L G. T. Trammell, Chemical Effects of Nuclear Transformations (In-
ternational Atomic Energy Agency, Vienna, 1961), p. 75; C. Tzara, in
Proceedings of Second International Conference on the Mossbauer Effect
(John Wiley & Sons, Inc., New York, 1962), p. 14.

% 8. Bernstein and E. C. Campbell, “‘Nuclear Anomalous Dispersion
in Fe% by the Method of Total Reflection,” Phys. Rev. (to be pub-
lished); see also S. Bernstein and E. C. Campbell, Rev. Mod. Phys.
36, 462 (1964) [this issue].

Maéssbauer Scattering of 14.4-keV Gamma Rays from
Fe57 as a Function of Temperature

P. Debrunner and R. J. Morrison, University of Illinois

The scattering of Fe’” gamma rays from a stainless steel foil
has been studied for temperatures of the scatterer from 20
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to 300°C. The source, Co in stainless steel, and the stain-
less steel scatterer exhibited single lines. The total scatter-
ing and the transmission of the scatterer have been de-
termined as a function of the source velocity. For the same
temperatures the line shape of the scattered radiation has
been measured by standard transmission techniques. The
energy distribution of the source was centered on the
scatterer resonance. This required that the source be
Doppler shifted by a constant velocity to compensate for
the temperature shift. From the line-shape data the ratio
of the recoilless to the nonrecoilless scattering has been de-
termined and used to evaluate f. The recoilless fraction fis
found to vary linearly from f = 0.69 + 0.01 at room tem-
perature to f = 0.51 + 0.02 at 300°C. These values are
consistent with the Debye model using 6p = (331 + 12)°K.
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The Physical Structure of General Relativity

D. W. SCIAMA
Cambridge University, Cambridge, England

1. INTRODUCTION

The formal structure of general relativity is fairly
well understood, but its physical structure is not.
This is illustrated by the following three quotations.

“Mach conjectures that in a truly rational theory
inertia would have to depend upon the interaction of
the masses, precisely as was true for Newton'’s other
forces, a conception which for a long time I consid-
ered as in principle the correct one. It presupposes

implicitly, however, that the basic theory should be
of the general type of Newton’s mechanics: masses
and their interaction as the original concepts. The at-
tempt at such a solution does not fit into a consistent
field theory, as will be immediately recognized.”
“So, if one regards as possible, gravitational fields
of arbitrary extension which are not initially re-
stricted by spatial limitations, the concept of the
‘inertial system’ becomes completely empty. The con-
cept, ‘acceleration relative to space,” then loses every
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meaning and with it the principle of inertia together
with the entire paradox of Mach.””?

“One should note that Einstein did not fully ap-
preciate the inadequacy of a local description and
the importance of boundary conditions. This is why
it is necessary to change substantially Einstein’s
statement of the basic problems of gravitational
theory; . ..”

“Enough has been said to make clear that the use
of the terms ‘general relativity,” ‘general theory of
relativity’ or ‘general principle of relativity’ should
not be admitted. This usage not only leads to mis-
understanding, but also reflects an incorrect under-
standing of the theory itself. However paradoxical
this may seem, Einstein, himself the author of the
theory, showed such a lack of understanding when
he named his theory and his publications and when
in his discussions he stressed the word ‘general rela-
tivity,” not seeing that the new theory he had cre-
ated, when considered as a generalization of the old,
generalizes not the notion of relativity but other,
geometrical, concepts.””?

“When, in a relativistic discussion, I try to make
things clearer by a space-time diagram, the other
participants look at it with polite detachment and,
after a pause of embarrassment as if some childish
indecency had been exhibited, resume the debate in
their own terms. Perhaps they speak of the Principle
of Equivalence. If so, it is my turn to have a blank
mind, for I have never been able to understand this
Principle.”

“The Principle of Equivalence performed the es-
sential office of midwife at the birth of general
relativity, but, as Einstein remarked, the infant
would never have got beyond its long-clothes had it
not been for Minkowski’s concept. I suggest that the
midwife be now buried with appropriate honours and
the facts of absolute space—time faced.”?

While the disagreement over the physical mean-
ing of general relativity stems in part from the math-
ematical difficulty of finding general solutions of
Einstein’s nonlinear field equations, the physical path
leading to these equations ought to be discernible. In
this paper I have attempted to find such a path. In
order to stress the physical ideas no mathematical
results are derived, but references are given where
necessary. In some cases these references carry the

LA. Einstein, in Albert Einstein: Philosopher-Scientist,
edited by P. A. Schilpp (Harper & Brothers, New York, 1949),
pages 29, 67.

2V. Fock, The Theory of Space Time and Gravitation (Perga-
mon Press Ltd., London, 1959), pages xv, xviii.

3J. L. Synge, Relativity: the General Theory (North-Holland
Publishing Company, Amsterdam, 1960), page ix.

physical considerations somewhat farther. I have
deviated occasionally from the standard theory,
where the physical argument seemed to demand it.
The most glaring example of this lese-magjesté is the
introduction of a torsion tensor (skew part of the
affine connection) to describe the spin angular mo-
mentum of matter (See. 2.2). I hope the reader will
agree that this innovation is actually in the spirit of
Einstein’s great theory.

2. MACH’S PRINCIPLE

There are many ways of stating Mach’s principle:
we shall adopt the form “‘inertial forces are exerted
by matter, not by absolute space.” In this form the
principle contains two ideas:

(i) inertial forces have a dynamical rather than a
kinematical origin, and so must be derived from a
field theory,*

(ii) the whole of the inertial field must be due to
sources, so that in solving the inertial field equations
the boundary conditions must be chosen appropri-
ately. :

We consider these two ideas in turn.

2.1 A Field Theory of Inertial Forces

We know from special relativity that a free particle
moves along a timelike geodesic of Minkowski space—
time. Its world-line in an arbitrary noninertial co-
ordinate system is given by

dx’

i | do’ da*
T {jk} ds ds = O
where the Christoffel symbols {7} are given in terms
of the metric tensor g¢;; by

{jik} - 10 (%

oz
and ds is given by
ds’ = gida’da’ .
The necessary and sufficient condition that we can
find a coordinate system which is everywhere iner-

tial, that is in which the inertial field {;} is every-
where zero, is that the curvature tensor of {;} is
a{,"1}

zero, that is,’®
o T {jkf {m z}

R;:kl =
m 7
- {jl}{mk} =0.

4 —or possibly an action at a distance theory in the sense
of J. A. Wheeler and R. P. Feynman [Rev. Mod. Phys. 21,
425 (1949)].

. 5 Jj A. Schouten, Der Ricci-Kalkiil (Springer—Verlag, Berlin,
924).

G 3G
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At this stage of the argument the inertial force field
has a purely kinematical origin, arising out of a non-
linear coordinate transformation from an original
inertial frame into a noninertial one. We now make
the physical hypothesis, with Mach, that the inertial
force field is part of a dynamical force field T,
which is coupled to matter in the same way as {,:}
is, and which transforms in the same way under a
coordinate transformation. This step will be recog-
nized as an example (of course the first) of the now-
fashionable ‘“‘gauge trick.””® The crucial assumption
which gives physical content to the trick is that the
new field is nontrivial, that is, it cannot be every-
where annihilated by a coordinate transformation.
This implies that the curvature tensor of I'i;is not in
general zero, that is,
(?F;:k (9__1:‘_;:1

R =—5 — — 4+ Tiplm —
ox ox

ST = 0.

This condition on the dynamical inertial force field
does not prevent us from deriving T from a poten-
tial function. In fact we can tentatively write by
analogy with (1),

%&_%)

; a [ 09y
Fﬂc=%gl(_g% + o Py

ox @

This implies, inter alia, that I'i; is symmetrical in j,
k, a restriction which we will later relax. It also im-~
plies that the potential of the inertial force field is a
second-rank tensor, rather than a scalar or a vector.”
Since this potential must be coupled to the mass or
equivalently the energy of a particle, it is clearly the
material energy—-momentum tensor 7';; which is the
source of g;;. This is confirmed by the fact that if L
is the Lagrangian density of the material system,
then 6£/d¢g% is equal to the (symmetrized) energy—
momentum tensor.?

By virtue of our assumption about the coupling of
T to matter, the equation of motion of a particle in
the I'i field is

ds®

do’ dx*

+ijﬁ—£=X (3)

6 H. Weyl, Z. Physik 56, 330 (1929). C. N. Yang and R. L.
Mills, Phys. Rev. 96, 191 (1954). R. Utiyama, Phys. Rev.
101, 1597 (1956). J. J. Sakurai, Ann. Phys. (N.Y.) 11,1 (1960).
A. Salam and J. C. Ward, Nuovo Cimento 19, 165 (1961).
T. W. B. Kibble, J. Math. Phys. 2, 212 (1961). D. W. Sciama,
Recent Developments in General Relativity (Pergamon Press,
Ltd., London, 1962), p. 415, etc.

7D. W. Sciama, Monthly Notices Roy. Astron. Soc. 113,
34 (1953); The Unity of the Universe (Doubleday & Company,
Inc., Garden City, New York, 1959).

8 F. J. Belinfante, Physica 7, 449 (1940). L. Rosenfeld.
Acad. Roy. Belg. Classe Sci. Mem. 18, 6 (1940).
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where ds is now defined in terms of the new potential
gi; by
ds’ = gida'de’

and ¢ represents a possible force exerted by the
curvature tensor and vanishing with it. This new
force will be determined later. In view of (3) we will
take g;; as the metric of space-time. This metric is
covariantly constant relative to I'ix as defined by
(2), that is,

095

dxk - P:kgtj - P,l'kgu =0.

Conversely, the constancy of the metric implies (2)
if and only if T is symmetric in j,k.° It is important
to note that our development of Mach’s principle up
to this point has made no mention of gravitation.
This aspect of the theory we can defer till Sec. 3 on
the principle of equivalence. As far as the present
argument is concerned we have simply used the
gauge trick to introduce a new field into physical
theory.

We now consider the problem of setting up field
equations for the new g;; field. We can immediately
take over Einstein’s classic arguments and introduce
the equations

R — 3 Rgi; = —«Ty; (4)
where the Ricci tensor R;; is R%., the curvature
scalar R is ¢“R;;, and « is a coupling constant. A
more physical way of arriving at the same equations
is to work in close analogy with Maxwell’s equations,

which can be written in the form

;94T AT A 1 9°A° ;
DZA'LE +——'_""—"—=J1,
9z’ + 3y’ 82° ¢ ot
04" _
ax’ ’

which together imply the conservation of charge

aJ'jax' = 0.
Analogous equations for a tensor potential g%, or
more conveniently, for the density g = (—g)¥g*
would be

ngﬁ = _Kzij

g7 /9x’ =0,
where

g:if — (_g)%Tu .

9 E. Schrédinger, Space-Time Structure (Cambridge Uni-
versity Press, Cambridge, England, 1950).



466 REvVIEwWS OF MODERN PHYsICS - JANUARY 1964

However, these equations are not satisfactory since
they imply too strong a conservation law, namely,

9T /o’ =0,
which does not permit the required interaction be-

tween the inertial field and the matter field. What is
required is rather the covariant equation

0T /ox’ = —ILT™.

If we can write this equation in the form
0T /0x’ = —a86” /o’ ,
then a satisfactory set of field equations would be
0" = —x(T" +67), ()
ag”’/9x’ = 0. (6)

We could then interpret 6% as representing the en-
ergetic properties of the inertial field itself, which by
Mach’s principle we would expect to be a source of
the inertial field just like material forms of energy.'
Papapetrou' has in fact shown that 6% is the canon-
ical energy pseudotensor of the gravitational field,
symmetrized by the usual Belinfante—Rosenfeld pre-
scription.? He has also shown that the resulting field
equations (5), (6) are equivalent to Einstein’s field
equations (4).

As is well known, these field equations can be de-
rived from an action principle, the Lagrangian den-
sity being (—g¢)*R + «£. The most general method
of variation is that now known as the Palatini
method, in which ¢;; and T, (assumed symmetrical)
are varied independently.® The g¢;; variation leads to
the usual field equations (4), while the T, variation
leads to (2) if L is independent of Tix. In general this
will not be so, and the material variables will appear
in the relation between ¢;; and T'i. This would mean
that the covariant derivative of the metric tensor
would not be zero, that is, that the metric would not
be covariantly constant. Such a possibility was
studied by Weyl'? many years ago, in an attempt to
geometrize the electromagnetic field (indeed this
theory provided the origin of the phrase ‘‘gauge
transformation’). However, it is difficult to intro-
duce spinorial variables into a space of this type,
since a local coordinate system (vierbein) does not
undergo a Lorentz transformation under a parallel
displacement. As a result one cannot define the co-
variant derivative of a spinor field in a natural way.

10 This point was already made by Einstein in his classic
paper [Ann. Phys. 49, 769 (1916)].

11 A. Papapetrou, Proc. Roy. Irish Acad. A52, 11 (1948).

12H. Weyl, Space, Time, Matter (Dover Publications, Inc.,
New York, 1951).

Since we need to be able to introduce spinor fields in
order to describe fermions this is an undesirable re-
sult. Rather than give up the Palatini method of
variation, which itself may be necessary for the
quantization of the theory,” we prefer to use the
vierbein formalism, which is explained in the next
section. We again arrive at a non-Riemannian geom-
etry in the general case, and again it is a geometry
which has been discussed in the context of unified
field theory, namely one in which T is not sym-
metric in 7,k. So far as I am aware, the introduction
of a nonsymmetrical T}, does not lead to any difficul-
ties, and indeed it has a simple physical interpreta-
tion.

2.2 The Gauge Trick in Vierbein Form

A vierbein field consists of four linearly independ-
ent vectors e;(a), defined at each point. Here the
Greek label o numbers the vectors. The vierbein
affine connexion 0;(«g) is then defined by

e’ () /92" + Tie"(a) + 0;(aB)e’(8) = 0.

This definition holds in a general affinely connected
space, where neither I'i; nor 0;(e8) have any special
symmetry properties. The skew part of T} is known
as the torsion tensor,’ and vanishes in a Riemannian
space by definition. If in addition lengths are pre-
served by parallel transfer relative to T'i, then 0;(af)
is skew-symmetric in «,8 (relative to the Minkowski
metric tensor). In this case the transferred vierbein
suffers at most a Lorentz transformation, so that
the vierbein at each point can be taken to be or-
thonormal. Moreover, we can now introduce dif-
ferentiable spinor fields into the space, defined in
terms of Lorentz transformations of the vierbeins.
The affine connection for a four spinor field ¢, for
example, will then be 3 0,(a8)y(a)v(8), where y(a)
is a Dirac matrix, and its covariant derivative will
be dy/0x" + § 0;(aB)v()v(B)¥.

The vierbein formulation is thus particularly con-
venient if one wants to study a material system
which has spin. Consider first Minkowski space with
an arbitrary vierbein field (the analog of a non-
inertial frame). The affine connection 0;(e8) then has
the form :

0;(aB) = 3 &;(v){[e(v),e()](B) + [e(8),e(v)](a)
— [e(a),e(B)]v}

13 R. L. Arnowitt, S. Deser, and C. W. Misner, Gravitation,
edite)d by L. Witten (John Wiley & Sons, Inc., New York,
1962).

4 H. Weyl, Z. Physik 56, 330 (1929).



where

eMe@]®) = a) (¢@ LD - o) 2@),

dx’

and the corresponding curvature tensor is given by

90:(eB) _ 90;(aB)
a’ ax"
+ 0;(av)0:(v8) — Ox(av)0;(¥8) = 0.

If the material system is described in a parallel
vierbein field by a Lagrangian density £ which de-
pends on the material field function ¢ and its first
derivatives dy/dx’ only, then in an arbitrary vierbein
field the Lagrangian density becomes'®

£ + §'(aB)0;(eB) ,

where s'(af) is the flux of the spin density of the ma-
terial system. We thus obtain a term in the Lagran-
gian density coupling the ‘“‘inertial” 0,(«g) field with
the material spin. We now play the gauge trick and
assume the existence of a dynamical (skew) 0;(af)
field which cannot be transformed away everywhere
by suitable choice of the vierbein field, that is, whose
curvature tensor R;;(«B) is nonzero. This dynamical
field is then coupled to the material spin just as the
vierbein field is coupled to the material energy. This
is shown by the variational formulas

Ri(aB) = Rjues(a)e'(8) =

2= ),
de' (o) 80" (eB)

The second of these formulas has an important im-
plication for the theory when expressed in terms of
the variables g:;,Ti. For if we take as the total
Lagrangian density eR + L where ¢ = det e;(a) and
R = ¢'(a)é’(B)R:j(aB), then the vanishing of the vari-
ation with respect to 0;(«B) leads to the equation':®

@

= S,(aﬁ) .

: ; il il
Ti = Sy — 3686 — 5 &S5,

where

Six = S*(aB)e;(@)ex(B) -

Thus the torsion vanishes only if the material system
has no spin. We may note in passing that the result
(7) suggests that unified field theories based on a
nonsymmetric connection have nothing to do with
electromagnetism.”

The theory of the inertial field in this vierbein form
has one direct physical consequence typical of a
theory based on the gauge trick, namely that it im-

15D. W. Sciama, Recent Developments in General Relativity
(Pergamon Press, Litd., London, 1962), p. 415.

16 T, W. B. Kibble, J. Math. Phys. 2, 212 (1961).

17 D. W. Sciama, J. Math. Phys. 2, 472 (1961).
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plies the existence of a physical force involving the
curvature tensor, which of course was identically
zero before the trick was performed. The most
familiar example of this extra force is provided by
the electromagnetic field which can be introduced by
a gauge trick involving phase transformations of the
matter variables. In this case we obtain an “affine
connection” A; and a coupling term in the Lagrangian
density J‘4; where J* is the current-density. This
coupling term then leads to the Lorentz force JiF,;,
where Fi; is the ‘“‘curvature” associated with A4,
whose nonvanishing assures that the potential A4;
leads to a nontrivial electromagnetic field. In the
same way the coupling term s(«3)0;(«3) leads to a
force of the form s'(a8)R;r(a8), as can be seen either
from the form of the contracted Bianchi identities
when there is torsion present or by a variation of the
Lagrangian in which the field variables are kept con-
stant, and the world lines of matter are varied.'®""”
This spin-curvature force is then the force X; men-
tioned earlier which deviates a (spinning) particle
from a geodesic. The existence of this force has been
known for a long time,” but the present derivation
appears to be the most natural. In addition there is
a further purely geometrical identity involving the
torsion which corresponds physically to the conser-
vation of total angular momentum (spin plus or-
bital).'®

A further point in connection with (7) is that it
would be interesting to quantize the theory with
torsion, since spin has such characteristic quantum
properties. The quantization of the conventional
theory in vierbein form has recently been studied by
Schwinger,” and that of the theory with torsion is
under investigation by Lemmer. It will also be in-
teresting to see whether in the quantized theory the
inertial waves have zero rest mass.

2.3 The Minimal Coupling Principle

A final feature of the gauge trick we have been
performing is worth stressing. In introducing the new
dynamical field we assumed that it is coupled to
matter in exactly the same way as the inertial force
field. We could, however, have added to the Lagran-
gian density a further coupling between the curva-
ture tensor and the matter field without incon-
sistency with any of our other principles. For sim-
plicity we assume that this coupling is absent.!® This
is the minimal coupling principle familiar to field

18 M. Mathisson, Acta. Phys. Polon. 6, 163 (1937). A.
Pagapetron. Proc. Roy. Soc. (London) A209, 248 (1951).

19 J. Schwinger, Phys. Rev. 130, 1253 (1963).

20 P, W. Anderson, Phys. Rev. 130, 439 (1963).
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theorists in connection with the electromagnetic field
and phase (gauge) transformations.? Its physical
significance will be mentioned later in connection

with the principle of equivalence (Sec. 3).

2.4 Boundary Conditions for the Inertial Field
Theory

Before studying the boundary conditions for the
somewhat complicated inertial field theory, we con-
sider the analogous problem in electrodynamics.?
We want to find a precise expression for the some-
what vague condition that the electromagnetic field
must be entirely due to sources. To do this it is con-
venient to express Maxwell’s equations in the
Kirchhoff form

$(p,t) = %r/v%]dv +4*1W/.{f¢]5% (i)

_ 1 Q@]_L[%]}
" an[at » LandS @

where ¢(p,f) is any component of the electromag-
netic field at the event (p,t), p is the corresponding
component of the source, S is the closed 2-surface of
a 3-volume V surrounding p, v is the distance from
p to a volume or surface element, d/dn represents
differentiation along the inward normal to S, and [ ]
represents either retarded or advanced values (but
the same in both integrals). The surface integral rep-
resents the contributions to ¢ from the sources out-
side V and from any source-free radiation that may
be coming in from or going out to infinity. It is this
last, source-free contribution that we require to
vanish. We therefore take as our boundary condition

i {05 (1) -+ %]
~afte-o.

in both the past and the future light cones. It can be
shown that in some models of the universe this con-
dition is violated (e.g., the Einstein—de Sitter model
with slowly cooling galaxies) while in others the con-
dition is automatically satisfied (e.g., the steady state
model).

We now propose a similar boundary condition for
the inertial field theory. If we take the inertial field
equations in the form (5), (6), we can again use the
Kirchhoff representation, with (3% + 6%) acting as
the source. Thus we again impose (8), with ¢ repre-

®)

21 M. Gell-Mann, Nuovo Cimento Suppl. 4, 848 (1956).
22 D. W. Sciama, Proc. Roy. Soc. (London) A273, 484 (1963).

senting any component of g% in a coordinate system
satisfying (6), and p representing the corresponding
component of the source. A detailed investigation of
(8) is now under way. The main problem is to give a
careful discussion of what is meant by S — «, that
is, of the topology of the light cone. It would appear
that Penrose’s® methods of studying conditions at
infinity are ideally suited to this problem. In the
meantime it is clear that (8) rules out the obviously
anti-Mach solutions of Minkowski space and the ex-
terior Schwarzschild solution.

3. THE PRINCIPLE OF EQUIVALENCE

We shall take the principle of equivalence in the
following form: the inertial field introduced by the
gauge trick is the gravitational field. The most ob-
vious evidence for this principle is that gravitational
fields, like inertial fields, are coupled to the inertial
mass of a particle. But the most striking evidence
works in the reverse sense, from inertial field to
gravity. For as we shall see, the inertial field theory
implies that the earth produces a static inverse
square I, force field which has about the same
strength as gravity—so if it is not gravity what s ¢t?

It is clear from the form (5), (6) of the field equa-
tions that the earth of mass M produces an “‘inertial”’
field of the form «M /+* (neglecting to first order the
contribution of x6% which is permissible if xM/c*y
<« 1). To determine the strength of this field, and to
confirm that M /c*y << 1 we need to know the value
of the coupling constant. We can estimate the value
of k by using the condition that in a noninertial frame
of reference which has acceleration «, the sources in
the universe must exert an inertial field of the ob-
served magnitude, that is, «. For our present pur-
pose a rough approximation will suffice, so we shall
again tentatively ignore the nonlinear source term
k07. We recognize from the similarity of the inertial
field equations with those of electrodynamics that
the decisive term in T% will be the acceleration-
dependent radiative field of the sources 7, namely
> kmie/c*y (ignoring factors like 1/4r and the
angular dependence of this field). Cutting this sum
off at the radius of the universe ¢r, we obtain for
the total inertial acceleration ko7, where p is the
mean density of matter in the universe. Hence we
require that

kK~ 1/pr ? ’
which gives us an estimate for the value of . Using
23 R. Penrose, Reports to Warsaw Conference on Gravita-

tion, 1962, and Cornell Conference on the Nature of Time,
1963 (unpublished).



this estimate, the acceleration produced by the static
earth ~ M/p7y*. Now 7 ~ 10 light years and p
probably lies between 107% gm/cc (a lower limit for
the density due to galaxies) and 1072 gm/cc (an
upper limit for the mean density within a typical
cluster of galaxies). Hence 1078 < ¥ < 107, so that
indeed kM /c*y < 1. With this estimate of «, the ac-
celeration produced by the earth lies between
102 em/sec? and 10° cm/sec?. It is therefore natural
to identify this acceleration with the acceleration
due to gravity of 981 cm/sec?, and thus to assert the
principle of equivalence. In this case x ~ @, and we
arrive at the well-known relation

szmly

leading to a mean density p ~ 1072 gm/sec?.

Of course the principle of equivalence is further
confirmed by the three crucial tests. The advance of
perihelion is of particular interest since it involves a
nonlinear contribution from 6 of order «*. The bend-

CONTRIBUTED PAPERS FOR SESSION VIII

Relativity Experiments Using a Rotor

D. C. Champeney, G. R. Isaak, and A. M. Khan, Uns-
versity of Birmingham, England

Experiments to test relativistic effects with a Mdssbauer
source and absorber mounted on a spinning rotor are de-
scribed. With the source mounted at the center and an ab-
sorber at the tip, a relative change in frequency of
Av/v = +K(u2/2¢?) is found with K = 1.03 + 0.03, where
Av is the apparent excess of source frequency caused by ro-
tation, #, is the absorber velocity, and c is the velocity of
light. The use of the apparatus as a sensitive variant of the
Michelson Morley experiment is described, an ether dritt
of velocity 7 past the apparatus giving rise to a linear shift
of Av/v = 4+ (s, — #s)/c? where %, and #, are the source
and absorber velocities in the laboratory reference frame.
Using the fact that with source and absorber at opposite
tips no quadratic Doppler effect is expected leaving only
the linear term, experiments are described which indicate
that the diurnal amplitude of 7 in the east-west direction at
Birmingham (England) was less than some 5 m/sec in the
second half of August 1963.

Internal Conversion Coefficient of 14.4-keV Fe57
Transition*

A. H. Muir, Jr., North American Aviation Science Center
E. Kankeleit, and F. Boehm, California Institute of Tech-
nology

Using conventional nuclear spectroscopic techniques the
total internal conversion coefficient of the 14.4-keV transi-
tion in Fe®” has been measured in an attempt to clarify the
discrepancy between a recent value oy = 9.94 + 0.60 re-
ported by Thomas ez al.! and the generally accepted pre-
vious value of Lemmer e al.,2 ar = 15 + 1. In the present
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ing of light is linear in x and is therefore less interest-
ing, although it does confirm that the gravitational
potential is a tensor. Finally the gravitational red
shift is of interest because it might be used to test
the minimal coupling principle. For in the labora-
tory test using the Mossbauer effect, the vy rays
move along a path short compared with the length
scale of the earth’s gravitational field. Hence any
nonminimal coupling that might exist between the
electromagnetic field and the curvature tensor is un-
likely to be important. On the other hand, in the
astronomical tests, the light path is long compared
with the length scale of the gravitational fields in-
volved so that the effect of a nonminimal coupling
would be more likely to be measurable. While we do
not anticipate that such an effect will be observed,
it appears to be worthwhile to continue the astro-
nomical attempts, which also of course may have
direct astrophysical interest.

( 24 R) V. Pound and G. A. Rebka, Phys. Rev. Letters 3, 439
1959).

determination both argon-methane proportional counters
and a Nal(Tl) scintillation crystal spectrometer were used
to measure the intensity of the K x rays in the Co% decay
relative to the 14-keV v-ray intensity. From this result,
Ix/I, = 558 £ 0.3, we obtain the following K-shell and
total conversion coefficients for the 14-keV transition:
ax = 8.44 + 0.5, ar = 9.51 + 0.5. This ay, which is in
agreement with the result of Thomas ez al., is compared to
other measurements and to theory. The a’s estimated from
Maossbauer experiments are all less than 10. There is some
evidence? that a (Mossbauer) is significantly smaller than
a (nuclear). This possibility is not understood.

* Part of the support for this work was provided by the U. S. Atomic
Energy Commission.
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Maéssbauer Cross Section in Metallic Iron*

S. S. Hanna, R. S. Preston, and W. S. Denno, Argonne
National Laboratory

A method has been evolved for measuring the Mossbauer
cross section foo. The total area in the absorption dip (or
dips) is measured for a thin absorber and for a very thick
one, the thickness ratio being as high as 40. As is well known
in resonant absorption processes, the area ratio for a given
thickness ratio determines the resonant cross section. In
order to minimize the effect of nonresonant background,
the absorbers are prepared so as to have very nearly the
same electronic absorption. This can often be achieved by
using samples of different isotopic content. The entire
problem, from fitting the data to a set of overlapping



