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pendence of rt and Fc on J and H. It should also
converge asymptotically to V = p.J, the voltage due
to the normal resistivity of the material.

As H is varied over a wide range, we find the rep-
resentation of resistive states in the form of Fig. 1
becomes rather constrained. This trend is readily de-
tectable in Fig. 2, where constant V lines are shown
in a logarithmic procession in the log J—log II plane.
In this representation, V(n) = const with n
J(H + Bs) will have a variable slope

d ln J/d ln H = —(1 + Be/H) ',
and the flow region (V ~ cr) will appear as equi-
distant parallel lines. The usual critical current den-
sities for a Nb38n wire sample are shown in the figure.
For the 3Nb —Zr wire sample, constant V lines are
shown up to V = 200 tsV. The region of higher power
dissipation cannot be traced because of thermal in-
stability. ' These data are reducible in the form of
V(cr)' and follow the pattern shown in Fig. 1. For the

Nb —Ta wire sample, the upper critical field H.z is
only 4 kG and the entire region of the mixed state
can readily be followed. Near H.s, the resistive be-
havior is much like that of the 3Nb-Zr wire. As H
decreases, however, the slopes of constant V lines
rise, or the values of Bs decrease. This trend becomes
much more severe for the annealed Nb —Ta sample'—
Bo is now negative for the entire region of the re-
sistive states. Thus, if the Lorentz force parameter
is to be maintained in the form cr = J(H + Bp), Bp
does not remain constant over a wide range of H
variation. As for the dependence on microstructure,
B, generally decreases as the pinning efi'ects are re-
duced. In spite of these ramifications, however, Fig.
2 clearly points out the important fact—over 5
decades of n = JH values the resistive states are
controlled primarily by the Lorentz force.

r The Nb —Ta (R-29) sample has been annealed thoroughly
to remove most of the defects. Magnetization measurements
showed, however, a considerable hysteresis, indicating that
the sample is not defect-free.
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I. ONE SINGLE VORTEX LINE

We consider an Abrikosov vortex line' in a supercon-
ductor of the "extreme second kind": the penetra-
tion depth X is much larger than the coherence length
p. Then the line consists of a small hard core (cylinder
of radius P) where the order parameter is seriously
modified, plus a large "electromagnetic region"
(radius ~ ) ) where the distribution of fields and cur-
rents is ruled by a simple London equation (Fig. 1).
We first recall how the line energy per unit length is
computed in this case. To simplify the notation we
consider only pure metals, with electrons of effective
mass m*, superAuid concentration n„and velocity v, .
(Note that for the superconductors of interest
m* ~ 10 to 100 electron masses. ) The energy is

dx dy (1/Sz ) (h' + X' curl' h),

X
' = 4n.e'/m*e'.

The minimization of 3 leads to the condition

h + )I.
' curl curl It = yols(r), (I 2)

where p& ——ch/2e is the fiux quantum and the 8 func-
tion describes the singularity on the hard core. For
r «)I, the solution of (I.2) is of the form

h = (its/2e)I, ') ln ()i/r), (I.3)
\

while for r )) ) h decreases exponentially. The energy
3 may be derived from (I.l) by a partial integration

2
7- ~,m0fcg.

,)g Sm.

3 = [rIt)curl h~], t =
]I ln —. (I.4)

The field II,I above which the thermal equilibrium
~ A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)

[English transl. :Soviet Phys. —JETP 5, 1174 (1957). corresponds to a finite density of lines in the super-
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colldilctor is
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Let us now discuss the force acting on a line moving
with velocity v along Oz. In a frame (x'ttz) tied with
the line the superQuid electrons carry a current

j = n. (—e)(—v) and are submitted to a Lorentz
force jxl't/c. The total force on the electrons is di-
rected along y and equals to —n,e(%)tpp (per unit

and s e'"' we obtain the dispersion law'

~ = (5/4m')k'ln ()/g) . (I.7)

Typically for m* = 50 electronic masses, k ' = 10 '
cm and ln ()i/$) = 4 (as expected for materials of
the NbpSn series) we get ~ = 2 X 10'. We can also
compute the eddy current damping of such a mode
from the electric fields associated with the line in
motion. The resulting Q factor of the mode is fre-
quency-independent and is of order Q —mc'/ho,
where 0- is the conductivity due to the normal elec-
trons. ' With m = 50 and o = 5 X 10", Q ~ 10'.

II. INTERACTIONS BETWEEN LINES

Starting from Eq. (I.l) one may show by a detailed
calculation that the interaction energy (per unit
length) of two parallel lines is

U~p = (qp/4tr)his, (II.1)
where h» is the field created at the location of line 2
by the line 1 alone. The energy U» is repulsive, and
of range X (decreasing at large distance r» like
r» ie "-+). It is instructive to write down the force
f» on line 2 due to line 1;

iih

FIO. 1.

length of line). The force f on the line has the op-
posite sign. Thus,

f„=n, e(v, /c)happ . (I.5)

We can now compute the vibration modes of the
line: Balancing the line tension against the Magnus
force (I.5) we get

—n,e(v„/c) pp ——3(8's./c)z'), (I.6)
+n, e (v./e) y p ——3 (8's„/r) z'),

where s(z) is the line displacement. Putting v = i~s

qo

4x Bx2

Introduce the current ji(r) which would exist in the
presence of line 1 alone; then by Maxwell's equation
we get

f = —(v'o/&)2. ~. = (tpo/c)j

Thus f» has the form of a Lorentz force.
Let us now consider an assembly of lines in an ex-

ternal field H ) H, i. The thermodynamic potential
8 (per cm') is of the form

(II.2)

2 J. Friedel, P. G. de Gennes, and J. Matricon, Appl. Phys.
Letters 2, 119 (1968).

3 In most superconductors of the second kind presently avail-
able the mean free paths are short compared with the distance
between lines (or with X) and there are no corrections of the
anomalous skin e6ect type.

g = U(B) —(B H/4~) . (II.3)
The induction B = nqpp is proportional to the line
density n. U(B) contains the line tension contribu-
tion n3 and the pair interactions (II.1).The minimum
gp of (II.3) for fixed H is realized for an induction
B(H). At low H (H slightly larger than H, &) the cor-
responding interline distance d is of order X. When
H ~ H, s (the upper critical field), d is comparable to
$ (and in this region our London-type description
breaks down). We focus our attention on the inter-
mediate region ) )& d )& P or H.i (( H «H. which
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is very important in practice for materials of the
NbsSn group). The ideal equilibrium state of the
lines corresponds to a 2-dimensional lattice. ' But it
is very important to realize that the range of the
interactions (II.1) is much longer here than the lat-
tice parameter. Thus,

(1) the lattice structure has only a very weak
effect on the energy. In fact, we calculate'

III. COLLECTIVE MODES

A. Dispersion Relations

Consider an array of lines in a field H(~ ~Oz). Each
line is displaced by a variable amount s.(r), 8„(r). In
an isotropie approximation the potential may be ex-
panded as follows:

U(B)
B' BH„ ln ad/
8n 47r ln X/$

' (II.4)

where n is a constant of order unity for all lattice
structures.

(2) the lattice has only a very weak resistance to
shear stresses: The shear modulus is (d/X)"-smaller
than the bulk modulus. For many eA'ects it is in fact
sufficient to describe the lines as an ideal two-
dimensional fluid, the stress tensor being reduced to
a scalar.

A detailed discussion of the theoretical lattice
structures and elastic properties will be given else-
where. 4 On the experimental side we might hope to
detect the "lattice" structure by electron probe
methods, but this would display the field distribution
only for thin specimens or at the surface of the super-
conductor. Another method of investigation which is
not entirely ruled out is neutron diffraction: with

0
neutrons of wavelength X„= 6 A an array of spacing
d = 360 A (corresponding to an induction B = yv/d'

20 000 0) would give a Bragg reflection at a scat-
tering angle Xn/d of order 1'. The interaction energy
is ttJt(r), where tt. is the neutron moment and the
scattering amplitude for a wave vector r is easily
deduced from the Fourier transform of Eq. (I.2).
The amplitude per atom is

1.91 n, voa= (II.6)

If n,ve ——4 and m* = 20 (m electron), this corre-
sponds to a coherent cross section 4ma' in the milli-
barn range. Of course the main interest of the neu-
trons, is that they would explore the interior of the
sample.

4 P. G. de Gennes and J. Matrieon (to be published).

3f nvc 1.91 nve
(

2sh 1+Xr 4 TIY

where 3f is the neutron mass and vo the atomic vol-
ume of the superconductor. Taking r = 2m/d and
n = 1/d' (square lattice of lines) we get
a = (1.91/16s') (ve/T~2) or, using the definition of X,

(III.1)

8H

m*c
(k along Oz), (III.4)

ce — k'Xd (k normal to Oz) . (III.5)
m*c

The mode (III.4) is circularly polarized and in the
low density limit (H —+ H.&) it coincides with (I.V).
The mode (III.5) is elliptically polarized (if k is along
Ox, s,/s„d/X «1).In the calculation of (III.5) it
is not possible to neglect K2.

The above results apply to an ideal array of lines.

If, in fact, the lines are pinned to defects in the lattice
structure, the potential g —g, will contain terms in

8.', s'„. For long wavelengths there still exist well-

defined plane-wave modes, but with a gap in the
frequency spectrum (~ = ccs + Dk'). This is im-

portant in some applications.

B.Effects on Physical Properties

We shall first discuss the surface impedance of a
superconductor of the second kind, the static Geld H

K& and K& are the Lame coefficients of the two-
dimensional "line lattice. "We may derive some rela-
tions for the K's by the general formula

1 (B, —B(H))'+ B.'+ B„', (III.2)
8n' ttz

where ti. = dB(H)/dH and ti, = B(H)/H are the
reversible permeabilities —both nearly equal to 1 in
the region X )) d.

—,'K& + Ks ——B'(H)/4s p, —B'/4s,
K, = HB(H)/4n. .(III.3)

The shear modulus Ks is small Ks K(d/X)'. From
(III.1) we derive the forces acting on each filament
in a nonhomogeneous distorted state, balance them
against (I.5), and look for eigenmodes s = see'""

We get the dispersion relations
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2
4mO. X O)H n.

P —
2

— GO~T (( 1
c n (III.S)

n„being the density of normal electrons and 7 the
collision time. This difference in behavior leads to a
rotation of the polarization plane (of a linearly
polarized incoming radiation) by reflection, of angle

P —(c/4~oh) ((a/con)
' . (III.9)

At low temperatures 0. may be small: taking'
o = 10"(resistivity 10 tsQ-cm), X = 10 ', H = 10' G,
m* = 40 electronic masses, and pp/2n. = 10' we get,

5 Note that the Geld dependence of P is not simple, since
0 probably depends on II.

being applied normal to the surface. At frequencies
well below the fermion energy gap, the dynamic
permeability ts (kp)) (with k along Oz) is controlled
by the modes (III.4) and given by

ts i~) = Bk /(&t4prn, ep)/cJ + k'H), (III.6)
where the ~ sign refers to the two states of circular
polarization. Inserting this value of p, in the Max-
well equations

curl E = —(1/c)BB/Bt,
curl H = 4proE/c,

we obtain the surface inpedance

Z~ = ai4prc(E/H), =p —— i(c—'/o)k~,

k', = w, +i, (Imk (0) . (III.7)
(eH/m'c) X' c'

One of the modes (+) penetrates only to a depth
) (p)ss/p)) & (where toss ——eH/m*c). The penetration

depth of the other mode is larger X(p)ss/p))&(2/p)
where

p 1'. Thus a measurement of J3 in elean samples
(where the pinning frequency cup is much smaller than
p)) would give direct information on the collective
modes. A more complete discussion, including the
effects of "surface pinning" of the lines, is given in
H,ef. 3. The inQuence of the collective modes on the
nuclear re80nance behavior does not seem very easy
to separate:

(1) There is a contribution to the nuclear relaxa-
tion by thermal motion of the lines. However this
term is small, extremely sensitive to the pinning
frequency p)p, and may be hidden by many effects
related to the Fermi-type excitations.

(2) There is an indirect interaction between nuclei
via the collective modes. We have also calculated this
effect, and again find that it depends strongly on the
pinning of the vortex lines.

Similar conclusions apply to the experiments on
ultrasonic attenuation. In an ideal material, the dis-
persion relation for the collective modes (III.4),
(III.5) does not intersect the phonon dispersion re-
lation (in the range of frequencies which are physi-
cally allowed). On the other hand, if there is a pinning
frequency +0, then we find a crossover at a phonon
frequency close to ~0 ~ It is not entirely impossible
that the very strange peaks observed in attenuation
vs temperature by Clairborne and Einspruch in
Nb —Zr alloys' might be explained by such crossovers
(provided that some trapped Aux existed in the
samples) .
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Discussion 2

W. F. ViNEN University of Birmingham: I wonder if I
might ask Dr. Anderson if he has considered the conse-
quences, or at least the possible consequences, of the fact
that these flux lines are vortices. The reason I ask this is
that the dynamical behavior of a vortex is not always quite
what one might think it is, as we have in fact just heard
from Dr. de Gennes. For example, if you apply a force to it,
it moves not in the direction of the force, but at right angles
to the force. My impression on thinking about this very
crudely ps that Dr. Anderson is right in the limit where the
effective force of friction between the moving flux lines and
the lattice is very large. But if it is not all that large, as in
a rather perfect crystal, then you might get a more com-
plicated efFect in which the array of lines does not move in
quite the direction you would expect it to move.

P. W. ANDERsoN, Bell Telephone Laboratories: I think
everything you say is absolutely right, but I think that, in
all the cases we are talking about experimentally, the lines
in fact are moving very slowly. Certainly where thermal
activation is involved we are just interested in the free en-
ergies of flux lines at two difFerent points. We don't care
whether they get from one to the other sideways or any
other way. In the flow region I think the motion is still very
slow, but your suggestion may nonetheless be relevant.

VINEN: Presumably it would be interesting to produce a
crystal in which the force between the lines and the lattice
is small; you could then get these efFects which seem to be
characteristic of vortices, and so get good evidence that
vortices are really relevant.

D. J. vAN OQIJEN, Phitips Research Laboratories: I want
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to comment brieRy on the experimental dynamics of the
mixed state of the type-II superconductor. The jumping of
flux lines under the influence of a changing applied mag-
netic 6eld can be demonstrated experimentally by record-
ing the noise on a pickup coil surrounding the supercon-
ductor. The noise was found to start at the onset of the
mixed state and then to decrease rather rapidly with in-
creasing 6elds. On decreasing the 6elds, the noise persisted
down to zero field thus showing a hysteresis of the mag-
netization.

ANDERsoN: What was the order of the magnitude of the
noise&

vAN OoryEN: Well, I did not measure it, but it is, I think,
10 or 100 times smaller than the well. -known Barkhausen
noise that occurs in the magnetization of a ferromagnetic.
The e6ect is rather similar to this Barkhausen noise.

C. P. BEAN General E/ectric Research Laboratory: In the
Pb—Vycor system that I showed there is also noise which is
rather flat across the audio spectrum. It is a function of the
driving and applied fields and is of the order of millivolts
for a coil of 100 turns. It is rather large —very similar to
Barkhausen noise.

ANDERsoN: I wondered if Kim wanted to comment. He
has of course observed pulses coming through his tubes in
some of these flux decay experiments.

Y. B. KIM, Bell Telephone Laboratories: We have seen
this type of pulse. Recently we have been making a system-
atic analysis of these pulses observed particularly in NbZr
tubes. Here we can really correlate flux creep with the fre-
quency of the pulses we observe. At the moment it seems
that the size of the pulses are very sensitive to the micro-
structure. For example, we observe large pulses in NbZr,
but in Nb3Sn the pulses we see are rather small. We also
tried this on a sintered niobium powder sampIe, which is
one of the best examples showing the Lorentz-force criteria,
and saw nothing. The pulses presumably exist but are
smaller than the noise leve1; our detection limit right now
is about 20 flux quanta. Therefore, if pulses exist due to flux
motion in niobium powder samples, the flux bundles must
be smaller than 20 flux quanta. This is the region in which
Anderson anticipates the theory to work. Therefore, I be-
lieve that the pulses we observe in the NbZr may be of a
diRerent kind.

B. S. CHANDRAsEKHAR, Western Reserve University: I re-
gret that Dr. Kim did not have time to go into the flux
creep and flux flow regions of his curves, but if I understand
him right, the appearance of resistance just before the final
transition to the normal state he explains ultimately be-
cause of the Lorentz force. I believe similar curves are ob-
served when the transition is measured in a 6eld parallel to
the current direction. Would you care to comment on how
one interprets the shape of the transition curves in this
case&

KIM: I believe this will be covered by the paper of Cullen,
Cody, and McEvoy. They actually applied this Lorentz-
for'ce model to the case where the field is not perpendicular
to the current direction. It seems the relation holds out very
well.

GoRTER: Perhaps I may make a point in connection with
the problems of the layer models discussed this morning.
The main difference between the results of the two kinds of
models, as far as these phenomena are concerned, would
concern the creep of small flux bundles. For the case of the

large Rux bundles (flux Row), similar results could be ob-
tained. For small flux bundles one should find a strong tem-
perature dependence at very low temperatures. It might be
worthwhile for the experimentalists to investigate the tem-
perature dependence.

VtwaN: I am slightly worried about the result (of de
Gennes) insofar as it concerns the term proportional to gz in
the dispersion relation. I stand open to correction, but I
think I am right in saying that this term is in fact simply the
helicon dispersion relation, and it appears therefore that this
term has nothing to do directly with superconductivity
with vortices. I am worried also because I tried to work this
problem out myself and got a result which diQered from the
one given here essentially in that there was an extra term
proportional to gz which involved the energy per unit
length of one of these vortices. If my result were right it
would be rather nice because this would in principle give us
a good method for measuring the energy per unit length of
one of these vortices, which would enable us to have a
rather good check against the microscopic theory.

GoRTER: In connection with the temperature depend-
ence of the specific heat —what I said this morning in an-
swer to Professor Pippard was not quite correct. For a mixed
state one should expect, in Van Beelen's computation of the
layer model, a term in the specific heat proportional to T. I
wish to mention it in view of your (de Gennes) suggestion
of this interesting T-' dependence.

RALPH BENARoYA, Argonne National Laboratory: I have
some experimental evidence in support of Bean's 6eld-de-
pendent penetration-depth theory. The experiment, in part,
consists of scanning the field between two rectangular, &-in.
thick, Nb3Sn plates while an external orthogonal field up to
20 kG is applied to them. The scanned curves, when com-
pared to calculated field distributions corresponding to
various current-loop models, were found to match diferent
ones depending on the applied field. Thus at low fields, the
current loops which are found to be concentrated on the
outer surfaces of the plates tend to migrate inwards with
the application of higher fields. Even more spectacularly,
the current loops, which at low 6elds flow in the peripheries
of the plates, seem to fill in until continuous current loops
covering the whole plate are established at higher fields.
This latter effect might be attributed to the intensity of the
Lorentz forces as the 6eld difference between the inside and
outside of the plates increases.

PtppARD: Question to Dr. Bean. It seems to me that when
one is in the irreversible phase of his model, one is feeding
in or taking out of the sample a stream of fluxoids, and I
want to know where they are when they go in. His meshes
are about 10 " cms (I think) in area, which means that,
if they were just little regions containing flux alone, there
would be 200 000 G contained in each one of these. That is
to say, the flux quantization is obviously a matter of ex-
treme importance in such a fine mesh. And what I want to
know is, has he tried to work out which long-range inter-
actions between the meshes are caused by this flux quantiza-
tion and, if so, does it have any observable effect on the
question of what are the critical currents, for example, in his
mesh units&

BEAN: I have not made calculations of the type Professor
Pippard proposes, although I have had this in mind, and I
think it is a very interesting idea.


