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We discuss in this paper a development' of the model

put forward by Abrikosov' and Goodman' for the
description of the magnetic properties of type II
superconductors. The effect of pinning of fluxoid
filaments due to defects (see, e.g. , Anderson') are in-
corporated and the magnetization curves show hys-
teresis and size dependence as observed in practice
(see, e.g. , Livingston, ' Eim and others, ' Swartz, ' and
Hauser' and discussed theoretically by Bean' and
Kim and others' on the basis of a phenomenological
model). Following Silcox and Rollins, ' we determine
the interfiuxoid forces semi-empirically as follows. A
Quxoid structure of the Abrikosov type is assumed
with the Qux threading the specimen quantized such
that each Quxoid represents one quantum of Qux

gp." "The Gibbs free energy G can then be written:

G = ne + f(n) —ngpH/4pr,

where B = nPp The firs. t term ne in this expression
represents the energy increase due to filaments at
relatively large separations and the term f(n) is
identified with the increase in energy due to repulsive
interactions between the fluxoids as they are forced
together under increasing magnetic pressure. The
equilibrium value of n (or B) can be determined by
minimizing G and gives

df/dn = (gp/4pr)(H —H,g) .

If an experimentally determined reversible curve of
H as a function of 8 is B,vailable, then this relation
can be integrated to give f(n). If f(n) is now identi-
fied with the repulsive energy associated with two-
body interactions between the fluxoids and we further
assume for simplicity that only nearest-neighbor
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contributions are important, we obtain f(n)
nzU(a)/2, where z is the coordination number of the
lattice, a the nearest-neighbor distance, and U(a) the
interaction potential. The interQuxoid force F is
given as —(d U/da).

In order to incorporate pinning effects, we con-
sider the equilibrium of one Quxoid under forces due
to neighboring Quxoids and the forces FI due to each
one of a density p of defects per unit length of
Quxoid. For a triangular lattice, considering again
only nearest neighbors, this equation may be ap-
proximated by use of Taylor series expansions to
give for the equation of equilibrium

3a(dF/da) (da/dx) = pFv, —

where a one-dimensional variation of the Quxoid lat-
tice parameter with x the position coordinate has
been considered (this is equivalent to a gradient of
the fiuxoid density) . This can be solved for particular
forces and for particular defects and defect distribu-
tions. Once this equation has been solved, it can then
be integrated over the specimen area perpendicular
to the applied field to find the mean Qux threading
the specimen and hence the magnetization. For the
case of a linear B/H curve and pFr proportional to n
and independent of x', the result is of the form

B.' = Bp —AH'a,

where B.is the induction at x, Bp the induction at the
origin, and g is a parameter including Fr and the
volume density of defects and represents the net pin-
ning force due to the defects. It should perhaps be
noted that as defined g

' has the dimensions of
length and could be described as a second penetra-
tion depth (see, for example, Bean's model' ).

We present here a discussion of the way in which
Eq. (I), or the analogous equation, is used in de-
termining the hysteresis curve. We Grst consider the
question of the boundary conditions. The origin is
taken at the surface of the specimen. A question
arises as to the interaction of interior Quxoids with
the surface penetration layer. Fluxoids are nucleated
or absorbed at this surface layer and the details of
the interaction could be important. Fortunately
within the range of magnetic Geld H, & & H & II,2

this question can be avoided by taking our boundary
condition to be that, at the surface, the magnetic in-
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duction immediately within the specimen is the value
for the reversible curve at the same applied field.
Since the surface layer and the Auxoids in the speci-
men interior are in equilibrium in both cases, and
also the range of interaction is small (of the order of
the penetration depth) in comparison with the size
of the specimen, this enables us to avoid the details
of the interaction. This, of course, cannot be done in
the region H, &

—( H ( +H„since we have es-
sentially a situation with no counterpart in the re-
versible magnetization curve. We therefore confine
ourselves at the present to a discussion of the hys-
teresis curves in fields higher than H,I.

Under this procedure, the initial stages for a virgin
(i.e., no Aux penetration at zero field) specimen are
represented in Figs. 1 and 2. The specimen remains
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Fre. 2. Magnetization curve corresponding to Pt = 12.5.
Region ABC corresponds to Fig. 1(a), region CD to Fig. 1(b)
and region EB to Fig. 1(c).

a,nd for the purposes of this paper can be neglected.
Figure 1(a) shows the Bux as a function of position
in the specimen at successive stages of the increasing
magnetization curve. The resultant (B),„is obtained
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FrG. 1. Schematic indication of variation of Auxoid density
(identical with B,) with position at various stages of the
magnetization curve. (a) Arrow indicates increasing II (virgin
specimen). (b) Arrow indicates decreasing H. (c) Arrow indi-
cates increasing negative II (cyclic condition).

diamagnetic until the field H.I is reached. At this
stage the Geld still cannot penetrate the bulk of the
specimen since the initial Auxoids have to overcome
the pinning forces. This results in diamagnetism un-
til the magnetic pressure becomes suKcient to over-
come the forces. This eA'ect can be small, however,

by finding the average of B.across the specimen and
gives rise to section ABC of the magnetization curve
shown in Fig. 2. It is worth noting at this point that
this curve may well be shape-dependent apart from
demagnetizing effects since a thin plate, i.e., the one-
dimensional symmetry used here, could give a dif-
ferent Eq. (1) and (B),„from a cylindrical specimen.
The calculations shown in Fig. 2 are for a plate, and
a ratio H.&/H, z ——0.1 and Pt = 12.5, where 2t is the
thickness of the sample. The Bux at the surface con-
tinues to rise until the applied Beld reaches H, s at
which point the specimen becomes normal in a
catastrophic manner. In practice, this transition is
likely to be blurred by demagnetizing effects. In re-
ducing the field, similar reasoning gives the Bux pene-
tration effects shown in Fig. 1(b) and the correspond-
ing part CD on the magnetization curve shown in

Fig. 2.
In considering the magnetization curve for a speci-

men in the cyclic state (i.e., one which has been mag-
netized and demagnetized at least once), we run into
the diKculty mentioned above, that effects due to
the surface are not clearly understood in the region
—H.~ ( H ( H,&. However, we can discuss some of
the effects if we assume that the surface effects in
this region are virtually negligible. In these circum-

stances, the Aux penetrating the specimen at H, & is
equal to that penetrating at —H.~. Upon increasing
the Geld above H, 1, the specimen admits Quxoids

with the magnetic field penetrating through the
specimen in the reverse direction to the Quxoids al-



ready trapped. The interaction between fluxoids with
fields in opposite directions is attractive (this arises
from the fact that the origin of the interaction be™
tween fluxoids is due mainly to the need to minimize
the magnetic energy). If we assume that the attrac-
tive interaction occurs only between nearest neigh-
bors we arrive at a picture something like Fig. 1(c)
in which there is a "point of annihilation" or "no
man's land" of width roughly the range of the inter-
fluxoid forces lying between the two regions of Aux.
As the applied field is increased, the point moves
further into the specimen until it reaches the center
and all the reverse flux has been annihilated. The
appropriate sequence EB of the magnetization curve
is shown in Fig. 2. It seems likely that this section of
the curve would be one of great instability particu-
larly if pFr is not relatively uniform but shows non-
uniformities at distances greater than the inter-
fluxoid distance, and may correspond to the region

of maximum probability of flux jumps. '
These curves shown in Fig. 2 show a considerable

similarity to the curves observed in practice. Also,
the curves shown in Fig. 1 show a similarity to
equivalent curves shown by Kim and others. ' A num-
ber of features, however, should be noted in relating
these curves to practical curves. Two points have al-
ready been mentioned —the shape-dependence of the
curve and the problem of the surface —Quxoid inter-
action between +H.r and —H.~. A further point is
that so far only nearest-neighbor contributions have
been considered. It seems feasible to include further
neighbors at the expense of greater complexity. Such
an analysis would be possible with a digital computer
and the effects may be important at fields close to
H„where the fluxoids are closest together.

It is a pleasure to thank %. %. %ebb for many
interesting discussions and J. D. Livingston for dis-
cussions of his work.

Discussion 3

GooDM~N: These diagrams which we have just seen in-
dicating the local Aux density as a function of position dur-
ing the course of magnetization cycles reminds one very
much of the rather elegant films which Dr. DeSorbo showed
at the Toronto meeting a few years ago in which one saw
(I have in mind the film on niobium which we now know
to be a London superconductor), as the external fields in-
creased, a sharp front progressing into the superconductor.
This rather sharp front is presumably connected with the
vertical tangents in the magnetization curve which we have

seen on the screen; the pinning down of the Aux lines in
certain places was indicated by the concavity of the front
towards the outside. We also saw the Aux jumps in that film
and then finally, after the specimen had been through a
number of hysteresis loops, Dr. DeSorbo pointed out to us
that one could distinguish sometimes as many as two, or
three, or perhaps more, diRerent local values of the mag-
netic field corresponding to successive additions of Hux lines
of diferent signs. I think that perhaps some further experi-
ments of this kind would be extremely valuable.
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INTRODUCTION

Defects in type II superconductors produce mag-
netic hysteresis by interacting with, and thereby ob-
structing the motion of, the flux threads' of the mixed
state. To move flux threads it then becomes neces-
sary to build up a gradient in flux density, and a re-
sultant magnetic driving force, strong enough to over-
come the resisting force produced by the defects. A
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flux density gradient c)B/Bx gives a driving force"
per unit length on an individual flux thread of
(ngor)B/r)x)/4n. , where u(B) is dH(B)/dB for the ideal,
reversible material, and g4 is the flux quantum.

Through this balance of forces the defect —flux
thread interaction establishes a "critical" internal
flux gradient or, equivalently, a "critical" internal
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