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finite time interval t ) 0. This amplitude deter-
mines the probability to find the system in a certain
Gnal state at a certain time —but the details of how
or when the system reached that state are not or-
dinarily accessible to observation.

Of course, one can measure the emitted gamma ray
and thus determine that the decay has occurred in a
certain interval of time. Furthermore, one can select
experiments which detect only those gamma rays
emitted in times much shorter than the half-life r of
the nuclear excited state involved (r 10 ' sec). In
resonance scattering such emission processes, how-

ever, constitute only a small fraction of those pro-
cesses which are of experimental relevance. But in
selecting such fast processes as those representing the
time of momentum transfer in emissionin each single

case, the description of nature is being carried beyond
the limits of quantum mechanics.

One should note that the arguments presented
above, showing that one can not infer the suddenness
of the momentum transfer in a general process from
a knowledge of the shape of the incident radiation

pulse, do not vitiate the conclusion reached in part
(a) with regard to the cloud-chamber example. In
that case the suddenness of the momentum transfer
could be experimentally verified by observing the
sharp bend in the track of the free proton, a type of
measurement not available in the case of low energy
resonance scattering by nuclei bound in crystals,
where it is in general not even possible to determine
which particular nucleus received the momentum.

(c) The evaluation of zero-phonon transition

probabilities for gamma resonance scattering in-
volves an integration over times of the order of the
lifetime of the nuclear state involved, as has been
pointed out by Inglis" and by Boyle and Hall. "This
shows that there is no need for a concept of a sudden
momentum transfer and that there is suKcient time
for the recoil momentum to be transferred to the
lattice via the binding forces during the scattering
process.

(d) The transfer of the recoil energy to a single
nucleus or a few nuclei making up a piece of the
crystal can not be measured on account of the zero
point energies —as pointed out in Sec. II. Moreover,
the times involved in verifying the conservation of
energy and momentum by measuring these quanti-
ties are long compared to the time of propagation of
disturbances through the crystal at the velocity of
sound. It therefore is dificult to see how the impulse
momentum transfer picture can, from the quantum-
mechanical point of view, contribute to an under-
standing of how momentum is transferred to the
crystal.
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Lattice Dynamical Aspects of the Resonance

Absorption of Gamma Rays by Nuclei Bound in a Crystal
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It is quite common in studies of the resonant emission

or absorption of gamma rays by nuclei bound in a
crystal that the emitting (or absorbing) nucleus is
either an impurity in a host crystal or the crystal is
itself imperfect. When this is the case, it is necessary
in analyzing the results of such experiments to take
into account the modification of the lattice vibrations
of the host crystal caused by its departure from
ideality. These modifications can give rise to inter-
esting effects in the absorption spectrum of the per-
fect host crystal and, once the origins of these eGects

are understood, a proper analysis of experimental re-
sults can yield worthwhile information about the
dynamics of the host crystal and of the impurity
atom.

At the present time there appear to be three
dynamical quantities of interest in connection with
the resonant absorption of gamma rays by nuclei in
crystals. These are the "no-phonon" absorption
cross section, the "one-phonon" absorption cross sec-
tion, and the second-order Doppler shift. The first of
these is the cross section for processes in which the
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resonant nucleus absorbs a gamma-ray photon and
no energy is exchanged with the host crystal, that is,
the vibrational energy of the host crystal is the same
after the absorption takes place as it was before it.
This recoilless absorption (or emission) of a gamma-
ray photon by a nucleus bound in a crystal is what
in fact is called the Mossbauer effect. ' The second
quantity is the cross section for processes in which
the gamma-ray photon is absorbed, and the energy
of the host crystal increases or decreases by one
quantum of vibrational energy. The third eGect is
the change in the energy of the emitted gamma ray
due to the fact that the vibrational energy of the host
crystal increases because of the decrease in the mass
of the emitting nucleus during the emission process.

If the crystal, whether perfect or containing de-
fects, can be adequately described by the harmonic
approximation, then a calculation of the no-phonon
spectrum requires essentially the calculation of the
mean square amplitude of the resonant nucleus,
while the second-order Doppler shift is proportional
to its mean square velocity. The one-phonon ab-
sorption spectrum is essentially the Fourier trans-
form of the displacement autocorrelation function for
the resonant nucleus.

In this survey, among other things, I should like
to sketch the theoretical arguments which justify
these remarks and show how one can calculate these
dynamical properties of the resonant nucleus in the
case that it is a substitutional impurity in the host
crystal. Since a perfect crystal, that is, one in which
the resonant nucleus is one of the atoms of the host
crystal, is just a very special case of an imperfect
crystal, the results I will obtain contain the corre-
sponding results for a perfect crystal as special or
limiting cases. I will illustrate the results of the
theoretical analysis with the results of numerical cal-
culations based on them for various models of
resonant nuclei in various models for the host crystal.
For simplicity, I will assume only Bravais lattices in
my discussion, but this is an unessential assumption.

The starting point for a lattice dynamical discus-
sion of the resonance absorption of y rays by a
nucleus bound in a crystal is the Lamb —Mossbauer
formula for the cross section for the absorption of a
y ray of energy E by a nucleus in a crystal"

—PEna.(E) = '- P'Z
naza Z
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'"' '"'"I )( I

'"' '"'"I )
(E,

~ R. L. Mossbauer, Z. Physik 151, 124 (1958).
z W. E. Lamb, Jr , Phys. Rev. 5. 5, 190 (1939).

In this equation E0 is the energy difference between
the final and initial nuclear states of the absorbing
nucleus, E and E„are the energies of the eigenstates
Im) and In) of the crystal, respectively, P is the nat-
ural width of the excited state of the nucleus, p is the
momentum of the y ray, R(l) is the instantaneous
position vector of the absorbing nucleus, Z is the
crystal's partition function, and 0-0 is the resonance
absorption cross section for the absorbing nucleus.

With the aid of an integra, l representation for the
denominator of this expression, we can manipulate
Eq. (1) into the form

~ (E) = z~V

where x(l) is the position vector of the mean position
of the absorbing nucleus, while u(l) is its displace-
rnent from the mean position. We have also intro-
duced the notation

(1/~)p = k,
A&a = E —Ep, y = I'/2A,

while u(l;t) denotes the Heisenberg operator

(4)

(5)

(l )
i(Ilk)H

(l ())
—i(tlk)H

(6)
and II is the Hamiltonian for a crystal containing a
defect. The angular brackets in Eq. (2) denote an
average over the canonical ensemble of the crystal.

There are now three steps we must take to rewrite
Eq. (2) in a form more suited for actual calculations.
For a harmonic crystal it is readily verified that the
commutator of k u(l;t) and k u(l;0) is a c number.
We can then use a special case of the Baker —Haus-
dorff formula' to write

(exp [—zk u(l;t)] exp [zk u(l;0)])
= (exp [—zk [u(l;t) —u(l;0)]]&

&& exp [-', ([k u(l;t), k u(l;0)])] .

Since we are dealing with a harmonic crystal we can
simplify the first thermodynamic average and write
lt as

z H. F. Baker, Proc. London Math. Soc. 3, 24 (1904); F.
Hausdor8, Berichte Sachsischen Akad. Miss. (Math. Phys.
El.) Leipzig 58, 19 (1906); see also, G. H. Weiss and A. A.
Maradudin, J. Math. Phys. 3, 771 (1962).

)& (exp [—zk u(l;t)] exp [zk u(l;0)]) . (2)

In writing this expression we have made use of the
fact that in a Bravais crystal the position vector
R(l) can be written as

R(l) = x(l) + u(l),
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(exp [—sk [u(l;t) —u(l;0)])
= e p [—l ((k.[u(l;t) —u(l o)][')] (8)

This theorem is known in lattice dynamics as Ott's
theorem4 or sometimes as Bloch's theorem. ' Com-
bining Eqs. (2), (7), and (8) we ca,n write the ab-
sorption cross section as

where

(E) y —sM
dt exp (i~t —p~t~)

&& exp [(k u(l;t)k u(l;0))],

23I = -', ([k u(l;t)]') + -', ([k u(l;0)]'),
= ([k u(l)]') .

(10)

(11)

In passing from Eq. (10) to Eq. (11) we have used
the assumed time independence of the crystal Hamil-
tonian. The factor e '~ is called the Debye —Wailer
factor. '

The expression given by Eq. (9) is easier to work
with than the one given by Eq. (2) because it con-
tains the simpler correlation function. It is exact for
a harmonic crystal, whether it be a perfect crystal or
imperfect.

The third step we must take is to expand u (l;t) in
terms of the normal coordinates of the crystal,

where we have put

n, +1 ss„,=e7

r4 = [e
""'—1]

'

[k B'*'(l)]' e* '"'
23f l (u, qt'*"

and have used the generating function for the modi-
fied Bessel functions of the first kind, the Bessel func-
tions of pure imaginary argument'

e'"+" ' = Q I„(x)y"

n, is the mean number of phonons in the sth mode at
temperature 7 = (kP) '. The Bessel function de-
composition of the exponential of the displacement
autocorrelation function given by Eq. (13) was first
given by Ott, 4 and has subsequently been employed
by Pope, ' Zemach and Glauber, ' and Kaufman and
Lip kin."

When we substitute the result given by Eq. (13)
into Eq. (9), the absorption cross section for those
processes in which there is no exchange of energy be-
tween the resonant nucleus and the host crystal is
given by the terms in Eq. (13) which are independent
of e'""and e '"".We therefore obtain the result that

Z e',, + (V )'e '""
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e
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4 H. Ott, Ann. Physik 23, 169 (1935).
s F. Bloch, Z. Physik 74, 295 (1932).
s P. Debye, Ann. Physik 43, 49 (1914); I.

tion, Uppsala, 1925.
Wailer, disserta-

( ) '. (s)

u. (l;t) = I(- i Q „(b,e *""+b,e'"") .
I d (a4)

(12)

In this equation Ot labels the Cartesian components,
JII& is the mass of the Lth atom, co, is the frequency of
the sth normal mode, and B"(l) is the associated
unit eigenvector. b~ and 6, are the phonon creation
and destruction operators for the eth normal mode.
By the use of this normal coordinate expansion we
can write the exponential of the correlation function
appearing in Eq. (9) as

."'(E) = -', oye
'" g I (2c',), , (16)

7 +~
If we use the fact that the argument of the Bessel
functions 2c,' is of O(X ') for the wavelike or in-band
modes of the perturbed crystal, where X is the num-
ber of atoms in the crystal, while it is of O(1) for any
localized modes that might be present, " from the
small argument expansion of Ic(x) we can show di-
rectly that all factors in the product in Eq. (16) which
correspond to wavelike modes reduce to unity in the
limit of large N, and the product in Eq. (16) needs
to be taken over the localized modes only. If there
are no localized modes, the Bessel function factor is
absent. This is the case for a perfect crystal or when
the resonant nucleus is a heavy impurity.

&This result follows from the substitutions z = ix and
t = —iy in the generating function for the ordinary Bessel
functions given in G. N. Watson, Besset, Functions (Cambridge
University Press, Cambridge, 1944), p. 14. The de6nition of
I„(z) given on p. 77 of this reference is also required.

s N. K. Pope, Can. J. Phys. 30, 597 (1952).
9 R. J. Glauber and A. C. Zemach, Phys. Rev. 101, 118

(1956).
~s B. Kaufrnan and H. J. Lipkin, Ann. Phys. (N.Y.) 18,

294 (1962).
~ See, for example, A.. A. Maradudin, Westinghouse Re-

search Laboratories Scienti6c Paper No. 63-129-103-P9 (un-
published).
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The function rr".'(E) consists of a very sharp peak
of width 2y (the "Mossbauer pip") whose height or
intensity is modulated by the product of the Debye-
Waller factor and the Bessel functions. The Debye-
Waller factor gives the probability of those processes
in which the initial and final states of the crystal are
identical. The product of Bessel functions represents
the contribution to the cross section from processes
in which the local mode phonons are excited and de-
excited in all possible ways such that the net energy
change of the crystal is zero. However, the line shape
given by Eq. (16) strictly speaking is not Lorent-
zian. "This is because the frequency of the y ray, ~,
and its wave vector k are not independent quantities.
Quite apart from the Bessel function factors, the line
shape is, therefore, a product of a I orentzian func-
tion and a displaced Gaussian, the Debye —Wailer
factor. In what follows I will refer to the cross section
given by Eq. (16) as the "no-phonon" absorption
cross section.

In a similar fashion, we can obtain the cross sec-
tion for all processes in which the resonant nucleus
:absorbs a gamma-ray photon, recoils, and imparts
to or takes up from the crystal one quantum of vi-
brational energy. This cross section arises from all
terms in Eq. (13) which are linear in e'"" and e '"".
After some manipulation, substitution of these terms
into Eq. (9) and the use of the first line of Eq. (13)
yields the following result for this "one-phonon" ab-
sorption cross section

dte'"' " '(k u(t;f)k u(t;0)),

= —', oeye
'" Q II' Ie(2c',) I& (2c'„)

P sQp
1.m.

(17)

~2 I am indebted to Professor R. Barrie for this remark.

(18)

where or& is the maximum frequency of the perfect
host crystal. The separation of the cross section into
the indicated frequency ranges is possible because
the wavelike modes have no frequencies greater than
coL,, while the localized modes have no frequencies
smaller than ter, . From Eq. (18) we see that the

localized modes contribute "Iorentzian" peaks of
the same width as the Mossbauer pip at y-ray en-
ergies which are equal to E = Eo ~ Aor„. The primes
on the products in Eqs. (17) and (18) indicate that
they extend over the localized modes only, while the
initials "l.m." on the sum in Eq. (18) indicate that
it extends over only the localized modes also. Since
the expression for the localized mode contribution to
the one-phonon absorption spectrum has a trans-
parent form I will have comparatively little to say
about it in the remainder of this survey.

As it stands, Eq. (17) gives an exact expression for
the "in-band" contribution to the one-phonon ab-
sorption cross section for a large crystal treated in
the harmonic approximation. However, from a purely
practical point of view, it is more complicated than
it needs to be. If we make a single approximation we
can obtain a result which has a remarkably simple
form. This approximation consists of letting y go to
zero. This is by now a standard approximation in
the calculation of the contributions to the absorption
cross section from all processes past the zero phonon
processes. "It is also a very good approximation. For
a popular Mossbauer isotope, Fe", y has the value
3.46 X 10' sec '."A typical value for the maximum
frequency of a crystal is of the order of 10" sec '.
Thus, except for frequencies in the bottom 10 '%%u~ of
the one-phonon absorption spectrum, the condition
y « ~ is well sa, tisfied, and setting y equal to zero in
Eq. (17) causes negligible error. I will make this ap-
proximation in what follows.

To this approximation, therefore, there are three
dynamical quantities which are required for a de-
scription of the resonance absorption cross section:
the exponent of the Debye —Wailer factor, 23f; the
Fourier transform of the displacement autocorrela-
tion function for the resonant, impurity nucleus; and
the arguments 2@2 of the Bessel function factors ap-
pearing in the no-phonon and one-phonon cross sec-
tions. These quantities are all related, and I now
turn to their evaluation.

Theoretical calculations of these properties have
been carried out by several workers for a number of
different impurity resonant nuclei in a variety of
host crystals ""The .number of ways in which these

I3 K. S. Singwi and A. Sjolander, Phys. Rev. 120, 1093
(1960).

'4 The 1IIIossbauer Eeet, edited by H. Frauenfelder (W. A.
Benjamin, Inc. , New York, 1962), pp. 37 and 47.

Yu. Kagan and Ya. A. Iosilevskii, Zh. Eksperim. i Teor.
Fis. 42, 259 (1962); 44, 284 (1962) [English transl. : Soviet
Phys. —JETP 15, 182 (1962); 17, 195 (1963)].

6 A. A. Maradudin, in 196'8 Brandeis Summer Institute
Lectures in TheoreticaL Physics [W. A. Benjamin, Inc. , New
York, to be published], Vol. II.

'r W. M. Visseher, Phys. Rev. 129, 28 (1963).
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calculations have been performed is approximately
equal to the number of these investigators, and some
of the techniques used are quite sophisticated. How-
ever, as long as we work within the harmonic ap-
proximation, a rather simple method, which makes
use of the Green's functions of Lifshitz22 and of
Montroll and Potts, " suKces for the calculation of
the dynamical properties required for a determina-
tion of the no-phonon and one-phonon absorption
cross sections.

It is convenient to begin a calculation of these
dynamical quantities by first obtaining a formal ex-
pression for the I'ourier transform of the displace-
ment autocorrelation function for the resonant
nucleus. If we make use of the normal coordinate
transformation, Eq. (12), we can write the correla-
tion function itself as

present context can be expressed by the equation

Q B~"(l)f(a)', )Bp'(l') = [f(D)](( . (22)

for a wide class of functions f(z). In this equation D
is the 3X )( 3X dynamical matrix for the perturbed
crystal; that is, it is the matrix whose eigenvalues are
the squares of the normal mode frequencies, and
whose eigenvectors normalized to unity are the
IB'-'(~) f:

Z D.p(ll')B~p'«') = -'.B."m.
I'P

The elements of the matrix D are labeled by the in-
dex pairs (Lo.) and (l'P), where l and l' label the atoms
of the crystal, while a and P label the Cartesian axes.
Applied to Eq. (20) this theorem yields the result
that

(u (f;t)up(l;0))

g B"(l)B'p'(l)
[( + 1)

—...~ ~
s s

I p(l;(v) = ~ [n((o) + 1] sgn u)[5((o'I —D)](( (24)
aP

where I is the 3X &( 3X unit matrix.
(19) For computational purposes it is convenient to ex-

f we now take the pourier transform of this ex- press the 5-function matrix in the form

pression and make use of some simple properties of
Dirac's 8 function, we obtain the result that (»)

I p(l;a)) = Chs'"'(u (f;t)up(L;0)) = ~
X [n((o) + 1] sgn (v Q B '

(l)5 ((o —(u,)B'p' (l), D=M'@M', (26)

The matrix D is related to the matrix of the atomic
force constants W by

where

n(ra) = [ep'" —1] '.
(20) where M is a diagonal 3X X 3X matrix whose

(lo. ,lo.) element is the mass of the lth atom. We can,
therefore, write

As it stands, the result given by Eq. (20) is not
very useful because it contains both the normal mode
frequencies of the perturbed crystal and the associ-
ated eigenvectors. While it is possible to calculate
these quantities and use them in Eq. (20),"it is much
easier to eliminate them altogether and to re-express
Eq. (20) in a form in which only functions that we
know something, about appear. We can do this if we
make use of a theorem due to Born~ which in the

rs I. Wailer, Arkiv II'ysik 24, 495 (1968).
~9 P. G. Dawber and R. J.Elliott, Proc. Roy. Soc. (London)

A273, 222 (1968).
00. Lehman and R. De Wames, Phys. Rev. 131, 1008

(1968).
2& A. A. Maradudin, P. A. Flinn, and J. M. Radcliffe, Ann.

Phys. (N.Y.) (to be published).
22 An extensive bibliography of the work of I. M. Lifshitz

and his coHaborators is given in I. M. Lifshitz, Suppl. Nuovo
Cimento 3, 716 (1956).

~3K. W. Montroll and R. B. Potts, Phys. Rev. 100, 525
(1955); 102, 72 (1956).

24 M. Born, Rept. Progr. Phys. 9, 294 (1942—48).

G = [Mpo)' —Cp] ', (28)

while the matrix U is most conveniently given by the
solution of the equation

U = 6 —6(AM(o' —A4)U, (29)

and is the Green's function for the perturbed crystal.

L~'I —D] ' = M'[M~' —e] 'M*

= M'[M.~ —e. + aM~' —ae] 'M'

= M [I + G(AM~' —ae)] 'GM*

=—M 'U ((o')M *,

where the matrices M0 and &p are the mass and force
constant matrices for the unperturbed, perfect crys-
tal, and AM and Ae express the perturbation due
to the defect. The matrix 6 is just the Green's func-
tion matrix introduced by Lifshitz" and by Montroll
and Potts"
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When we substitute Eqs. (25) and (27) into Eq. is isotropic for an arbitrary cubic Bravais crystal, "
(24) we obtain finally

I e(l;td) = 25[n(kd) + 1] sgn ptimlim U e(ll;kd —ilk) .
8~0+

(80)

1 1
G P(00;kd ) = 8 P NM Q —pt, k)

= 8.pG(00;pk'), (86)

prom the pourier inversion theorem we obtain for then the desired matrix element U e(00;kd ) is readily

the displacement autocorrelation function found from Eqs. (29) and (88) to be

ttt. (t;t)tte(t;0)) = —f tttee
"' G(00;kd')

(87)

Imlim U p 0;co' —Q
8~0+

(81) Combining Eqs. (80), (86), and (87) we obtain

Gp(pd ) sgil cd

[1 —ppk'Gp(kd')]' + prVpp'Gp(M')
'

0

2kt' = Im tim —P k ke f d
5-+0+ aP

& pp' & pp'L (88)

II (kd —ptp)
—Pk(kii —e

pk ) p)L . (89)

(82)&& U p(ll;kd —ib) .
pt-5 1 lk(pt + kpp)

p pttpB(kdp) e 1To illustrate the results expressed by Eqs. (80)—
(82), let me assume that the resonant nucleus is an
isotope impurity in a cubic Bravais crystal. With no
loss of generality, we can assume that the impurity
nucleus is located at the origin of our coordinate sys-
tem, i.e., at the point x(l) = 0. The matrix
AM' —AW in this case takes the form

In writing these results I have introduced the func-
tions

Gp(~') =
8N z ~(~' —~'(k)) (40a)

2xh
Setting t = 0 in this expression we obtain a formal I p(0;pp) = 8 p-M [n(kd) + 1]
result for the exponent of the Debye —Wailer factor

2 2
(AMkd —CLkxk) kk' ———pMpp 8 p8kp8k'p

ap
(88)

(40b)
where the mass defect parameter p is defined in terms
of the mass of the impurity M' and the mass of one
of the host atoms 3II by (40c)

p = 1 —M'/M . (84)

The elements of the Green's function matrix G are
given by"

G (ilk . p) 1 g ete (kj)ee (kj)
NM k„„' pk'. (k)

&& exp [I2z.zk [x(l) —x(l')] I] . (85)

where X is the number of unit cells in the crystal,
kd, (k) is the frequency of the normal mode of the un-
perturbed crystal described by the wave vector k and
polarization index j, and e(kj) is the corresponding
unit polarization vector. The allowed values of k are
uniformly and densely distributed throughout a unit
cell of the reciprocal lattice for the host crystal. If
we use the fact that the Green's function G tk(00;tdP)

A. A. Maradudin, P. A. Flinn, an(I 8. L. Ruby, Phys.
Rev. 126, 9 (1962).

where (1/x)& denotes the Cauchy principal value of
(1/x). The function Gp(td') is recognized to be the
distribution function for the squares of the normal
mode frequencies of the perfect host crystal, while
Gp(pp') is its Hilbert transform.

The contribution to I Ik(0;td) given by Eq. (89)
arises only when 0 & p & 1 and the equation

1 —pkd Gp(pk) = 0 (4i)

has a solution oP = co0' for ~' & ~L,. It represents the
local mode contribution to I e(l;td). It is well known
now that the localized mode due to a substitutional
isotope impurity in a cubic Bravais crystal is triply
degenerate. "This degeneracy is automatically taken
into account in the expression for I p(0;pp) given by
Eq. (89).

The displacement autocorrelation function for the
impurity nucleus according to Eq. (81) is given in
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1
2bp ——k'—~ e atpB(pto) e "' —1

(48)

The threefold degeneracy of the localized mode is
also automatically included in writing this expression.

Finally, the exponent of the Debye —Wailer factor
can be obtained by combining Eqs. (82) and (87), or
more simply by setting t = 0 in Eq. (42). The result
18

coL,

2M = le' — dot coth —'Phot
llf 0

2

1 —eat Go(oo )] + z e at Gp(op ) 2M

this case by
40I

(u. (tt;t)up(l;0)) = 8 p
—

defoe
'"'

1 —8

Go(~')

[1 —ego Go(ot )] + s. e ot Gtt (ot )
oooo t otto t-

e e+ p 2~ p SB( s) peto, 1 1 -poto,

(42)

The second term on the right of Eq. (42) occurs only
when the mass defect gives rise to a localized vibra-
tion mode.

Equation (42) provides us with a convenient way
of obtaining an expression for the argument of the
Bessel function factor appearing in the expression for
the no-phonon and one-phonon absorption cross
sections. Comparing the first of Eqs. (18) and the
local mode contribution to the right side of Eq. (42),
we can make the identification

o,' (E) = k trope
'

Io(2bo)
1 —e

Go(ot')

[1 ettG)o(M )] + s' e M Gp(ot )

0%co Clog,

(2lt')
.,p'„. 2y

V'+ (~+ ~o)'

z P+ttpo 27 2

7 + (ot ado)

In Fig. 1 we have plotted the function

Go(~')

[1 —etp'Go(to')]' + zVpt'Gp(oo')

(46)

(47)

for three diferent values of e, for a nearest neighbor,
central force model of a face-centered cubic host
crystal. This function gives the shape of the in-band
part of the one-phonon absorption cross section at
the absolute zero of temperature. In plotting this
function we have used the function Go(ops) for our
model computed by Nardelli and Tettamanzi, "who

The evaluation of the displacement autocorrelation
function and of 23II can thus be reduced to quad-
ratures when the resonant nucleus is a mass defect
in an arbitrary cubic Bravais crystal.

According to Eq. (17) it is only the contribution
to I p(0;op) given by Eq. (88) that we use in calculat-
ing the one-phonon absorption cross section, since
the local mode contribution is given by Eq. (18)
rather thar. following from Eq. (89). From Eqs. (17),
(18), and (88) we obtain the result that the one
phonon absorption cross section is

coth s PAato

s MpB(Gap)
(44) so G. F. Nardelli and N. Tettainansi, Phys. Rev. 126, 1283

(1962).

Fra. 1. The shape of the one phonon
spectrum for the resonance absorption
of y rays by a nucleus bound in a crystal
for three different values of the mass of
the resonant nucleus relative to that of
the atoms in the host crystal. The curves
are plotted on the basis of a nearest b
neighbor, central force model of a face
centered cubic crystal for the host crystal,
and apply only at zero temperature.
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used the frequency spectrum G,(~') for this model
computed previously by Overton and Dent." The
curve labeled s = 0 corresponds to a resonant nu-
cleus which is one of the atoms of the host crystal.
From (47) we see that it is a plot of Ge(~') itself, and
in this case the one-phonon absorption cross section
simply maps out the frequency spectrum of the host
crystal. The suggestion that the Mossbauer effect
could be used to determine the frequency spectrum
of a crystal experimentally was first made by
Visscher. "The curve labeled ~ = 0.5 represents the
one-phonon absorption cross section when the
resonant nucleus is an impurity which is sufficiently
light to give rise to a localized vibration mode, which
has a frequency ~,'/&ol. —1.21. Finally, the curve
labeled e = —8 corresponds to a resonant nucleus
whose mass is 9 times that of the atom it replaces.
The striking feature of this absorption cross section
is that it consists almost entirely of a resonance peak
at the low frequency end of the spectrum. The oc-
currence of such resonances when a heavy mass de-
fect is introduced substitutionally into a crystal was
first predicted in another context by Brout and
Visscher, "and a possible method for observing the
resonance experimentally, using the Mossbauer ef-
fect, has been suggested by Lehman and Dewames. "

For the simple model of an impurity nucleus that
we have been considering we see from Eq. (45) that
such resonances occur at frequencies in the interval

(—cvs, &oL) for which 1 —soPGc(&o') vanishes. Dawber
and Elliott" have described these frequencies pic-
turesquely as frequencies at which localized modes
would like to occur, but because the frequency spec-
trum Gs(co') is finite at such frequencies these would-
be localized modes acquire a width. It can be shown
that such resonances always occur if s is negative and
very large in magnitude, i.e., if the resonant nucleus
is much heavier than the atom it replaces. Similarly,
for more complicated models of impurity atoms,
resonances can occur in the one-phonon absorption
cross section if the bonds linking the impurity to the
host crystal are much softer than they are in the
perfect crystal.

Turning now to the Debye —Wailer factor for an
impurity nucleus, I have plotted in Fig. 2 the Debye-
Waller factor for the case of a mass defect in a face-
centered tetragonal crystal chosen to represent Fe"

2& W. C. Overton, Jr., and E. Dent, U. S. Naval@esearch
Laboratory Report 5252, Washington 25, D. C.~

ss W. M. Visseher, Ann. Phys. (N.Y.) 9, 194 (196 ).
29 R. Brout and W. M. Visscher, Phys. Rev. Letters 9, 54

(1962).
30 G. Lehman and R. De Wames, Phys. Rev. Letters 9, 344

(1962).

in indium. " Also plotted are the experimental re-
sults of Steyert and Craig" for this case. f. is the
Debye —Wailer factor for y rays moving parallel to
the z axis, and f.is the Debye —Wailer factor for y rays
moving parallel to the z axis, which has been chosen
to be the fourfold rotation axis. That the two func-
tions are unequal is a consequence of the inequiva-
lence of the x and z axes for a tetragonal crystal. The
lack of agreement between theory and experiment
could be due to the fact that iron in indium may be
poorly described by just a mass defect, although it
seems unlikely that any simple alteration of the inter-
action between the impurity and the host crystal
would lead to better agreement. The experimental
results may indicate the existence of strong an-
harmonic interactions between the iron impurity and
the indium lattice, as suggested by Steyert and
Craig. In any case the correct interpretation of the
experimental results still leaves room for additional
theoretical work.
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FIG. 2. The Debye —Wailer factor for a mass defect in a face-
centered tetragonal crystal chosen to represent Fe 7 in indium.
f, and f, are the Debye —Wailer factors for y rays moving
parallel to the x- and z-axes, respectively, where the z-axis has
been chosen to be the fourfold rotation axis.

I have been misleading you slightly up to now. I
have obtained the result that the "Mossbauer pip"
is centered at cv = 0, i.e., E = E,. In fact, this is
not the case.

When a nucleus emits a y ray of energy E, its mass

3I A. A. Maradudin and P. A. Flinn, Bull. Am. Phys. Soc.
8, 42 (1963).

32 W. A. Steyert and P. P. Craig, Phys. Letters 2, 165
(1962).



A. A. MARADUDIN Absorption of v Rays by Nuclei in a Crystal 425

changes by bm = —E/c'. Because of the change in
the mass of the nucleus, the vibrational energy of the
crystal changes. This energy change is just the ex-
pectation value of the change in the crystal's Hamil-
tonian, which is just the change in the kinetic energy
of the emitting nucleus:

(48)
This energy must come from somewhere and is, in
fact, drained off from the energy of the y ray. The
result, is that the "Mossbauer pip" is not centered at
o~ = 0 (E = Ec) as we have obtained previously, but
its center is shifted slightly away from co = 0, by the
amount given by Eq. (48). Thus the relative energy
shift is proportional to the mean square momentum
of the emitting nucleus,

8E
2 2(p) (49)

33 R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Letters 4,
274 (1960).

This relative shift is called the second-order Doppler
shift or the velocity shift. It was first predicted the-
oretically and found experimentally by Pound and
Rebka."

The reason that the simple discussion that I have
given so far failed to predict this shift is that in mak-
ing the transformation from the Lamb —Mossbauer
expression for the absorption cross section to its ex-
pression as the Fourier transform of the correlation
function of two exponential operators, I made the
assumption ("the usual assumption" ) that the eigen-
state ~m), the initial state of the crystal, and the
eigenstate ~n), the final state of the crystal, are
eigenstates of the same crystal Hamiltonian. We
know this is not the case. The Hamiltonian for the
crystal after the absorption process has taken place
divers from the Hamiltonian of the crystal before the
absorption in that the mass of the resonant nucleus
has increased by the amount Sm = +Ejc'. If this
difference is taken into account, the correlation func-
tion expression for the absorption cross section takes
a slightly different form from the one I showed you
earlier, involving as it does two different crystal
Hamiltonians. If one carries through the calculation
in this way, one finds that the center of the "Moss-
bauer pip" is shifted away from cv = 0, by the
amount given by Eq. (48). A discussion of the
second-order Doppler shift along the lines I have
just sketched has been given recently by Professor

Silsbee, s4 and somewhat earlier by Snyder and
Wick."However, the effect is small, and the simple
derivation of the magnitude of the shift which I have
given, and which is due to Josephson, ss suffices.

The interest in theoretical calculations of the
second-order Doppler shift stems partly from the
fact that measurements of the displacement of the
center of the "Mossbauer pip" in general yield not
only the second-order Doppler shift but also an addi-
tional shift, called the isomeric shift."The total shift
I will call the "center shift. "The isomeric shift arises
essentially from the difference between the radius of
a nucleus in its excited state and in its ground state,
and depends on the electronic charge density at the
nucleus. It is of some interest to chemists and to
nuclear physicists. In order that the value of the
isomeric shift can be obtained from experimental de-
terminations of center shifts, we have to be able to
subtract the value of the second-order Doppler shift.
In the absence of phase changes, it seems as if it
should be a good approximation to regard the iso-
meric shift as temperature-independent. This fact
ultimately provides us with a means for accomplish-
ing this subtraction. "

The most useful theoretical result for this purpose
is the result that in the classical or high temperature
limit the second-order Doppler shift is given by"

(50)

where M' is the mass of the resonant nucleus. This
result is exact. It holds when the force constants of
the interaction between the resonant nucleus and the
host crystal differ from those in the perfect crystal;
it holds when the introduction of the impurity nu-
cleus distorts the host crystal in its vicinity; it holds
when anharmonic terms are retained in the ex-
pansion of the crystal potential energy in powers of

s4 R. H. Silsbee, Phys. Rev. 128, 1726 (1962).
s~ H. S. Snyder and G. C. Wick, Phys. Rev. 120, 128 (1960).
ss B.D. Josephson, Phys. Rev. Letters 4, 841 (1960).
37 L. R. Walker, G. E. Wertheim, and V. Jaccarino, Phys.

Rev. Letters 6, 98 (1961).
3 In the discussion following the presentation of this paper

Professor Pound emphasized that at constant pressure there
are at least two contributions to a temperature dependence of
the isomeric shift. One arises from the thermal expansion of
the lattice, while the second is an intrinsic temperature de-
pendence of this shift. Although these two effects may tend to
cancel each other, it appears that in general they cannot be
neglected in very accurate determinations of the values of the
isomeric shift and of the second order Doppler shift. Professor
Pound has also informed me that on the basis of recent
det, erminations of the temperature dependence of the center
shift for Fe5~ in Fe, it appears that there is an almost exact
cancellation between temperature-dependent contributions
to the isomeric shift in this case. However, this may be
fortuitous, and in any event it, is something that as a matter
of principle cannot be assumed from the start.
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the atomic displacements; it depends only on known
quantities. This means that, if measurements of the
center shift are made at elevated temperatures and
the contribution given by Eq. (50) is subtracted from
these results, the remainder gives the isomeric shift.
From the temperature independence of the isomeric
shift, having obtained it at any elevated tempera-
ture, we know it for all other temperatures. "%e can
then turn around and use the value of the isomeric
shift obtained in this way to determine the second-
order Doppler shift at all other temperatures, and
from the latter to draw inferences about the dynam-
ical properties of the resonant nucleus in its par-
ticular host crystal environment.

I must interject here that, in practice, the situa-
tion is a bit more complicated than I have made it
appear here, because experimentally it is possible to
measure only the difference between the isomeric
shifts and the second-order Doppler shifts when the
resonant nucleus is placed in two different host
crystals. This is a characteristic difference between
nuclear spectroscopy by means of the Mossbauer
effect and nuclear spectroscopy carried out by more
conventional methods: Only the diA'erence between
relative energy shifts for nuclei in different environ-
ments can be determined. This circumstance does not
invalidate Iny preceding remarks. It does make the
analysis of experimental data more complicated than
I have indicated.

At temperatures which are not so high that we are
in the classical regime, the second-order Doppler
shift has the form'6

Fe in Beryllium

CP
Ol

E —3—
Fe in Stainless Steel

O

0 I

3
loooz T

Fro. 3. The variation with temperature of the quantity
a —3kT//2M'c, where s is the total observed center shift at
high temperatures, and is the sum of the isomeric shift and
the second-order Doppler shift between source and absorber.

obtain the difference between the isomeric shifts for
Fe" in the two absorber materials, which is inde-
pendent of the source and fully corrected for the
second-order Doppler shift. From the slopes of these
two lines, which are determined rather less accurately
than are the intercepts, one can draw the qualitative
conclusion that an iron atom in the beryllium lattice
is somewhat more stiSy held than are the beryllium
atoms themselves, but quantitative conclusions about
the strength of this binding must await more ac-
curate experimental results.

If in some very simple case the change in the
atomic force constants due to the introduction of the
impurity could be described by a simple parameter,
this parameter could be determined from the slopes
of the lines in this figure. At the very least, such ex-
perimental data can serve as a consistency check on
lattice dynamical models of impurity atoms.

+ DC (l)] + 0(T ')

for an impurity resonant nucleus in an arbitrary
Bravais host crystal. Here 1VI' is the mass of the
resonant nucleus, the i 4 p(lt') I are the atomic force
constants of the perfect host crystal and i DC ~(ll') }
are the changes in these force constants due to the
introduction of the impurity. From this result we see
that if we plot the difference (8E/E) —3kT/23I'c'
against 1/T at high temperatures, the slope of the
resulting straight line contains information about the
perturbed force constants.

This has been done for an Fe" in a stainless steel
source, Fe" in Be, and Fe" in stainless steel ab-
sorbers and the results are shown in Fig. 3. These
results are due to Flinn and Ruby. "From the inter-
cepts of these two lines with the vertical axis we can

The formal theory of the second-order Doppler
shift is very similar to that given above for the ex-
ponent of the Debye —tA'aller factor, and I won't re-
produce the analysis here. The Anal expression for
the second-order Doppler shift due to a resonant im-
purity nucleus in an arbitrary Bravais crystal is

I le d
co sgn Go

8-+0+ a —oo ]
X U (lt;(o' —ib) .

Numerical calculations of the mean square velocity
and the mean square displacement, of an impurity
atom have now been carried out by a number of dif-
ferent investigators who have used a variety of
models for the impurity atom and for the host
crystal. """"A remarkable result of these calcula-
tions is the fact that these dynamic properties of an
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impurity atom appear to be independent of the prop-
erties of the host crystal, such as the atomic masses
and force constants, and are, in fact, functions only
of the mass and force constants associated with the
impurity itself.""The truth or falsity of this result
is not readily apparent from the general expressions
for 2M and (hE/E) given by Eqs. (32) and (52), re-
spectively. Lipkin" has recently given a perturba-
tion theoretic argument which makes this conclusion
plausible in the special case of isotopic impurities in
crystals at the absolute zero of temperature. We have
also seen that it is rigorously true for the mean square
velocity in the high temperature limit. A practical
consequence of this peculiarity in the dynamical be-
havior of impurity atoms is that if, for example, a
large value for the intensity of the recoil free transi-
tions is desired, it is the parameters of the impurity
nucleus which must be examined, and not those of
the host crystal.

Returning now to the one-phonon absorption cross
section, we have seen that in the harmonic approxi-
mation the localized mode contribution to this cross
section consists of Lorentzian peaks of width equal
to the width of the excited state of the resonant
nucleus centered at the frequencies of the localized
modes. In fact, however, the interatomic forces in no
crystal are perfectly harmonic, and this fact has the
consequence that the peaks contributed to the one-
phonon absorption cross section by the localized
modes are broadened and shifted relative to their
forms in the harmonic approximation. These are
anharmonic effects, arising from the terms of third
and higher order in the expansion of the crystal po-
tential energy in powers of the displaeements of the
atoms from their rest positions. The broadening of
the local mode peak due to anharmonic effects can
be understood if we recall that, in calculating the
Fourier transform of the displacement autocorrela-
tion function, we are evaluating matrix elements of
phonon creation and destruction operators between
the exact eigenstates of our crystal. Unlike the situa-
tion in the harmonic approximation, where the ap-
plication of a phonon creation or destruction op-
erator to one of the exact eigenstates of the crystal
leads to another exact eigenstate, in an anharmonic
crystal the application of a creation or destruction
operator to one of the exact eigenstates of the crystal
does not lead to another exact eigenstate. Instead the
resulting wave function can be expressed as a super-
position of the exact eigenstates. If the anharmonic
eA'ects are small the energies of these eigenstates are

ss H. J. Lipkin, Ann. Phys. (N. Y.) 23, 28 (1963).

close to the energy of the exact eigenstate which
would result if the anharmonicities were switched off.
This distribution or spread of energies about the un-
perturbed value is the origin of the anharmonie
broadening of the local mode peaks. Of course, all of
the individual peaks in the one-phonon spectrum as-
sociated with the wavelike modes are also broadened
by the same mechanism. However, since these peaks
are essentially continuously distributed, in the fre-
quency range (—~z, cv&), the anharmonic effects on
the in-band part of the one-phonon absorption cross
section are comparatively less dramatic than they
are on the isolated peaks due to the localized modes.

Estimates of the width of the localized mode peaks
due to cubic anharmonie terms in the crystal poten-
tial energy have been made by Klemens, "Mozer, "
myself, "and Visscher. "Although different assump-
tions or approximations were made in each of these
calculations, they all agree in predicting a local mode
lifetime (that is, the inverse width at half-maximum)
of the order of 1000 vibrational periods, under similar
conditions of impurity mass, temperature, and
strength of anharmonic coupling. This result implies
a width for the local mode peaks which is of the order
of 1000 to 10 000 times larger than the natural line
width of the excited state of the nucleus. This rela-
tively great width for the local mode peaks may pose
difBculties for their experimental observation by
means of the resonant absorption of gamma rays.

There is yet a second mechanism tending to
broaden the localized mode peaks in the one phonon
absorption cross section. This mechanism, which is
already present even if we treat the crystal in the
harmonic approximation, is concentration broaden-
ing. All of my discussion up to now has been based
on the assumption that there is only a single resonant
nucleus present in a host crystal. This assumption is
expected to be a reasonable one only as long as the
concentration of resonant nuclei in the crystal is so
low that the dynamical behavior of any one of these
nuclei is not greatly affected by the presence of the
remaining resonant nuclei. The range of impurity
concentrations for which this is the case depends on
the nature of the interaction of the resonant nucleus
with the host crystal, and individual cases must be
studied separately. For such concentrations the local
modes are highly degenerate. However, as the im-

purity concentration increases, this degeneracy is
split and the sharp frequency levels associated with

4s P. G. Elemens, Phys. Rev. 122, 448 (1961).
4' B. Mozer (private communication); see also B. Mozer

and G. H. Vineyard, Bull. Am. Phys. Soc. 6, 185 (1961).
4s W. M. Visscher, Phys. Rev. (to be published).
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the localized modes are broadened into impurity
bands. An estimate of the concentration broadening
of the local mode peaks was made several years ago
in another context by Montroll, Weiss, and myself, "
and more recently Dawber and Klliott44 and Din-
hofer" have reconsidered this broadening in the con-
text of impurity-induced optical absorption and
resonant absorption of gamma rays, respectively.
They find that the width of the local mode peaks due

to concentration broadening is of the same order of
magnitude as that due to anharmonic broadening.

Up to now I have been concerned with the resonant
absorption of gamma rays by a nucleus which is an
impurity in an otherwise perfect crystal. I should
now like to discuss briefly the converse situation in
which the resonant nucleus is essentially one of the
atoms in the host crystal, Fe" in Fe, for example, but
the crystal as a whole is imperfect. I refer to the
situation in which the resonant nucleus is close to or
in the surface of a crystal, and regard the free surface
of the crystal as a perturbation on the perfectly
periodic crystal in which the atomic displacements
obey the cyclic boundary condition.

The earliest calculation of a dynamical property
of an atom in the surface layers of a crystal, within
the context of the resonant absorption of gamma rays
by such an atom, was the calculation by Wallis and
Gazis4' of the second-order Doppler shift for a reso-
nant nucleus in a linear chain with free ends. The
second-order Doppler shift requires the calculation
of the mean square velocity of the resonant nucleus,
and Wallis and Gazis found that this quantity is
markedly diA'erent for an atom at the end of the
chain from what it is in the interior, even if as is the
case here, the crystal possesses no surface vibration
modes. This conclusion was confirmed by the calcula-
tions of Rich" who studied the Debye —Wailer factor
and the one-phonon absorption cross section for an
atom in the surface layers of a finite simple cubic
crystal with nearest neighbor interactions. This
model is also incapable of giving rise to surface
modes, but it has the virtue that a large part of the
calculations can be carried out analytically rather
than numerically. Rich found that the mean square
amplitude of an atom is rather larger in the surface
of a crystal than it is in the interior. This is in con-
trast with the behavior of the mean square velocity.

43E. W. Montroll, A. A. Maradudin, and G. H. Weiss,
Proceedings of the Stevens Institute Conference on the Many
Body Problem (Interscience Publishers, Inc. , New York, 1968).

44 P. G. Dawber and R. J. Elliott, Proc. Phys. Soc. (London)
81, 453 (1963).

4&A. Dinhofer, Phys. Rev. 131, 585 (1968).
4e R. F. Wallis and D. C. Gazis, Phys. Rev. 128, 106 (1962).
47 M. Rich, Phys. Letters 4, 158 (1968).

This quantity is somewhat smaller for a surface atom
than for an atom in the interior of a crystal. However,
as one proceeds into a crystal from a free surface it
is found that the mean square amplitude decays to
its bulk or interior value very quickly. By the time
the atom is four or five atomic layers deep in the
crystal, its mean square amplitude already has es-
sentially the bulk value. Quite recently my col-

league, Mr. Melngailis, and I have calculated the
variation with distance into the crystal of the mean
square amplitude and mean square velocity of an
atom."Since these calculations will be described in
detail at another point in this conference I will con-
fine myself here to some qualitative remarks about
the results. A pair of ideal free surfaces were created
in a nearest and next nearest neighbor central force
model of a simple cubic crystal by setting equal to
zero all interactions crossing the plane z = —,'g,
where a is the lattice parameter. The perturbation
Hamiltonian consisted of the negative of all the in-
teractions crossing the plane z = —,'a. Although this
is hardly a small perturbation, the fact that the
crystal still retains periodicity and translational in-
variance against displacements parallel to the x- and
y-coordinate axes makes the problem tractable.
Exact expressions for the mean square amplitude
and mean square velocity of an atom at an arbitrary
point in the crystal were obtained by the method of
double time Green's functions, "and were evaluated
in the high temperature limit, where they simplify a
bit. I should remark that the effects of the surface
on such properties of the nucleus as its mean square
displacement and velocity are of order unity rather
than of the order of the ratio of the surface area to
the volume of the crystal, as is the case, for instance,
in calculations of the specific heat of a finite crystal. "
The results for the mean square amplitude are shown
in Fig. 4, as functions of the distance into the crystal
from the free surface. Note the marked anisotropy
of the mean square amplitude. The component of the
mean square amplitude for an atom in the surface
itself is twice as great as it is in the interior, while the
x and y components are about 30'%%uo larger than their
bulk values. This anisotropy, which is absent in the
results obtained by Rich because of the nature of the
crystal model used by him, is due to the fact that
the introduction of the free surface lowers the initial

48 A. A. Maradudin and J. Melngailis, Westinghouse Re-
search Laboratories Scientific Paper No. 68-129-108-P8 (un-
published).

D. N. Zubarev, Uspekhi Fiz. Nauk. /1 (1960) [English
transl. : Soviet Phys. —Uspekhi 3, 320 (1960)j.

o See, for example, M. Dupuis, R. Mazo, and L. Onsager,
J. Chem. Phys. 33, 1452 (1960).
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One can relate all this to the Mossbauer effect if
one can measure the variation with time of the in-
tensity of the recoil free transition or of the second-
order Doppler shift of resonant nuclei plated on the
surface of a crystal and allowed to dIiffuse into the
interior. Recently, Flinn, Ruby, and Kehl" have
measured the relative probability of recoilless ab-
sorption in different directions in a specially prepared
sample of A1203 of very high specific surface area in
which some of the Al ions in surface sites were re-
placed by trivalent ions of Fe".They find an anisot-
ropy in the probability of recoilless absorption when
the resonant nuclei are in the surface of the Al&03
sample which is absent when the nuclei are in the
interior of the sample. The experimental results are
not very easy to interpret in the light of the sample
theories I have just described, because the experi-
mental conditions depart greatly from the idealized
ones assumed in the formulations of the theory.
Nevertheless, they have analyzed their data and feel
that what they see is in qualitative agreement with
the predictions of the simple theories. However, this
part of the story is really theirs to tell, and I will not
say anymore about it here.

There is a final lattice dynamical aspect to the
MOssbauer effect that I should like to mention. This
is the pressure dependence of the intensity of the re-
coil free transitions, of the Debye —Wailer factor.
Hanks" has presented a theoretical calculation of the
variation of the Debye —Wailer factor with pressure
within the framework of the Debye approximation
to the frequency spectrum of the host crystal. In this
approximation the entire effect comes from the vol-
ume dependence of the Debye characteristic tem-
perature for the crystal. Hanks shows that it is pos-
sible to increase the value of the Debye —Wailer
factor by a factor of 2 by the application of pressures
of from 5000 to 30 000 atm. to a crystal, but it ap-
pears that for such a large change the Debye —Wailer
factor has to be quite small to begin with. As dis-
cussed by Pound, "there is also a shift in the position
of the recoil free line with pressure, and this effect
has been observed experimentally.

From a lattice dynamical standpoint it seems that
the pressure dependence of the MOssbauer effect
should be of greater interest to nuclear physicists, for
example, for inducing the Mossbauer effect in nuclei

cubic symmetry of the unperturbed crystal to tetra-
gonal, at least in those regions of the crystal where
the perturbation is strongly operative. Note also the
rapid decay of the mean square amplitude to its bulk
value as one goes into the crystal.

One of the reasons we chose to use this particular
crystal model is that it is the simplest cubic crystal
model which has the flexibility to allow us to impose
the condition of elastic isotropy on the elastic con-
stants derived from it in addition to the Cauchy re-
lation which follows from our assumption of central
forces. This is a convenient feature of our model be-
cause we can then verify that in the long wavelength
limit the displacement —displacement Green's func-
tion has a simple pole corresponding to the well-

known dispersion curve for Rayleigh surface waves

in the theory of elasticity. " This result means, in

principle, that we could estimate the contribution to

.50
FIG. 4. The ex-

ponent 2M in the
Debye-Wailer factor
in the high tempera-
ture limit as a func-
tion of the distance
of the resonant nu-
cleus from a free sur-
face of a crystal.
4 "(a) is the second
derivative of the in-
teratomic potential
evaluated at the
nearest neighbor sep-
aration; 2' is the
wave vector of the
y-ray photon emitted
or absorbed by the
resonant nucleus.
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52 P. A. Flinn, S. L. Ruby, and W. L. Kehl, Westinghouse
Research Laboratories Scientific Paper No. 63-128-117-P6,
private communication.

sa R. V. Hanks, Phys. Rev. 124, 1819(1961).
54 R. V. Pound, in The Mossbauer Egect, edited by D. M. J.

Compton and A. H. Schoen (John Wiley tk Sons, Inc. , New
York, 1962), p. 217; R. V. Pound, G. Benedek, and R. W. P.
Drever, Phys. Rev. Letters 7, 406 (1961).

5~ See, for example, A. E. H. Love, A Treatise on the Mathe-
matical Theory of Elasticity (Dover Publications, Inc. , New
York, 1944), pp. 807—809.

the mean square amplitude from the surface modes,
but this is a difficult separation to carry out, and we

have not attempted it.
All the calculations I have just described are

highly idealized in their assumption of atomically .

smooth surfaces, a lack of change of the atomic

spacings, and, hence, force constants in the surface
layers of a crystal. Even the assumption that the
resonant nucleus is one of the atoms of the host
crystal has a slightly artificial character. Most of
these idealizations can be removed from such calcula-
tions, and it is even conceivable that anharmonic
effects could be incorporated into the theory, but the
required analysis in this case is complicated enough

that it would probably keep a graduate student

gainfully employed for.a couple of months.
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where it is either marginal or nonexistent at zero ex-
ternal pressure. The lattice dynamical information
that such pressure experiments can yield seems to be
a value for a Griineisen parameter y which is a
measure also of the thermal expansion of the crystal.
This parameter would be a weighted average over
the frequency spectrum of the crystal of the
Griineisen y for each vibration mode. It is, in gen-
eral, not the same y as one gets from thermal ex-
pansion measurements, in the same way as the
equivalent Debye temperature one obtains from the
Debye —%aller factor is not the same as one obtains
from the speci6c heat. While such information is
worthwhile having, primarily as a consistency check
on the results of other calculations, it is neither as
interesting nor as useful as the values of the
Griineisen y's for the individual normal modes,
which could be obtained from the results of coherent,
one-phonon scattering of neutrons from crystals sub-
jected to hydrostatic pressure.

To conclude, I think it may be appropriate to
compare briefly the advantages and disadvantages
of the resonant absorption of y rays by nuclei bound
in a crystal relative to other experimental methods
now in use for the investigation of the dynamical
properties of crystals. Th competing methods that
I have in mind are the thermal diffuse scattering of
x rays, neutron spectroscopy, and infrared optical
absorption experiments. In this discussion I will ig-
nore the very considerable experimental diKculties
which would arise in carrying out some of the ex-
periments of lattice dynamical interest by means of
the resonance absorption of gamma rays. I don' t
think that this oversight stacks the deck too much
in favor of the Mossbauer eGect experiments.

Let me consider, erst of all, those experiments
carried out on essentially perfect crystals, that is,
crystals in which the resonant nucleus is one of the
atoms of the host crystal, Fe" in Fe or Sn'" in Sn,
for example. Here, I think that the experiments in-
volving the resonant absorption of gamma rays are
at a definite disadvantage compared to the other
methods. One can obtain the mean square ampli-
tudes of the atoms comprising the crystal from the
intensity of the recoil free transition. However, the
same result can be obtained from the temperature
dependence of the intensities of the Bragg rejections
in x ray diffraction experiments, or better yet, from
the inelastic coherent scattering of neutrons from
crystals, because here complications arising from the
presence of atomic scattering factors in the x-ray case
are absent. The chief advantage of the Mossbauer
effect for measurements of this kind seems to be that

by its use these experiments can be carried out on a
laboratory bench; one doesn't need to have a reactor
nearby.

From the standpoint of obtaining fundamental
lattice dynamical information, I think that no
method at present surpasses the coherent, inelastic,
one-phonon neutron scattering experiments. These
experiments permit one to measure the energies of
individual normal modes of a crystal, and, perhaps
before much longer, their eigenvectors, and from such
data one can obtain, through the intermediary of a
crystal model, values of the second-order atomic
force constants with a detail and accuracy that no
other method can presently match.

While to my knowledge only the measurements of
the second-order Doppler shift presently yield the
mean square momentum or velocity of an atom in a
crystal, the lattice dynamical information contained
in this property for a perfect crystal is less detailed
than that obtainable from the phonon dispersion
curves which neutron spectroscopy yields. Like the
mean square amplitude of an atom, the mean square
velocity is worthwhile knowing as a check on lattice
dynamical models. But its main value for perfect
crystals may lie in the fact that its knowledge en-
ables one to obtain values for the isomeric shift in
crystals where the second order Doppler shift is large.
Even in the study of the atomic vibrations in the
vicinity of a free surface in an otherwise perfect
crystal, one can argue that other experimental meth-
ods are as well suited for these investigations as is the
Mossbauer effect. Maca, ae and Germer" have re-
cently scattered very low energy electrons from the
surface layers of a nickel single crystal. From the
magnitude and temperature dependence of the in-
tensity of the Bragg rejections one can conclude
that the mean square amplitude of an atom in the
surface is larger than it is for an atom in the interior,
in agreement with theoretical predictions. For the
determination of the mean square velocity of an
atom in the surface layers of a crystal, measurement
of the second-order Doppler shift seems to be the
only method available at the present time. Analysis
of such results with the aid of more detailed theories
could yield interesting information about the varia-
tion of the atomic force constants in the neighbor-
hood of a crystal surface.

The coherent scattering of neutrons from crystals
essentially probes the dynamics of an individual
normal mode of a crystal, something which is a prop-
erty of the crystal as a whole. In contrast, the

55 A. U. MacRae and L. H. Germer, Phys. Rev. Letters 8,
489 (1962).
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resonance absorption of gamma rays by a nucleus in
a crystal essentially probes the dynamics of that par-
ticular nucleus. In this respect, the Mossbauer effect
is quite similar to the incoherent. , inelastic scattering
of neutrons from crystals and leads to similar kinds
of results for the one phonon cross section, that is, it
yields essentially the frequency spectruxn of the host
crystal. There are few enough ways at the present
time of obtaining the frequency spectrum of a crystal
without the intermediate step of constructing a model
so that this aspect of the Mossbauer eGect, first
pointed out by Visscher, " deserves to be exploited
further. When all the atoms of a crystal are the same
there would be few theoretical grounds for preferring
one experimental method over the other except that
fewer elements scatter neutrons primarily inco-
herently than display the Mossbauer effect.

It is when we turn to a study of the dynamical
properties of impurity atoms in a crystal that the
Mossbauer effect as a tool for lattice dynamical re-
search begins to come into its own. There does not
seem to be any other way, at the present time, of
measuring the mean square amplitude and velocity
of an impurity atom in a crystal, and from such de-
terminations it is possible to obtain some informa-
tion about the force constants of the interaction be-
tween the impurity and the host crystal. The fact
that the only impurity atoms that can be studied in

this way are those which exhibit the Mossbauer ef-
fect should not, I think, detract from the interest in
such experiments. The one-phonon gamma-ray ab-
sorption spectrum associated with an impurity
nucleus may be of greater value than the one-phonon
incoherent scattering cross section for neutrons for
demonstrating the existence of localized vibration
modes and the low frequency resonant modes de-
scribed by Brout and Visscher. "This is because very
few elements have negative scattering lengths for
neutrons, and appreciable concentrations of these
nuclei are generally required for alloying with posi-
tive scattering length nuclei to yield disordered

crystals which scatter neutrons incoherently. The
large concentrations of both constituents which are
required for the neutron experiments may well smear
out or even eliminate such comparatively delicate
features in the frequency spectrum as peaks due
either to localized or to resonant modes. However,
the fact remains that such experiments, by Mozer
and his co-workers, "have been carried out and show

the existence of localized modes. In contrast, with an
intense Mossbauer source, only a small concentration

56 B.Mozer, E.Otnes, and V. W. Myers, Phys. Rev. Letters
8, 278 (1962):

of impurity atoms would be required in an absorber
to show up the position and strength of these features
of the one phonon spectrum by resonance absorption.
Correlation of these results with thermal conductivity
data would be of great interest. But even here the
Mossbauer effect has a competitor for nonmetallic
crystals. The experiments of Schaefer" and Pritzss on
the infrared optical absorption spectra of alkali halide
crystals with small amounts of hydride and deuteride
ions substituting for the halide ions shows that this
method is quite capable of showing a great deal of
fine structure in the absorption spectra due to de-
fects, for example, peaks associated with localized
modes. More recently, following theoretical work of
Dawber and Elliott, 44 impurity-induced infrared op-
tical absorption in germanium and silicon has been
studied by several groups" and promises to be a val-
uable tool for the study of the interactions, both
harmonic and anharmonic, between impurities and
the host crystal. Again the fact that such experi-
ments have been and are being carried out, while

people are still talking about how hard it is to do the
analogous resonance absorption experiments, should
not be allowed to detract from the potential interest
in the latter type of experiment.

This then completes my comparison of the ad-
vantages and disadvantages of resonance absorption
experiments versus other kinds of experiments for
studying the dynamics of crystal lattices. It was not
meant to be a dogmatic discussion but merely a sub-
jective and suggestive one. I have certainly not cov-
ered all possible lattice dynamical applications of the
Mossbauer effect. For example, it may be that
changes in the dynamical behavior of crystals on
undergoing the superconducting transition can be
studied profitably by means of this effect. In a
wilder flight of speculation it may even be possible
to modulate the intensity of the Mossbauer line by
second sound in solids, if it exists, "in analogy to the
modulation of its position by ordinary sound in the
experiment of Ruby and Bolef."What I have really
tried to say is that where there exists the possibility
of doing a lattice dynamical experiment using the

s7 G. Schaefer, S. Phys. Chem. Solids 12, 233 (1960).
58 B.Fritz, J. Phys. Chem. Solids 23, 875 (1962).
59 See, for example, M. Balkanski and W. Nazarewicz, J.

Phys. Chem. Solids 23, 573 (1962). See also the papers by the
following authors presented at the International Conference
on Lattice Dynamics held in Copenhagen, Aug. 5—9, 1963:
J. F. Angress and S. D. Smith; R. J. Elliott, W. Hayes, G. V.
Jones, and C. T. Sennett; D. G. Montgomery and J. R.
Hardy. The proceedings of this conference will be published
by Pergamon Press and will appear early in 1964.

«K. W. Prohofsky and J. A. Erumhansl, Bull. Am. Phys.
Soc. 7, 219 (1962); M. Chester, Phys. Rev. 131, 2013 (1963).

sr S.L. Ruby and D. I.Bolef, Phys. Rev. Letters 5, 5 (1960).
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Mossbauer effect, it is a relevant and a fair question
to ask if this is the only way of obtaining the desired
information, or even if it is the best way. A good,
clever, informative experiment is hard to come by,
either by theoreticians or by experimentalists, in any
branch of science. The lattice dynamical applications
of the Mossbauer effect are no exception. But, as it

is often said in other contexts, "it's got to be hard
to be goodt"
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Optical Analogs of the Mossbauer Effec in Solids
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INTRODUCTION

After most new discoveries in physics there is a
period of "digestion" as physicists learn to under-
stand the new effect and in particular to relate it to
their previous experience. This digestive process is
most fruitful in giving a broader perspective and
deeper insight in both the old field of research and
the new one. Just such a process has occurred after
the discovery by Mossbauer of recoil-free 7-ray tran-
sitions in solids. A number of people have been con-
sidering problems in solid state optical spectroscopy,
a field active for over four decades, in terms of ideas
developed in the last four years in the development
of solid state y-ray spectroscopy. ' The first half of
this paper will demonstrate that many of the under-
lying physical ideas in both fields are essentially the
same. The remainder will illustrate this similarity by
discussing a number of results of optical experiments
in terms of their Mossbauer analogs.

THE ANALOGY

The Mossbauer. effect has received a qualitative
interpretation from several different points of view. '
Although the effect is asserted by some to be purely
quantum mechanical, a classical description is still
instructive. In these terms one thinks of the nucleus
held at rest as emitting a classical wave or p ray of
frequency vo. If the nucleus is in motion, as it will be

~ The relationship between these two fields is either stated or
implied in a number of papers. Some of these are: E. O. Kane,
Phys. Rev. 119, 40 (1960); E. D. Trifonov, Doklady Akad.
Nauk. SSSR. 147, 826 (1962) [English transl. : Soviet Phys. —
Doklady 7, 1105 (1968)];R. Englman and P. Levi, J. Math.
Phys. 4, 105 (1963); See also reference 10. K. K. H,ebane and
V. V. Khizhnyakov, Optika and Spektroskopiia 14, 491
(1968) [English transl. ; Optics and Spectroscopy 14, 262
(1968)j.

s See H. Frauenfelder, The Mossbauer Effect (W. A. Benja-
min, Inc., New York, 1962) and reprints contained therein.

in a solid, its "instantaneous frequency" as seen by
an observer at rest will vary with time as a result of
the Doppler e6'ect and may be written schematically
as

v. (x,t) = vs+ —'v(x, t) ———,' v'(x, t) + . (la)c c

If the motion of the host crystal is described by the
function ti(x, t) giving the displacement from equilib-
rium of the atom at position x and time t, the velocity
of that atom is simply t'i(x, t) and Eq. (la) may be
rewritten

v. (x,t) = v. + —'
t (x t) ———'. [ (*t)1'+ (~b)c c

If the function exp [t f' v(x, t) dt] giving the com-
plex amplitude of the classical p ray is Fourier ana-
lyzed, the resultant spectrum has two characteristic
features. The first feature is a sharp peak' at the fre-
quency v = ve —(-', (v&&/c') [t't(x, t) ]'); this is the recoil-
less emission line of p™rayspectra or the carrier signal
of radio frequency engineering. Its strength de-
creases as the depth of the Doppler-induced frequency
modulation increases. The second feature is a con-
tinuous spectrum extending over a range of fre-
quencies comparable with or larger than the typical
frequencies describing the time variation of the dis-
placement function ti(x, t). The detailed shape of this
broad structure depends on the time dependence of
ti(x, t), while its intensity increases as the mean
amplitude of motion of the emitting nucleus in-
creases. This structure is of course the multiphonon

This peak is strictly a delta function only if the second-
order Doppler shift is neglected and if the displacement func-
tion, p(x, t), has a finite mean square. This second condition is
satisfied for a three-dimensional solid in which diffusion is
neglected, but not for liquids or one- or two-dimensional
"model solids. "


