l/. ~2 + 1/K&) (Wg —Wi) .

For other power laws, similar expressions can be
found but the constant in front would be different.
We approximate the above two difference equations
by

H(M —M) = —' (W —W)
1 2

which approximates the above forms for a strongly
varying opacity —even if ~2 differs by an order of
magnitude from ~& and is exact for a constant
opacity. This leads to

—, a[W(c + —',)/~(I
[6M(I + -', ) +6 M(

This has permitted the use of an interval near 104 '
such that neighboring values of W differ by more
than an order of magnitude and yet the equations
still make some sense. It is not claimed that this is a
highly precise form of the difference equation, but it
is a reasonable compromise between the varying re-
quirements.

It appears from this, and experience with different
expressions, that the essential requirement for a cor-
rect treatment of the opacity in a zone where the
opacity in fact changes by a large factor is to use
some approximation where the lowest opacity in the
zone dominates the mean, rather than the greatest.
The reason is that in the region of large opacity, the
temperature gradient concentrates to a very large
value and thereby largely nullifies the high opacity,
leaving the heat How to be determined in large meas-
ure by the lower opacity region.

STATIC MODELS AND INITIAL CONDITIONS

Following the discussion of the mass division, we
are now able to integrate static models. These are
integrated inward from the outside to some inner
radius and some maximum temperature. The mini-
mum radius is usually around —,'B0 and the maximum
temperature is usually greater than 10' '. In general,
an envelope calculated in this way would not be ac-
ceptable if integrated to the center. However, the
envelope properties in this region are not sensitive
to the possibility of integrating in to the center, and
apart from the values of 3I and Lo, we are not here
concerned with the central region.

In addition to the mass ratio of successive mass

+ 2) + W(I —k)/~(I —2)l
I —k)jLW(I ~ 2) + W(I —k)1

'

points which determines the fineness of the division,
we must choose the initial 63I of the first layer. In
general, it was attempted to choose this to corre-
spond to considerably less than unit optical depth,
and normally it corresponded to optical depth less
than 0.1. The reason for the fine zoning in the at-
mosphere was so that the velocity could be studied
as a function of depth in the photosphere in order to
see how the velocity observed in the Doppler shift of
the spectral lines (assumed to correspond to optical
depth 0.1 to 0.2) differed from the velocity of the
photosphere itself. Some deviation from constancy
of n was often made in the photosphere in order to
satisfy the above requirement, and also at high tem-
peratures (above 10' ') in order to avoid a rapid in-
crease in l near the center.

Since the treatment of heat transport was not ac-
curate except in the average for the region near 104 '
and this average required a relatively large ampli-
tude, calculations were usually initiated with a rela-
tively large amplitude (about 2 the final amplitude)
motion by choosing a suitable deviation from the
static model. It was desirable to choose this deviation
as near as possible to a single normal mode so that
the resulting motion would resemble as closely as
possible a periodic oscillation. In general, of course,
the initial conditions generated a superposition of
several normal modes.

At this point, it may be appropriate to define a
normal mode in a nonlinear problem of this kind.
The definition probably must depend on the system.
Our definition is based on a system where certain
modes of motion are almost periodic and have almost
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constant amplitude. Where the motion can be fol-
lowed for several periods at nearly fixed amplitude,
we can define the fundamental as that periodic mo-
tion of longest period. The first harmonic is the
periodic motion of the next shortest period, etc. In
fact, the distribution of U(r) closely resembles the
linear case and the fundamental has no node in the
body of the star, the first harmonic has one node, etc.

The initiation was chosen by superimposing on the
static model some suitably chosen velocity distribu-
tion U(M). It might be thought that in the function
space U(3I), any mode could be generated com-
pletely free of contamination of other modes. It is
true that suitably chosen distributions U(M) can
simulate arbitrary modes. However, these modes
have a well-defined relative phase. It turns out that
it is not possible to remove all the higher harmonics
by choosing some particular U(M). In general, it
would be necessary to add a new correction with
some new U'(M) at a time 90' later in phase in
order to eliminate unwanted modes. This added
complication was not followed so that, in general,
the modes studied had more or less contamination.
This contamination was most serious in the mixture
of fundamental and first harmonic. However, it was
found that by averaging the results over several
periods, this difhculty could be minimized.

The specification of the initial conditions was to
superimpose on the static solution a velocity dis-
tribution which was actually U(B) where B is the
radius of the mass point in question. For generating
the fundamental, a power law U R" where n is

near 6 is satisfactory. n can be varied to minimize
the unwanted higher harmonics. For generating the
first harmonic, a distribution U aiR" + asB"'was
used. Typical values would be Ui = 20(B/Bo)" +—
6(B/B&)s. The same form could also be used for the
fundamental, i.e., U&&

= —10(B/Ro)" —5(B/Ro)'.
Harmonics above the first have not been initiated as
yet but it is clear that a three-term velocity ex-
pression to give two nodes would be necessary for
the second harmonic.

These expressions for U(B) also demonstrate the
requirements on the minimum radius. At the mini-

mum radius 8&, the amplitude of these modes is very
small provided the minimum radius is less than about
-', R0. We have always chosen R~ ( —,

' B0.
Although, as has been explained, the calculations

were most reliable at fairly large amplitude, it was
not at all easy to explore the maximum amplitude
where the amplitude remains constant, by this
method. The reason apparently has to do with a dis-

tortion of the normal mode when dissipation at large

amplitude becomes important. This dissipation is
large just in the surface zones where the shock waves
develop and introduces changes in the phase rela-
tions. The result is that if the motion is initiated at
large amplitude, the introduction of unwanted con-
tamination by the first harmonic becomes more and
more prominent and the resulting calculated motion
deviates more and more from a simple periodic one.
If the conditions are such that the first harmonic is
strongly damped, then the large amplitude can be
explored. However, in most cases of interest, the first
harmonic is weakly damped if at all so that the very
large amplitude iiiitiation leads to considerable un-
certainty in the results.

RESULTS

In order to illustrate the methods, the results ob-
tained in the study of the following model will be
discussed. The model has the defining parameters
M = 075 X 10" g (=0.4 Mo), I = 1.5 X 10"
erg/sec (Mb. i = +0.75), T, = 6500'E, and Rs =
3.41 )( 10" cm. This is a possible model for an RH,
Lyrae (or cluster) variable star but the best models
appear to have a mass nearer 3fo and about twice
the luminosity. The composition was chosen to be
X = mass fraction of H = 0.548, P = mass fraction
of He = 0.45, and Z = mass fraction of other ele-
ments = 0.002.

The reason for choosing this example for illustra-
tion was that because of the relatively low mass„ the
envelope was of lower than normal density. This re-
sulted in a considerably more rapid approach to the
ultimate limiting amplitude than would be true for
a more massive model. It was thus possible to fol-
low this example to its limiting amplitude with a not
unreasonable computing time.

Figures 1, 2, 3, 4 and Table I show various features

O

0 2—

I I

iS 20
Moss Point

Fio. 1. The radii (em) of the 88 inass points of the static
model. The amplitude of the resulting oscillation of each point
is shown by the limits.
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of the static model which preceded the dynamic cal-
culation. The static model was set up with 38 mass
zones and a surface mass zone of 3 )& 10" g

CL
7

O

(2.03 g/cm'); subsequent mass zones increased by a
factor of 1.4 each step until at a temperature of about
2 P 10' 'K the ratio was made slowly to increase in
order to keep the sound travel time from zone to
zone nearly constant. This resulted in a ratio of 2.3
at the deepest mass zone which extended from
8 = 7.48 )& 10"cm to 4.79 &( 10" cm. The (Rosse-
land mean) optical depths of the first few mass zones
in the stellar photosphere are 7 = 0.008 at the
center of mass point 38, v- = 0.034 at 37, 7. = 0.103

TABLE I. The static model.

I6 20
Mass Point

36

Temper-
Mass Radius ature
point 11M(10'4 g) (10"cm) ('K)

Specific

Pressure volume
(dgn/cm1) (cm1/g)

&ia. 2. The log1C of the pressure (dynes/cm') of the mass
points of the static model. The amplitude of the oscillation is
showa by the»mits.

60—

88
85
82
29
26
28
20
17
14
ll
8
5
2

8.00 8.48
8.28 8.41
22.6 8.88
62.0 8.81
170 8.21
467 8.08

1.28 X 10' 2.91
8.51 X 10' 2.71
9 64 X 10' 2.46
26-8 X 10' 2.16
88.9 X 10' 1.79
84O X 1O3 1.84

2.72 X 10' 0.75

5.46 X 10'
5.99 X 10'
2.87 X 104
8.26 X 1O4

4.55 X 104
610 X 104
7.95 X 104
106 X 10'
1.49 X 10'
2.12 X 10'
8.05 X 10'
5.02 X, 10'
1.22 X 10'

4.29 X 10'
5.08 X 10&

1.80 X 104
5.68 X 104
1.74 X 105
5.49 X 105
1.82 X 106
6.40 X 106
2.44 X 107
1.06 X 108
5.89 X 108
5.76 X 109
8.08 X 10»

6.94 X 108
6.49 X 107
1.44 X 10S
6.82 X 107
8.OO X 107
181 X 107
5.17 X 106
1.96 X 10'
7.24 X 1O5

2.88 X 105
612 X 10'
1.08 X 104
4.76 X 10'

~P

I

~X

x~

x~

x

X
I

—x x

2 4 5 6 7
Log Pressure

FIG. 4. The solid curve is the log10 T vs log10 I' for a Gee
mass division. The points X are the results of the 88 mass
point static model.

I

16 20
Mass Point

»a 3 The iogio of the temperature ('.K)"„of the mass points
of the static model. The amplitude of the oscillation is shown
by the limits.

at 36, r = 0.297 at 35, and r = 1.81 at 34. On Figs.
1, 2, and 3, which show the run of 8, T, P against
mass point, the amplitude of the resulting oscillation
is also shown. The most noteworthy feature is the
vanishingly small amplitude at small radii. It is this
feature that justifies the neglect of the interior and
replacing it by a boundary condition. A particular
feature of the temperature distribution is shown in
Fig. 3 plotted against mass point, and in Fig. 4
plotted against pressure. Starting from the surface
at F,/2', the temperature rises at an ever increasing
rate until the rise becomes almost vertical at T ~ 104
'E. This takes place at a characteristic pressure Pj
which depends on g and on the effective temperature
approximately as g: T.'. After the abrupt rise in
temperature, the temperature soon approaches a law
T' ~ J.' throughout the rest of the envelope. The
solid curve in Fig. 4 shows T(P) for a calculation
with a vely fine nlB,ss dlvlslon ln order to covel coI'-

rectly the abrupt rise. The points marked )& are
those resulting from the 38 mass point division of the
envelope. The close approximation of the points to
the curve, even in the region of 10' 'E, shows that
the difference approximations in the expression for
the opacity of a mass point were successful.

The dynamical calculation which was initiated
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This seems to be due to a shock wave running ahead
and can also be seen in. the velocity curve. At still
greater depth, near zones 26, 24, and 22, the lumi-

nosity shows a very great peak of short duration.
This peak arises from the helium ionization zone.
The heat absorption in this zone delays the rise in
temperature which causes an abnormally large tem-
perature gradient and heat Aux into the region. On
expansion, the opposite eGect prevails until the Oux

is reduced to a small value again to await the next
cycle. The phase delay and general form of the lumi-
nosity curve is first apparent at mass point 28 just
above the helium zone. The delay becomes pro-
gressively larger nearer the surface and the lumi-
nosity develops its final form on passage through the
hydrogen zone.

Kith the choice of conditions as outlined, the mo-
tion was followed until the amplitude had almost
ceased to grow. Experience has shown that the most
reliable measure of the amplitude —that measure that
is most independent of the harmonic mixture- is the
gain in peak kinetic energy of the envelope in a
period. Actually, to minimize the influence of the
erst harmonic which has a period about 4 of the
fundamental, and therefore gives a super period of
about 3 times the fundamental, the increase in
kinetic energy was measured for 3 periods. Figure 8
shows the mean fractional increase 58/g for the
kinetic energy per period plotted against the peak
kinetic energy. It is apparent that the curve can be
extrapolated to a final peak energy not much greater
than the maximum already present. In this way, the
approach to the maximum amplitude was followed.
The curve can be crudely fitted by 68/period =
aE(1 —8/8, )', where a = 0.04.

Attempts have been made to find measures by
which the calculated pulsations can be compared to

observed ones. One measure is the phase relation be-
tween the luminosity and the dynamics. The simplest
measure of this phase relation is to be found in the

.05

.2 .05
n ui

UJ
.02

5 6
Kinetic Energy (IQ erg)

FIG. 8. The fractional increase per period of the peak
kinetic energy of the envelope as a function of that peak
energy.

phase relation between the luminosity and velocity
curves since these curves are so similar. However,
since the curves are nonsinusoidal, this phase dif-
ference must be defined with respect to some charac-
teristic feature of the observations and calculations.
Although, observationally, it is common to use the
peak luminosity for this purpose, it does not seem
that that is the most convenient for comparison with
theory since the peak may be sensitive to small de-
tails in shape. We have chosen to use the time when
I = Lc the mean luminosity (on the rising branch)
as a time point in the luminosity curve. Similarly,
we have chosen the time when the velocity = 0 (at
minimum radius) as a suitable epoch on the velocity
curve. YVe then define a phase lag as the lag of the
luminosity curve behind the velocity curve divided

by the period of the motion. Clearly, in this notation
the classic "-,'x phase lag" corresponds to zero lag as
defined here. The phase lag is shown in Table II as
a function of time for the calculation which was dis-

TxaLz II. The dynamical model.

Number of
periods

after start
PeriodI o X period (10' sec)

Phase
lag (10» erg)

U Umoi
(km/sec) (km/sec)

2
5
8

11
14
17
20
28
26
29
82
85
38
41

0.1082
0.1154
0.1216
0.1281
0.1350
0.1438
0. 1499
0.1568
0 ' 1688
0.1690
0.1726
0.1751
0.1775
0.1794

0.0881
0.0919
0.0961
0.0997
0.1038
0.1067
0.1103
0.1130
0.1152
0.1187
0.1218
0.1234
0.1256
0.1272

58.63
58.70
58.90
58.77
58.70
58.66
58.68
58.69
58.70
58.72
58.76
58.76
58.77
58.77

0.127
0.105
0.100
0.096
0.091
0.089
0.086
0.085
0.087
0.085
0.080
0.075
0.071
0.069

1.802
l.256
1.265
1.285
1,801
1.348
1.859
1.388
1.418
1.424
1.428
1.420
1.418
1.410

2.874
3.244
8.603
4.003
4.414
4.874
5, 286
5.724
6, 149
6.540
6.879
7.144
7.365
7.542

0.036
0.035
0.035
0.034
0.033
0.031
0.028
0.026
0.022
0.019
0.014
0.011
0.009
0.007

24.36
26.92
28.92
30.57
82.26
84.05
85.77
87.57
89.46
41.31
42.44
48.59
44. 56
45.30

20. 11
23.80
24.39
26.30
27.93
28 ' 65
28.25
27.50
28.04
80 ~ 84
81.73
32.22
32.70
83.41
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cussed above. We see that the lag was slightly posi-
tive at small amplitude and decreased somewhat as
the amplitude approached its maximum value. The
correspondence with phase lags as observed is, how-
ever, good.

Another measure of the nature of the motion is to
be found in the ratio of luminosity amplitude to the
radius amplitude. To this end, we define the radius
amplitude as (R .. R I )/Rp = AR/Rp. As in other
measures, if the motion involves a superposition of
harmonics, we can considerably reduce the error by
averaging over 3 periods since this removes the prin-
cipal source of variation due to the erst harmonic
because its period is =As the period of the funda-
mental. In the technique employed here for treating
the radiation transfer, the temperature and lumi-
nosity tend to oscillate around their true values be-
cause of the finite size of the mass zones near 10' '.
As a result of this, the luminosity amplitude is not
accurately given and we have found that the

I (I —LD) dt is a better quantity to use. We then
take the amplitude of variation of the above quan-
tity which is

L Lo falling

14—

13—

12—

8—
IA

O

CL7 7—
CII
&A

OP

EL 6—

0 I

Energy Production

22

2 3 4 5 6 7 8 9 10

Vxb, M (10»)

L Lo rising
(L —Ls) dt = II A

(the integrated luminosity amplitude).

Fro. 9. P-V diagrams for mass points 32, 30, 28, 27, 26,
24, and 22 after 1g periods. The abscissa is the total volume
for each mass point.

Then we define a measure of the luminosity ampli-
tude as ILA/LD X period. We are now able to define
a ratio (R = (DR/R)/(ILA/Ls X period). (R, as well
as AR/Rs and II A/Lo X period, is shown in Table II
for various times during the calculation.

It is apparent that 6I. is fairly constant, independ-
ent of amplitude. In another paper we will find that
I, is a very useful measure of the pulsation. It is par-
ticularly so since it is reasonably independent of
amplitude and can therefore be studied in the inter-
mediate amplitude situation which is computa-
tionally easier to examine than the full amplitude
problem being discussed here.

In order to explore the basic physics of the pulsa-
tion, we have plotted in Pig. 9 the P Vdiagrams for-
a number of the mass points over one period of the
motion at t = 18 periods from the start. By integrat-
ing the area inside these loops, we can find where the
energy is being generated and where dissipated in
the model. The results of this calculation are shown
in Fig. 10. It is apparent that there are two zones of
energy generation, one near mass points 26 and 27
and one near mass points 32 an.d 33. By reference to
the static model in Table I, we see that the tempera-
ture in the zone 27 is 4.0 )& 10' ', and in zone 26 is

12 I I I I I I I I I I I I

AM/PdV AFTER IS PERIODS

(lo erg)

"2—

-4—

-8 I

38
I I I I I I I I I I

36 34 32 30 28 26 24 22 20 18 16 14

MASS POINT

Fra. 10. The work done per period (positive or negative)
for various mass points after lg periods.

4.5 X 10' ', and corresponds to the second ionization
of He which takes place just at these conditions. The
temperature at zone 33 is 2.0 X 10' ' and at 32 is
2.4 )& 10' '. This temperature is clearly related to
the ionization of hydrogen and the first ionization of
He and it is.apparent from Fig. 3 that these points
cycle through the ionization conditions of hydrogen
and helium. The total of the positive contributions
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to the energy production is 6.8 X 10"which is 7.2%
of I 0 X period (at maximum amplitude, about 11%
of the luminous flux is converted into mechanical
energy per period). Of this, the hydrogen ionization
zone produces 88% and the second helium ionization
produces 67%. The total dissipation at this time is
4.9 )& 10"erg/period and the increase in kinetic en-

ergy per period is 1.5 && 10" erg/period. The reason
for the sensitivity of this quantity to slight errors in
the treatment of the hydrogen zone is apparent.

The importance of the second IIe zone has been
demonstrated by Zhevakin' and developed more
fully by Cox' and by Baker and Eippenhahn. ' The

significance of the hydrogen zone was suggested by
Eddington" who, however, was unable to correctly
develop its consequences. The hydrogen zone was
discussed rather more fully by the author' where the
possibility that it was an important contributor to
the instability was pointed out."

The basic reason for the energy generation in the
ionization zones has already been discussed in I. %e
may say, simply, that because of their small y (ratio
of specific heats) and high heat capacity, the ioniza-
tion zones find themselves cooler, relative to their
surroundings, on adiabatic compression and hotter
on adiabatic expansion. This means that they will
absorb heat when compressed and give it off when
expanded. This behavior is just the behavior ap-
propriate for the generation of work and is just the
behavior we see exemplified in the ionization zones
in Figs. 9 and 10.

The importance of the ionization zones as men-
tioned above, is also conditioned by their depth in
the envelope. If 7, is too great, the ionization zones
are too near the surface and consequently will in-
volve too little material to provide any significant
heat capacity. As a result, the phase delay of the
temperature is too small and the energy production
is reduced so that the dissipation will dominate and
the star will be stable. The boundary to the unstable
region on the low T, side is more obscure. Estimates
suggest it may be associated with the onset of ef-
fective convection. Since convection has been ig-
nored in these calculations, we are unable to settle
this question at this tixne.

In regioIls of constant I'atio of specific heats lt ls

"A. S. Kddington, Monthly Notices Roy. Astron. Soc.
101, 182 (1941)."In that paper, the contribution of the hydrogen zone to
the pulsation was considerably overestimated because of an
incorrect surmise about the value of AV, the change in volume.
It was guessed that the whole expansion. of the star might
arise from the expansion of the hydrogen zone. In fact, only
about 19% arises there, about 37'P0 in the He zone and the
rest deeper in the envelope.

also known that the dependence of opacity on tem-
perature and density is very important. The usual
dependence ~ 1/VT" leads to dissipation since
the heat transport is greatest when the material is
compressed adiabatically. This accounts for the dis-
sipation in the deeper regions of the envelope.

The time-dependent calculation that has just been
discussed depends on many somewhat arbitrary
parameters in addition to those that determine the
static solution. In most eases, the choices made were
a compromise between accuracy and speed. In order
to evaluate these compromises, a series of test cal-
culations was made to explore the sensitivity of the
results to the choices that were made. These test
runs were carried in time only far enough to evaluate
the trend of the results. This was about 6 periods of
the motion. The test runs were then compared with
the corresponding time portion of the main calcula-
tion. The quantities that were insepected in this
comparison were just those quantities listed in Table
II which were chosen as the most suitable simple
numerical measures of the motion.

Before comparing the test runs with the main cal-
culation, it is worth inspecting Table II in order to
understand the sensitivity of the results. Some
quantities in the table behave very smoothly and
others somewhat irregularly. There are two sources
of the irregularity. The Grst has to do with the initial
conditions which have introduced various high har-
monics. The averaging over three periods that has
been carried out removes some, but not all, of this
irregularity. A more serious irregularity results from
the coarse zoning near 10' '. Although the calcula-
tion is able to deal with the principal effects of the
opacity behavior in this region, the coarse zoning
leads to residual irregularities in the temperature
and luminosity and energy production. In particular,
these quantities are still somewhat sensitive to the
location of the zone boundary in the 10' ' region at
the minimum luminosity of the cycle. Depending on
where this zone boundary is, there is either a larger
or smaller than normal value of ILA and also of A8.
Since, as the amplitude grows to the maximum, the
location of this temperature at minimum crosses
about one zone, there is a corresponding variation of
ILA and of 68 to be found. In particular, we note
that at the initiation time 2 8 is near its maximum
positive excursion and ILA its miniInum. As a result,
we find these quantities unusually sensitive to any
changes —these almost certainly leading to a de-
crease of AG and an increase of ILA.

With this in mind, we have examined the test runs
for significant changes. The series that was carried
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out is displayed in Table III. The parameters were
explored and the results were as follows. In this
discussion, only noticeable or significant eBects are
mentioned. Quantities not mentioned did not change
appreciably.

The effect of the precision of the iteration pro-
cedure for the temperature equation was explored in
the first test. This precision is defined by the maxi-
mum value of AT(I) that is permitted without
iterating again. Normally, this has been 1'E and the
location where the error is usually largest is near
10' '. An average 8 to 4 iterations is usually needed
for this precision. A value of AT = 10'E was tried
in test 1, the only perceptible change was a reduction
of d8/6 by 1% of its value. This was fortunate since
the latter half of the main calculation had been
carried out with this value in order to improve the
rate of convergence which had become worse be-
cause of the strong shocks. Also, many of the subse-
quent tests used this same value of 10'E.

The second test explored an over-all reduction of
the time between cycles by 1/v 2 by reducing l,' (the
maximum permitted value of c' ht'/AB') by two. The
result was again that no significant changes were
found. The most sensitive quantity 68/6 was re-
duced by 1%. This result was in marked contrast
with the methods used in I which are also discussed
in Appendix B.

Test 8 involved an increase of Cq from 1 to 4. This
change led to a reduction of t) 6/6 by 88%. This led
to a reduction in amplitude but no noticeable change
in the amplitude insensitive quantities such as the
ratio (R, the period and the phase lag. Test 4 then
reduced Cq to 0.2 and used AT = 10' since this small
a value of Cq leads to noticeable fluctuation of the
points. Compared to the standard, this changed only
DG/6 which was increased by 10% of its value. The
results of these tests show that the choice of Cq = 1

for the parameter in the artificial viscosity was satis-
factory. It is also worth noting that the treatment is

marginal in this respect since Cq can not be made
much smaller without an undesirable increase in
Quctuation.

Test 5 explored the effect of increasing n, the ratio
of masses of successive zones, to 1.6 and a consequent
reduction in the number of zones to 28. This reduced
the computing time for the same number of periods
to 60% of its value. However, significant changes in
results were found. The phase lag was reduced by
0.025, the period was increased by 0.5%, and the
66/8 was reduced by 20%. Test 6 reduced o. to 1.2,
increasing the number of zones to 66. The computing
time was doubled. The principal effect was an in-
crease of LK/6 by about 6%. In addition, the period
was reduced by 0.5%, tR was increased by 8%, and
the phase lag was reduced by 0.006. The evidence
suggests that the small effects other than 68/6 are
largely spurious.

In test 7, the surface mass zone was reduced to
1.0 X 10" g. No significant changes resulted ex-
cept an almost 80% increase in computing time. The
choice of the topmost zone sizes was in fact dictated
by a desire to reproduce the dynamics of the region
above the photosphere where the spectral lines are
formed. Since the topmost zone shows deviations in
its motion, this meant that the second or third zone
from the top should still be at optical depth about
0.1. The test indicates that the motion computed
was apparently reliable.

Tests 8, 9, and 10 were attempts to explore the ef-
fects of the choice of the lower boundary B&. In test
8 the same zoning was used but the two lowest zones
were deleted, increasing Bi to 9.72 X 10".There was
a significant reduction of 68/6 by 22%. The phase
lag was increased by 0.018, (il increased by 8%, and
the period reduced by 0.2%. Tests 9 and 10 at-
tempted to separate these effects into those due to
the extra large zones at the bottom and those due to
a change in Bi. Thus, test 9 maintained a constant
to Bi = 5.25 X 10".There resulted a 6.5% reduc-

Txsxz III. The test runs.

Test

Parameter Standard 1 2 8 4 5 6 7 8 9 10

cT ('K, maximum error in iteration of temperature)

l (maximum value of Courant parameter c At/nR)

Cq (artificial viscosity parameter)

n (ratio of successive mass zones)

4lifo (surface mass zone in units of 10z4 g)
Rx (radius of inner boundary, 10M cm)
Temperature above which a is allowed to increase (10' 'K)

1
0.6

1
1.4
8.0

2.1

10 1 1 10 10 10 10 10 10 10
0, 6 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
1 1 4 0.2 1 1 1 1 1 1

1.4 1.4 1.4 1.4 1.6 1.2 1.4 1.4 1.4 1.4
8.0 8.0 8.0 8.0 8.0 8.0 1.0 8.0 8.0 8.0
4.8 4.8 4.8 4.8 6.8 8.4 1.8 9.7 5.2 7.6
2. 1 2.1 2. 1 2.1 2. 1 2. 1 2. 1 2.1 20 20
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tion in AS/8 compared to the standard problem and
no other significant changes. Test 10 then, with con-
stant 0., increased B1 to 7.65 g 10".There resulted a
reduction of 08/8 of 12% compared to the standard
problem. In addition, N, increased by 2%, the period
decreased by 0.1%, and the phase lag increased by
about 0.005.

Following the above tests, two tests (11 and 12)
were made to investigate the approach to the limit-
ing amplitude from different initial conditions. Test
11 initiated a motion with initial kinetic energy
equal to that present in the main calculation after 26
periods. There was, at first, considerable dissipation
due to a shock running ahead of the main luminous
Aux peak and releasing energy at the surface in a
Rash which preceded the principal peak. This be-
havior continued until the kinetic energy was re-
duced by about 5% to equal that present in the main
calculation at 24 periods. At that time, the results of
test 11 showed every indication of joining those of
the main calculation. This took about 6 periods. A
test was then made to initiate the calculation at a
kinetic energy equal to the (extrapolated) maximum
in the main calculation. This led to a series of violent
shocks (only every third period since the shock re-
sults from a strong first harmonic component) with
emission of early Qashes from the star. The kinetic
energy in this way was diminished by about 25%
after six periods and the test was discontinued. These
trials show that great ingenuity in the initial condi-
tions must be used to initiate these motions at near
their maximum amplitude without introducing
violent harmonic admixtures which are slow to de-
cay. These tests also tend to confirm the independ-
ence of the final motion to the initial conditions
which, of course, is to be expected on physical
grounds.

As a result of these tests, it can be concluded that
the technique used was reasonably reliable. It is also
apparent that the result that is most sensitive is the
magnitude of the instability AS/G. This, of course,
was expected since it is a derivative. For envelopes
of significantly lower T„the surface opacity is greatly
reduced and the surface zones can be taken much
thicker. This permits a reduced value of n for a fixed
number of zones. However, the other critical point-
the number of zones crossed by the level 10' ' in a
period —is reduced and the results on AS/8 tend to
become, for this reason, more uncertain.

CONCLUSION

%e have shown that it is possible to compute the
pulsation behavior of a stellar envelope (when con-

vection can be ignored). It is thereby possible to ex-
plore in detail all of the peculiarities shown in these
motions as well as to explore the causes of the in-
stability. The attempt to extract information about
the stars from the wealth of observational material
which is available, or can be obtained, can now be
greatly extended. This program is now being pursued
and results on H,R Lyrae stars will soon be reported.
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APPENDIX A. SPECIAL TECHNIQUES

A. facet of the calculation where numerical diffi-

culties arise is the treatment of the deeper regions of
the envelope. These regions are characterized by very
small changes in T (or W) and in P during the mo-
tion and yet the change in internal energy and in
potential energy associated with these small changes
are very large because of the very large mass per
zone. As a consequence, round-off errors of 10 ' in
W or 8, associated with the computer can lead to
large errors in the energetics and in the behavior of
the system. In the interest of speed, it was desired
to avoid double precision calculation so this problem
was handled by separately storing both the original
value of the TV and of 8 and also the accumulated
small changes or increments in H and B.The round-
off error in the increments was negligible and the
present value of W or 8 could always be found by a
single operation of adding the accumulated incre-
ments to the original value without having a suc-
cession of round off-errors.

The equation of state and opacity were used in the
form of a table, stored in the computer, up to
T = 3.1 )& 10' '. Above this temperature, both
helium and hydrogen are essentially completely
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ionized and the material can be treated as a perfect
gas. Also, the opacity can be approximated by a
simple analytic law in this region. The treatment
then involved using a table for all mass points
initially below 7 = 2.4 & 10' and using a simple
formula for all points initially above T = 2.4 g 10'
By assigning the same law at all times to each point
and making a (slight) change in the equation of state
and opacity at a given mass layer, the possibility of
inadvertently supplying energy by changing equa-
tions of state in time was avoided. In addition, the
storage requirement was reduced by the limited
table.

APPENDIX B. COMPARISON WITH THE
NUMERICAL CALCULATION OF I

In the first attack' on the numerical calculation of
pulsation, there were two objectives. The first was to
demonstrate the existence of the pulsation instability
associated with hydrogen ionization and the second
was to demonstrate the feasibility of direct numerical
integration of the dynamics of an envelope. Both
these objectives were reached and the existence of
exponentially growing pulsations was demonstrated
numerically. Apart from these objectives, it was de-
sired to keep the calculation as simple and fast as
possible.

The treatment differed from the present one in
several respects. The opacity law was crude, the
equation of state was somewhat approximate, and
the envelope was plane rather than spherical. In
addition, there were two significant differences in the
numerical work, First, the hydrodynamics was
treated by an implicit rather than an explicit method.
The implicit method is able to take longer time steps
than permitted by the Courant condition but is un-

able to handle shocks. The other difference lay in

the treatment of the nonlinear heat Qow equation,
It was approximated by expanding all functions of
F by Taylor series and so linearizing to get an ex-
plicit set of coupled equations for the b, T's. This
procedure necessarily is less accurate than the one in

use in the present treatment, which solves the set of
coupled nonlinear equations by iteration.

It is not known which of the two numerical dif-

ferences was responsible for the fact that there was
in the calculation a numerical damping of pulsation
which depended on the size of the time interval.

In order to get a reliable result for the exponential
growth rate, it was necessary to recalculate for sev-
eral values of At and extrapolate to zero At. Because
of this problem and because of the inability to handle
shocks, the current treatment was introduced.

APPENDIX C. THE PROBLEM OF VIBRATIONS

OF A NONLINEAR SYSTEM

Starting with the work of Fermi, Pasta, and Ulam
on numerical integration of a loaded string with non-

linear coupling, mathematical interest in such non-
linear problems has increased. "The author believes
that the experience here in solving what amounts to
2X nonlinear coupled difference equations, may be
of interest in other cases.

The essential result here is that periodic solutions
can be found. These are strictly periodic but of fixed

amplitude on1y if we confine ourselves to the large
amplitude case, but also there are almost periodic
solutions of arbitrary amplitude. Here, the designa-
tion "almost periodic" refers to the slowly growing
or decaying solutions. This demonsrration of periodic
solutions is in some contrast to the results of Fermi
et cl., who found that there was no indication of
equipartition but also no indication of periodic solu-

tions, but rather that the energy migrated from the
fundamental mode to higher modes and back again.
The different results here probably are essentially re-
lated to the presence of dissipation so that when dis-

continuities appear, they are able to lead to dissipa-
tion rather than arbitrary higher modes. Our results
in this problem remind one, in fact, of "limit cycle"
type problems except that we here deal with partial
differential equations rather than ordinary ones.

"For references, see E. A. Jackson, J. Math. Phys. 4, 686
(1963).


