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Messner: (Discussing first two papers). We have looked
at the complete transition in pulsed currents for a small
strip over a ground plane and it turned out that, even at cur-
rents about 4 or 5 times the current which restores half the
normal resistance, we find that the thin film still is partially
superconducting. Now a remark to the last paper (Mites-
cu’s). I think one has to be very careful. You will always get
some field lines breaking through the film. I do not believe
that you really can have your field lines truly all parallel to
the film but that some will break through and you will have
the effects which Tinkham observed and described as flux
inclusions. It’s not quite clear that these are necessarily al-
ways resistanceless if you get this breakthrough in an alter-
nating field.

C. D. Mrrescu, California Institute of Technology: The
fact that the persistent currents which have been observed
in stationary d.c. conditions are comparable to our critical
currents makes the presence of ordinary, normal resistance
rather unlikely. I don’t think that flux leakage could ac-
count for the observed very sharp exponential dependence
on the current.

MEikLEjoHN: I might make a remark on one of Meissner’s
remarks. It depends on just how sharp your transition is as
to whether or not this resistance at which you make your
measurement is important. We did not find any difference
in our temperature dependence if we went down to a tenth
of this voltage sensitivity which would be a different re-
sistance level.

Bean: I'd like to ask Dr. Mitescu if he has checked for
the absence of static hysteresis in the magnetic properties

of his ring when he has less than complete penetration. The
reason I ask this is, if I understand the theory, there is no
hysteresis at low frequencies because the Ginzburg-Landau
theory does not have strong inertial terms. If one does have
hysteresis due to the irreversible or partially irreversible
motion of flux lines as Professor Meissner mentioned, then
one would generate harmonics in the sense that I showed in
my talk on the first day.

Mirescu: There is no hysteresis in going above the crit-
ical transition or coming down through it. One point which
might argue against the flux line motion is that, if I remem-
ber rightly, in Dr. Bean’s paper the dependence in his
model was quadratic in the amplitude. I think one would
expect some kind of power law in the case of flux line mo-
tion, unless it is a very strange kind of motion.

Douctass: I have a question to Dr. Meiklejohn. In re-
gard to the exponents on A, I noticed some of your points
were very close to the transition temperature, a millidegree
or thereabouts. These points strongly influence the slope of
these curves and any small error in the transition tempera-
ture could appreciably change the value of the exponent.
I'd like to know what the width of the transitions were.

MeikLEyoHN: It is true that the actual magnitude of the
critical temperature can influence these slopes. However,
we were as high as 50 mdeg in our measurements and the
points fartherest away from the critical temperature were
not greatly influenced by changing slightly the critical tem-
perature. The widths of the transition varied from about 4
mdeg to about 16 mdeg in the various films that were
measured.
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I. INTRODUCTION

To interpret and understand critical magnetic field
measurements on superconducting films, a theory is
needed which includes both strong-field effects and
nonlocal effects—strong field, to describe phenomena
occurring at the critical field ; nonlocal, to adequately
describe thickness and mean free path effects.

In a previous paper' (hereafter referred to as I), a
simple strong-field, nonlocal theoretical model was
presented which relates the critical magnetic fields of
superconducting films to the kernel of the current—
vector—potential relationship for any theory of super-
conductivity. In I, the theoretical model was worked

1 A. M. Toxen, Phys. Rev. 127, 382 (1962).

out in detail for the Pippard nonlocal kernel with
specular boundary conditions in the superconductive
state. Comparison of the theoretical model to critical
field data for pure indium films indicated that the
theoretical model predicted quite well the thickness
dependence of critical field at temperatures near the
critical temperature. In a second paper? (hereafter
referred to as II), the theoretical model was com-
pared to critical field measurements made on dilute
alloy films of indium containing up to 5 at.%, tin.
In IT, it was shown that the theory using the Pippard
kernel predicted quite well the variation of critical
field with mean free path at temperatures near 7'..
In this paper, we review the theoretical model and

2A. M. Toxen and M. J. Burns, Phys. Rev. 130, 1808
(1963).
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present new theoretical and experimental results re-
lating to the temperature dependence of critical field.
In particular, we show that although the theoretical
model using the Pippard kernel describes the ob-
served temperature variation of critical field ap-
proximately, there exist systematic discrepancies be-
tween experiment and the predictions of the theoret-
ical model. We also show that preliminary calcula-~
tions indicate that the discrepancies are at least
partly resolved if the theoretical calculations are
carried out with the BCS kernel rather than the
Pippard kernel.

II. THEORETICAL MODEL

For films thin enough so that the order parameter
Yo can be considered constant over the thickness of
the film, Eqgs. (61) and (62) of Ginzburg-Landau?
give the following expressions for the film critical
field:

(ho/H.)" = ¥4(2 — ¥0)/[1 — (1/n) tanh 2], (1)

and

(ho/H.)?
= [4¢5(¥o — 1) cosh’ n]/[1 — (1/25) sinh 29], (2)

where n = Yo a/d. The quantity a is the film half-
thickness, k. is the film critical field, H. is the bulk
critical field, and 8 is the weak field penetration
depth. For h.,/H. > 1, Egs. (1) and (2) can be solved
simultaneously to yield h./H. as a function of &/a,
ie.,

h./H. = F(d/a) , @

where F(z) is a function which is plotted in Fig. 1 of
I. From (66) of Ref. 3, we obtain a relationship be-
tween the film susceptibility in a weak magnetic field
and the weak field penetration depth.

k/ko = 1 — (8o/@) tanh (a/do) , 4)

where « is the film susceptibility in a weak magnetic
field and o is the weak field bulk susceptibility. From
(3) and (4) we can obtain a relationship between the
film critical field and weak field susceptibility which
is of the form

ho/Hs = G(k/xo) &)

where G is a function which can be numerically
evaluated and is plotted in Fig. 2 of I.

The weak field susceptibility can in turn be related
to the appropriate nonlocal parameters by means of

3V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950).
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a calculation due to Schrieffer.* Schrieffer, for the
case of specular reflection in the superconducting
state, obtained the following expression for the weak
field susceptibility of a film:

(6/ra)ome = 1 = (/) 31+ KT, (6)

where k. = (2n + 1)7/2a and K (k) is the kernel ob-
tained from the relationship between the supercur-
rent density and the vector potential in wave-vector
space. If one takes the Fourier transform of the ex-
pression for the supercurrent density in the gauge
V-A = 0, then one obtains a relationship of the form

(—4r/c)j(k) = K(k)AK) , @

where j and A are the current density and vector po-
tential, respectively. Relation (7) then defines the
kernel K (k). For the Pippard and BCS theories K (k)
can be expressed as®

3 / o L 3, . 2, -R/l
4—_——1r£o)\21, @) o /o /‘: sin'6 sin” ¢e
X e*F ** ' J(R,T)dpd6dR , 8)

where £, is the coherence distance in pure material,
Aw is the London penetration depth and [ is the elec-
tronic mean free path in the normal state. For the
Pippard theory,® the expression for J(R,T) is

Je(R,T) = exp (—E/%) . )

For the BCS theory, as modified by Mattis and
Bardeen’ to include impurity scattering,

K(k) =

2(T)es / - {1 — 2f(c0)
weo (0)N%(0) 7o €0

1 2f(E)} sin Zae (109
€ ’

Iees(R,T) =

E

where ¢ is the temperature-dependent energy gap, o
is equal to B/hvr, vr is the Fermi velocity, f(z) is the
Fermi function (exp [z/kT] + 1), and E =
(8 + €)% The function defined by (10) is in fact
quite similar to that of (9). For

/:JBCS(R,T)dR = £ = hvr/me0(0) . (11)

In this case & is a temperature-independent param-
eter corresponding to Pippard’s coherence length.
In addition, Jses is a slowly varying function of tem-

4J. R. Schrieffer, Phys. Rev. 106, 47 (1957).
5 P. B. Miller, Phys. Rev. 113, 1209 (1959).
6 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
7D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
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perature and is not too different from the exponential
of (9). (See for example Fig. 5 of Ref. 8.)

Let us now consider how the critical fields are cal-
culated. Depending on which theory of supercon-
ductivity one wishes to use, one picks a particular
kernel K (k). From (6), the weak field susceptibility
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Fi1a. 1. The temperature variation of the ratio of film critical
field to bulk critical field, R, = h./H.. The dots and pluses
represent critical field data for indium films of thicknesses
1060 and 56504, respectively. The values for R() have been
normalized to the measured value at a reduced temperature
of ¢ = 0.9 and are plotted as a function of the temperature
parameter Z = (1 — ¢)-%. The corresponding curves are the
results calculated from the theoretical model of Egs. (5), (6),
(8), and (9) with values for the nonlocal parameters discussed
in Sec. III of the text.

is then calculated. The results of (6) are then substi-
tuted into (5) which relates film critical field to weak
field susceptibility. Thus, the critical field ratio h.,/H,
can be calculated in a straightforward manner, once
K (k) is known. If one wishes to calculate critical fields
assuming random surface scattering in the supercon-
ductive state, one cannot use (6) which was derived
on the basis of specular boundary conditions. In-
stead, x/ko is calculated by solving an integral equa-~
tion as related by Schrieffer.* One then substitutes
this value of «/k, into (5) to obtain h./H..

III. RESULTS

Now let us consider the temperature dependence
of critical field. In Fig. 1 are plotted experimental
data for two of the pure indium films studied, a thick
film and a thin film. In Fig. 2, data are plotted for
an alloy film of indium containing 4.6 at. 9, tin.
Along with the experimental data in Figs. 1 and 2 are
plotted the corresponding results calculated from the
theoretical model presented previously, using the
Pippard kernel, specular boundary conditions, and

8J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957).

the values for the nonlocal parameters previously
used in I and II, i.e., & = 2600 A and foAl = 1.62
X 10°(A)? at 0.9 T.. In carrying out the calculations,
& was taken to be temperature-independent (as sug-
gested by the BCS theory) and the temperature de-
pendence of A, was determined from the calculations
of Miihlschlegel.® For the alloy film, £ was calculated
from the film resistivity to be 990 A. In each figure
we have plotted, not the critical ratio B, = h./H.
itself, but this ratio normalized to its value at a re-
duced temperature of ¢ = 0.9. This temperature was
picked because it was the temperature at which the
earlier thickness and composition results were pre-
sented. Also, we have plotted the critical field ratio,
not versus temperature, but versus the parameter
Z = (1 — t)~% This has the advantage of expand-
ing the temperature scale near T, which is where R.
varies most rapidly. In addition, because the pene-
tration depth is proportional to Z near T, the plots
come out to be nearly linear. As Figs. 1 and 2 indi-
cate, the theoretical model predicts fairly well the
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Fi1a. 2. The temperature variation of the ratio of film critical
field to bulk critical field, R, = h./H.. The dots represent
critical field data for an alloy film of indium +4.6 at. %, tin,
of thickness 2220 A. The values for R.(#) have been normalized
to the value measured at a reduced temperature of ¢ = 0.9
and are plotted as a function of the temperature parameter
Z = (1 — t)~%. The corresponding curve is the result calculated
from the theoretical model of Egs. (5), (6), (8), and (9) with
values for the nonlocal parameters discussed in Sec. I1I of the
text.

observed temperature variation of critical field, par-
ticularly for the thin and “impure’” films. For these,
the maximum discrepancy is ~109%,. For thicker
films, the discrepancies are somewhat larger. The
theoretical model also bears out the over-all quali-

9 B. Miihlschlegel, Z. Physik 155, 313 (1959).
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tative feature of the data—that the temperature
variation of critical field is greatest for the thinnest
or most impure films and decreases with increasing
thickness and/or purity.

Although the discrepancies between the experi-
mental results and the theoretical model are not large
they are consistent. For each film the observed varia-
tion of R, with temperature is somewhat less than
that predicted by the theoretical model. Preliminary
calculations indicate that at least part of the dis-
crepancy can be resolved by using the BCS nonlocal
kernel instead of the Pippard kernel. Comparison of
Je(R,T) to Jeoes(R,T), relations (9) and (10), indi-
cates that the Pippard and BCS kernels will lead to
slightly different temperature dependences of critical
field. Calculations with the BCS kernel, however, are
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Fic. 3. The temperature dependence of the critical field
ratio R, = h./H. in the thin film limit. The dots are values
calculated from the theoretical model of the text using the
BCS kernel [Egs. (12), (13), (5), and (6)]. The solid curve was
calculated using the Pippard kernel [Egs. (5), (6), (8), (9)].
In both cases, the values for RB(t) are normalized to the value
at ¢t = 0.9, and are calculated with values for the nonlocal
parameters discussed in Sec. III of the text.

quite difficult, a fact which motivated the use of the
Pippard kernel in the earlier calculations. In certain
limits, however, the BCS kernel simplifies and we
can easily carry out the necessary calculations. More
complete calculations are now underway and will be
reported at a later date.

In the thin limit, i.e., kI > 1, k& > 1, the BCS
kernel becomes®
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Kaos(k) = [3m/4£N2E]F (2) , (12)
where
_ N0 e« €o
F(t) = (0) «0) tanh kT * 13)

Since the quantity in square brackets in Eq. (12) is
just the Pippard kernel K¢(k) in the thin limit,

.. Knes(k)/Kp(k) = F(t) . (14)
In Fig. 3 we compare the results of the Pippard and
BCS kernels in the thin limit. The solid line is
R.(t)/R.(0.9) calculated using the Pippard kernel ; the
dots, using the BCS kernel. It is clear that the BCS
results show a striking similarity to the measured
critical field ratio for the thin indium film, and the
alloy film as well.

In the impure limit, we can obtain simple ex-
pressions for Kages(k) only at 7, and 0°K. At
T =0Kforkl <1, 1l/te K1,

Kros(k) >~ 1/£07,(0) , (15)

a result identical to Ke(k) at T' = 0O°K. At T = T\,
<KL l/5HK ],

Kros(k) >~ 1.35 I/t00(T) , (16)
which differs from the Pippard results only by the
factor of 1.35. Since F(T.)/F(0) = 1.33 in the thin
limit compared to 1.35 which we just obtained in the
impure limit, the implication is that the temperature
dependence of critical field ratio in the impure limit,
as calculated from the BCS kernel, is nearly identical
to that in the thin limit. The experimental results
bear out this conjecture, as a comparison of Figs. 1
and 2 indicates.

Thus, to summarize our results, comparison of the
nonlocal, nonlinear theoretical model to measure-
ments of the temperature variation of critical field of
indium and indium—tin films yields fairly good agree-
ment when the Pippard nonlocal kernel is used. How-
ever, consistent discrepancies are noted. Recalcula-
tion of the theoretical results using the BCS nonlocal
kernel in the thin and impure limits indicates the
small discrepancies between experiment and theory
previously observed can be partly (or perhaps com-
pletely) resolved by use of the BCS kernel in the
theoretical calculation.
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P. V. Mason, California Institute of Technology: Am 1
right in believing in all cases you assume specular reflection?

Toxen: You are right. In all of the calculations I have as-
sumed specular reflection. However, I would like to point
out that the results with diffuse reflection are quite similar
and one really wouldn’t expect to find any striking differ-
ences.

Mason: In some work I have done, I have found a rather
considerable difference. Although I admit that the differ-
ence here was that the film had a field applied on only one
side. But in this case there was a rather sizeable qualitative
difference between diffuse and specular reflection.

Toxen: Well, if you go back and look in Schrieffer’s
paper on the calculation of the susceptibility in the super-
conducting state, and if you look at his curves, you’ll find
that those for the specular and diffuse reflection are nearly
the same. However, here we are not considering the one-
sided case, but rather the case in which the field is the same
on either side of the film. I have also carried out some cal-
culations for the diffuse scattering case and verify Schrieffer’s
results.

Lyn~ron: With regard to the thickness dependence of the
critical field in the thin field limit, I believe that you use
the customary procedure of saying that in the limit of a very
short mean free path the coherence length is essentially
equal to the mean free path. There is reason to believe as a
number of people have pointed out (de Gennes, Goodman,
and others) that the coherence length should in fact be taken
as the square root of the bulk coherence length times the
mean free path. Would that affect your results in any sense?

Toxen: Actually I didn’t do that. Following the spirit of
Schrieffer’s calculations the coherence length is that of the
bulk material and the coherence length which I used was
not taken to depend on thickness. Actually I took &, to be
the same for all of the films. The effective coherence dis-

tance £ was then calculated by determining the intrinsic
mean free path. That is, I measured the film resistivity in
the normal state, measured the film thickness, calculated
the intrinsic mean free path, assuming boundary scattering,
and then calculated the effective coherence distances in the
straightforward manner.

Lynrton: In what straightforward manner?

Toxen: Well the reciprocal of the effective coherence
distance was the sum of the reciprocals of &y and the mean
free path.

Lyn~ton: I would like to hear Dr. de Gennes on whether
this indeed is the correct way of calculating £.

pE GenNEs: For phenomena involving the thickness of a
transition layer of a superconductor of the first kind, the
correct coherence length is (£0)%, while if we compute the
current at a point in terms of the vector potential at other
points the formula which we must use is 1/¢ = 1/& + 1/1.
The reason is as follows: (1) For the transition layer prob-
lem, we compute the order parameter A(r) at point r in
terms of A(r’) at surrounding points. The corresponding
kernel involves essentially the correlation function:

@l -t - £()

where r(0) and r(?) are successive positions of one electron,
in the normal state, and the average is taken on electrons at
the Fermi energy. The relevant time ¢ is of order %/ksT.
In a “‘dirty” alloy the correlation function is ruled by a
diffusion process, and the range of the kernel is ~(D#)?
~ (£0))% (where D = 3uylis the diffusion coefficient). (2) For
the calculation of the current j(r) in terms of the potential
A(r’), what comes in the kernel is a correlation function be-
tween velocities: this correlation is essentially destroyed by
one collision, and the range of the kernel in the “‘dirty”
limit is the transport mean free path /.

Microwave Nonlinearities in Thin Superconducting Films

M. D. SHERRILL and K. ROSE

General Electric Research Laboratory, Schenectady, New York

Nethercot! has shown that superconducting tin films
thicker than 2000 A can produce second harmonics
of 10 kMc/sec microwaves when they are placed in a
cavity and properly biased with a magnetic field.

In the present experiment a much thinner tin film
is placed directly across an X-band waveguide so
that the waveguide opening is completely covered.
The film is not biased. In a certain power range the
film transmission is found to be highly nonlinear and
third harmonics of the fundamental frequency are
generated. No detectable second harmonic is gen-
erated.

1 A. H. Nethercot, Jr., Phys. Rev. Letters 7, 226 (1961).

If the film’s behavior is to be substantially differ-
ent in the superconducting and normal states the
normal resistance per square should not be too small
compared with the guide impedance, which is about
500 Q. To control the agglomeration of the tin and
thereby obtain films with resistances per square of
10 to 110 @ at helium temperature, the substrates
were prepared for the tin evaporation by first evap-
orating upon them a very thin nonconducting gold
layer. The substrates were of fused or crystal quartz
and had four gold patches evaporated on them to
provide de¢ connections to the film. The substrate
was at room temperature during the tin evaporation.
After the tin evaporation the films were removed



