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served temperature dependence of the critical cur-
rent is about twice that which has been predicted. "

CONCLUSION

The main conclusion of this work is that the mag-
netization of hysteretic high field superconductors
can be well understood in terms of one phenomeno-
logical parameter, the macroscopic critical current
density. A main problem remaining is the determina-
tion of the relationship between this parameter and
the microstructure of hard superconductors.
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Hard Superconductivity: Theory

of the Motion of Abrikosov Flux Lines
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The central concept in the theory of what one might
call the "critical phenomena" of hard supercon-
ductors —critical currents, critical fields, decay of
persistent currents, "excess" voltages, etc.—is
clearly Abrikosov's notion of the quantized Aux line. '
This is made almost obvious by the remark that, be-
cause of the now universally accepted validity of the
quantization of flux through superconductors, the
smallest possible breakdown of superconductivity is
the motion of a single quantum of magnetic Aux

through the wire or ring. Thus, in all cases so far
conceived, the lowest activation energy for any crit-
ical breakdown is that for the motion —and creation,
if necessary —of single Abrikosov Aux lines. This
statement is independent of whether the mechanism
for hard superconductivity is the GLAG one or the
Mendelssohn sponge theory, although we assume the
former to be valid in most cases. Even the decay of
currents in true soft superconductors under o.-par-
ticle bombardment' is probably best explained by
the threading of Abrikosov lines through normal
holes punched by the n particles. '

The purpose of this paper is to see how many of
the phenomena of hard superconductivity we can
understand qualitatively in terms of the thermally
activated motion of Abrikosov lines past pinning

~ A. A. Abrikosov, Zh. Eksperim i Teor. Fiz. 32, 1442
(1957) [English transl. : Soviet Phys. —JETP 5, 1174 (1957)].

z P. de Feo and G. Sacerdoti, Phys. Letters 2, 264 (1962).
s N. Cabibbo and S. Doniach, Phys. Letters 4, 29 (1963).

We have proposed a slightly different mechanism.

centers, without going into unnecessary detail on the
nature of the pinning centers —whether they are dis-
locations, cavities, precipitates, etc.—or the precise
internal structure of the superconductor. Our task,
then, is to study the process —presumably thermally
activated barrier penetration —by which flux lines
move.

Let us then suppose that we have a supercon-
ductor penetrated by a magnetic field H and carry-
ing a bulk current, for simplicity J H, J
cV x H/4z. The magnetic field will penetrate in
the form of Abrikosov lines; their density is clearly
not uniform because of J, and we expect their ar-
rangement is to some extent irregular. The magnetic
energy per unit volume is H'/8 wee can think of this
as a magnetic pressure exerted by the Qux lines on
each other, and in the absence of pinning centers this
pressure would have to be equalized by a rearrange
ment of the lines, leading to J = 0. Examination of
Abrikosov's theory shows that actually at all but low
fields the internal and external fields are nearly the
same, so that we usually assume 8 = H, a minor
simplification of which Friedel et at. have considered
the errors. 4

In finding the rate of the activation process we
need to know two things: the driving force exerted
by the magnetic pressure, and the nature of the
barriers. The former is more available to us theoret-

4 J. Friedel, P. G. de Gennes, and J. Matricon, Appl. Phys.
Letters 2, 119(1963).
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ically but, on the other hand, more complex, entirely
because it is really transmitted only through the in-
teractions between the Aux lines themselves. We can
only guess at the correct results before more detailed
computations of the behavior of nonuniform distri-
butions of Aux lines become available.

In Abrikosov's paper, in the appropriate case for
hard supereonductors (s )& 1, H, p ) H ) H.&) the
interaction free energy of the lines is written in two
equivalent ways:

H', ~ (fr; —r/) (2)

P P. W. Anderson. , Phys. Rev. Letters 9, 309 (1962).

s being the famous Landau —Ginsburg parameter
bp/pp, 5 the penetration depth, and H, the thermo-
dynamic critical field. The two-dimensional position
vectors of the lines are the r, . In the case most usual
in hard superconductors, the distances ~r; —

r;~ are
small compared to 8, V'H is relatively small, and so
the interaction free energy is practically given by the
naive expression for the magnetic energy. This would
mean that the force per unit volume would be given
byVF = —H x V x H/4s. = J x H/c, the Lorentz
force; and the force per flux line is then J x op/c per
unit length, where the magnitude of @0 is the flux
unit hc/2e and it is directed along the flux line.

It is very useful to notice that {2) is formally the
same as the electrostatic interaction between lines of
electric charge, except that it is screened away at
the penetration depth 8 i e , Z—o h.as. the logarithmic
nature of two-dimensional charge interactions as
r —& 0, while it is e ""as r —& ~. This tells us that,
because of this relatively long-range interaction,
local perturbations of the line density are very un-
favorable energetically —for instance, simply putting
in locally one extra flux line costs an energy of the
order of IICO per unit length, which is much greater
than the energy available from any reasonable pin-
ning centers. Thus the arrangement can be irregular
only on a scale greater than 8—locally the density
must be uniform, and any local variation must be
only a slight increase in the local density spread out
over a region of radius &b.

This is the idea behind the concept of "flux
bundles'" —that in fact, while it is probably the in-
dividual flux line s internal structure (of size $p)
which is caught by a pinning center, that line indi-
vidually cannot jump over the barrier alone, because
it would get badly out of equilibrium with the local

density in its neighborhood; but rather a whole
bundle of lines, of radius b, must move simultane-
ously. Therefore, of course, it is the force on the total
bundle which acts against the pinning barrier. On
the other hand, while the line density must be very
uniform, the Ko function is actually a very slowly
varying one near r —+ 0 so that the arrangement of
lines need not be crystallographically regular, and the
bundles can slide past each other reasonably easliy.

The free energy of a bundle in the region of a
barrier, then, ean now be written down. The force is
about JHo't//c = JC'pript/c where t is the effective
length of line over which the force acts, presumably
the distance between pinning centers, and np is the
number of lines in a bundle; as a function of position
x of the bundle we have

Fi.„.——JHPlx/c.

The size of the barrier is presumably about $p, and
the appropriate scale factor for its energy is
(H'./87r)fp; suppose a fraction p of this is effective.
The total barrier free energy then —realizing that we
have both p and l as undetermined parameters so
that we need not specify the determinable ones more
precisely —is

Fo = (pH. )o/8m) —(JH8 l$o/c) . (3)
It is perhaps barely worthwhile to make a guess at

the pre-exponential factors in the rate equation, even
though almost all the results are controlled entirely
by (3). A particular barrier will allow one of the lines
in the bundle through at a rate/sec of

—Fy/kTg = C008

cop is a vibration frequency of the bundle, 10'
10'P/see. Since the bundles are of width 8, the rate
per unit area is obtained by dividing by b. The equa-
tion for diffusion of flux density ~BI is given by find-
ing the rate at which flux enters and leaves a small
element of volume:

diBi/dt = —V ~ (CpR/6), (5)

where the gradient is two-dimensional, C, is the flux
unit, and R is of magnitude (4) and directed in the
direction of the gradient of magnetic pressure

n = Vp = V{H'/8~) = J x H/c.
We shall often use the notation o. for the appropriate
combination in the force term even when JII is not
correct.

There are two cases in which we would obviously
expect the above reasoning to fail: the two extremes
of the Abrikosov state, near H,& and II,&, the upper
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kT ln (B./coo) = —(Fo).„.i
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A similar expression was found to agree reasonably
well with the temperature dependence of a.„& in
Refs. 5 and 6. This expression is somewhat better
qualitatively because one has the most structure-
sensitive parameter / in both terms.

The flux creep rate equation was also treated ap-
proximately in Ref. 5. Equation (5) may be put in a
more useful form by writing it as an equation for the
pressure gradient a itself (for simplicity we specialize
to a one-dimensional situation as in a tube wall):

6 Y.B.Kim, C. F.Hempstead, and A. R. Strnad, Phys. Rev.
Letters 9, 806 (1962).

7 For instance, S. H. Autler, E. S. Rosenblum, and K. H.
Gooen, Phys. Rev. Letters 9, 489 (1962).

and lower critical fields, respectively. Near the lower
critical field the lines are more than a distance 8 apart;
also the differences between B and B, and therefore
the complications due to surface currents, etc., are
much greater. Qualitatively, we expect that as the
number no ~ 1, the value of the field will matter
less and less, and the effective force will reduce to
that on a single line, proportional to J alone. This is
indeed the qualitative behavior in many materials,
e.g., those in which we find the force term as
j(H + B,), with Bo of the order of H.&.

' But no
justification for this particular form has appeared.

As H —& H.2, the lines will be forced together until
the forces between them are no longer the long-
range, smooth electromagnetic forces, varying as
In(r; —r,), but are the much more steeply varying
forces which ensue when the regions in which
+ W const overlap. One would expect the bundle
concept to fail completely, and the "hard core" in-
teraction between lines to lead to new effects. One

suggestion one might make would be that the lattice
of lines may become rigid, so that the bundles can no
longer slide independently past each other. In that
case the rate might be expected to become much
slower, a possible explanation for the "peak effect. '"

The two immediate conclusions which were drawn
from (5) were the critical current curve and the flux

creep rate equation. ' The "critical current" came
from supposing that the critical parameters as
measured in most cases—notably rim's experi-
ments' —simply represented a point at which the rate
8 became immeasurably slow. Call this rate 8,.
Then we have

r|a 8
i

H BH)
Bt Bt I 4m Bx i

8 Hco BR(a)
Bx 4mb Bx

Usually, 8 will depend exponentially on a. H, of
course, will depend only roughly linearly on n. Also,
we really do not quite understand the pre-exponen-
tial factors in the rate equation anyhow, and an extra
factor H could not easily be checked experimentally
in most cases. Thus, it is easiest and within errors of
the theory to neglect the derivative of H relative to
that of 8, and we obtain

2 2
BA HC'pcop —g, /Iez 8 /, 8 /,
Bt 4mb Bx2 Bx2

where

kT a.,;, —Fo/&'l)o

ln (ooo/R. )

a& is usually very small, of the order of 10 ' a.„,,
which means that the barriers are indeed high com-
pared to kT Ko is d. efined by this equation and Fo is
the force-free barrier height Fo(a = 0).

A steadily decaying solution of (8) is

e" ' = (—a,x' + bx + c)/2Kot

a al {In [(—aix' + bx + c)/2Ko] —ln tI . (10)

This logarithmic time dependence has been repeat-
edly observed. "

Another solution of the nonlinear diffusion equa-
tion (8) is the steady-state one, such as one would

obtain physically by supplying power from an ex-
ternal source to maintain a current through a tube
or plate sample:

(8/Bx)e' ' = c

a = a|(inc+ lnx) . (11)
Because 0.1 is so small c will be enormously large in all

cases, and thus a will be essentially constant through-
out the sample, as is physically obvious from the ex-
ponential rate dependence on a.

We have made no progress in studying the tran-
sient solutions which are relevant when one quickly
applies external fields or currents to a hard super-
conductor. Clearly, the effect will be to create local
concentrations of magnetic pressure which could dif-
fuse away but may well not be able to do so stably-
i.e., in such a way as to decay continuously into a
steadywtate solution. We are currently studying this

8 Y.B.Kim, C. F.Hempstead, and A. R. Strnad, Phys. Rev.
131, 2486 (1963).
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problem with the idea that possible instabilities in

Eq. (8) may well be related to the phenomena of
magnet instability.

A whole range of further applications of these
ideas are suggested by the observation that the ex-
istence of Qux creep clearly implies power dissipa-
tion in all hard superconductors. ' That is to say not
only that apparently perfectly superconducting
samples below the so™called"critical curve" are still
dissipating power —and thus offering resistance to
current Qow —at a finite rate, but that apparently
nonsuperconducting, resistive samples far above the
usually accepted critical conditions are also often
truly superconducting in the thermodynamic sense,
especially under transient conditions before thermal
or flux diffusion instabilities have had time to occur.

A simple way to derive the resistive power dissi-
pation is to start from (5) and Maxwell's equation

P = E„J„= 'exp
I

Jc.
8c E ng

in the material.
This immediately suggests the possibility of severe

thermal instabilities in hard superconductors. Let us
write down the equation for the heat content of the
material:

dQ dT p= c„=—~VT+P.

a is the heat, conductivity. Suppose a small tempera-
ture fluctuation BT(r,t) occurs. Whether it grows or
decays is determined by the equation

= —.V'(BT) + BT .

Suppose the fluctuation occurs on a scale of size r.
Then for stability we must have

BP P &Ep
r' BT T &kT kT dTJ'

V xE= —B/c

in a simple one-dimensional case where we assume
we have B in the z direction, J and E in the y direc-
tion, and flux creeping in the h direction. Then,

ldE„B, d Cpppp & Fp a
dh c dh Bc 5 kT a, /

i.e., to maintain the flux we have to apply an E field

C. & Il. a &

d & kT i'
There is, then, clearly a power dissipation

By differentiating Eq. (7) we may obtain an ex-
pression for the dimensionless ratio in parentheses:

P T B

T ~&

where (Ba/BT)& means that we fix the rate B. Ex-
perimental data tell us that this ratio is of the order
10' —10', which means that thermal instability is a
severe problem. That is, the increase in temperature
AT of the given region over the surroundings caused
by the power input P is of the order

AT Pr'/~

so this tells us that

AT T Bn
10 ' —10 '

z

is the stability requirement: a very tiny rise in tem-
perature can presage a complete thermal breakdown.
In particular, if, because of excessively rapid current
or field changes or of "weak spots, " the stress a be-
comes concentrated in a small region, P will be ex-
ponentially larger locally while ~/r' only increases as
the square of the size, so that local thermal in-
stability can be a problem. The obvious practical
morals are three: first, that magnet configurations
allowing good thermal conduction are vital; second,
the rather discouraging remark that so far good hard
superconductors are also bad thermal conductors for
obvious reasons, so that the better the magnet the
worse the stability problem will be; and third, be-
cause of the factor l/r' very big magnets will have
extra stability problems.

The final remark we would like to make is that the
existence of this effective resistivity caused by flux
creep allows us to investigate experimentally the
creep rate over a much wider range of a than was
possible with the original Qux decay measurements,
by measuring the resistivity of wire samples. In par-
ticular, one can go to far higher stresses —the "re-
sistive state" of superconductors. ' In this region Eim
et a/. have found that the exponential law 8 pp e '

begins to fail and is replaced by a roughly linear rela-
tion 8 ~ a. This occurs when the effective barrier
Fp —(a/a&)kT is no longer large compared to kT;
we would then expect a viscous resistance to flux line
motion, a process of "flux Qow" rather than "Qux
creep, "analogous to the motion of magnetic domain
walls above the coercive field. Kim has suggested a
very useful semi-empirical formula for the velocity
of Qux lines:

v = [(const X a) ' + (const X e *) '] ' . (l7)
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In summary, the general qualitative ideas of flux
creep theory appear to be soundly based and to allow
for the qualitative and semiquantitative understand-
ing of a wide range of phenomena. Many problems
remain, both for detailed quantitative study and
even for better qualitative understanding. To list a
few of these:

(1) More detailed understanding of flux line inter-
actions, in particular a sounder basis for the "bundle"
concept and an understanding of Bs and of the pea, k
eHect.

(2) The peculiar transient pulses observed by Kim
et at.s These support the creep idea qualitatively, but
are too large to be individual lines or bundles and
too small to be instabilities. Are they avalanches'

(3) The nonlinear diffusion equation: when is it
unstable'

(4) The viscous state. This is a completely new
theoretical problem and I know of no obvious way
even of approaching it from fundamental theory.

Resistive States of Hard Superconductors

Y. B. EIM, C. F. HEMPSTEAD, and A. R. STRNA. D

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

In earlier reports' we have shown that the critical
currents in high-field superconductors are limited by
the Lorentz force relation

8 = ~o exp (—Fs/&T);

pH'. $s JHb'l&o = Fp —go. .
Sx c (2)

a = J(H+ Bs) ~& n, ,

where a, and Bs are structure-sensitive constants of
the material. This relation obtained for J perpen-
dicular to H has been extended to other orientations
by Cullen et at.' A.lthough the relevance of the
Lorentz force in hard superconductivity was pointed
out first by Gorter, ' a more definitive formulation of
the problem was proposed by Anderson4 in'his Aux

creep theory. This theory basically assumes the
GLAG-type superconductors, but the phenomena in-
volving transport currents are described primarily in
terms of the concept of thermally activated motion
of Aux structures. More recently, our measure-
ments' have been extended into what we may call
the "resistive state, " far above the critical state
specified by the relation (1).Here again, we find the
prevalence of the Lorentz force parameter n, These
results are brieAy summarized in this paper.

According to the Aux creep theory, ' the Aux struc-
tures in a GLAG-type superconductor move with a
rate proportional to

I Y. B. Eim, C. F. Hempstead, and A. R. Strnad, Phys.
Rev. Letters 9, 806 (1962); Phys. Rev. 129, 628 (1968).

s G. Cullen, G. D. Cody, and J. P. McEvoy (to be pub-
lished).

~ J. C. Gorter, Phys. Letters 1, 69 (1962); 2, 26 (1962).
4 P. W. Anderson, Phys. Rev. Letters 9, 809 (1968).
5 Y. B. Eim, C. F. Hempstead, and A. R. Strnad, Phys.

Rev. 131, 2486 (1963).
6 P. W. Anderson and Y. B. Eim, Rev. Mod. Phys. 36, 39

(1964).

In tube magnetization experiments, ' for example, the
critical state is attained when the above rate falls
below a practically observable limit. The exponent
in (2) then becomes a constant value and a therein
is identified experimentally as n. . For n ( a„ the
logarithmic decay of J as predicted by (2) has been
verified with a high degree of accuracy. For a ) a„
however, the rate (2) is inconveniently large and J
is externally supplied to hold u at a desired level. In
this situation, the Aux creep generates an uncom-
pensated emf proportional to (2).

Figure 1 shows typical voltages observed across a
3Nb —Zr wire sample —plotted as a function of H for
different sets of constant J's (J H). Although the
strong dependence of V on J and H is evident, the
raw data do not display readily recognizable sys-
tematics. If, however, V is plotted as a function of
o. = J(H + Bc) with Bs ——0.5 kG as determined
from the data, ' V(H)'s for different J's all coalesce
to a single curve within the scatters shown by the
horizontal Gags. This indicates that at a given tem-
perature V is a function of a only. According to (2),
the slope

c) inV/cia = q/kT

is expected to be constant. As n increases, however,
the observed slope decreases until V is almost linear
in a. In this region the prevailing process is visualized
as "flux flow" rather than "flux creep. '" Since the


