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centers. Their results su%ce to show that the w term
in F is unchanged by the presence of impurities, as is
the spin term, whereas tv" is replaced by a new func-
tion which may be written as

tv" —+ w", —= m.T g (a&'. + IAI')
'

n~o

x (~'-+ l~l')'+ I2

where ce„=—(2n + 1)x.T, r&, is the transport collision
time, and w,"reduces to w" as 7 &,

—+ ~. How the tv'"
term in 0 is modified cannot be determined without
additional computation.

A comparison of the spin energy, Eq. (3), with the
orbital magnetic energy of Eqs. (1) and (4) may now
be made very crudely by approximating A by Bo
(except for films of thickness d « 8, in which case

Bd). Then, for an ideal pure electron gas model,
the orbital energy is seen to dominate by a factor
(p&b)', which might typically be of order 10'. How-
ever, the transition metal compounds with very high
T, and II,, such as the VsX compounds or NbsSn,
also all have high densities of states at the Fermi
surface and very large effective masses, typically
~10'. In addition, the electronic mean free path t in
these materials as prepared in short compared to the
coherence distance $e of the pure metal. In these
more realistic circumstances, the ratio of orbital to
spin energies is roughly (mvs5) (l/$p) &

which, in
many cases, could be of order unity. Thus a prelim-
inary estimate confirms the importance of the spin
energy for high critical field superconductors, and

stresses the significance of extending Abrikosov's de-
tailed calculations" of the negative surface energy
phase to include the spin energy term, Eq. (3).

Finally, it is necessary to point out the limits of
applica, bility of the local theory of superconductivity
outlined above. The derivation leading to Eqs. (1)—
(4) is an expansion resting crucially on the assump-
tion that the coherence distance is short, and inspec-
tion shows that P is proportional to tv", . However,
near a second-order critical point where

I
t)

I
is small,

roughly"

As T tends toward zero, tv,"approaches infinity and
the expansion breaks down, despite the presence of a
finite mean free path. Thus even though a supercon-
ductor may be local in weak GeMs, it becomes non-
local at lower temperatures in fields sufficient to re-
duce the gap function substantially. Stated differ-
ently, as both T and 6 become small (compared to
T.), the coherence distance increases to the point
where it no longer can be the shortest characteristic
length entering the problem. As an example, the low
temperature (T « T.) magnetic transitions of a thin
film (d « 6), predicted to be of first order by Bardeen'
from a theory resembling ours, must rather be dis-
cussed on the basis of the Gor'kov —ShapovaPs non-
local integral equations.

ir Gor'kov (Ref. 3b) gives the exact expression.
is L. P. Gor'kov, Zh. Eksperim. i Teor. Fis. 37, 888 (1969)

[English transl. : Soviet Phys. —JETP 10, 593 (1960)];E. A.
Shapoval, Zh. Eksperim. i Teor. Fis. 41, 877 (1961) [English
transl. :Soviet Phys. —JETP 14, 628 (1962)l.
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I. INTRODUCTION

The Ginzburg —Landau (GL) equations' for a slab
of superconductor in a tangential external magnetic
fie1d may be taken as one dimensional in form, all
quantities then being functions only of the transverse
coordinate. The equations have usually been solved in
the approximation that assumes the order to be con-

~ V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Yeor.
Fis. 20, 1064 (1950).

stant or nearly constant across the slab,"which is
adequate for films of moderate thickness for small
kappa materials. However, the constant order ap-
proximation is not only quantitatively poor for thick
films and large kappa materials, but completely fails
to reveal the important high-field behavior and the

& V. L. Ginzburg, Zh. Rksperim. i Yeor. Fiz. 34, 113{1958)
[Enghsh Yransl. : Soviet Phys. —SETP 34, 78 I', 1958)].

3 Paul M. Marcus, in Proce@Angs of the Eighth International
Conference on I ow Temperature Physics, London, 1968 (But-
terworths Scienti6c Publications, Ltd. , London, 1962).
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interesting new classes of solutions in which the order
oscillates around zero.

In the present work we discuss the behavior of the
exact solutions, obtaining the conditions for stable,
metastable, and unstable states by study of the free
energy. Typical type II behavior4' will be shown to
occur for large kappa materials, but the structure of
the order at large fields will be shown to resemble the
intermediate state more than the mixed state of Ab-
rikosov or Goodman, i.e., there is a small strongly
superconducting core surrounded by a thick outer
layer of nearly normal material extending to the sur-
face. No oscillations of order from superconducting to
normal and back occur in this lowest stable state.
However, a series of additional locally stable states
exists in which the order oscillates one or more times
about zero within the slab. Such states are always
metastable with respect to the lowest, nonoscillatory
state, but may be either stable or metastable with re-
spect to the normal state. A systematic classification
and discussion of these states will be given.

IL BASIC EQUATIONS AND PROPERTIES
OF THE SOLUTIONS

The GL theory starts from an assumed form of the
free energy of a superconductor with respect to the
normal state. ' In one dimension, in reduced variables,
this free energy difference between normal and super-
conducting states per unit volume of a slab of thick-
ness d in a tangential external field A, is

(VH'.s/8'�)

+ 2ag + 2(a' —h„) . (1)

ln (1)6, and G. are the free energies of the total speci-
men, of volume V, in the superconducting and nor-
mal states, respectively, and H, f, is the bulk critical
field; h, and the vector potential a are expressed in
the usual reduced units, ' h. = H./v 2H.s,

a =—A/v 2 H.b)to, where X, is the weak-field penetra-
tion depth. Similarly d and the transverse coordinate
rt are given in units of Xs. The reduced order p is zero
in the normal state and has ma, gnitude unity in the
equilibrium superconducting state in the absence of a
field at the given temperature. The derivatives in (1)
are defined by p' = dp/dq and a' = da/drt = It(rt),
the reduced magnetic field; ~ is a dimensionless in-

4A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442
(1957) [English Trsnsl. : Soviet Phys. —JETP 5, 1174 (1957)].

s B. B. Goodman, Phys. Rev. Letters 6, 597 (1961); IBM
J. Res. Develop. 6, 63 (1962).

6 The appropriate free energy must be used which is a
minimum at equilibrium in a given external field.

trinsic parameter distinguishing different supercon-
ductors. The vector potential has been fixed by
choosing the unique gauge in which p(rt) is real (al-
though not necessarily positive). The density of the
reduced intrinsic free energy diA'erence has been
chosen in the simple form assumed by GL, qP (qP —2),
which has a minimum at qP = 1 and vanishes at
y = 0.

The conditions that g, as given by (1), be station-
ary with respect to general first-order variations of
the functions a(rt), p(rt) then lead to the GL differ-
ential equations (2a) and boundary conditions (2b)
for p and a,

p" = s p(qP —1+ a ), a" = qua,

p'. = 0, a.' = l't. ,

(2a)

(2b)

where p„p,'and a„a'. are the values of p, p' and a, a'
at the edges of the slab (rt = &-,' d). We are inter-
ested in the solutions of (2) which make t7 a mini-

mum, and most interested in the lowest minimum for
given values of the parameters. Also of interest is the
magnetic moment of the slab in the field h, . It is con-
venient to define a reduced moment tt by dividing by
the magnetic moment the specimen would have in
the bulk critical field if the field were completely ex-
cluded, ' which gives

t = &2(II I

—2lal/d).

The GL theory thus contains three intrinsic pa-
rameters —)Is, H, &, and s—but these are reduced to
one by using reduced variables. A physical problem
(for slabs) is then specified by giving two problem
parameters, d and h„which occur in the boundary
conditions. The solution of (2) for given ~, d, and It.
leads to p(rt), a(rt) which may then be used to evaluate

g from (1) and ti from (8). If several solutions are
found, comparisons of g values in the different states
obtained in this way will then lead to the stablest
state.

The following general observations may be made
about the solutions of (2): (1) The normal state is

always a trivial solution of (2), g(rt) = 0, a(rt) = h, rt,

g = 0. (2) The function a(g) must have one node
within the slab, and no minima or maxima. ' (3) If

& This comparison moment treats the slab as if it were bulk
material, and the penetration of the field could be neglected;
thus for bulk material in the bulk critical field A, = 1/~2,
a, = 0, and p = 1. Field penetration then always reduces the
values of p, below 1.

8 If there were no node, a" would have only one sign, a'
would be monotonic, and so could not have the same value at
the two boundaries; if there were an extremum, from that
position a would curve away from the axis in both directions
and never approach the axis, hence would have no node, which
is not possible.
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FIG. 1.Behavior of
y(s), 0 (s &10at
If: = 2.0 for @p ——0.92
as hp decreases from
0.8 to 0, showing the
successive develop-
ment of extrema and
nodes. Solutions of
(2) of type N have N
nodes (in the slab, of
which only the right
half is plotted); slab
solutions of type N-
I place the slab
boundaries at the Lth
extremum from the
center of the type N
solution.

~p(r)) )
reaches the value unity from below, then (g(r))

~

will increase and never return to the value unity (or
zero). ' (4) The solution p(y) corresponding to the
lowest g (for given values of d and h, ) has no nodes. "
(5) Symmetric solutions of (2) exist [a(r)) odd, P(r))
even or odd about the center of the slab].

A general proof that all solutions are symmetric
has not been found, but it seems likely to be true
since the solutions are symmetric in two different
limiting situations. In the limit of thin-enough 6.lms
the order may be assumed constant across the film—
then p(g) is an even function, hence, c(r)) is odd. In
the limit of weak fields when A(rl) and a(rl) vanish,
the equation for p has strictly periodic solutions (p is
an elliptic function of xr)") and the solutions for p(r))

which provide a complete set of initial conditions at
the center of the slab for these second-order equa-
tions, since p'(0) = 0, a(0) = 0; the solutions are
readily generated by numerical integration for any
given pc and k,. The behavior of the even solutions
in the p„hc representation is illustrated in 'Fig. 1,
which plots g(r)) (for 0 ~( r) ~( 10) at's = 0.92 and a
succession of hp values, for ~ = 2.0. The solutions may
be classified according to the total number of nodes
they show, hence as type 0, type 2, type 4, etc. As hp

decreases, they approach the limiting periodic solu-
tion, especially near the origin where a is small, but
as a increases going out from the origin, p" eventually
changes sign and g diverges to plus or minus infinity.
Solutions in a slab are obtained by placing the bound-
aries at the successive extrema (symmetrically on the
two sides of the origin), and may be labeled by the
number of the extremum from the origin, thus, as
type 0—1, type 2—1, type 2—2, etc. From the succession
of curves of Fig. 1 we see that a solution of type 0—1
at the given pc can be found for any d by choosing
hp. However type 2—1 can be found only within a
certain range of d, at the upper limit of which a solu-
tion of type 2—2 takes over and then exists for all
greater d out to infinity; similarly for type 4 and
higher.

Solutions in the slab have been generated by sys-
tematic use of the gc, Ac representation, with suitable
interpolation on pc, hc to fit desired boundary condi-
tions"; from these g and )i have been found as func-
tions of the problem parameters d and 1't,.

I I

4 6
I

lo
III. THE FREE ENERGY AND CRITICAL BEHAVIOR

in the slab obtained by placing the boundaries at
maxima or minima are all strictly even or odd (see
Fig. 1). We assume symmetry, although the possi-
bility remains open that nonsymmetric solutions
exist.

Symmetric solutions of (2c) are fixed by two pa-
rameters pc —= p(0) and hc =—a'(0) [for g(g) even"J

9 Since the equation for p then becomes similar to the equa-
tion for a.

M If p(v), o(s) are solutions of (2) and g(v) has nodes, then
from (1) the functions Ip(v) I, a(v) give the same value of g.
But Ip(s) I

divers from g(s) and is not a solution of (2), hence
does not correspond to an extremum of g. Thus functions
exist (close to Ig(s) I, a(v)) which make g still smaller, hence
g(s), o(s) do not give the lowest g.

The relation is y = pc sn [(I —pcs) 4s + C], an elliptic
function of modulus k = g&&/(2 —pcs)*, yc = the maximum
value of @;C is determined by the choice of origin; the period
in v is 4K(k)/rc(1 —pg/2) * where EC(k) is the complete elliptic
integral of the &st kind.

2 For odd solutions, @p and ho fix the solution. Discussion of
odd solutions will be omitted here for brevity.

The behavior of g as a function of h, along the type
0 or nodeless solution curve for a succession of d val-
ues isshownin Fig. 2 at thelowvalueof x = 0.2and
in Fig. 3 at the high value ~ = 2.0. Figure 2 shows
that as d increases above 2, the solution rises above

g = 0 to a maximum value at a maximum field, "
where g shows a cusp, then decreases along the upper
branch of the cusp to zero at a finite field 1't„(where
it forms a second cusp with the normal state above
It„). The lower branch is stable up to g = 0 (since it
is the lowest solution up to there) a,nd probably
locally stable (hence metastable) between g = 0 and
the maximum, while the upper branch is probably

i3 A description of the rather complicated computational
techniques must be omitted in this brief presentation.

i4As d —+ ~, h approaches a finite limit whose value de-
pends on a and increases to inanity as rc ~ 0 (see Ref. 2); this
limit is then the maximum tangential superheating field that
can occur at the surface of a bulk superconductor.
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unstable"; the normal state (the g = 0 axis) is prob-
ably locally stable for fields down to h„.

The behavior of the thicker slabs in Fig. 3 shows a
striking contrast to Fig. 2, with the cusp in g now
forming below g = 0,; the second (presumably un-

ing phase where it lies lowest, and is probably locally
stable where it is higher than the other superconduct-
ing phase (the first branch). There is a similar but
much smaller multiphase region on the d = 5 curve
from h, = 0.844 to h, = 0.850, which does not show
up on the scale of Fig. 3.

Now as It, increases from zero, g rises from —1
along the first, branch to the intersection with the
third branch. A first-order phase transition to the
third branch is then thermodynamically favored
above this intersection, but may not occur until the
stability limit at the first cusp is reached; one or the
other of these fields is then the lower critical field

Fro. 2. The free energy difference g, defined in (1), vs the
reduced external field h. for slabs of reduced thickness d
= 1, 2, 3, 5, 10 at tc = 0.2. A metastable range forms above
g = 0 for thick slabs, ending in a cusp from which an unstable
branch approaches the normal state from above and through
decreasing fields.

stable) branch now terminates at a second cusp at
negative g, and gives rise there to a third supercon-
ducting branch going up to quite high fields. This
third branch must be a second stable superconduct-
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Fro. 4. The reduced magnetic moment p defined in (3) and
footnote 7, vs II, at ~ = 2.0 for d = 5 and 10 showing type II
behavior, with a first-order transition at lower critical field h.~

(indicated for d = 5) and a second-order trans@ion at an upper
critical Geld h, 2 —2.0. On the d = 10 curve, A indicates the
rnaxirnum supercooling Geld h... B the field for thermodynamic
equilibrium of the two phases and C the stability limit Geld
h

",6

-.8
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Fzo. 3. g vs h, for d = 1, 5, 10 at ~ = 2.0. For thicker slabs,

the first branch terminates in a cusp below g = 0, from which
an unstable branch goes to still lower g, ending in a second
cusp at which a new superconducting phase appears; the new
phase approaches the normal state from below and through
increasing fields to a critical value —2.0.

&5 Namely, it corresponds to a local maximum of g. This
identification of locally stable and unstable ranges is suggested
by the calculations in the constant order approximation, as in
Ref. 2, but has not been demonstrated in the general case.

(for definiteness, we take the stability limit).
Above It,&, g rises along the third branch to zero and
the normal state at an upper critical field h.z = K,

where a second-order transition takes place."This

&6 The second-order nature of the transition is shown by
the gradual decrease of p(v) to zero everywhere in the slab as
h, increases, near the critical field then, the small @ approxima-
tion can be made I see Ref. 1 and A. Abrikosov, Zh. Eksperim.
i Tear. Fiz. 32 1442 (1957) lEnglish transl. : Soviet Phys. —
JETP 5, 1174 (1957)]I in which the linearized equations be-
come g" + ~z(1 —bzq&)y = 0. This has solutions for given d
only for discrete values of h, which have a maximum; for
large d these eigenvalues may be obtained from the harmonic
oscillator problem, 5, = «/(2n+ 1), n = 0, 1, 2 with
largest value h. = tt:, above which there are no solutions. Thus
the limit of the g curves on the normal axis is A„—2.0 at
tt = 2.0 and h. —0.2 at ~ = 0.2 as is consistent with Figs. 3
and 2 and indicated by more detailed calculation.
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behavior of the state of the high-kappa specimen as
h. increases is directly illustrated by the variation of
its magnetic moment plotted as a function of h, in
Fig. 4. Typical type II behavior is exhibited, 4' with
an initial nearly linear rise, a discontinuous drop to a
new state at h, & (which is distinctly lower than the
transition field of the low kappa slab of the same
thickness), and then the long, slowly decreasing tail
to the second-order transition to the normal state at
I„=2.0.

Insight into the character of the state of the speci-
men on the third branch of the type 0 solution curve
(the high-field tail) is given by Fig. 5 which plots p in
the slab d = 10 (x = 2.0) at h, = 0.736 on the third
branch and at h, = 0.746 on the first branch. This
shows that along the high-field tail there is a strongly
superconducting core several penetration depths

t

g

I I

.9 IO

-4—

solutions in which the minimum of g (and the sur-
face of the specimen) can be at any distance. '" By
contrast, p(if) on the first branch, at nearly the same
problem parameters, does not show any nearly nor-
mal region. The corresponding a(rf) curves show that
the field in the slab for the third branch is much
greater than the field for the first branch solution.

In Fig. 6 the behavior of the type 0 (nodeless) solu-

e =2.0
,0

-I.O

FIG. 6. gvsh, atff: = 2.0 ford = 10showingboth the type0
solution and the type Q solution. The latter lies everywhere
higher and does not show a high-field phase; it does show a
phase transition from type 2-1 (slab boundaries at the first
extremum, a minimum) to type 2-2 (slab boundaries at the
second extremum, a maximum). The points marked A and D
correspond to the curves of Fig. 5.

-2-

Fra. 5. p(v) vs v and a(q) vs v (ordinates on the right) at
ff: = 2.0 for four sets of values of pp and hp. Curves A, B, C
have pp = 0.99 and the very closely spaced values hp =
0.20455726, 0.20455724, 0.20455722, respectively. They corre-
spond to an h, = 0.736 (at p = 5.0), respectively, and bracket
solutions with @p = 0.99 and minima at any q greater than
4.g (A. and B indicate the minima of A and B, Cp the zero
of C). Curve D, with @0 ——0.99995 and hp ——0.01429, has a
minimum at v = 5.0 (D ), and an h. (at v = 5.0) of 0.746. The
solution with a minimum at q = 5.0 (between curves A and
8) is on the third branch of the g curve of Fig. 6 (marked
point A); curve D has nearly the same parameters, but is on
the first branch of the g curve (marked D) and does not show
the normal layer surrounding a superconducting core, charac-
teristic of the high Geld phase.

tion is compared with the type 2 solution (two nodes)
atd = 10, x = 2. As noted in point (4) of the general
observations, g(h.) for type 2 must lie above g(h, ) for
type 0 at every h, . The type 2 curve does not show a
high-field tail, but, like the solution at ~ = 0.2, it
rises above g = 0, and the unstable branch coming
from the cusp heads toward the normal axis from
above. " Another interesting feature is the phase
transition at h, —0.10 when the solution switches
from type 2—1 to type 2—2 and the first minimum
moves inside the slab. Finally we note that between
the type 0 and type 2 curves must lie g(h.) for the
type 1 solution, the odd solution, with one node at
g=0.

wide surrounded by a region of nearly normal ma-
terial in which p is nearly zero and h nearly constant.
The small variation in hp (in the eighth significant
figure) changes the Q curve from turning up (curves
A and B) to turning down (curve C) hence brackets

~7 However, there is no significant change in g in pushing the
minimum out to any larger value of d since the additional
nearly normal layer has nearly zero free energy. Thus it is not
necessary to Gx hp with enormous precision to Gx the values
of g and y.

&8 In fact, the limiting Geld on the normal state axis is ap-
proximately the third discrete state of the small p approxima;
tion (Ref. 16), n = 2 and h, = 0.4 (the staten = 1, h. = 0.67
must be the limit of the type 1 solution which, as noted below,
lies between type 0 and type 2).
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Discussion 47

D. DovoLAss, Instt'tute for the Study of Metals: A remark
on Marcus' paper. I think your initial assumption can be
criticized. Namely, that al1 the quantities of interest vary
only across the slab, in the thin dimension. As you know,
the Ginzburg —Landau equations are partial differential equa-
tions involving derivatives in the other two directions. Pro-
fessor Blat t's remark concerning the two-dimensionality of
this problem is, I think, relevant to your case. There is no
valid basis for dropping the terms involving the derivatives
in the other directions. I m going to present circumstantial
evidence this afternoon for the case that the energy gap and
other parameters are spatially modulated in the direction of
the width of a very thin film. If this indeed is true then your
calculations would be only of academic interest.

MARcvs: I think your point is well taken. %hat I will
state is that this is a solution of the Ginzburg —Landau equa-
tions even for the bulk; but it probably does not have a
lower free energy than the Abrikosov solution which of
course does have transverse variables. There may be circum-
stances under which a solution like this will be observed if
you choose the dimensions suitably. That would still have
to be established.

W. H. KLEINER, Massachusetts Institute of Technology:
Stimulated by a conjecture made by Stanley Autler, Laura
Roth and I have independently discovered a solution of the
Ginzburg —Landau equations of the Abrikosov type just be-
low the upper critical field. This solution has field maxima
on a triangular lattice with each lattice point having six
nearest neighbors. This solution has a lower free energy than
Abrikosov's solution with 6eld maxima on a square lattice.
The triangular lattice solution has P equal to 1.16, whereas
the square lattice solution has P equal to 1.18. (Lower values
of the parameter P of Abrikosov's theory correspond to
lower free energies. ) The square lattice solution is unstable
with respect to the triangular lattice solution not merely
me tastable.

GORTER: May I just ask what you (Marcus) would ex-
pect to happen if you took d/X much larger than 10.Would
you then think that the lowest free energy would correspond
to a thin superconductive region in a very thick slab&

MARcUs: They will shift slightly but still have essentially
the same structure with about the same thickness of super-
conducting core.

Critical Currents in Thin Planar Films
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INTRODUGTION

Repeated efforts have been made to measure the
critical value of the current density necessary to sup-

press superconductivity in. thin Glms. Agreement be-
tween various experiments and with theory has often
been poor. ' ' Experimentally there are two main
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