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The Ginzburg-Landau equations, proposed' as a
phenomenological description of the behavior of a
superconductor in a magnetic field, have proved to
be strikingly successful in explaining a wide variety
of experimental observations.? A more fundamental
justification of the Ginzburg-Landau theory and a
deeper understanding of the reasons for its success
has been provided by Gor’kov,® on the basis of his
Green’s function reformulation* of the BCS micro-
scopic theory. Gor’kov, however, restricted his at-
tention to the region of temperatures near the critical
temperature, 7. — T < T., which entitled him to
make a number of simplifying approximations:

(1) that the position-dependent energy gap func-
tion AR,T), proportional to the Ginzburg-Landau
order parameter, was small compared to T';

(2) that A(R,T) was slowly varying over distances
£(T) characterizing the spatial extent of the electron
pair correlation;

(3) that the penetration depth 6(7) was much
larger than £(7), so that the magnetic field was also
slowly varying over a correlation distance;

(4) that the bulk critical field H.(T) was suffi-
ciently small so that the radius of a cyclotron orbit
was large compared with £(7T).

Using these approximations, that A ,d/dR, and the
vector potential A were small expansion parameters,
Gor’kov?® was not only able to derive the form of the
Ginzburg-Landau equations, but to relate the
phenomenological parameters to measurable micro-
scopic ones.

There has been considerable recent interest in the
possibility of generalizing the Ginzburg—Landau-—
Gor’kov (GLG) theory to lower temperatures, and
several preliminary attempts® in this direction have
been made. It is reasonable to suppose, for one thing,
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that Gor’kov’s approximation (1) is no more than a
mathematical convenience, without real physical
necessity. Since the GLG equations are already non-
linear in A, removal of the small A restriction with
an attendant increase in the nonlinearity should not
seriously diminish their utility. On the other hand,
mathematically, approximations (2)—(4) are vital for
converting the nonlocal integral equations, which are
the natural description of superconductivity arising
from the Green’s function formulation, into local dif-
ferential equationsof the GLG character. Itis just this
local differential character which gives the GLG
theory its usefulness and intuitive appeal. Physi-
cally, furthermore, approximations (2)—(4) in effect
merely state that the correlation distance ¢ is the
shortest length entering the problem, and hence that
a local description is appropriate.® Such a local de-
seription of superconductivity, however, cannot have
as wide a physical relevance at all 7' as Gor’kov
demonstrated it to have near 7., since a principal
feature of the BCS theory of pure bulk supercon-
ductors is the intrinsic nonlocality. Nevertheless,
there are indications that certain pure transition
metals, such as Nb, are in fact local,” and it could be
argued that the short mean free path of supercon-
ducting alloys should make them local as well.

A closely related subject of current interest is the
role of the magnetic spin energy in determining crit-
ical behavior. It has been pointed out by Chan-
drasekhar® and by Clogston® that the difference in
spin susceptibilities between normal and supercon-
ducting states may be the primary factor limiting the
upper critical field, H.., in negative surface energy
superconductors with very high H.. Evidence for .
this occurring experimentally has been marshaled
by Berlincourt and Hake."* The GLG theory, so
powerfully brought to bear on the negative surface
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energy phase by Abrikosov,"! nonetheless omits all
mention of electron spin.'?

In a previous paper,’® we have obtained equations
describing a pure local superconductor at arbitrary
temperature, by following Gor’kov’s derivation,? but
relaxing approximation (1). We here wish to review
the principal results of that work, to present the
modifications and extensions due to taking into ac-
count a finite mean free path and the magnetic spin
energy, and to further discuss the conditions under
which such a local description may be valid.

The central result of I is to determine a real, gauge
invariant, free energy functional, F{A,A* A}, ap-
propriate to a pure local superconductor in a mag-
netic field. Requiring that the functional be station-
ary with respect to both A (or its complex conjugate
A*) and A leads to coupled differential equations de-
termining these quantities. The former is the ex-
tension of the GLG equation for the order parameter
or gap function, while the latter is just Maxwell’s
equation for the induced field with the Meissner cur-
rents as a source. When these equations are satisfied,
the functional equals the free energy difference be-
tween the superconducting and normal phases. The
functional is found to be

F = fdaR {N(O) [w(!A(R)IZ)
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Here N (0) is the density of states of one spin at the
Fermi surface, vr is the Fermi velocity, A is the
vector potential associated with the total magnetic
field B, B, is the applied field, 8 is the inverse tem-
perature with critical value 8., and primes on w de-
note differentiation with respect to its argument.
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As was pointed out in I, ¥ and its stationary con-
ditions reduce to known results in several special
cases. For T' = T.and | A| < T, expansion in powers
of |Al? using w'(0) = —In T./T and w”’(0) =
[7¢(3))/[8(xT)?] leads back to the usual GLG ex-
pressions. On the other hand, ignoring the position
dependence of | A| recovers the BCS theory (in the
London gauge, A real), since w’(A?) = 0 is just the
standard BCS energy gap equation, N (0)w( A?) is the
BCS free energy density difference, and 2 A%w’’( A?)
is identical to the BCS factor A/Ar giving the tem-
perature dependence of the London penetration
depth. Since w” > 0, inspection of F shows that
spatial variations of the gap function and magnetic
field exclusion increase the superconducting free en-
ergy, as expected.

When the energy of interaction of the magnetic
field with the electron spins is also taken into ac-
count, the functional § is modified by the addition
of the term

0F i = f d’R 1 N(0) (eB/mc)’|AR) " (|AR)) .
(3)

That this expression is in fact a reasonable one may
be seen by again considering A independent of R;
then — N (0)(e/mc)? A*w'’( A%) is just the difference in
spin susceptibilities between superconducting and
normal phases, x, — x», first computed by Yosida.*
This result, combined with that of the preceding
paragraph for the penetration depth, illustrates
rather convincingly the point originally made by
Bardeen,® that, in the local limit, a two-fluid model
is valid, and that 2| AR)[*w”(|AR)|?) is the ap-
propriate position-dependent superfluid density frac-
tion. Again it may be noted that the spin energy in-
creases the superconducting free energy, confirming
the remarks of Chandrasekhar® and Clogston.?

Before comparing the spin energy to the GLG
orbital magnetic energy, to determine the relative
contribution of the former to the negative surface
energy phase, it is also necessary to insert a finite
mean free path into Egs. (1) and (3). A partial
answer is obtained very easily by adapting the cal-
culations of Abrikosov and Gor’kov'® for the one-
and two-particle superconducting Green’s functions
in the presence of dilute random impurity scattering
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centers. Their results suffice to show that the w term
in ¥ is unchanged by the presence of impurities, as is
the spin term, whereas w’’ is replaced by a new func-
tion which may be written as

w!' —-w! =T ; (wi + IAIz)_l
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where w, = (2n + 1)7T, 7. is the transport collision
time, and w;’ reduces to w'’ as 7. — . How the w'"’
term in & is modified cannot be determined without
additional computation.

A comparison of the spin energy, Eq. (3), with the
orbital magnetic energy of Egs. (1) and (4) may now
be made very crudely by approximating A by B$
(except for films of thickness d << §, in which case
A ~ Bd). Then, for an ideal pure electron gas model,
the orbital energy is seen to dominate by a factor
(prd)?, which might typically be of order 10°. How-
ever, the transition metal compounds with very high
T. and H.., such as the V;X compounds or Nb;Sn,
also all have high densities of states at the Fermi
surface and very large effective masses, typically
~10? In addition, the electronic mean free path [ in
these materials as prepared in short compared to the
coherence distance £ of the pure metal. In these
more realistic circumstances, the ratio of orbital to
spin energies is roughly (mvgd)?(l/&), which, in
many cases, could be of order unity. Thus a prelim-
inary estimate confirms the importance of the spin
energy for high critical field superconductors, and

(4)

stresses the significance of extending Abrikosov’s de-
tailed calculations™ of the negative surface energy
phase to include the spin energy term, Eq. (3).

Finally, it is necessary to point out the limits of
applicability of the local theory of superconductivity
outlined above. The derivation leading to Eqs. (1)-
(4) is an expansion resting crucially on the assump-
tion that the coherence distance is short, and inspec-
tion shows that £ is proportional to w). However,
near a second-order critical point where | A| is small,
roughly”’

v [or ()]

As T tends toward zero, w; approaches infinity and
the expansion breaks down, despite the presence of a
finite mean free path. Thus even though a supercon-
ductor may be local in weak fields, it becomes non-
local at lower temperatures in fields sufficient to re-
duce the gap function substantially. Stated differ-
ently, as both 7 and A become small (compared to
T.), the coherence distance increases to the point
where it no longer can be the shortest characteristic
length entering the problem. As an example, the low
temperature (T < T'.) magnetic transitions of a thin
film (d < ¢), predicted to be of first order by Bardeen®
from a theory resembling ours, must rather be dis-
cussed on the basis of the Gor’kov—Shapoval® non-
local integral equations.
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I. INTRODUCTION

The Ginzburg-Landau (GL) equations' for a slab
of superconductor in a tangential external magnetic
field may be taken as one dimensional in form, all
quantities then being functions only of the transverse
coordinate. The equations have usually been solved in
the approximation that assumes the order to be con-
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stant or nearly constant across the slab,2?® which is
adequate for films of moderate thickness for small
kappa materials. However, the constant order ap-
proximation is not only quantitatively poor for thick
films and large kappa materials, but completely fails
to reveal the important high-field behavior and the
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