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I. INTRODUCTION

Twenty-five years ago Robert Oppenheimer and
his students Robert Serber, ' George Volkoff, s and
Hartland Snyder' investigated the equilibrium and
gravitational contraction of massive stars in the ad-
vanced stages of stellar evolution when nuclear
sources of energy have been exhausted. They con-
cluded that "when the pressure within stellar matter
becomes high enough, a new phase consisting of neu-
trons will be formed. . . . For masses greater than
—, 3fs there are no static equilibrium solutions. . . .
When all thermonuclear sources of energy are ex-
hausted a suKciently heavy star will collapse. Unless
fission due to rotation, the radiation of mass, or the
blowing off of mass by radiation, reduce the star's
mass to the order of that of the sun, this contraction
will continue indefinitely. . . . The total time of col-
lapse for an observer comoving with the stellar mat-
ter is finite, . . . ; an external observer sees the star
asymptotically shrinking to its gravitational radius. "
It is a tribute to Robert Oppenheimer's genius that
these are the few statements about massive stars
accepted as true today.

In recent times there has been a renewal of interest
in massive stars kindled by the suggestion of Fred
Hoyle' and myself that stars with mass of order

10' Mo may accumulate at the center of galaxies,

~ J. R. Oppenheimer and R. Serber, Phys. Rev. 54, 540
(1988).

2 J.R. Oppenheimer and G. M. Volko6, Phys. Rev. 55, 374,
418 (1989).

3 J. R. Oppenheimer and H. Snyder, Phys, Rev. 56, 455
(1989).

4 F.Hoyle and W. A. Fowler, Monthly Notices Roy. Astron.
Soc. 125, 169 (1968); Nature 1N, 588 (1968).

or in intergalactic space, and may serve as the source
of the prodigious energies involved in emission or
storage in the radio gatazies and stars. [At our present
state of knowledge we must italicize the words gat-
axies and stars when used in connection with radio
sources. j A. general discussion of the relativistic and
astrophysical aspects of the situation has been given
in collaboration with our colleagues Geoffrey and
Margaret Burbidge. '

There is no convincing evidence that the radio
stars have lifetimes in excess of 10' to 10' years. Thus
the total energy radiated is 10" ergs, as reported
for 3C273 by Schmidts and for SC48 by Greenstein
and Matthews, ' corresponding to an observed and
theoretical' luminosity of ~10"erg sec '. It is note-
worthy that this energy requirement is well within
the nuclear resources of a star with 3f = 10' Mo
since 10' 3IIoc' ~ 10" ergs and hydrogen burning
supplies energy equivalent to l%%u~ of the rest mass
energy. Conversion of 10jo of the hydrogen into
helium in a star with iV = 10' Mo is adequate to
meet the observed luminosity requirements of the
radio stars. This leads to the interesting question
concerning the properties of massive stars under cir-
cumstances such that the proviso mentioned in the
first paragraph above "when nuclear sources of en-

ergy have been exhausted" is not applicable. Part II
of this paper discusses a limited but important as-
pect of the properties of massive stars, namely the

~ F. Hoyle, W. A. Fowler, G. R. Burbidge, and E. M. Bur-
bidge, to be published in Astrophys. J. (This reference will be
referred to subsequently as HFB2.)

s M. Schmidt, Nature 19'/, 1040 (1968).
7 J. L. Greenstein and T. A. Matthews, Nature 197', 1041

1963}.



546 Rzvrzws oz MoozaN PHvsrcs - Apau 1964

fact that hydrostatic equilibrium in such stars re-
quires a positive total energy above the rest mass
energy of the particle constituents or in nuclear par-
lance "a negative binding energy. " In the discussion
the internal structures of the massive stars will be
approximated as relativistic polytropes.

It must be emphasized that the energy storage re-
quirements (&1062ergs) found by Maltby, Matthews,
and Moffet' for the strong, extended radio sources
associated with gatcxie8 cannot be met from nuclear
resources and that gravitational energy must be
called upon in the ultimate collapse of the massive
condensations. During the early, 8tettcr stages of a
radio source nuclear energy can supply the optical
and radio luminosity requirements. The ultimate re-
quirements for sources which extend far beyond the
confines of the galuxie8 with which they are identi-
fied can be met only by gravitational energy trans-
ferred in some way from the collapsing core of the
massive star to the envelope and eventually the ex-
ternal surroundings. Part III of this paper discusses
a possible mechanism of this transfer. Part IV is a
summary.

II. BINDING ENERGY OF A MASSIVE STAR IN

HYDROSTATIC EQUILIBRIUM

Feynman' and Iben" have shown that the binding
energy of a massive star must be negative when gen-
eral relativistic terms in the equation for hydrostatic
equilibrium are appreciable. This result applies in
some cases even when the relativistic parameter
2GcV/Bc' is small compared to unity. Here, we will

attempt to understand this result in the simplest
possible way by investigating general relativistic ef-
fects in massive stars in the first-order approxima-
tion beyond the classical Newtonian terms.

The total energy E of a star exclusive of the rest
mass energy when infinitely dispersed at zero tem-
perature is equal but opposite in sign to the binding
energy E& and is given by

E = Eg ——(M —EIc—)c'.

Spherically symmetric coordinates have been used
and r has been chosen to give the "coordinate" ele-
ment of volume d V, in the usual manner. Note that
V = -', ~r' is the volume interior to r. In the third
equality in Eq. (2) we have used

dll/I, /dr = 47rpr'

where

p = pc+ u/c (4)
is the mass-energy density measured by a local ob-
server and includes both the rest mass p0 of the
"atoms" in the star plus the mass equivalent u/c'
of the internal energy per unit volume of the atomic
constituents and of radiation. The rest mass of the
star is given by

p0 1 —," dv

where a "proper" element of volume has now been
employed.

By atoms in the pI'evious paragraphwe mean
the nuclei plus the electrons necessary to balance the
nuclear charges. The rest mass-energy as well as the
kinetic energies of electron —positron pairs or other
particle pairs created by the radiation field must be
included in the internal energy u on the assumption
that the pairs wiII be annihilated on dispersal to in-
anity. In principle we calculate the binding energy
of the atomic constituents in the star at a given
time. This is then the energy required to disperse
these constituents to infinity and zero temperature
without nuclear or atomic changes. Atomic energy
changes in this dispersal can certainly be neglected
and in most but not all cases nuclear changes will not
occur during the dispersal. Any changes which do
occur must be taken into account by calculating the
binding energy relative to the nuclei which result
upon dispersal. This aspect of the problem will not
appear explicitly in what follows.

It is convenient to eliminate po by use of Eq. (4)
so that in further calculations we will use

4mpr dr .
0

(2)

In this expression 3' is the mass of the star given in
terms of the stellar radius 8 and the mass 2II„ in-
terior to r by

~=;(i 2g3XI,

rc

+ pc 1 —(I—
0

20M,
)f'C

dV+ Ed . (6)

8 P. Maltby, T. A. Matthews, and A. T. Moffet, Astrophys.
J. 18'7, 168 (1968).

9 R. P. Feynman, private communication (1968).
&0 I, Iben, Jr., Astrophys. J. 138, 1090 (1963).

We have now included the dynamical energy Ed,
which arises from bulk motions throughout the star
and which shouId properly be included in M. Clas-
sically E, = f —', pr' dV. In the classical approxima-
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tion one can neglect 26M„/rc' in the first integral but
not in the second. Then

(7)

"pdU+ Ee,E = udV—
0 0

3q dV —u E„.,

u P
e —1=——1=—x —3—

3p 3-
3 n0

2g n.

n0 '

g n.

where P is the ratio of gas pressure to total pressure, x
is the mean kinetic energy of the electrons and posi-
trons in units of kT, nc is the original number of
ionization electrons per cm' necessary to balance the
nuclear charge Z, n, is the total number of electrons
and positrons per cm', and z equals m.c'/IcT. The
quantity x is tabulated by Chandrasekhar" as U/PV.
Below 7' = 10' deg at sufficiently high densities,
x = —,', n, = np, sothat

c —1 = —-', P ~( 0 T ~( 10 deg. (10)

A.t higher temperature and sufficiently low densities,
n. )) n0, so that

e —1 = -', P[x + z —3] P 0. (»)
The situation can also occur at high temperature and
high density where n, ~ nc and x ~ 3 so that

0. In general, e starts at -', at very low tem-
peratures, rapidly rises to unity in massive stars,
reaches a maximum 1.2 around T = 2 X 10' de-
grees and returns to unity at higher temperature.
The internal energy per unit volume, u = 3~p, varies
throughout a star primarily because of the rapid in-
ward rise of pressure p and not because of the vari-

ii 8. Chandrasekhar, An Introduction to the Study of Stellar
Structure (University of Chicago Press, Chicago, Illinois,
1938},p. 347) Table 24.

where 0 is the gravitational binding energy taken as
a positive quantity. For a polytrope of index n, it is
well known that 0 is given by

63I' 3 GM'
Q = ——+ — for n = 3. (8)

5 —n 8 2 It',

In the first integral of the last part of Eq. (7) the
ratio e = u/3p is determined by the state of the
matter and radiation in each shell in the star. We cal-
culate the contributions to u and p for nuclei,
ionization electrons, electron —positron pairs and
radiation in the nondegenerate approximation which
holds for massive stars and And that

ations in e. In what follows we will neglect variations
in e and introduce its average value e for order-of-

magnitude estimates.
We now turn to the classical calculation of E

through Eq. (7). The integration over 3ep d V can be
carried out by use of the expression for the pressure
gradient in the star. In the classical case

dp
g + = fp-g = fp-.', (12)dv 031,

where p is the density, g = GM„/r' is the acceleration
due to gravity, and do/dt is the actual acceleration
of the material measured positively in the outward
direction, i.e., increasing r. In this note we will not
attempt to treat dynamic effects (dv/dt & 0) except
through the use of the variable f which has been in-

troduced in the last parts of Eq. (12). For implosion

(dv/dt ( 0), f ( 1; for explosion (dv/dt ) 0), f & 1.
As in the case of e we will introduce an average
value f

The classical calculation then proceeds as follows:

3ep dV = 3epV
V 0

3&V dp — 3pV de

= + 4rrr'efpgdr = ef "p d V = ef Q, (18)

where the approximation in neglecting variations in
c and f are now apparent, in particular de = 0. Thus

E = (ef —1) Q + E. —(ef —1) Q + E,„..
Note that the product ef must be averaged over p d V
and that the second approximation must be used
with caution. In the case of hydrostatic equilibrium
throughout a star, f = 1 everywhere, E& ——0, and

E. = (e —1) Q = —i2 PQ for T ~( 10 deg.

Thus a classical star is bound by ~s Q for p = 1 where
radiation pressure can be neglected (small stars) and
has zero binding for P = 0 where radiation pressure
is dominant (very massive stars). At temperatures
above 10' deg electron —positron pair formation can
lead to stars with total positive energy or negative
binding as indicated by Eq. (11).If this energy can-
not be supplied after the star has passed through
bound states of quasi-hydrostatic equilibrium at low

temperatures then e7 must remain less than unity.
This means that at least part of the star must con-
tract fairly rapidly and it can be argued that the
inner regions where the temperature is highest and e

is the largest will be most susceptible to rapid con-
traction.



548 H EvIEws oF MoDERN PHYsIcs ' APRIL 1964

ox, (, 3 )(, 4 p')
pC M,c'

2gM„' M,

For the general relativistic case we replace Eq. (12)
by

(16)

scale for the second order diA'erential equation for a
polytrope of index n. For example, 353 = 2.018. The
second constant applies to the radius scale and will
be designated by 8„ in what follows. For example,
Bs = 6.897. For the polytrope of index 3, P is con-
stant throughout the interior and

Note that the effective gravitational constant g di-
verges as 2G3/I, /re' —+ 1. Gravity changes from the

weakest to the strongest interaction under appropriate
circumstttnces! The first integrand in Eq. (6) con-
tains (1 —2GM„/rc')& in the denominator so we
divide Eq. (16) by this term and expand the two
sides to obtain

~10,M 10 3fo; 10 ', M 10"3fo. (22)

It will be found for all massive polytropes that P is
small compared to unity.

In any case for hydrostatic equilibrium Eq. (18)
becomes

du(&+ . ) = fn . —(&+ —.
2

c c
plV„dr .

3+;+, )dr. or)
3/I, c' rc'

Just as in the classical case, we use Eq. (17) to
evaluate the first integral in. Eq. (6). In addition the
second integrand can be expanded and the final re-
sult is

E = (sf —1)Q + —,s(f + 1) prM, dr
c

+, s(f —1) ppr dr
16m. 6'

v2+, (sf ——;) pM', dr + Es„. (18)
c

where the various averages, sf and s, involve differ-
ent "weighting" functions but we ignore these dif™
ferences.

We first investigate Eq. (18) in the case of hydro-
static equilibrium where f = 1, Es = 0. It is also
possible to make the approximation e = 1 except in
the first term where, when the term is important,
s —1 = ——', P with P the appropriate average over

P = (g„~/t )(r/T, )'" """"' r ~& 10'deg. (19)
Here tt is the mean molecular weight taken to be
constant throughout the star and T, is the central
temperature. Equation (19) can be shown to hold
approximately for massive stars (3II & 10' Mo) at
centra1 temperatures less than 10' degrees. The
quantity g ls given bys, . (nr )*.(20)

= 335(Mo/M)' for n = 3, (21)
where M. is the constant of integration for the mass

(23)
Massive stars are highly convective and with P 0
this corresponds most closely to a polytropic struc-
ture with index n = 3. For n = 3, 0 = $ G3P/8
and the integrals in Eq. (23) can be integrated
numerically using Table 6 in Eddington's The In-
ternal Constitution of the Stars."The result is

z.. . (om) +, (os")'

= —sP &- +1.3
&

forn=3, (24)3 Bg Rg

where 8, = 2G3IIjc' = 3.0 X 10' (3l/3IIo) cm is the
limiting gravitational radius of the polytrope.

Equation (24) gives the first two terms in a gen-
eral expansion in terms of the dimensionless pa-
rameter

8, 2G3I/ 32zr G' s p(3f/3Io)' '

Bc 3c -1.8 &( 10
M p

(26)
In general it is assumed that general relativity be-
comes important when this parameter is the order
of unity, or

p = 1.8 X 10"(3IIo/3II)' g cm ', (26)
so that for stars near one solar mass the critical mean
density is the order of 10"g cm ' which exceeds nu-
clear densities (~2 X 10" g cm '). However, for
massive stars, e.g., M = 10' 3fo, the critical mean
density is the order of unity, the central densities are
only ~100 g cm ' and generat relativity is seen to be
important even in the range where the atomic and

is A. S. Eddington, The Infernal Constitution of the Stars
(Cambridge IJniversity Press, Cambridge, England, 1930).
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G3M. pp
(n + l)3I. RT

8G i M 'R.
4m (n + l)a M. T.

5.83 X 10 3II
cln forn = 3.

(Tg). Mo (29)

Using Eqs. (28) and (29) the result for E.„/3IIc' for
three polytropes is

E., 9 r(8/2)1"(5/4) R,
Mc' 4 1'(11/4) pc'

19
(2 ), a'G3II T2

c'

= —2 1 X 10 T. + 5 0 X 10 "(3'/Mo)T.
for n = 0, (80)

nuclear properties of matter are fairLy mell under
stood. Equation (24) shows in addition that the gen-
eral relativistic second order term in the binding en-
ergy of a star is comparable to the nonrelativistic first
order term when

2GM/Bc = 0.8 P = (1.8/p)(Mo/M)'
=3X10' forp = -', , 3/I =103Io,

n = 8, (27)
or

p = (4.0 X 10"/p') (Mo/M) g cm '
= 8.2 X 10"(Mo/M) for p = —',

= 3.2 X 10 "gcm ' for3I = 10'3',
n = 8. (28)

The minimum in E„/Mc occurs at one-eighth this
density or 2GM/Be' = 0.15P. It will be apparent
that general relativistic considerations cannot be
neglected even during relatively early stages of the
contraction of massive stars. It @rill also be clear that
the perturbation approximation used in evaluating
the second order terms in Eq. (24) is quite accurate
under these circumstances. The structure of the star
is that of a classical polytrope. At the same time the
classical result for massive stars supported by radi-
ation pressure is a near-zero binding energy. Thus
the relativistic second order term becomes dominant
in the binding energy calculation at anomalously
large radii and low densities.

For many purposes, particularly regarding the
rates of nuclear processes, it is advantageous to re-
place the radius 8 in the collapse parameter by the
central temperature. This can be done quite simply
since the radius of a polytrope of index n is related to
the central temperature F, by

8
3II8 9L T M3 aGM

pC

= —1 6 X 10 T. + 8 8 X 10 (M/Mo) T.
for n = 8, (81)

9 1(8/2)r(7/4) 9L,
4 I'(18/4)

= —1 8 X 10 T. + 2 2 X 10 ( M/3/Io) T.'
for n = 5 . (82)

In the numerical expressions we have set p = -', since
the Grst term is important at low temperatures be-
fore hydrogen burning sets in. Equations (80), (81),.
and (82) show that the ratio of the second order term
to the Grst order term is relatively independent of
the polytropic structure.

The Grat term in Eqs. (80), (81), or (82) shows the
linear decrease with central temperature of the total
energy of the star (increase in binding energy) as the-
star begins contraction from the dispersed stage. It.
corresponds to the classical case, Eq. (15). The sec--
ond term arises from the Grst order general relativ--
istic approximation. This term is positive and leads.
at high enough temperatures to positive total en--

ergies and negative binding energies as shown by
Iben" by more exact theoretical and numerical treat-
ment of the problem. Equations (80), (81), and (82)
reproduce Iben's numerical results in good approxi-
mation. The minimum total energy is reached at

T, = 2.5 X 10'Mo/M for n = 8 (88)
and the energy returns to zero and goes positive at

T. = 5 X 10"Mo/M for n = 8. (84)
This behavior is illustrated for M = 10' 3/Io, 10' Mo,
10' 3/Io in Fig. l. In all three cases the energy neces--
sary to establish hydrostatic equilibrium becomes
large and positive before hydrogen burning sets in at
8 X 10' deg as determined by Hoyle and Fowler. '
The zero energy temperatures are 5 X 10', 5 X 10',.
5 X 10' degrees, respectively.

The second order terms in Eqs. (24), (80), (81),.
and (82) show that hydrostatic equilibrium under
general relativistic conditions (T, ) 5 X 10"Mo/3'
degrees) requires large amounts of internal energy
for pressure support. Can nuclear reactions provide
this energy'? The conversion of hydrogen into helium
releases 0.7% of the rest mass energy of that frac-
tion of the star consumed. An upper limit is set by
the fraction of the hydrogen in the central regions
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EVOLUTION OF MASSIVE STARS
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( 0.8 M) which can be burned before gravitational
red shifts terminate energy release. It is of the order
of 15%. Thus 10 ' Mc' can be made available in

= --: c —n ("".)
2 7

+ (9.2 f —4.1), + ", forn = 8Bc' 3fc'

E
3fc'

(87)

though it may well be slowed somewhat by the re-
lease of nuclear energy. Under these circumstances
we return to Eq. (18) and let, f be less than unity.
The equation then shows that the positive relativ-
istic terms can be balanced by the first term and the
total energy held constant as must be the case when
the nuclear energy is small compared to that required
for equilibrium. In Eq. (18) one can now set e 1 in
all terms. Numerically it is found that

FIG. 1. The energy required for hydrostatic equilibrium in
massive stars is shown schematically (dashed lines) as a func-
tion of the central temperature during contraction. The pos-
sible evolution during rapid contraction before nuclear burning
and collapse afterward is also shown. The instability during
nuclear burning is emphasized.

hydrogen burning and consequently

E.,/Mc' = 8.8 X 10 "(M/3IIo) T'. ~& 10 '
forn = 3. (85)

Hoyle and Fowler (1968) estimate that hydrogen
burning through the CNO-cycle in massive stars
where p, 0.01 to 0.1 g cm ' occurs at T. 8 X 10'

deg so that

M/Mo & 10' (4 'H 'He) . (86)

Helium burning and subsequent exothermic reac-
tions in the core release only 3 X 10 ' 3fc' and occur
at still higher temperatures where the equilibrium

energy required is very great indeed. Equation (85)
thus indicates that for 3f & 10' 3fo nuclear reactions
cannot supply the internal energy necessary for
hydrostatic equilibrium.

There is an additional question. For 3f & 10' 3fo
is the hydrostatic equilibrium stable or unstable?
The problem is a difFicult one when relativistic con-
siderations are taken into account but the custom-

mary classical argument" indicates that a star in
equilibrium is not stable to sudden (adiabatic) con-
traction or expansion when E,q & 0 On sudden con-
traction, the adiabatic increase in pressure is not as
great as that required for the new equilibrium so
contraction continues. Similarly, sudden expansion
is followed by further expansion.

For stars with M ) 10' 3IIo, Fig. 1 indicates that
the contraction begins before the onset of nuclear
burning. It is thus reasonable to assume that con-
traction continues during the nuclear burning al-

, = —3.8 X 10 '
(1 —f) (~™) T.

=~X10 '8* ~ sec.

Choose 8 at the moment when the minimum in

K,/Mc' is reached, namely

1 3f
0 1

~' = 0.8 8, M

= 2.5 X 10' (~™) cm. (40)

This radius is 2.6 X 10" cm for 3f = 10' 3IIo,
2.5 X 10" cm for 3f = 10' 3fo, and 2.5 X 10" cm
for M = 10"Mo. (These values are approximate for
a polytropic structure with index 3 and can be some-
what larger if the index exceeds 3, e.g., 8 10" cm

+ 6.0 X 10 (f —0.45) T. +3fo ' 3fc' '

(88)
For M = 10' 3IIs the Gist and second terms cancel
for f = 0.7 at T = 10' degrees and for g = 0.6 at
T = 2 X 10' degrees. Note that the general relativ-
istic second term vanishes and becomes negative for

f ~& 0.45.
The above results indicate that a situation inter-

mediate between hydrostatic equilibrium (j = 1)
and free fall (f = 0) can lead to a constant total en-
ergy. As f decreases it is only necessary that Es in-
crease, as indeed will be the case. Thus, as shown in
Fig. 1, rapid contraction at some fraction of the free
fall rate occurs for massive stars with 3f )~ 10' 3fo
early in their evolutionary history.

The characteristic free fall time for the outer layers
of a star originally at radius 8 is given by
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for 3I 10' Mo.) The free fall time for the outer
radiating shell of a star is thus

off 2.5 X 10 "(M/Mo)' yr . (41)

This time is 7,5 X 10 ' yr for 3f = 10' 3fo, 25 yr for
M = 10' Mo, and 7.5 )& 10' yr for M = 10" Mo,
and can be somewhat increased if polytropes with
index &3 are considered. In addition, from the argu-
ments advanced in the previous paragraph, the ac-
tual time will be somewhat longer than the free fall
time especially for the outer layers where f may be
only slightly less than unity during the initial stage
of the contraction where the greater part of the time
is spent. However, even for f = 0.99, an increase
only by a factor (1 —f) ' = 10 is obtained. Taking
all factors into account the collapse time for M =
10' Mo, for example, could be as long as 10' years.

Thus, it will be clear that only for the very highest
masses under consideration, namely 10"Mo, are the
collapse times comparable to the 10' to 10' year life-
times associated "with the stellar stage of radio
sources. For the smaller mass range it is necessary to
give up the special symmetry inherent in spherical
collapse and to look to other mechanisms which will

lead to a period of quasi-stability for the radio stars.
One possibility is rotation. A large initial rotation
can lead to a flattened disk configuration which can
fragment into smaller stars with characteristic times
of stable evolution comparable to the observed life-

times. Somewhat smaller rotations can certainly slow

contraction along the two axes normal to that of the
rotation. Contraction of the outer material along the
third coordinate will be impeded if turbulence is set

up by the catastrophic collapse of the central regions

of the star described in Part III to follow.
If it is granted that rotation, turbulence, convec-

tion, or other mechanisms set time scales for the col-

lapse of the outer layers of massive stars comparable
to those suspected for radio stars, then it is possible
to use the original estimates of Hoyle and Fowler4 to
demonstrate that the nuclear resources of the star
can meet the luminous energy requirements if not
the requirements for hydrostatic equilibrium. They
estimated the luminosity of a massive star to be

I =5X10-- —Lo
Mo

= 2 X 10" ~— erg sec '
Ão

= 2 && 10"ergs sec
' for M = 10'Mg. (42)

This estimate was based on a polytropic structure of
index 3 but, unlike the stellar radius, is relatively

independent of the index or for that matter of more
complicated possibilities in internal structure. XVhen
the calculation was published, ' optical luminosities
of this great magnitude had not been reported and
radio luminosities had been found only up to 10"
erg sec '. Subsequently' ' it was shown that the radio
stars are extragalactic and that their optical luminos-
ities are indeed of order 10"erg sec '.

Since 10 ' Mc' = 2 && 10" (M/Mo) ergs can be
made available by hydrogen burning it will be clear
from comparison with Eq. (42) that the duration is
independent of mass and is given by

r(4 'H ~ 'He) = 10"sec = 3 && 10' yr . (43)

This interval matches the estimated lifetimes for
radio stars quite well. It is not necessary that the
hydrogen burning in the central regions extend over
this interval. The stellar dimensions are such that
heat transfer by convection from the interior to the
surface and by radiation to the exterior actually sets
the time scale. In the model discussed in Part III the
nuclear energy from hydrogen burning is released in
a short interval. However, during the 3 X 10' year
interval when contraction is impeded by rotation,
etc. , the luminosity requirements must be met in toto

by the nuclear rather than by the gravitational re-
sources of the star.

Another point of interest during the quasi-stable
stellar stage concerns the classical pulsation period
of massive stars. This period is given by

III. ENERGY RELEASE IN COLLAPSE OF THE

CORE OF A MASSIVE STAR

Michel" has recently discussed the collapse of'

massive stars after the exhaustion of nuclear energy.
He argues on general grounds that the central core
of the star will collapse much more rapidly than the
outer regions so that a separation of core from enve-

lope will characterize the event. Moreover, if energy
is transferred in some manner from core to envelope

as suggested by Hoyle and Fowler, ' then the envelope

may actually explode away from the imploding core.

» H. S. Smith and D. HofHeit, Nature 198, 650 (1963).
~4 F. C. Michel, Astrophys. J. 138, 1097 (1968).

II ~ (GPp)
' ~ 10 yr

for P 10 ' and p 10 '
g cm '. This mean density

occurs for M = 10' Mo just beyond the point in the
contraction where E„=0. Smith and Howbeit" ob-
serve periods of this order in the luminosity fluctua-
tions of the radio star 3C273.
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These ideas can be clarified by reference to Fig. 2
which shows the run of certain variables: density p,
effective temperature T/pP, mass 1VI„ interior to

l.0

0.6

collapsing core, as for example by neutrino emission,
reduces its gravitational mass and in turn the ab-
solute value of the gravitational potential through-
out the envelope is reduced. For radiation support
dominant (P « 1), the envelope binding energy is
approximately zero before core collapse so the de-
crease in gravitational potential energy results in an
excess energy which is dissipated in explosion of the
envelope.

On the other hand, HFB' showed that the energy
loss by the most effective neutrino —antineutrino
production mechanism

0.4 e++e ~p+p (45)
0.2

(3
V)

0

I-
0.2

LIJ

0.6

I I I

Fxo. 2. The run of the variables, p, 7'l pl3i v» &1~& an~ g vs
radius in a polytrope with index n = 8. The mass of the core
containing all the material below g = g „is seen to be 3II+ =
0.3 M. The polar loss of gravitational radiation accompany-
ing implosion of the core and explosion of the envelope is
shown.

radius r, s,nd gravitational potential y, all in the

classical approximation. Figure 2 has been drawn for

a polytrope of index n = 3 on the grounds that this

polytrope will match the internal structure at least

approximately during the quasi-static period in which

contraction is impeded by rotation, turbulence, and

convection. The decrease in p, T/pP, and ~ip( with

increasing 8 is illustrated as well as the increase in

3II,. The acceleration due to gravity is seen to rise

linearly at small r, reach a Inaximum at r = 0.22 8
and decrease thereafter. Upon the failure of internal

pressure support the linear region will collapse

homologously (r' = g 0- r) and it can be argued that
the region within g = g . will collapse in an ap-
proximately similar fashion at a much greater rate
than the outer regions where g is smaller. The figure

shows that M, 0.3 M at g and in what follows

it will be taken that the collapsing core has this mass,
3f, 0.3 JIf.

MicheP' suggested that a loss of energy by the

does not lead to a substantial decrease in the mass-
energy content of the core of stars with M & 10'3'.
Their calculation can be simplified somewhat for
such large masses. For an observer comoving with a
representative sample of the internal matter, the en-
ergy loss from reaction (45) is

15dU 4 3 X 10
T f T y 2 (46)

dt p

For this same observer the density-temperature re-
lation in the material at hand is very closely that
given by the adiabatic relation (as the final result
demonstrates) namely

p 2.8 X 10'(3Io/3I. ) * T,'. (47)

The pressure gradient in the material is sufficient
to balance the classical gravitational term in Eq.
(16). However, during the collapse the relativistic
terms become comparable to the classical terms, im-
balance results and inward acceleration comparable
to that in classical free fall follows. This can be seen
from Eq. (12) by increasing g to 2g, setting
dp/dr —pg, thus finding dv/dt —g just as for
dp/dr 0 classically. This permits the use of the
classical free fall relation

dt~ dp
(48)

(247rGp) ' p

The total energy loss can be calculated by substi-
tuting Eq. (47) into Eq. (46) and integrating the re-
sulting d U„/dt over dt as given by Eq. (48). It might
be argued that this loss should be calculated in the
time coordinate of an external observer. However,
the red shift in du, /dt and the time dilation in dt will

compensate at least in 6rst order. It is necessary only
to set the upper limit on t equal to that Qnite value
measured by the comoving observer when the core
has reached the gravitational radius 2631,/e'. This
time can be evaluated in terms of the limiting density
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given by Eq. (26). It should be recalled that the
density throughout the core is substantially constant
before collapse (0.4 ( p/p, ( 1 from Fig. 1) and re-
mains so during the homologous implosion. Thus the
integrated energy loss is

dU, ' - dU/dt dp"dt~
(24srGp) ' P

G3I,/c' of each component of the binary. Just after
fission assume that each component collapses at the
free fall rate to this radius. To a local observer this
time is given approximately by

~ 6 X 10 "B~' ~— sec

(51)

3

~1.5 X 10 — erg g
26 ~O —1

M. (49)

For 3f, = 0.8 M, 3II = 10' 3IIo the result is a frac-
tional loss in mass by the core equal to 10 ' and
even smaller for greater masses. Reaction (45) is not
effective in the Michel mechanism for the "transfer"
of energy from core to envelope.

Gravitational radiation was suggested as a mode
of energy loss by Hoyle and Fowler' and by Hoyle"
but numerical estimates were not given. Gell-Mann"
emphasized the importance of gravitational radia-
tion particularly in the case of a rotating star where
the rotation can lead to fission of the collapsing core.
The interval during which a prolate deformation of
the core develops and ultimately results in fission
will not be discussed in. detail here and only one
feature will be emphasized. It is during this interval
that the nuclear energy of the core is considered to
be transferred by convection and radiative transfer
to the t'nner part of the envelope. Convection is
rapid, temperature gradients are large and the dis-
tances are short compared to those involved in the
previous problem of bringing energy to the stellar
surface during the collapse interval for a spherical
nonrotating star.

The amount of energy lost on the rotating binary
model by gravitational radiation can be calculated
in first order using equations given by Landau and
Lifshitz. "Let the fission result in two spherical com-
ponents of mass —,

' M, in contact with distance be-
tween their centers equal to 8&. Let B~ be substan-
tially larger than the limiting gravitational radius

» F. Hoyle, New Scientist 17, 681 (1968).
is M. Gell-Mann, private communication (1966).» L. D. Landau and E. M. Lifshits, The Classical Theory of

Eietds (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1962), p. 366.

In terms of the fractional loss per unit of rest mass
energy, this becomes

3

' = —"~1.7 X 10

where R, is now 263I./c' and is equal to the sum of
the gravitational radii of the two components. Gravi-
tational radiation is not emitted during the spherical
collapse of each binary since there is no quadrupole
moment.

It wiB be seen in the sequel that the free fall time
for each binary is short compared to the collapse
time for the binary orbit and thus at this point the
model becomes a binary of two collapsed stars rotat-
ing with the angular velocity at the time of fission.
The square of this angular velocity is

ceI = 63I,/Rr . (52)

Landau and Lifshitz" give the rate of gravitational
energy radiation as

d U,/dt = (26/5c') M'.r'cs' = —', O'M'. /c'r' (58)

and the resulting rate of contraction of the orbit as

dr/dt = —', (—2G3I./rc')'c = —', (R,/r)'c .
The local time for collapse of the orbit is

—~ ]0 — — '- sec 55

In the approximations we have set Rr ) R,. If the
orbit collapse time is to match the lifetime of radio
stars, 10" sec, then RI 500 R, for M, = 0.8 X
10' Mcc. The value for Rq is determined by the angu-
lar velocity cee and radius Rs at the time the condens-
ing material is decoupled from the surrounding
medium so that its angular momentum is conserved
thereafter. Thus, with pe = M/(-; mR,') ~ M,/R,'

2 4 2 4
COyRy = GMcBy = GOpBp

or

Ry 2copRp

~u C'gg

2 2
CVpC

; ~500.
26'M. 'pe'

(56)

For pe
——10 "g cm ' and 3I. = 0.8 X 10' Mo, Eq.

(56) yields cee = 8 X 10 "rad sec '. This relatively
low value indicates that initially the condensing sys-
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tern must have low angular velocity or must lose it
before decoupling from the surrounding medium.

The integrated energy loss is

'dU, , g dr

gf dt gg p'

= —,', (1 —8,/R~)M, c' 0.02 Mc'. (57)

In this last approximation we have set M, = 0.3 M
and 8, ( Rf.

It will be noted that one-half of the energy loss
occurs in the collapse from Jt'& to 2B,. Thus this first
order calculation is probably correct in. order of mag-
nitude. Even so, the major part of the gravitational
radiation (90% while 108, ) r ) 8,) is emitted
during the short interval at the end of the binary
orbit collapse. It marks a sudden injection of energy
just when the nuclear energy has been exhausted by
radiation during the quasi-stellar period. It is sug-
gested that this injection may lead to the develop-
ment of an extended radio source.

It will be noted that the energy loss given by Eq.
(57) is just the difference in classical binding energy
of the two components between Rf and 8,. The en-

ergy available is classical but the radiation mechan-
ism is relativistic; gravitons carry off the energy from
the core. The angular distribution of the gravitational
radiation from a rotating binary is 1 + 6 cos' 9 +
cos 0 so the polar emission is eight times the equa-
torial. The interaction of the gravitons with the en-

velope will be complicated but the expulsion of the
envelope should be polar although not to the degree
just quoted. (The gravitational force is a long range
one. ) This suggests some correspondence with the
observation that the strong, extended radio sources
consist of two components which have conserved
momentum in moving apart.

The eS.ciency of energy transfer to the envelope is
estimated" to be about 40% so that the energy of
explosion of the envelope is

E.,„~8X 10 'Mc'~10' M/Mo erg

~10'—10"'erg for M = 10 —10' Mo. (58)

In the nuclear case we found E~ 10 ' Mc'. Here the
fractional release is almost ten times as great but is
still not quite 1% of the full rest mass energy.

This result meets the energy storage requirements
of the strongest known radio sources only if the mass
of the primary energy emitting region approaches
10" Mo. Gravitational radiation may well play the
principal role in the release of energy from massive
collapsing stars in that it is about ten times as effec-
tive as nuclear mechanisms before the ultimate col-

lapsed state is reached. On conventional gravita-
tional theory no radiation of any kind can be emitted
once the gravitational radius 8„ is reached. On the
other hand, Hoyle and Narlikar" have proposed a
theory in which mass energy can be radiated after a
massive star has reached the collapsed state. Only
through additional observations and studies will it
become clear whether some modification of the ortho-
dox Einstein theory of gravitation is necessary.

At the same time many important problems re-
main. What is the origin of the large amounts of
matter involved? Do massive stars form in the
center of galaxies or in intergalactic space? Do they
form from gas clouds or collections of stars? Do radio
actors ultimately become extended radio sources, the
possibility discussed in this paper, or is there no con-
nection between them? In conventional theory, do
the first order calculations give the correct order of
magnitude for the loss by gravitational radiation?
How is the energy of the exploding envelope trans-
formed with high e%ciency into the magnetic fi.elds
and the high energy particles which are required if
the radio emission is synchrotron radiation'? Are
shock wave phenomena involved or is high energy
physics involved through the energetic decay of some
still undiscovered particle?

Twenty-five years ago Robert Oppenheimer and
his students began the study of massive stars. Today,
the strong radio sources may indicate that such
massive stars exist and, if so, further study of these
peculiar objects may reveal answers to difFicult but
interesting questions.

IV. SUMMARY

The contents of this summary pertain in particular
to a star with mass equal to 10' 3Io and in general to
stars with mass in the range excess of 10' 3IIg.

(1) In a nonrotating, spherically symmetric, mass-
ive star, general relativistic considerations become
important and gravitational collapse sets in at radius
g ~ 10" cm and central conditions p, 4 && 10 "
g cm ', T. ~ 2.5 &( 10' deg. Collapse to the gravita-
tional radius 8, 3 )& 10"cm occurs in a local time
interval 10' years for the outer regions and 1

year for the inner regions. Large red shift e.fects pre-
clude the release of significant amounts of energy
from such a rapidly collapsing system.

(2) Rotation, assisted by internal turbulence and
convection, is suggested as a possibility in impeding
rapid gravitational collapse in massive stars. Rota-

Is F. Hoy1e and S. V. Narlikar, Proc. H,oy. Soc. (London)
A273, 1 (1968).
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tion can lead to fission of the rapidly collapsing core
before collapse of the envelope has reached ap-
preciable velocity. During the development of the
prolate deformation which leads to Gssion, the core
releases nuclear energy in amount ~10 ' Me' ~ 10"
ergs into the envelope. This energy is sufhcient to
meet the luminosity requirement of the radio stars
for 10' to 10' years. Upon fission the binary com-
ponents collapse in 0.1 year to their gravitational
radii. A turbulent, quasi-stable envelope of con-
vecting, radiating material surrounds the rotating
binary system. Other more complicated nonspherical
internal structures could conceivably support the
radiating envelope.

(3) Appropriate choices for the parameters in-
volved can be made which lead to lifetimes for the
binary system also in the range 10' to 10' years. In a
relatively short interval ( 0.1 year) at the end of
this period, gravitational radiation from the rotating
binary, which does have a quadrupole moment, in-

jects energy into the envelope material in amount
10 ' 3A' ~ 10" ergs. It is suggested that the re-

sulting polar explosion may lead to the development

of the strong, extended radio sources with at least
two components.

(4) On the model discussed it is found that the
gravitational resources of a massive star exceed the
nuclear resources by only a factor of ten. Only 1 jo
of the rest mass energy is made available for all forms
of radiation. This and other problems are noted

briefly at the end of Part III.
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The Calculation of Stellar Pulsation'

ROBERT F. CH RI STY

California Institute of Technology, Pasadena, California

INTRODUCTION

In this paper we report methods of computation
which have been developed to provide a theoretical
understanding of the RR Lyrae and Cepheid type
pulsating stars. The results reported are intended to
illuminate the methods of calculation and to provide
insight into the physical processes in these stars. A
survey of pulsation in RR Lyrae models" using
these methods has also been carried out and will be
reported soon in another journal. A. survey of pulsa-
tion in Cepheid models has been initiated and will be
continued. '

* Work supported in part by the OKce of Naval Research
and the National Aeronautics and Space Administration.' R. F. Christy, Astron. J. 68, 276 (1968).' R. F. Christy, Astron. J. 68, 684 (1968).' A. N. Cox, K. H. Olsen, and J. P. Cox [Astron. J. 68, 276
(1968)] have reported some somewhat similar calculations on
Cepheid models. Unfortunately, they have not included the
deeper regions of the envelope or the hydrogen ionization re-
gion near the surface. As a result, their calculations cannot be
compared in detail with the observations.

The methods reported here arose from investiga-
tions' (referred to as I) on the energy transport in the
hydrogen ionization zone of giant stars. In that
paper, some preliminary numerical integrations of
the equations of motion were reported, and the pos-
sibility of spontaneous generation of oscillations or
pulsation was demonstrated. The machine code used
at that time was, however, not suitable for more ex-
tensive calculations and the work reported on here is
the refinement and extension of the earlier calcula-
tions.

The general idea behind these calculations is that
the observed pulsation motions in Cepheids and RR
Lyrae (and other related) stars arise spontaneously
because of the particular physical properties of the
envelopes. The relevant physical properties are the
equation of state and the opacity. The method of at-
tack is to integrate the time-dependent equations of
hydrodynamics (with spherical symxnetry) and heat
Aow by numerical means.

' R. F. Christy, Astrophys. J. 136, 887 (1962).


