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In summary, the general qualitative ideas of flux
creep theory appear to be soundly based and to allow
for the qualitative and semiquantitative understand-
ing of a wide range of phenomena. Many problems
remain, both for detailed quantitative study and
even for better qualitative understanding. To list a
few of these:

(1) More detailed understanding of flux line inter-
actions, in particular a sounder basis for the "bundle"
concept and an understanding of Bs and of the pea, k
eHect.

(2) The peculiar transient pulses observed by Kim
et at.s These support the creep idea qualitatively, but
are too large to be individual lines or bundles and
too small to be instabilities. Are they avalanches'

(3) The nonlinear diffusion equation: when is it
unstable'

(4) The viscous state. This is a completely new
theoretical problem and I know of no obvious way
even of approaching it from fundamental theory.
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In earlier reports' we have shown that the critical
currents in high-field superconductors are limited by
the Lorentz force relation

8 = ~o exp (—Fs/&T);

pH'. $s JHb'l&o = Fp —go. .
Sx c (2)

a = J(H+ Bs) ~& n, ,

where a, and Bs are structure-sensitive constants of
the material. This relation obtained for J perpen-
dicular to H has been extended to other orientations
by Cullen et at.' A.lthough the relevance of the
Lorentz force in hard superconductivity was pointed
out first by Gorter, ' a more definitive formulation of
the problem was proposed by Anderson4 in'his Aux

creep theory. This theory basically assumes the
GLAG-type superconductors, but the phenomena in-
volving transport currents are described primarily in
terms of the concept of thermally activated motion
of Aux structures. More recently, our measure-
ments' have been extended into what we may call
the "resistive state, " far above the critical state
specified by the relation (1).Here again, we find the
prevalence of the Lorentz force parameter n, These
results are brieAy summarized in this paper.

According to the Aux creep theory, ' the Aux struc-
tures in a GLAG-type superconductor move with a
rate proportional to
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In tube magnetization experiments, ' for example, the
critical state is attained when the above rate falls
below a practically observable limit. The exponent
in (2) then becomes a constant value and a therein
is identified experimentally as n. . For n ( a„ the
logarithmic decay of J as predicted by (2) has been
verified with a high degree of accuracy. For a ) a„
however, the rate (2) is inconveniently large and J
is externally supplied to hold u at a desired level. In
this situation, the Aux creep generates an uncom-
pensated emf proportional to (2).

Figure 1 shows typical voltages observed across a
3Nb —Zr wire sample —plotted as a function of H for
different sets of constant J's (J H). Although the
strong dependence of V on J and H is evident, the
raw data do not display readily recognizable sys-
tematics. If, however, V is plotted as a function of
o. = J(H + Bc) with Bs ——0.5 kG as determined
from the data, ' V(H)'s for different J's all coalesce
to a single curve within the scatters shown by the
horizontal Gags. This indicates that at a given tem-
perature V is a function of a only. According to (2),
the slope

c) inV/cia = q/kT

is expected to be constant. As n increases, however,
the observed slope decreases until V is almost linear
in a. In this region the prevailing process is visualized
as "flux flow" rather than "flux creep. '" Since the
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observed slope of in V(o.) changes in a gradual man-
ner, these two processes seem to overlap over a wide
range of the resistive state.

To discuss this situation, we introduce the notion
of velocity of flux lines. In a GLAG ty-pe supercon-
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the flux flow region is expected to be approximately
linear in a. In the creep region, the velocity of flux
lines may be expressed as

'U„„, = ((os/N) exp [—(Fo —qa)/kT], (8)

where X is the number of pinning centers per unit
length in the direction of flux flow. When 'U„„, be-
comes comparable to 'UfI.„, the velocity of flux mo-
tion is more correctly

[&/Unow + &/'Uoreep]

which leads to a voltage expression

V='UH = (Ha&c/eN) exp [—(Fc —qa)/kT]
1 + (c(i&c/gC'sX J) exp [ (Fp —qu)/kT]
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IIIG. 1. Voltages observed across a 3Nb-Zr wire sam le at
4.2'K. V(H)'s for diferent sets of constant J's and V(n with
u = j(H + Bp), Bp = 0.5 kG.

ductor, each flux line experiences the Lorentz force
per unit length

F = JCp/c,

where CIc is the flux unit hc/2e and J is transverse to
the direction of the flux line. In the absence of
pinning, the flux line moves in the direction of the
force. But, because of interactions of various sorts,
the Qux line will encounter a viscous resistance and
may attain an equilibrium velocity. As a simple pos-
sibility, we assume that

'Un.„——rIF = (riCs/c) J .
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rf(H, T) is a parameter characterizing the bulk auper-
conducting properties, and ita dependence on H and
T should be amenable to theoretical calculations.
The power dissipation per unit volume arising from
the viscous Qow of Qux lines is given by. 10 2 IP3 s S I04

H IN GAUSS

P = nF'U&j, ——(rICe/c')(nC, )J', FIG. 2. Resistive states for various wire samples, all at
4.2'K. Each curve represents a set ofJ and K values that yield
a constant voltage.where n is the number of Aux lines per unit area and

n40 = B H. Using the relations P = VJ and
n = JH/c, we obtain While this expression qualitatively accounts for the

observed resistive behavior, including the gradual
decrease in cIln V/Bo. , its application is rather limited

If the H dependence of g is a mild one, the voltage in at present since very little is known about the de-
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pendence of rt and Fc on J and H. It should also
converge asymptotically to V = p.J, the voltage due
to the normal resistivity of the material.

As H is varied over a wide range, we find the rep-
resentation of resistive states in the form of Fig. 1
becomes rather constrained. This trend is readily de-
tectable in Fig. 2, where constant V lines are shown
in a logarithmic procession in the log J—log II plane.
In this representation, V(n) = const with n
J(H + Bs) will have a variable slope

d ln J/d ln H = —(1 + Be/H) ',
and the flow region (V ~ cr) will appear as equi-
distant parallel lines. The usual critical current den-
sities for a Nb38n wire sample are shown in the figure.
For the 3Nb —Zr wire sample, constant V lines are
shown up to V = 200 tsV. The region of higher power
dissipation cannot be traced because of thermal in-
stability. ' These data are reducible in the form of
V(cr)' and follow the pattern shown in Fig. 1. For the

Nb —Ta wire sample, the upper critical field H.z is
only 4 kG and the entire region of the mixed state
can readily be followed. Near H.s, the resistive be-
havior is much like that of the 3Nb-Zr wire. As H
decreases, however, the slopes of constant V lines
rise, or the values of Bs decrease. This trend becomes
much more severe for the annealed Nb —Ta sample'—
Bo is now negative for the entire region of the re-
sistive states. Thus, if the Lorentz force parameter
is to be maintained in the form cr = J(H + Bp), Bp
does not remain constant over a wide range of H
variation. As for the dependence on microstructure,
B, generally decreases as the pinning efi'ects are re-
duced. In spite of these ramifications, however, Fig.
2 clearly points out the important fact—over 5
decades of n = JH values the resistive states are
controlled primarily by the Lorentz force.

r The Nb —Ta (R-29) sample has been annealed thoroughly
to remove most of the defects. Magnetization measurements
showed, however, a considerable hysteresis, indicating that
the sample is not defect-free.
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I. ONE SINGLE VORTEX LINE

We consider an Abrikosov vortex line' in a supercon-
ductor of the "extreme second kind": the penetra-
tion depth X is much larger than the coherence length
p. Then the line consists of a small hard core (cylinder
of radius P) where the order parameter is seriously
modified, plus a large "electromagnetic region"
(radius ~ ) ) where the distribution of fields and cur-
rents is ruled by a simple London equation (Fig. 1).
We first recall how the line energy per unit length is
computed in this case. To simplify the notation we
consider only pure metals, with electrons of effective
mass m*, superAuid concentration n„and velocity v, .
(Note that for the superconductors of interest
m* ~ 10 to 100 electron masses. ) The energy is

dx dy (1/Sz ) (h' + X' curl' h),

X
' = 4n.e'/m*e'.

The minimization of 3 leads to the condition

h + )I.
' curl curl It = yols(r), (I 2)

where p& ——ch/2e is the fiux quantum and the 8 func-
tion describes the singularity on the hard core. For
r «)I, the solution of (I.2) is of the form

h = (its/2e)I, ') ln ()i/r), (I.3)
\

while for r )) ) h decreases exponentially. The energy
3 may be derived from (I.l) by a partial integration

2
7- ~,m0fcg.

,)g Sm.

3 = [rIt)curl h~], t =
]I ln —. (I.4)

The field II,I above which the thermal equilibrium
~ A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)

[English transl. :Soviet Phys. —JETP 5, 1174 (1957). corresponds to a finite density of lines in the super-


