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F(z,z,x = y = t = 0) = (2s.)
'

X F(z,z,x = y = 0,(v) = (2tr)
'

where

KdK exp [i(2m~co)z/K)]
2m'

4rrK (cs' —6'„)'

2m'„k~ "
do) B 2m')z

20
4s' o (tv' —6'.) *

B(x) = ie'* e"dt = e" —ix Ei+(ix)
p t+x

—e'*/x, x &&1. (21)

In the limit we obtain

F(z,z,x = y = t = 0) ~ B(2m'„z/kr) ~ 1/z,

z ) kr/2m'„= 10 'cm. (22)

In calculating the z dependence of (20) at smaller
distances, we must remember that by using the bulk
value of F for F(0+,0+) we neglect the effect of the
change in energy gap near the edge of the super-
conductor.

This nonexponential falloff has been commented

on by Falk. ' It should be pointed out that this result
is a consequence of choosing V = 0 in the normal
metal. Since the pairing energy is zero, we have the
limiting case of class II wave functions and the cor-
responding 1/z falloff. ' In a metal having a repulsive
interaction between electrons the positive potential
energy might be expected to give rise to the ex-
ponential falloB characteristic of class I functions.

It might be added that metals having a repulsive
electron —electron interaction will exhibit an energy
gap in the neighborhood of a superconducting con-
tact, following from (3) and the continuity of the
wave function. This has been observed experi-
mentally in tunneling experiments. '

This method is easily generalized to finite tem-
peratures by the use of thermal Green's functions. '
The above results are being extended to thin films
and samples in which V(r) takes both positive and

, negative values.
I am most thankful to Professor Leon Cooper for

suggesting the above problem and for his many help-
ful suggestions.
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The Effect of Qnasiparticle Damping

on the Ratio between the Energy Gap
and the Transition Temperature of Lead

YASU SHI WADA

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

According to the BCS theory the ratio between the
energy gap at zero temperature and the transition
temperature (multiplied by the Boltzmann constant)
is 3.5 in the weak coupling limit. However, experi-
ments show that it increases to 4.1 (for Pb) and

4.6 (for Hg) as the electron —phonon coupling
strength increases. Since nonresonant processes have
been shown to decrease this ratio with increasing
coupling strength, ' we suggest that the quasi-particle
damping gives rise to this phenomenon. Since the
damping rate is greater at higher temperature, it re-

I G. J. Culler, B.D. Fried, R. W. Huff, and J. R. Schrieffer,
Phys. Rev. Letters S, 399 (1962).

duces the transition temperature much more than
the energy gap, thereby increasing the ratio.

In the calculation for lead, the electron —phonon
interaction is written as

1II' = Q, v (q + K) (q + K) e,pc~+,+rtc&a, &
sx (2(v, ),)*

+ Hermitian conjugate,

where c& ann. ihilates an electron of quasi-momentum
k and a, & annihilates a phonon of momentum q (re-
stricted to first Brillouin zone), polarization X, and

frequency co,~. The unit polarization vector e,~ is as-



254 REvIEws oF MQDERN PHYsIcs ' JANUARY 1964

sumed to be parallel to q for X = 1, and perpendicu-
lar to q for X = 2, 3. The vector K is any reciprocal
lattice vector; K = 0 for normal processes, K 4 0
for umklapp processes. or, ~'s are assumed to have
simple spherically symmetrical forms described in
Fig. 1. The initial slopes at small g are determined

FIG. 1. Phonon energies, co,),
which simulate Brockhouse's
data. sL and 8~ are the sound
velocities, and qD is the Debye
cutoff.

qo

by the angular averages of measured longitudinal
and transversal sound velocities 8L and 8&, respec-
tively, which are sr, = 2 42 X 10' cm/sec,
sr = 1.07 X 10' cm/sec at T = 10'K.' qs is de-
termined so as to give an over-all agreement with
Brockhouse's data' and we use

qo
——0.45 qD,

where qD is the Debye cutoff. This choice gives a
fairly good agreement for cooL 8Lgo and Gdop = 8ygo

with those determined from the tunneling experi-
ments. "

According to Harrison, '
v(q + K) can be approxi-

mated by a linear function of Iq + Kl at
Iq + Kl ( 2k& for zinc and some other metals. It
seems to increase more sharply for lead at small

lq + KI and at 1»ge lq + KI ne» to 2k' it ~ight
be a better approximation to regard it as a constant,
otherwise we can not obtain the measured value of
electrical resistivity at high temperature. Therefore,
v(q + K) is assumed to be

&(q) = &(0) (1 —rrq/4), for normal processes,

v(q+ K) = v(0)5, for umklapp processes,

where n and 8 are constants, k~ is the Fermi mo-
mentum, and

4.z.' (x ):
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where Z is the number of conduction electrons per
ion (Z = 4 for lead), Ir„ is the inverse Fermi —Thomas
screening length, 1V is the number density of ions,
and 3II is the mass per ion. .If we require the ex-
trapolation of v(q) to become v(0)5 at a large mo-
mentum transfer, say, at q = K1, the nearest re-
ciprocal lattice vector, we can find the values of a
and 8 by calculating the high-temperature electrical
resistivity along the line discussed by Rothwarf and
Cohen' making use of the effective electron mass
m* = 2.1 m. Those are

b' = 7.28 )& 10 ',
which correspond to

n = 0.781,

I(Kr) = 32 X 10 "erg cm'

in Rothwarf and Cohen's notation. Their value is
6.1 X 10 " erg'cm'. SSW derived the energy gap
equation using the Nambu formalism at absolute
zero temperature taking into account the quasi-
particle damping. The same method is applied to
our model at a Gnite temperature. Neglecting the
small nondiagonal elements of the electron self-en-

ergy part with respect to the electron momentum
due to the umklapp processes, and using the fact
that the diagonal elements are essentially inde-
pendent of the momentum, we calculate the energy
gap function d, (&u) by including both electron-
phonon and Coulomb interactions and it turns out
to be

C m~
d(v' Re

—(r0" —6")*- -16s-'4

„I ((q+ K)')l~(q+ K) i' 2

x ~(» —lq+ KI)

1
A((u) =

X ID,), (rs'+ rs) + Dg, (ro' —'rs) I
—U

X tanh (-,'Prs') . (2)

where some small terms are neglected, Z(co) can be
expressed by an integral which involves only &(ru),

D,~( )x= (x + ~,~
—&0+) ', Ao = &(As) the gap

parameter at the edge of the energy gap, 0(x) = 1 if
x & 0 and zero otherwise, and the screened Coulomb
interaction is replaced by a pseudopotential U de-
fined to include interactions between electrons out-
side a band of energies la&l ( ~„which is large in
comparison with the Debye energy.

The simplest way to estimate the effect of quasi-
particle damping is to use the "effective interaction"

r A. Rothwarf and M. Cohen, Phys. Rev. 130& 1401 (1963).
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approximation, that is, to simulate the kernel in the
integral equation (2) by a separable form p(co) p(~'),
then the equation is reduced to

1 = (v(~)') da) Re tanh (-,'p(o),
Z((a) (o)' —6') '

(8)

Z((u) = 1+ ir((u)/a), (4)

in terms of the damping rate of the quasi-particle
F(M) at Ap & 4r & cop. Equation (8) becomes

Alp 2

1 = (y(co)'), ".. . ",tanh (-',p(u) .
&. (ao' —Lg)* co' + 1'((a)'

where p' is replaced by some average since it is a
slowly varying function within co & Mp which is of
the order of magnitude of the Debye energy. At
co ) &uc, it is a good approximation to regard y' as
small. That is suggested by the fact that h(~) is
sharply decreasing at ao —cue according to the zero
temperature calculation by SSW. Under the effective
interaction approximation it is consistent to regard
b, as a real constant and to write Z(~) as

1/(p(co) ) = 2.89, at T = Tc, (hc = 0)

and

(6)

1/(y(n)') = 2.62, at T = 0, (p = ~), (7)

where cue is assumed to be roc = 20xT, = 1.89 &ocr..
The difference 1/(y(~'))c —1/(y(oi)')r, is almost in-
dependent of cutofF (oc. If (op is decreased by 10% the'
difference increases only by 2%. We can see what
this difference means for the gap —transition tem-
perature ratio by rewriting Eq. (5) as

superconductor at T = 0, curve C is for normal
metal at the transition temperature and for the sake
of reference curve A is drawn for normal metaI at
I' = 0. Curve A has two discontinuities at co = cop&

and co = orpL, . This is because it becomes energetically
possible for a quasi-particle to emit a phonon. of every
momentum when its energy surpasses these values.
And we see the two square root singularities of the
curve B at ~pr + AQ and &eel, + 60due to the density
of states effect. By making use of these results, the
integral in (5) is calculated and it gives

(5)

We calculate the right-hand side of (5) in two cases,
at zero and transition temperatures, assuming the

IO I I I I I I
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Fj:G. 2. The damp-
ing rate of the quasi-
particle, r(m), in the
unit of 2aT, .(A) Nor-
mal metal at T = 0;
(B) Superconductor
at T = 0; (C) Nor-
mal metal at T =
Tci
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experimental value for the gap, 2hc/~T, = 4.1, in
order to see whether the same value can be obtained
for (y(ar)').

The function F(&o) is computed from the expres-
sion for Z(~) and (4) within 18% error and illus-
trated in Fig. 2 in the unit of 2~T. Curve B is fo.r the

and substituting (6) and estimating the right-hand-
side integral assuming the experimental gap —zT, ratio
as above. The right-hand side of (8) corresponds to
the inverse coupling strength of BCS theory modified

by the quasiparticle damping and we can obtain the
modified energy gap from the left-hand side. The
ratio turns out to be

2hp/~T, = 5.2.
This is fairly large in comparison with the experi-
mental value 4.1. Although the numerical agreement
is poor within the effective interaction approxima-
tion, it is certain that the damping effect plays the
essential role in gap —«T, ratio problem. We can tenta-
tively estimate the effect of the imaginary part of 6
making use of knowledge obtained for it by SSW. It
increases the quantity (7) a little, a worse direction
for gap —~T, ratio. Finally the electron phonon
coupling strength obtained from (1) is compared
with that used by SSW. They obtained their coupling
strength by adjusting it so as to give a right hc. One
can make the comparison by calculating 1'(~) in

normal metal at T = 0 and co & cvpl, .
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From Fig. 2 it is found

I" (cups, + 0) = 6.96 X 2xF, = 8 68 X 10 eV .
On the other hand, according to SSW strength,

&(pipz + 0) = 9.45 X 10 ' eV,

in good agreement with the experimentally deter-

mined value. It may be worthwhile to remark that the
gap —zT, ratio is a rather sensitive quantity to the de-
tails of electron —phonon interaction. To obtain a
numerical agreement more elaborate calculations
would be necessary.

The author would like to thank Professor Schrieffer
for his valuable discussions throughout this work.

Discussion 39

W. A. LITTLE, Stamford University: I would like to make
a comment on the Ginzburg —Landau theory which was re-
ferred to in connection with Sewell's paper. As most of you
know, the formulation of this theory is based on a general
formulation of second-order phase transitions by Landau
and Lifschitz. There is an expansion which is made in order
parameter co, which is taken to second order. That such an
expansion is possible is only true if all the thermodynamic
properties and thermodynamic functions are finite at the
transition temperature. In a different context this has re-
cently been tested and has been found that in the second-
order phase transition for the gas to liquid transition in
argon this fails at the critical point. In order to reformulate
this type of second-order phase transition, Prof. Yang has
recently reconsidered what Landau and Lifshitz have done
and found it is necessary to add another term to this ex-
pansion of the form co2 log co. The presence of such a term
would lead then to an infinite contribution to the specific
heat. In the superconducting state this is probably exceed-
ingly small and a very small magnetic field perhaps of the
order of mG might wash this out; you cannot get close
enough to the direct transition temperature in order to see
it. In some sense this refers to some type of long-range order
which occurs in the superconducting state which is missing
in any of the present formulations of the theory.

W. A. HARRisoN Genera/ E/ectri c Research Laboratory:
As Dr. Wada has indicated, I have shown [Phys. Rev. 129,
2503 (1963)] that the electron —phonon interaction can be
written in terms of single function of wavenumber, the
"OPW form factor" characteristic of the metal in question.
The function is in fact the matrix element of the electron
Hamiltonian of a single ion between two OPW's, but may
be thought of as the Fourier transform of a pseudopotential
to be associated with each ion. I computed this OPW form
factor for zinc [Phys. Rev. 129, 2512 (1963)]and found it
could be roughly approximated by a straight line with the
value —(2/3)FF at zero wave number; this is the approxi-
mate form used by Wada.

Subsequently I have found a much more accurate fit, but
one which also depends only upon a single parameter for
each metal. I obtained this form after computing the OPW
form factors self-consistently from the Hartree —Fock ion
fields and wave functions for Li, Be, Na, Mg, Al, K, Ca, and
Cu. [Phys. Rev. 131, 2433 (1963)].In all of these cases (ex-
cept copper) the OPW form factor could be fit within about
three-hundred ths of a Ry by the Fourier transform of the
Coulomb potential of the net ion charge ( Ze/r) plus the-
Fourier transform of a delta-function repulsion of strength
P arising primarily from orthogonalization to the core, all
screened by the conduction electrons in the Hartree ap-
proximation; that is, the OPW form factor is approximated
by (—4vrZe'/q' + P)/Qpp(q), where Qp is the atomic vol-

ume and e(q) the Hartree dielectric function for wave num-
ber q. Thus if P is known for a given metal, we obtain di-
rectly the approximate OPW form factor which determines
not only the electron —phonon interaction, but also the
Fermi surface, the resistivity due to defects, and most other
potential-dependent aspects of the electronic properties.
Further, if we have P for a pair of metals, we may compute
directly the resistivity of the corresponding alloys.

I have used this latter property to attempt to obtain val-
ues of P for most of the nontransition metals not included in
my first principles calculation. That is, I took P values for
the light metals by fitting earlier calculations, and then ad-
justed P for the heavier elements to give the best fit to the
observed resistivities of alloy systems involving the various
elements. This allowed rather extensive cross checking since
many of the metals have been studied in several alloy sys-
tems. This cross checking indicated that the scheme only
worked moderately well in accounting for observed re-
sistivities; I don t know if the discrepancies are experimental
or theoretical. However, it did lead to values of P which
may be of some interest in the absence of any other infor-
mation, keeping in mind that they are of very limited re-
liability. The values obtained are listed below in units of
Ry atomic units of volume. The uncertainty in the ele-
ments of atomic number less than or equal to that of zinc
(except copper) is roughly 5. In copper and the heavier ele-
ments it is significantly greater.
Li 29 Be 31
Na 27 Mg 42 Al 37
K 32 Ca 51
Cu 2 Zn 27 Ga 39 Ge 66
Ag 5 Cd 26 In 3 1 Sn 55 Sb 85
Au 10 Hg 4 Tl 25 Pb 60 Bi 97

KUPER: I would like to report very brieHy on some pre-
liminary calculations which have been done by D. C.Hamil-
ton, M. Jensen, and myself in connection with the super-
conductivity of Lanthanum and Uranium. Matthias' rule
suggests that there should essentially be symmetry within
the transition families about 6 valence electrons, with max-
ima in superconductivity at 5 and 7, and then a fairly rapid
falloff at the larger and smaller numbers. One is faced with
the anomaly that both Lanthanum and Uranium show
superconductivity at much higher transition temperatures
than one would estimate by looking at neighboring elements
or at the other transition elements, the lanthanides and the
actinides. Our suggested explanation of this anomaly in
Lanthanum and Uranium is that they are in each case the
last element before an f shell begins to fill and, therefore,
there is an fband, presumably a very narrow fband very
close to, but above the Fermi surface in these metals. Also,
we know that cesium undergoes an antiferromagnetic phase
transition at sufficiently low temperatures and we, there-



Conference Discussln 257

fore, presume that there is an antiferromagnetic exchange
interaction between electrons in this fband. Under these
assumptions we find that it is energetically favorable for
some of the electrons in the Fermi sea to be promoted into
the fband, and aligned in suitably ordered states. If we
make a BCS ansatz for the wave function, including finite
occupancy of the states in this fband, we find that this
antiferromagnetic interaction in thef band can indeed assist
superconductivity and the transition temperature can be
much higher than one expects from the electron —phonon
interaction alone. A typical assumption that we make of
this band (which we treat as a completely degenerate single
level) is that the height above the Fermi surface is less than
the Debye temperature. Because of the assumption of a
completely sharp level in the f band the BCS integral equa-
tion simplifies to an algebraic equation, and one can calcu-
late the effect of the energy gap for thef band rather simply.
It differs from the energy gap of the s band. One has to
bring in an interband pairing interaction to produce an en-
ergy gap in the s band. Superconductivity will be enhanced

in this case by the fact that the whole of the condensed f
band is within the available distance of the Fermi surface. A
firm prediction which one is able to make is that these ele-
ments should show no isotope effect if our model is ap-
plicable. I don't believe there are any available data on this
point; unfortunately Lanthanum has only one stable isotope,
but I hope some measurements can be made in Uranium.
The second firm prediction is that the law of corresponding
states should not hold; in particular, whereas the BCS value
for Hs/yT, is 5.9, we would predict a value somewhat
larger. In fact, for all the superconductors for whic'h data are
available, with the exception of Lanthanum, the BCS:value
seems correct to within about 25%.For Lanthanum the data
seem to indicate a value of 14 instead of 5.9. The third pre-
diction (this is a less certain one) is that since there are two
energy gaps for the s and f bands, one might hope to see
in a tunneling experiment an f-band gap which might be
rather bigger than the s-band gap (possibly even by a factor
of 3 or 4). Whether this really is observable is a bit hard to
say because of the large effective mass offelectrons.
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Anisotropy of the Energy Gap
in Niobium from Ultrasonic Measurements
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In its original formulation, the theory of Bardeen,
Cooper, and Schrieffer' was based on a model super-
conductor, which had a spherical Fermi surface, an
isotropic energy gap (6& ——6), and a simple, weak
electron —electron interaction —V. This model led to
a law of corresponding states for superconductors, in
which the energy gap at O'K, 5(0) = 1.76 kT, . A.t
higher temperatures the BCS energy gap A(T) is
given by the equation'

A(T) „T. S(T)
h(0) T h(0)

* Associated Electrical Industries Fellow in Physics.
f Shell Scholar.' J. Bardeen, L. N. Cooper, and J. R. Schreiffer, Phys. Rev.

108, 1175 (1957).
s D. J. Thouless, Phys. Rev. 117, 1256 (1960).

The theory has been remarkably successful for
most superconductors, in which the "weak coupling"
approximation [N(0) V « 1 or T, « 8o] is valid, al-
though it is well known that their Fermi surfaces are
far from spherical. For a few "strongly coupled"
superconducting elements, such as niobium and
lead, it is less successful and it is therefore possible,
by studying the way in which they deviate from the
law of corresponding states, to investigate the elec-
tron —electron interaction responsible for supercon-
ductivity in detail. We have used the ultrasonic
method' to measure the energy gap in niobium as a
function of temperature, and of orientation, in single
crystals of resistivity ratio Rape/R4 = 300.

3R. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094
(1957).


