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where use has been made of Eq. (3). Equation (8)
exhibits the desired relation; namely, at a bias V
where o& = 2eV/h = np, the supercurrent has a dc
component (a zero-slope region) whose amplitude
varies as the magnitude of J„(2ev/hf) with rf voltage.

The rf voltage across the sample is proportional to
the square root of the microwave power coupled into
the cavity. The proportionality constant is fixed for
all the data by fitting at one point only. Thus the
argument of JI(2ev/Iif) at which the first maximum
occurs is 1.84 and so v is taken to be equal to
1 84(h. f/2e) or about 35 iIV at that point. From the
known position of the sample in the cavity, the

known mode pattern, and measurements of cavity Q,

frequency and coupling, it is possible to estimate the
rf voltage across the sample. The value estimated in
this way is two orders of magnitude below the value
obtained above from the fitting procedure. This dis-
crepancy is not understood. It is similar to that ob-
taining between the data of Dayem and Martin' and
the theory of Tien and Gordon" on the effect of
microwaves on single-particle tunneling.

6 A. H. Dayem and R. J. Martin, Phys. Rev. Letters 8, 245
(1962).

& P. K. Tien and J.P. Gordon, Phys. Rev. 129, 647 (1963).
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KLEINMAN: Using the phonon assisted tunneling Hamil-
tonian that I discussed this morning and using the general
techniques of Josephson, I've derived a phonon assisted tun-
nehng of ground state pairs. To conserve momentum, the
processes must involve the spontaneous omission of two
phonons of equal and opposite wave vector. Thus to con-
serve energy we have Ace = eU rather than 2e Vas Josephson
claims for photons. I think that's right because g is essen-

tially zero for photons. The result I obtained is

I = JeueV/2A, where Je is the discontinuity in the current
at eU = 2A and 0. for lead is 0.58. This linear temperature
independent 1eakage current has been observed by Rowell
in lead where he finds values of alpha everywhere from I
down to 0 and in tin by Taylor and aluminum by Giaever
where alpha is less than 0.001. The experimental variation
of alpha is at present a mystery. Because of the randomness
of the phase of the spontaneously omitted phonons, the

phase effects discussed by Josephson do not occur. The large
value of alpha implies that if phonons a fixed phase are in-
jected into the junctions the results may be even more
spectacular than the microwave results we' ve just seen.

PippARD: I would like to ask Dr. Fiske if he has made any
calculations of the resonant frequencies of the electromag-
netic waves propagated between the plates. It seems to me
that they ought to be at about —,', the gap voltage, allowing
for the very heavy inductive loading of these plates. I
wonder in fact if these are not maser excited oscillations
that he's observing, of the sort I think that Josephson's cal-
culations would indicate ought to occur.

M. D. FisK.E, Genera/ Electric Research Laboratory: I have
not made such calculations. I think your suggestion of
maser-type oscillations would be a very interesting one to
consider.

Boundary EfFects in Superconductors

P. O. DE GENNES
Faculte des Sciences, Orsay (S dc 0) France

I. INTRODUCTION

The present paper is concerned with the properties
of layered structures of superconducting (and non-
superconducting) materials, and with the related
boundary problems. The basic experimental facts in
this field are the following:

(a) for small superconducting samples surrounded

by a nonmetallic substrate (e.g. , films evaporated on
glass), the transition temperature is very close to the
bulk value. Tunneling experiments also show that
the energy gap is close to the bulk value (derived for
instance by ultrasonic attenuation).

(b) for "NS sandwiches" (thin superconducting

film S deposited on a normal metal substrate N) the
transition temperature may be significantly lower
than in the bulk 8 material —or even vanish com-
pletely. Such effects were observed in the Pb Ag and
Sn Ag systems. "However, as pointed out by Rose-
Innes and Serin, ' some of these experiments cannot
be trusted entirely because of spurious atomic mi-

gration effects. To circumvent this diKculty one
must deposit the Alms and keep them constantly at

~ D. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys.
Rev. Letters 6, 686 (1961).

2 W. A. Simmons and D. H. Douglass, Phys. Rev. Letters
9, 156 (1962).

3 A. C. Rose-Innes and B. Serin, Phys. Rev. Letters V, 278
(1961).
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low temperatures, as done by Hilsch. 4 The resulting
samples have a very short electron mean free path l
in the normal state (all the defects being quenched)
and thus their coherence length is modified. This ef-
fect can be taken into account accurately if l is de-
termined from resistivity measurements in the nor-
mal state. ' Paradoxically, we expect more accurate
results from such "dirty superconductor" sand-
wiches than from a "clean" NS system: In the former
case the detailed atomic structure at the interface is
less important and the large-scale motions of the
superconducting electrons are ruled by a simple dif-

fusion equation. In the latter case, on the other hand,
the reflection and transmission properties of the
transition region play an important role, and unfor-
tunately they cannot be controlled at the present
time. Thus in the following we shall restrict our at-
tention to "dirty" systems.

(c) a thin ( 1000 A) normal slab N separating
two superconductors S and S' is able to carry a finite
supercurrent from S to S'. These SNS' junctions have
been studied first in the pioneer work of Meissner. '
Their interest is twofold: (1) from the dependence of
the critical current on the thickness of the N slab
one may obtain an estimate of V&, the electron—
electron interaction in N. (2) the SNS junctions have
a wide range of critical currents and critical fields:
this could be useful for some low-temperature de-
vices. These properties are discussed in Sec. V.

II. ORDER PARAMETER AND EXCITATION

SPECTRUM IN A NONHOMOGENEOUS SYSTEM

Let us first recall briefly how the excitation spec-
trum of a superconducting system is constructed by
the self-consistent field method. We assume that the
electrons are coupled by a point interaction
—V(r;)6(r, —r;). This is a good approximation, since
the range of the exact interaction is of the order of a
Fermi wavelength, ' while the eGects which we shall
discuss take place on a much larger scale. Note that
V(r) will not be the same in the N and S regions. In
the S regions, V = Vs is positive (attractive inter-
action). In the N regions, V = VN may be of either
sign, depending on a delicate balance between
Coulomb repulsion and phonon-induced attraction.
(If VN & 0 the N material is also a superconductor
at low enough temperatures 7 ( TN. However, as
soon as VN / —,'Vs, the corresponding transition

temperature becomes so small that we never observe
it.) One of the major interests of the thin-film experi-
ments stems from the fact that, when done under
suitable conditions to be discussed below, they may
give us measurements of VN.

To derive the Fermi-type excitations, we write
down the equation' for the one-electron operator
~t+. (r)

(2 1)

(n and p are spin indices; the origin of energies is at
the Fermi level) and U is the one-electron potential,
with diferent values in the two metals; it also in-
cludes the effects of impurities and boundaries. We
linearize the last term of (2.1) according to the rule

VA'-( )4'( )4 ( ) V-Q'-( )4'( ))4 ( ) (2 2)

The bracket denotes a thermal avera, ge. (The Har-
tree and exchange contribution which are essentially
T-independent are incorporated in V). The only non-
vanishing terms in (2.2) come from

V(r)($1(r)/+1 (r)) = —V(r)(it+1 (r)/+1 (r)) = 6+ (r) .

(2.3)
We call A(r) the pair potential. We now look for
eigenmodes of the linearized equation, of the form

yl («) = g. (u. (r)e
" "'~.l + v.+(r)e' "'~.+g),

4'~(«) = Z. (u (r)e "7 ~ v. (r)e "'Y.&)

(2 4)
where y+liy„ii are new fermion operators [y,+, „y„.] =
b„b„„and the excitation energy E. is restricted to
positive values. u and v are the eigenfunctions of
the following system of equations:

Eu = [(1/2m)p'+ U(r)]u+ hv,

Ev = —[(1/2m)p' + U(r)]v + 6+u . (2.5)

Once we have solved for the u's and v's, we must
write down the self-consistency requirement ob-
tained from Eqs. (2.3) and (2.4). The prescription
for calculating the average in (2.3) is that the new
fermion states y+ of energy E. have their thermal
equilibrium population given by the Fermi function
f(E„) = 1/1 + exp E./T This gives.

4 P. Hilseh, Z. Physik 167, 611 (1962).
5 Unfortunately we do not have such data for the Alms of

Refs. 1 and 2.
s H. Meissner, Phys. Rev. 11'7, 672 (1960).
7P. W. Anderson and P. Morel, Phys. Rev. 125, 1268

(1962).

~(r) —= V(r)(4'& (r)4'1 (r)) = V(r)

X Z .'(.)u. (r)[1 —2f(E.)].
We shall use a system where A = kz = 1.

(2 6)
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To ensure the convergence of this equation, we cut
o6 the interaction V when the excitation energy e„ is
higher than ~D, the local Debye frequency, in agree-
ment with the original BCS procedure. This pre-
scription may be justified by a detailed calculation
with the original retarded interaction, even for the
nonhomogeneous systems which we consider here.

The pair potential Ii(r) will be apace-dependent for
these systems: typical variations of h(r) in an NS
sandwich and in an SNS junction are represented on
Fig. 1. This space dependence has a first important

vr&0 y„&0

0

4n 4t

consequence: the eigenfunctions u.(r) v„(r) of Eq.
(2.5) are not simply proportional to the one electron
wave functions in the normal state w„(r) defined by

[p'/2m+ U(r)]w. = s.w. . (2 7)

In more physical terms we may say that the optimum
electron pairing is not obtained by pairing one elec-
tron in a state m„, and another in the time-reversed
state u.. This procedure works only when h(r) may
be taken as independent of r: in an infinite, pure
metal or homogeneous alloy. '

The pair potential A(r) is a natural "order
parameter" for our inhomogeneous systems. This is
not, the only possible choice, however: we could also
use for instance the "condensation amplitude" F(r)
defined by

(2 8)

ii(r) is only approximately constant for an alloy. (For a
detailed discussion of this point see Ref. 12.)

f (x)

0

(b)

Fro. 1. Spatial dependence of the pair potential h(X) at
temperatures close to the transition point in an NS sandwich
(a), and in an SNS junction (b). For the sandwich, the two
cases VN ) 0 and VN ( 0 have been represented. (b) also
shows the function f(X) corresponding to the wavefunction
of a low-energy excitation.

F is the probability amplitude of finding two elec-
trons in the condensed state at point r. There are two
important properties which we shall now emphasize
in connection with 6 and F.

(a) boundary conditions: On an atomic scale, F(r)
and 5(r) are continuous functions of r. But if, as
usual, we are interested in a larger scale, and describe
the interface between two metals as a sharp bound
ary, neither F nor 6 are continuous on this surface.
Actually, as we shall see, for our dirty systems, the
quantity which is continuous is F(r)/N(r)
A(r)/X(r) V(r), where X(r) is the local density of
states (per energy unit and per volume unit) at the
Fermi level.

(b) relation between the pair potential and the energy

gap Eo. We define Ee (a quantity independent of (r)
as the lowest excitation energy of the fermions in the
self-consistent field 6: i.e., the minimum positive
eigenvalue of Eq. (2.5). We shall now prove the fol-
lowing theorem: when A(r) depends on only one
space coordinate X, the energy gap E0 is equal to the
minimum value of

~
h(X)

~

in the sample.
This is a rather surprising result, since we might

expect at first sight that Ee is increased beyond

~
A~;. by some sort of 0-point energy. In fact, this

0-point energy exists, but it is very small in the usual
limit when the coherence length P is much larger than
the Fermi wavelength.

To prove this statement, we first rewrite Eq. (2.5)
in spinor form

Evi '
u

EP = [Toz+ &(X)ox]$ = 'de,

T = p'/2m + U.

(2.9)

(2.10)

(2.11)

Now, as a trial function, we choose the spinor

P(r) = fe'"r f(X)g„ (2.13)

We choose 6 as real (this is allowed for a static, non
magnetic problem). The general aspect of d(X) is
represented on Fig. 1(b). The "potential well" cor-
responds to a minimum value b, , and a spatial
range 5 (this in practice will be of the order of the
coherence length P, or at least of the order of the
thickness d of the film in which 6„is obtained). We
want to use a variational principle to show that the
minimum E is close to

~
A~;, . But the operator K is

not positive definite (E and Eare simultane—ous
eigenvalues). Thus we consider the operator K', which,
thanks to the properties of the Pauli matrices 0., can
be written as

(2.12)
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where g„ is (either) one of the eigenfunctions of
0„(o„P„=~ j„).The OZ axis is perpendicular to the OX
direction (and otherwise arbitrary). Since our en-

ergies are counted from the Fermi level EF = It;,'/2m.
We have simply

, f(X)"„. (2 14)

+ I~(X)l' f(X)
2

& i f+(X) ——,, h(X) f(X)dx . (2.15)
2m (jg

If we choose for f a real function the third term van-
ishes; we shall now estimate the first and second
terms, by inserting for f(X) a smooth function as
shown on Fig. 1(b), with a range L. Then the kinetic
energy contribution will be of order (1/2mL')'. For
the potential energy, if

l
6

l
increases according to the

law

(a(X) l' = (~(';.(I + X'/S'),
then the second term of (2.15) is of order

I
~l-'-(I + L'/~') -d

E' =
l
~(',.(I + L'/S') + (I/2'')'.

Taking the minimum of this expression with respect
to the range L of our trial function we get

E = I~l-.(1+~')
where p = const X (1/2mB'(6(;.).

We now observe that p is extremely small in prac-
tice: for instance when the variations of 6 take place
in one coherence length

then p XF/8 10 ' to 10 '. Thus the lowest eigen-
value (E( is very close to 0;.and the theorem is
proven.

Let us now see what consequences this has for tun-
neling experiments performed on the outer faces of
an (NS) sandwich: the minimum of

l A(X)( is ob-
tained on the edge of the N side. (X = —d„) If we
perform a tunneling experiment on this side we meas-
ure directly as a gap the pair potential at the surface.
Some preliminary experiments in this field have been
reported. ' Unfortunately they measure only the ab-
solute value of ( 6(—d„) l

and thus they do not provide

The particular choice of wave vector in (2.13) will

lead to a function f(X) with no nodes in the lowest
state. We now compute the expectation value

a' 't'E'= (j(X'(y) = dxf'(X) I—
2m gx' )

a direct information on the sign of the electron elec-
tron interaction VN in the normal metal. (However,
as we shall see later on some examples we might de-
rive the sign of V„ if the dependence of

l
5(—d„) l

on
d„was measured. ) A particularly simple case is one
where VN is negligible: then 6(—dN) —+ 0 and there is
no gap. The density of states to be expected in an ex-
treme case of this sort has been computed (in the
highly idealized limit of specular reHection of the elec-
trons on the boundaries). "It may be that some nega-
tive results of tunneling experiments on supercon-
ductors with short coherence lengths g are due to this
effect: if, below the oxide surface, there is a slab of
thickness $ where the BCS parameter NV is small
(because of partial oxidation, say), then there will be
a strong density of states at low energies due to
excitations in the slab, and no gap will be observed.

Let us now consider another type of tunneling ex-
periment on an NS sandwich: this time we perform
the experiment on the 8 side. Here again the energy
gap is Eo ——

l
6(—d„) l

much smaller in this case than
the local pair potential A(d~) (as is clear from Fig. 1).
This identity of the gap on the two sides of a thin
sandwich has apparently not been verified up to now.
Of course, to get a significant tunnel current, at volt-
ages just beyond E0, on the S side, the thickness of
the S slab must not exceed one coherence length,
since the one-fermion excited states which may con-
tribute in this range of voltages are rather localized
in the X region. (A discussion of the spread out of the
states on a simple example can be found in Ref. 10.)

Finally we turn to the case of an SnS junction:
here the minimum of

l A(X) l
is obtained in the cen-

tral plane Eo ——6 = 6(0) [Fig. 1(b)j. Again, if we
perform a tunneling experiment on the outer face of
the 8 slabs, and if they are not much thicker than a
coherence length, we should measure Eo as a gap. The
general conclusion is that the energy gap measured

by a tunneling experiment on the outer surface of a
layered system is not, in general, simply related to
the value of the pair potential on this surface. (The
only case where the two coincide, in the above ex-

ample, is for tunneling on the N side of an NS sand-
wich).

III. SELF-CONSISTENT EQUATION

FOR THE PAIR POTENTIAL

We now discuss the numerical determination of
the pair potential A(X) for a layered structure. The
naive method is to guess a shape of A(X), solve the
eigenfunction problem (2.5) for this potential, insert

'0 P. G. De Gennes and D. Saint-James, Phys. Letters 4,
151 (1963).



P .G. nE Gzwwzs Impurity and Boundary sects in Superconductors 229

the resulting u's and v's in the self-consistency re-
quirement (2.6), obtain a new value for b,(X) and
iterate the process. The technique may be improved
by the use of a variational principle, but even so it
remains rather complicated. To reach a simpler situ-
ation we shall restrict our attention to the vicinity
of the transition point T of the layered system, and
we shall assume that the superconducting transition
is always of second order: when this is true, the pair
potential 6 is small at all points in space when the
temperature is close to the transition point. Then it
can be treated as a perturbation in the eigenvalue
equations (2.5) and the self-consistency condition
(2.6) becomes a linear integral equation for 6, which
is not too diKcult to solve in practice.

This equation, due to Gor'kov" may be written as

n(r) = tr(r) g fd, r'n(r')S (rr'), („S.t)

H„(rr') = T Q Q—1 I
ro nrn en 2(d em + i(s)

X w. (r)w (r)w. (r')w (r'), (8.2)

where (o = 2n T() + —,') and the sum P„represents
a sum over all (positive or negative or 0) integers v.

The functions m. are the one-electron wave functions
in the normal state, defined by Eq. (2.7). They in-
clude the effects of impurity and boundary scatter-
ing. The one-electron Hamiltonian T being real we
can choose the w's to be real. This choice of standing,
rather than running waves is convenient as usual
when impurity scattering is important; thus from
now on we drop the stars in Eq. (8.2).

The main properties of the symmetric kernel
H„(rr') are the following.

B. Relation with a One-Electron Correlation
Function"

Consider the sum

g (rr't) = e'"'go (rr')
2x

is a one-electron correlation function, namely

(8.5)

g(rr't) = b(r(0) —r) [r(t) —r'], (8.6)

where the average is over all one-electron states of
energy e. (in practice at the Fermi energy) r(t) =
e'~'re 'T' is the electron position operator in the
Heisenberg representation; it describes the motion
of an electron in the normal metal, with the Hamil-
tonian T = p'/2m + U(r). Equation (8.6) is easily
verified in the w„representation. It is useful because
the form of the correlation function or the right-hand
side is immediately known in many cases. We shall
now discuss this on some examples.

C. Value of Hot(rr') for an Infinite "Dirty"
Medium

When the electron mean free path / is small, the
correlation function (8.6) spreads according to a dif-
fusion equation

(ci/c)ItI)g(rr't) —DPg(rr't) = const X 3(«')5(t) .
(8.7)

go(rr') = g„w„(r)w„(r)w„(r')w„(r') 3(e„—e„+0),
(8 4)

where the average is taken over all states n with a
fixed energy c.. When g is known, H„(rr') can be de-
rived simply according to (8.2). Now we observe that
the Fourier transform

A. Sum Rule

H-(«')dsr' = F,(w-(r)I'

Here D = —, v&l is the diGusion coeKcient, v~ is the
From the orthogonality of 'the (real) functions w's Fermi velocity. Fquation (8.7) is valid when (].) un-

we get certainty relations do not come into play (distances
Ir —r

I
)) l).F) (2) the diffusion approximation applies

(Ir —r'I )) l and t)) l/us).
Taking Fourier transforms we get

= r)r(r) f, , = N(r),
e +(s)

where N(r) is the local density of states. "
(8.8)

1= const, + o. o.).iQ+ Dg'
(8.8)

ii L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 3'7, 1407 (1959)
[English transl. : Soviet Phys. —JETP 10, 998 (1960)l. See
also C. Caroli, P. G. De Gennes, and J. Matricon, Phys. Cond.
Matter 1, 176 (1963).

2 C. Caroli, P. G. De Gennes, and J. Matricon, J. Phys.
Rad. 23, 707 (1962).

When g is known we can derive H„by Eqs. (8.2) and
(8.4),

8P. G. De Gennes and E. Guyon, Phys. Letters 3, 168
(1963).
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H (XX') =
2

H (q)e"' 'dq

= (~N/2lo)lgo))e ~" . (3.10)

$„= (D/2lo)l)' *gives us the range of H„(XX'). The
largest range corresponds to cv = co0 = m 7.',

= P = (D/2~T) & . (8.11)

g plays the role of a coherence length for our alloy
(The dirty superconductor approximation requires
l «p. )

D. Boundary Effects

The first, and Inost simple problem here is that of
a free surface (the metal occupying, for instance, the
half space X & 0); Eq. (8.7) for the correlation func-
tion remains valid. Since there is no electron How

out from the surface, we must have D(dg/dX) x=o = 0.
This condition can be achieved by a method of
images, and we get finally

H, (q) = fH(rr,')e"" 'd r'

1 1= const X dods
p to) o 0 'LQ)

~
~

~

~

1 1X,+ c.c. = 27rN
2l~l y Dr?'

(3 9)
The constant in (8.9) has been obtained from the
sum rule (3.8). Eq. (8.9) can also be obtained by the
Green's function method —but the latter derivation
is much more tedious and slightly less general. "

Since in the following we shall be concerned with
situations where the pair potential 3, depends only
on one space coordinate (A(X)), it is of interest to
write down the one-dimensional Fourier transform
of H„(q),

p

H„(XX')dX' — D,H„(XX')
00 X =0+

I =0-

D H„(XX') = 2sN(X) .
dx I —oo

(8.15)

The contributions for X' = oo vanish, and by com-
parison with (8.8) we get

X =0+

D(X),H„(XX')
dx

= 0. (8.16)

The other boundary condition will have the general
form

[H (X,X )]x'=o+ = [aH (X,X )

+ P(d/dX')H„(X, X')]» =p . (8.17)

P/n is an effective length, which could be derived
from the microscopic transport equation satisfied by
H„, and which is familiar from similar neutron
transport problems at the surface of a moderator. If
there is no insulating barrier between A and B,"we
know from the neutron case that P/u is comparable
to the mean free path l. Since (1/H„)(d/dX')H„

(1/$), the second term of (8.17) is of order l/g, and
is negligible in our limit. Thus the second boundary
condition will be simply of the form

H„(X,O+) = aH„(X,O ) . (8.18)

N&,Ns and diffusion coefficients D&,Ds. By the cor-
relation function method or with Green's functions,
we may show that in each of the metals H (XX') is
still ruled by the equation

2l oplH (XX') —D (X') (d'/dX")H„(XX ')

= 2nN(X)?')(X —X') . (8.14)

What are the boundary conditions on the surface'?

One of them can be obtained by a sum rule argu-
ment: we integrate (8.14) on X', obtaining

(d ~/dX) x o = 0. (8.18)

The pair potential has 0 slope at the surface. "
It is slightly more complicated to discuss the bound-
ary problem for two metals A and B (separated by
the plane X = 0) with di6erent densities of state

Note that the diQ'usion concept applies even for con-
centrated alloys.

5 When the finite thickness of the metal —vacuum transition
layer is taken into account, the condition is not exactly one of
0 slope; see Reference 12. On all physical effects, however,
this leads only to corrections of order X~/&.

(XX/) [
—Ix'—x (/(rll + —(x—x )/kill] (8 12)

Since
[(p)H„/aX)(XX')]x=p ——0, we see in Eq. (8.1) that

We now proceed to show that n is determined by the
symmetry properties of H„(XX'). From Eq. (8.14)
we have

Nay
[

—Ix—x'I/)x + ~
—(x+x')/$A)

X&0
(side A),X'&0

H„(XX') = (N ~/2II~lgs)/e

X ) 0 (side A),
X' ( 0 (side B) .

(8.19)
~6 More accurately, if the transmission coefFicient of the

barrier is much larger than l/(
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[NA/)B + ~)A)] [NB/($A + a kB)] 1

~ = NA/NB. (8.20)

Thus we conclude that H„(XX')/N(X') is continu-
ous when X' crosses the boundary. If we now return
to Eq. (3.1) for the pair potential, we observe that
A(X)/V(X) obeys the same boundary conditions
than H„(XX'). Thus the boundary conditions for
dirty superconductors are, from Eqs. (3.16) and
(3.20),

6/N V continuous

(D/V) (d/dX) 5 continuous,

dA/dX = 0 at a free surface. (3.21)

These conditions will play a crucial role in the fol-

lowing. Finally, it is sometimes of interest to translate
these results in terms of the "Landau-Ginsburg
wavefunction" f. For a dirty superconductor, the re-

lation between f and 6 is"

where n is the number of electrons per cm', and
r = l/vs is the transport relaxation time. Comparing

(3.22) and (3.21) we see that 1t is not continuous at a
metallic interface.

IV. NS SANDWICHES: TRANSITION TEMPERATURE

We now consider a two-layer system of the type
represented on Fig. l. Our aim is to solve the in-

tegral equation (3.1) for the pair potential and see

at what temperature T it has a nontrivial solution:
this will give us the transition point (provided that
the transition is of second order). Of course, this is a
rather formidable task, and we shaB perform it only
in some bmiting cases.

Here )i and ti are unknown parameters, to be de-
termined from the boundary conditions (3.16),
(3.18), which yield

(1 —A)NA ——tANB, (1 + &) (NA/$A) = atA(NB/ps),

tt [2)B/($B + a)A)](NA/NB)

H„(XX') = (~/I I) [N./(g, + q.)]c-""' ~

(X) 0, X' &0).
We interchange X and X', repeat the argument and
write thai H (XX') is symmetric; we get

the fs are temperature dependent: in particular, if
the transition point of the sandwich is-low, the g s
will be large and the requirement is mild. ) Then the
kernel H„(XX') is essentially constant when X or X'
is varied in one of the slabs. There are three values to
be derived:

H„(NN)(for both X,X' in N), H„(SN) = H„(NS),

and H„(SS) .

They are derived from the equations

d~„(NN) + dsH„(NS) = NN(rr/((u~) )

~ (SN) + dsH~(SS) = Ns(s/~ot~), (4.1)

HNN/NN = Hus/Ns, HBN/N = Hss/Ns ~ (4 2)

The group (4.1) is derived from the sum rule (3.3).
The group (4.2) is derived from the boundary con-
dition (3.20).

From (4.1) and (4.2) we get,

H (NS) H (NN) H (SS) 7r 1
i~( N.d. + Nsds

'

(4.3)
We can then write down Eq. (3.1) for the pair poten-
tial b, . Since b, (X) will be constant in each slab in

our limit, this becomes simply

T g- ~logx 1.14 o)0 1
(4.5)

and the nontrivial solution is obtained for

JUT( ( Nd Nd (Nd& +NnNsds&s)

~s = QVBT i Nd N d
(NJVsd ~.+Nsd & s).s

CO ~co~ N~d~ Nsds
(4.4)

We now require tha, t (4.4) has a nontrivial solution.
We shall write down the result on]y for the case
where the frequency cutoff ~0 of the interaction V is

the same in N and S. (This is often close to the ex-

perimental situation, and greatly simplifies the al-

gebra). When this cutoff is taken into account, we

must effect the standard replacement

V/V.'d. + VBNsds

N.d. + Nsds
(4.6)A. The Cooyer Limit

We assume that the thicknesses dN, ds of the slabs
are much smaller than the respective coherence p plays the role of a "effective XV" in the BCS
lengths gu(T)gs(T) defined by Eq. (3.11).(Note that formula for T [Eq. (4.5)]. A formula of this type
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(4.6) has been first derived by Cooper" by a very
simple argument. [There is a difference however in
the weighting factors which, according to (4.6) are
N„d„and Ne de, while the Cooper argument leads to
d„and de]. The main consequences of (4.6) are the
following:

(1) when both V, and V„are attractive (positive),
there is always a finite transition temperature T,

(2) when V. is repulsive and ~V.~d. ) Ve de

X (Ne/N. )', the system does never become super-
conducting. There are some experimental data on
Ag Pb' and Ag Sn' sandwiches which might be in-
terpreted in terms of Eq. (4.6). The thicknesses are in
the 300-A range. In these experiments the transition
temperature seems to vanish rather sharply when d.
exceeds some critical value. This might suggest that
V&, is repulsive. However, we do not think that any
definite conclusion can be reached in the present
state of affairs, since the intrinsic mean free path l

(and thus the coherence length $) was not controlled.
It is thus not clear whether the limit P ) d applies,
and if not, as we shall see later, the conclusions might
be very different.

Finally, we should mention the possible e6ects of
a thin oxide layer separating the two films. '" When
the transmission of the oxide layer becomes small,
the boundary condition (3.17) cannot be simplified,
and we must compute the effective length P/o. . This
"oxide effect" is diKcult to control, and is one of the
main limitations for the determination of VN in the
Cooper limit.

B. Thick Films: the One-Frequency
Approximation

We now consider NS sandwiches where the thick-
nesses ds dN are somewhat larger than the correspond-
ing coherence lengths $e $N. It turns out that in this
situation we can obtain the shape of the pair poten-
tial A(X) in closed form if we make a slight simplifi-
cation on the integral equation (3.1). The argument
is as follows: the kernel H„(XX') has a range
g„= (D/2~o~j)'*. For the lowest frequency or = ~o&c
= &7rT, the range $„. = P ismaximum. All the other
frequencies' components have shorter ranges g/~3,
t/QQ, etc. The approximation amounts to retaining
the lowest-frequency component H„„and replacing
all the other ones by a 6 function suitably normal-
ized,

T Q„H„(XX')~ 2TH„,(XX') + CN(X)5(X —X').
(4.7)

From the sum rule (3.3) a,nd the cutoff prescription
T P„(~/~&u~) ~ log (1.14 cue/T), we get

C = log (1.14 uc/T) —2 .

Equation (3.1) for the pair potential becomes

D(X)[1 —CN(X)V(X)] = 2V(X)T

X H o(XX')&(X')dX'. (4 8)

Thus in this approximation, the pair potential in each
slab is ruled by an elementary differential equation
and the only problem left is to match the boundary
conditions [to be derived from (4.8)].How accurate is
the approximation? We can get an estimate of the
accuracy by returning to the case of an infinite dirty
metal, where the solutions of (3.1) are plane waves

e*'». Making use of the Fourier transform (3.9),
and performing the sum over. or, we get for this case
the exact relation"

v =—(1/N V) —log (1.14 oic/T) = f(-,') —P(2 + —', y),

y = Dg'/27rT, f(X) = I"(X)/I'(X) . (4.10)

This has to be compared to the approximate relation
derived from (4.9),

v = [—2y/(I+ y)l. (4 11)

The two curves v(y) are plotted on Fig. 2, both for
y ) 0 and for y ( 0 (the latter corresponding to im-
aginary values of q, i.e., exponential decays which are
of interest for our slab problems). Near y = 0, the
exact slope dv/dy is equal to —2.44, while the ap-
proximate one is —2. (This means that the coeffi-
cients of the Landau —Ginsburg equation as deduced
from the approximate form are correct within 20'%%u~).

Near y = —1, the exact relation is

The main interest of this form is the following: in
each slab we know that H„c(XX') obeys the "dif-
fusion equation" (3.14) with respect to X or X'. Ap-
plying the operator 2~&v~

—D(d'/dX') to both sides
of (4.8) we obtain

(1 —CVN)2mT6 —D(d'6/dX') = 2NVA. (4.9)

ir L. Cooper, Phys. Rev. Letters 6, 698 (1961). Earlier
theoretical discussions include: A. D. Misener and J. 0.
Wilhelm, Trans. Roy. Soc. Can. Sec. III 29, 5 (1935); R. H.
Parmenter, Phys. Rev. 118, 1173{1960).A recent phenomeno-
logical theory has been proposed by D. H. Douglass, Phys.
Rev. Letters 9, 155 (1962).

v = —1.39+ 2/(1+ y),
while the approximate one is

v = —2+ 2/(1+ y) .

(4.12a)

(4.12b)
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The singular term of v is exactly reproduced (Note
that large )v~ corresponds to N

~
V~ small, a situation

often realized in the normal slab. ) Thus we conclude
that the one-frequency approximation is satisfac-
tory, except in the range y & 1. In practice, the
positive y's will be encountered in the S slab, and
the condition y ( 1 means that the thickness of the
S slab must be large'r than one coherence length.

We are now able to write down the shape of A(X)
for an (NS) sandwich (corresponding to Fig. 1) as
the solution of Eq. (4.9) with the above boundary
conditions

1 —CNV
&

eos q(X —ds)
NV cos gds

(side S),
1 —CNV ~ cosh K(X+ d„)

NV cosh Kd„

(side N),
where A is an arbitrary constant, and

s 2rrF
i 1

2¹Vst'

Ds k 1 —C¹Vs&
2 T — -2 "~" 0.
D„ 1 —CN V&

(4.14)

(4.15a)

(4.15b)

The solution (4.14) has 0 slope on the free surfaces.
On the NS boundary there remains to satisfy the
second equation (4.12). This yields

Qtggds = rtKt&tKQ ~ (4.16)

Fxo. 2. Fourier transform of the kernel of the integral equa-
tion (8.1) for the pair potential in an in6nite dirty material.
Abscissa y = Dq2/27rT (q is the wave vector). Ordinate
o = (1/IqV) —log(1.14 coo/T) Curve A: .exact (Eq. 4.10)
Curve B:one-frequency approximation (Eq. 4.11).The region
y & —1 corresponds to negative V (repulsive interactions).

We now discuss the boundary conditions to be ap-
plied to t),(X) at a metallic interface when the ap-
proximate Eq. (4.8) is used. From the boundary con-
ditions satisfied by H„(XX') [Eqs. (8.16) and (3.20) j,
we see that in the one-frequency approximation

6(l —CN V)/N V is continuous,

(D/V) (1 —CN V) (d A/dX) is continuous .
(4.13)

These boundary conditions are slightly different from
the exact ones (Eq. 3.21). In the exact solution, for
instance, A/NV is continuous, but shows a rapid
variation near the boundary because of the high-
frequency terms in the kernel (8.1).This rapid varia-
tion is here approximated by an extra discontinuity.
At a free surface we still have the condition
dA/dX = 0.

where rt = D.N /DsNs.
Equation (4.16) is an implicit equation for the tran-
sition temperature T."To discuss experimental data,
it is sometimes preferable to invert the procedure:
when Ns, Vs,N„,D„,Ds are known, and the transition
temperature is measured, we know q from (4.15a).
Then (4.16) gives K, from which we may derive by
Eq. (4.15b) the unknown electron —electron inter-
action V. in the normal metal. Finally we must check
that we are in the range of validity of the one-fre-
quency approximation (ds & $s); in practice this im-

plies that T is not much lower than the transition
point Tso of the bulk S metal.

Two characteristic lengths are of interest in this
boundary problem: (1) the depth of penetration of
the pairs on the N side is K '. In the (usual) situa-
tion where VN is small (or a,rbitrary sign), K ' is
close to (D„/2rrT) i (slightly larger if VN & 0, slightly
smaller if VN ( 0). The only case where K ' may
become anomalously large is when the metal N is
also a superconductor (VN & 0) and when T is just
above TNo (the transition temperature of the bulk N
metal). (2) The "extrapolation length"

(+) = ' ' K-cot Kd„(4.17)
(d A/dX)c+ D„N.

defines the macroscopic boundary condition satisfied

rs More accurately, the largest root T of (4.16) is the transi-
tion temperature.
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by the pair potential on the S side. Consider for in-
stance the case d„-+ ~ (b ~ b„).Then, when N, and
N„are comparable, we see from (4.8) that b„K '.
On the other hand, if N is a semimetal or a heavily
doped semiconductor, ¹/N. may be of order 100,
and X„ is much larger than K '. Finally, when
N„—+ 0 (insulator on the N side), b„becomes infinite
and we come back to the requirement (d 5/dX)py = 0.

In the limit where ds )) $s we may simplify (4.16)
and write

q(ds+ b) = -', s.
In this limit, q is small, and from (4.15a) we see that
T is close to Tso. Writing down the explicit value of|.we obtain, in the one-frequency approximation,

T = Ts( —(1/rr)Dsg' = Tso ——,
' n[Ds/(ds. + b)'] .

(4.18)

[Note that in the right-hand side of (4.18) we may
use the value of b corresponding to T = Tso.] When
d„—+ ~ the transition temperature (4.18) reaches a
lower limit

Ti; ——Tso —s n.[Ds/(ds + b„)'] . (4.19)

When d. is finite, but still larger than E ', we may
expand b —b„(1 + 2e X' ) and we obtain

favorable points: (1) the significance of K is inde-
pendent of the physical state of the NS boundary;
for instance, if there was a thin oxide layer between
N and S, the amplitude of the temperature shifts
T —TI; would be reduced, but the exponential
factor in (4.20) would still hold with the same value
of K." (2) When the BCS parameter (NV). is small,
as will often be the case, the one-frequency approxi-
mation is very accurate on the N side [since (4.12a)
and (4.12b) are very similar in the limit y ~ —1].In
fact, in the discussion of reference 13, the complete
Eq. (4.10) was used to relate K and (NV)c. and the
results were essentially identical to those derived
from (4.12b) or (4.15b).

C. Thin Superconducting Layer on a Massive
Normal Substrate

The only case which is not covered by the above
discussions (A and B) corresponds to ds « gs(T),
d„) f„(T) We sha.ll discuss the limiting case d„~ ~,
which is comparatively simple, since when ds « gs,
h(X) and H (XX') are nearly constant in the S
region (0 & X & ds). It is then easy to determine
H„(XX') from (3.14), (3.16), (3.20), and the equation
for 6 finally reads

T= Tl +ÃDs[b /(d +sb )]e (4.20)
Nsds N.61(l —¹VTQ (D() ——NVTQ

(

— ("

This exponential law of approach to TI; has been
first proposed, on experimental grounds, by Hilsch. '
In the experiments by Hilsch (on Cu Pb sandwiches)
the electron mean free path tc„was measured and
could be varied (from 40 to 800 A) by changing the
evaporation temperature. The transition tempera-
ture could be described by a law of the form
T = Tn + |e 'xs and the decay constant 2Kwas
shown to be inversely proportional to (lc.)**.This in
agreement with Eq. (4.15b) since D = —', v&t. For a
Pb Cu sandwich with tc„= 40 A, Hilsch measures
K ' = 200 A. Taking vs'. i = 1.58 10' cm/sec and
T = 7'E, we have (2s.T/D. )& = 190 A, smaller than
K '. Thus we expect the interaction vc to be at-
tractive, and in fact we compute from (4.15b)
(NV)c. = 0.05. Of course this conclusion is very
provisory: if a 10% uncertainty is allowed on K,
(NV) c Iiiay range between —0.06 and 0.10. It is
clear, however, that from such experiments we may
derive important informations on the electron —elec-
tron interaction in "normal" metals. "There are two

~9 A preliminary discussion of these sects was given in
reference 10. It was not realized, however, in this reference,
that Eq. (4.10}applied even for repulsive interaction V„&0.

dXA(X) e (4.2la)

0

dXI~ (XP)
—ix—x I/$~

2$„

(4.21b)

20 In fact, for a typical Hilsch experiment (dpb = 400 A), the
theoretical value of V'so —7'll as derived from (4.16) assum-
ing no oxide layer is 2 E, the experimental value is closer
to 1'K.

&s = &(0 & X & ds),

D(~s) = N.$„+Nsds,

$„= (D„/2i„i)*.

Consider first the case VN ——0. Then h(X) = 0
for X & 0 and we get the equation for the transition
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point directly from (4.21a).After rearrangement, this
becomes

Tso
log ~ =Z„~ ~

X ~— m Z1+ Z(2n+1) '-

(
Nsds Nsds &2rrTJ

'

(4.22)

(4.28)

4s = ~1

1 —Ptz v(&/&«)j'

for d. = cc, ds(( I —,(4.25)2mr

d
N.

l

'y D.(
Ns Ez Tso&

(4.26)

The diagram (ds, T) is represented on Fig. 8. Note

we shall be mainly interested in the limit of low 7,
large Z, for which

rrt(Z) -+ 2 log Z + log 2y + P/Z +~, (4.24)

where y is Euler's constant (y = 1.78) and P =
(v 2 —2)l'(-', ) = 0.86. Then (4.22) may be cast into
the explicit form

+ P.), where &. = (D./27rT)& is the range of penetra-
tion of the pairs on the N side. The important point
is that g. becomes large when T is low: this tends to
accelerate the decrease of T when ds decreases, and
leads to a critical thickness Ch. A. similar argument
can be applied to the nonlinear self-consistency
equation for As at T = 0.

These considerations can be extended to the case
of a small, nonvanishing V& (or arbitrary sign) by
applying the one-frequency approximation to (4.21b) .
The results are represented qualitatively on Fig. 8.

V. JUNCTIONS

Consider a thin normal layer N (of thickness 2a)
embedded in a superconducting metal S. We ask
what is the maximum supercurrent density t „which
may cross this SNS junction. When 2a )) P&, we ex-
pect this current to be very small, while when
2a ( PN, J is certainly very large; the interest, of
these junctions is precisely that the critical current
may be adjusted to (nearly) any desired value by a
proper choice of the thickness 2a.

We shall compute this critical current for tem-
peratures F which are only slightly lower than Tso.
Then, in the S regions, the pair potential is ruled by
the local Landau —Ginsburg equation"

~+I„,-a)~~'~ =0
Tso dx' (5.1)

Tso

where, for a dirty superconductor, "
Ig

——-', z (D/Tso),
~ = s 8'(8)l(~&»)'l.

The superRuid current is given by

(5 2)

2 C~~~ dX ~ dX &~
(5.8)

FIG. 3. Transition temperature of a thin 6lm of supercon-
ducting material (thickness ds) deposited on a massive normal
substrate (d„= ~). Curve A corresponds to VN = 0 (no
electron-electron interaction in I).Curve 8 cooresponds to a
weak attractive interaction, and curve C to a weak repulsive
interaction. The region of validity of the calculation of Sec.
IV.C corresponds to ds ( ps(T), and is bounded by the dotted
curve.

that there is no second-order transition point when

ds & d1,' thus the absence of all superconductivity
points in a finite range of ds does not necessarily show
that the interaction V is repulsive. The physical
origin of this surprising result may be understood
qualitatively by an extension of the Cooper argument:
the interaction Vs is reduced by a factor ds/(ds

where C = -,'z.e(Ns Ds/Tso). (54)

2~ L. D. Landau and V. L. Ginsburg, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950).

The variations of 6 predicted by (5.1) take place
within a characteristic distance p gs(Tso/Tso —7)&

» gs. Since p is large, the effect of the N slab may
be included by imposing appropriate boundary con-
ditions to Kq. (5.1) on the planes X =.&a. We shall
now derive these conditions.

The major point is the following: in the region of
the junction we may derive the shape of 6 from the
hnearized self-consistency equation (8.1), and even
set T = Tso,' aH the corrections neglected by this



236 REYIEws oF MoDERN PHYsIcs JANUARY 1964

procedure are of order gs/p = (1 —7"/Tso)'* (( 1.
Thus we return to (3.1), use the one-frequency ap-
proximation, and write down immediately the solu-
tions for (X~ & a:

A(X) = [X V./(1 —CE.V.)](cosh EX/cosh Ea)
(even),

h(X) = [X„V./(1 —CX.V.)][sinh KX/sinh ka)

(odd), (5.6)

where E is given by Eq. (4.15b) with T = Tse. The
solutions for 7' = Fs for ~X~ ) a are linear in X,

explicitly elsewhere. "For a metallic junction, on the
other hand,

~
A.

~

is much smaller than (6„(.As an
example, we shall now compute

~
D.

~

explicitly in the
limit of a thick junction Ka )) 1. In this case, the
currents are small and we can neglect the phase of 6
in Eq. (5.1).Then multiplying (5.1) by (dA/dX) and
integrating we obtain

1., (da'/dX) + a'(. ——,
' E,a') = —,

' a'„. ,

s = Tse —T/Tse, 6'. = s/8& .

(5.12)

For a thick junction we may write the boundary
condition (5.9) in the form (4.17),

D(X) = [¹Vs/(1 —C¹Vs)](a(X/a) + 1 —a),
X ) a. (5.7)

1 dh 1 D~.
dX . b. Ds¹ (5.13)

(d &/dX). —(d 6/dX) .= )Ettanh Ea(h. y a .),
(d 6/dX). + (d 6/dX) .= t)K coth Ea(h. —6 .) .

(5.9)

The conditions (5.9) are to be imposed on the solu-
tions of the Landau —Ginsburg equation (5.1). They
can also be used to transform the expression of the
current crossing the junction. Solving for (dA/dX).
in (5.9) we get

z d'a &(

(x=a) —
2

C dx )[ Aa C C.
a

Equation (5.10) is somewhat similar to the Josephson
formula for the current through an insulating junc-
tion." In most actual situations we will have

~

D.
)

=
~

6 .~, the two potentials differing only by a
phase 6 . = D.e'". Then J = J sin p with the
maximum value J given by

J = tiCE/sinh 2Ka ( L4('. (5.11)

At this point, however, there is an important differ-
ence from the Sosephson case. For an insulating
junction,

~
L4~ is very close to

~
A„~, the value of the

pair potential in the bulk 8 material. This is shown

~2 It is, im fact, possible to derive the Josephson formula in
a completely mlf-consistent way by similar methods. ~s

Equations (5.6) and (5.7) satisfy the first boundary
condition (4.13a). The second one, (4.13b), yields
Gn ally

(even),

(odd) . (5 8)

These results may be rewritten in a form applicable
to a solution of no given parity:

Inserting (5.13) in (5.12) we get a, second-order equa-
tion for

) D.(',

—,
' 8 6'. —(I /b + s)h. + -,'6 s = 0 . (5.14)

When the N material is a metal b, and I&' are of
the same order of magnitude, the term of order 6'. is
negligible and the correct root corresponds to

e 6'„

2 I„' (5.15)

We see that J„is proportional to (Tsp 7')', while
for an insulating junction, J is proportional only to
Fso —T."As already pointed out, the great interest
of the present metallic case is that Ea is a very
flexible parameter, from the experimental point of
view. Unfortunately, at the present time, the only
experiments in this field are the early ones by
Meissner, ' where the mean free paths were not con-
trolled. Qualitatively, for various nonmagnetic

O

metals, Meissner found values of K ' 10' A, a very
reasonable figure as can be seen from Eq. (4.15b). It
is very much to be hoped that more accurate data
will soon be taken.

Once J is known, it is of course possible to derive
an effective penetration depth 5 for the junction cur-
rents, using the Ferrell Prange procedure. "8 is pro-
portional to eK . Consider for example a Pb Cu Pb
junction with /c„——40 A and K 200 A ' at 7'E. If
the copper thickness is 2c 4000 A, the penetration
depth b will be of order 1 mm, the critical current will
be in the milliampere range. To force a normal cur-
rent of the same magnitude through the junction, we

ss P. G. De Gennes, Phys. Letters 5, 22 (1963).
24R. A. Ferrell and R. E. Prange, Phys. Rev. Letters 10,

479 (1963).



P. G. nz GzNNza Impurity and Boundary Egecte in Superconductors 287

would need an apphed voltage of order 1 mV. Thus
in such a case we expect interesting signals even for
rather large thicknesses, for which the crystallo-
graphic state of the N slab can be accurately con-
trolled.

We might finaBy mention the magnetic junctions
such as Pb Fe Pb. They do not seem very promising
for the following reason: if I" is the energy difference
between a state (k't) with spin up and the time re-
versed state (—kj, ) in the magnetic metal, the
penetration range of the pairs in (X) is roughly
kvv/I', and thus very small (of order 100 A or less"
in agreement with the experimental results of Meiss-
ner)'. Thus for the thicknesses of interest 2a Ave/I",
it would be very diflicult to prepare an N sin, b free
from holes, and of well de6ned properties.

VI. CONCLUDING REMARKS

We have seen that the transition temperature 7' of
"dirty" Ns sandwiches can be related to the electron—
electron interaction VN in the normal metal. The
best procedure is to deduce K from a plot of 7.' vs
normal slab thickness and then to relate Z to VN,
since this method does not imply any specific as-
sumption about the "transition" layer between the

2~ P. G. De Gennes and G. Harma, J. Appl. Phys. 34, 1380
(1963).

two metals (provided that this layer is smaller than
K '). The experiments could be carried out with
metals or semimetals on the N side (but for semi-
metals, the shift of T is comparatively smaller).

The strong dependence of T on the mean free
paths I forbids the discussion of experiments where I
was not measured. On the other hand, it probably
explains the spectacular "aging effects" observed on
the transition temperature of Sn Au sandwiches by
H,ose-Innes and Serin, since a slow atomic diffusion
at room temperature mill react markedly on / in the
vicinity of the interface, and on the transmission co-
efBcient. It is remarkable to observe that, in a
homogeneous alloy, the effect of impurity concentra-
tion on the transition temperature is weak, while it
is strong in our inhomogeneous NS systems, where
impurity scattering controls the leakage of supercon-
ducting pairs towards an unfavorable region.

Finally, we notice that VN could also be derived
from measurements of critical current vs.thickness in
the SNS junctions.
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LvNroN: This temperature dependence of the coherence
length seems to be contrary to what I understand the BCS
theory to predict. It also seems to imply that if one were at
low temperatures where the penetration depth is essentially
constant and had a supexconductor for which the suxface
energy was barely negative, then at a somewhat lower tem-
perature it would become positive. It would become a
superconductor of the first kind.

DE GENNEs: What you have is a system of two films where
the transition temperature is very low. If you were to be
very naive, you would just say: "Well here is the transition
temperature. The gap and the coherence length will be re-
lated to it by the BCS equation: $ 0.18 Ave/ttriT&. If T,
is small, $ is large. "

BLm'r: I just wanted to ask whether this very nice cor-
relation which you 6nd between the correlation functions
in the noxmal and the properties of the supexconducting
state is xestricted to the temperature region close to the
transition temperature where the nonlinear integral equa-

I

tion can be linearalized ox whether it also extends down into
the lower tempexature range&

na GENNEs: For the problem I described here (a self-con-
sistent calculation of the gap) it holds only in the vicinity
of the txansition temperature. For the electromagnetic prob-
lem on the other hand it goes down to low temperatures.
The reason is that for the electromagnetic problem there is
always a small perturbation. We can define the perturba-
tion fox this problem while in the self-consistent calculation
the gap becomes large and we cannot define the perturba-
tion.

JENsEN: I'd like to make the probably trivial observation
that your method for predicting N(0) V for normal metals
could be checked using a low temperature superconductor
instead of your normal metal and working in the inter-
mediate region.

DE GENxEs: Absolutely. Actually we plan to do this on
aluminum which is a very nice case of a "quasi-normal"
metal.


