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of us who can recapture the mentality of a quarter
of a century ago know that even the discovery of
high current densities would have remained just
another curiosity. The contemplation of the required
technical effort in cryogenics and of all the ancillary

development would have appeared to us as out-
rageous folly. It needed radar, rockets, and atomic
bombs to loosen up the stringency of prewar finance,
which now must appear as an equal folly to the young
scientiGc generation of the sixties.
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I. INTRODUCTION

When a superconductor is placed in a magnetic field
two competing processes take place. On the one hand,
according to the London equation, which we may
write

V'II = H/X'r, ,

the superconducting state attempts to exclude the
magnetic field H from all but a thin penetration layer
of thickness of the order of Xr., the London penetra-
tion depth. On the other hand, in accordance with the
concept of spatial coherence introduced by Pippard, '
any local perturbation of the superconducting order
parameter caused by the magnetic field spreads out
to a distance of the order of $, the range of coherence,
from the center of the disturbance.

It was recognized for some time' that Eq. (1) gave
no indication of the existence of the positive inter-
phase surface energy which is required in order to ex-
plain the Meissner effect, and it was left to Pippard'
to point out that a plane interphase boundary would
indeed have a positive surface energy if g were
greater than Xr.. Thus, the sign of $ —Xr, was destined
to play a crucial role in determining the type of mag-

i A. B.Pippard, Proc. Roy. Soc. (London) A203, 210 (1950).
s F. London, Superguids (Zohn Wiley 4 Sons, Inc. , New

York, 1950), Vol. I, pp. 125-130.
s A. B. Pippard, Proc. Cambridge Phil. Soc. 4/, 617 (1951).

netic behavior shown by a superconductor. Follow™
ing, with slight modification, an initiative due in par-
ticular to a number of Russian authors, it seems fit-
ting to call type I superconductors, for which

p ) )I.L,, Pippard superconductors, and type II super-
conductors, for which Xr, ) P, London supercon-
ductors.

The reversible magnetic behavior of Pippard super-
conductors has been understood for some time and
measurements on the structure of the intermediate
state of such superconductors enabled their positive
surface energy to be determined even before its
origin was fully understood. For a Pippard super™
conductor lying in a field H, the magnetization curve
has the familiar triangular shape, all trace of super-
conductivity disappearing at the critical Geld H„de-
fined by

00 H2
F —F, = — 3IIdH. =

Sx '

where M is the magnetization, and F.and F.are the
free energies per unit volume of the normal and super-
conducting states, respectively. There are many in-
dications, as yet mostly of a qualitative character,
which suggest that fIux trapping in Pippard super-
conductors is due to the pinning down of interphase
boundaries by extended defects in the specimen.

As early as 1935, when it was known that many
alloys did not conform to the Pippard or "ideal" type
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of behavior, Gorter' and London' suggested that a
negative surface energy might account for their be-
havior. However, subsequent progress was slow and
it is only through recent work that we have been led
to recognize that a negative surface energy, resulting
from the inequality P ( X&, confers on what we pro-
pose to call London superconductors a new and dif-
ferent type of reversible magnetic behavior. In the
short space of this article an attempt is made to sum-
marize our understanding of this new type of re-
versible behavior and of the irreversible effects which
can also be present.

II. THE LONDON PENETRATION DEPTH AND

THE RANGE OF COHERENCE

This article, in its most abstract form, might
simply sunonarize the solutions of the Ginzburg-
Landau equations'

these two models to see what conclusions may be
drawn from experiment concerning the structures
predicted by Abrikosov and others for the mixed
state.

Each of Eqs. (3) and (4) corresponds to one of the
competing processes mentioned in the introduction.
In a weak field the order parameter + is spatially-
independent and Eq. (4) then reduces to the London
equation (1), yielding

)'. = m/16~e'Iel'.

In order to study $ let us consider the one-dimen-
sional simplification of Eq. (3) which results when +
and A are functions of the z coordinate only:

d + + 2ml~l 1~1 — 2e A'~le —2m~ e' = 0 (5)dz' n' & ml I

I' a'

If we add to @ a small perturbation 5+, then 5%'
satisfies

2m
-(—+~ —2eA) ++ ~++P+I+I = o,

and

2 2

—,(5%) =, b%. (6)
2

v A = (%*7'0 —%v+*) + IVI A, (4)
m m

(now known" to follow from the BCS theory' near
the transition temperature if the carriers are ascribed
a charge equal to twice that of the electron) when

$ ( Xz. In the first instance, we would be interested
in solutions for a perfectly homogeneous supercon-
ductor, free of any extended defects, in which case o.

and P would simply depend on the composition, tem-
perature, and uniform state of strain of the specimen.
Having obtained a solution in this relatively simple
case, as Abrikosov" has done, one would then tackle
the problem of the inHuence of extended defects
This might be attempted by letting n and P vary
with position in the neighborhood of such defects.

Ho~ever, rather than attempting an exact solu-
tion of Eqs. (3) and (4), it is helpful first of all to ex-
amine the significance of $ and of Xz and then to use
the results of this investigation to construct and then
compare two different models for the magnetic be-
havior of a London superconductor. Finally, we use

4 C. J. Gorter, Physica 2, 449 (1985).
5 H. London, Proc. Roy. Soc. (London) A152, 650 (1935).
6 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.

Fiz. 20, 1064 (1950); V. L. Ginzburg, Nuovo Cimento 2, 1234
(1955).

7 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl. Soviet Phys. —JETP 9, 1864 (1959)].

s L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959)
[English transl. Soviet Phys. —JETP 10, 998 (1960)].

9 J. Bardeen, L. N. Cooper, and R. Schrieff'er, Phys. Rev.
108, 1175 (1957).

IOA. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442
(1957) [English transl. Soviet Phys. —JETP 5, 1174 (1957)].

Xz = 0.62 )I,y„(0) Igo/l(1 —t) }»

$ = 0.60 {lgo/(1 —t) }'*

(9)

(10)

C. Caroli, P. G. de Gennes, and J. Matricon, Phys.
Eondens. Materie 1, 176 (1963).

Solutions for 5+ are, therefore, of the form exp
(—z/p), where we have introduced the range of co-
herence $ = h/24(mP)» = Xz,/"V2z.

While recognizing that, through the relation'
z = (m/2eh)(P/2z)», z may, like P, be considered to
be a function of temperature, we shall devote most
of our attention to temperatures near the critical
temperature, where the variation of z is small.

We notice that P is related to, but distinct from,
Po, the original Pippard coherence length which ap-
pears in the kernels of various nonlocal integral rela-
tions. Both g and Xr. depend on the reduced tempera-
ture t, and on /, the electronic mean free path in the
normal state.

For a pure superconductor (t )) $o), when t is not
too small, '

Xz = Xz,(0) l2(l —t) }», (7)

where X&„(0) is the weak field London pentration
depth of the pure superconductor at O'K. Further-
more, using the result' z& &

= 0.96 Xz„(0)/$o, we find

$ = 0.52 $o(1 —t)» .

For a very impure superconductor (l « $o), when
t is not too small, Gor'kov' and Caroli et a/." find
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mizing g, with respect to Hp, Hp = H. and(Caroli et at."employ $r where we use Q2$). For all
values of l/Pp the ratio XL/$ tends to a definite limit
riear t = 1; its value is given, to within a few per-
cent)" by

1 1
1.36 4p (0) —+

g& = (1/47r) {$H'. —XrH'. j . (14)
The initial penetration field, at which it becomes en-
ergetically favorable to introduce normal laminas,

(11) given by the condition g& ——0, is

H, r ——(&/4, )&H, .
III. TWO SIMPLE MODELS

We now apply the above results to two simple
models for the behavior of a homogeneous single
crystal of a superconductor. In each case let us in-
troduce into the specimen (of negligible demagnetiz-
ing coefficient) one or more narrow fiux-carrying re-
gions lying parallel to the external field H, . Each
fIux™carrying region is thought of as consisting of a
normal core, carrying a uniform field H0, embedded
in a superconducting matrix in which the London
equation (1) is obeyed. Since we have seen that +
cannot vary much over a, distance less than P it is
natural to require that no dimension of the core shall
be less than g. We consider two types of core: (a)
plane laminas of uniform thickness 2$, and (b)
cylinders of radius P. In general, the models are not
expected to be reliable unless P «Xr, .

It may be shown that two parallel laminas, sep-
arated by a distance z, repel each with a pressure
proportional to exp (—z/)I, r). Thus, when H, exceeds
H, 1 only very slightly, the laminas, which are widely
spaced, repel each other very weakly, so that a very
slight further increase in H, increases the fIux inside
the specimen rapidly. Once the distance between the
laminas becomes comparable with XL,, the fIux pene-
trates more and more slowly with increasing field. In
order to consider the behavior in fields large com-
pared with H, & one should take account of the effect
of the field on the order parameter inside the super-
conducting matrix. Van Beelen and Gorter" have
recently proposed an empirical modification of the
original laminar model which does this. They find
that Eq. (15) remains practically unchanged and that
a second-order transition to the normal state takes
place at an upper transition field given by

The Laminar Model H.p
——()I.r,/g) H, . (16)

This model, originally considered by the author, "
is worth recalling, especially when one remembers
that in the intermediate state of Pippard supercon-
ductors the flux is known to penetrate in laminar
regions. The flux carried per unit width of an isolated
lamina is, for $ «XL,,

Qi
——2Hp4 . (12)

'P B. B. Goodman, IBM J. Res. Develop. 6, 63 (1962).
rP B. B. Goodman, Phys. Rev. Letters 6, 597 (1961).

Since the laminas are thought of as being wide com-
pared with any dimension characteristic of the super-
conducting state, we need not consider the possibility
of the Aux being quantized.

Taking the zero of energy to be that of the super-
conducting state in zero G.eld, the Helmholtz free
energy per unit area of an isolated lamina is

f&
——(I/4z) {$H.+ XrHoI, (13)

where the first term on the right-hand side represents
the configurational surface energy required to create
the normal core' and the second term comes from the
energy density {H' + (Xr. curl H'I/Srr in the super-
conducting matrix. Writing g~ = f~ —p~H. /4rr for the
Gibbs free energy per unit area we find, after mini-

H Khp(r/) g)
'Khp(&/Xr, )

' (17)

where Kh„(x) is a modified Bessel function of the
second kind. For the moment we assume without
proof that just one quantum of flux pp

——h/2e is as-
sociated with an isolated flux line. Then, taking into
account the contributionlto gp coming from the core
(7rPHp), Eq. (17) becomes

Khp (r/Xr, )
~]' Khp($/)I, r, ) '

q4 r
, Khp — when

4),

(18)

r4 C. J. Gorter, Rev. Mod. Phys. 36, 27 (1964).
'5 J. Friedel, P. G. de Gennes, and J. Matricon, App. Phys.

Letters 2, 119(1963).

The Flux Line Model

Friedel et at."have pointed out that, when g «Xr„
Abrikosov's fIux lines can be pictured, in weak fields,
as cylindrical cores of normal metal of radius p em-
bedded in a superconducting matrix. The field in the
superconductor at a distance r from the center of the
core is then
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The Helmholtz free energy per unit length of flux

line, made up of contributions (H,' + H02)/Sm per
unit volume of normal core and IH' + (4. curl H)' I

X (8~) ' per unit volume of superconducting matrix,
is given by

H &0 Kho ($/Xl )
8~ S~y K~.(~/~. )

(19)

As before, the lower critical field is obtained by put-
ting the Gibbs free energy per unit length of Aux line,

gf $ ff / IpoH. /4~, equal to zero.
Let us now turn our attention to pure supercon-

ductors. Using Eqs. (7) and (8), together with the
standard expressions $0 ——hv&/~h(0), where U~ is the
Fermi velocity and 26(0) is the energy gap at O'E,
H. = 1.73(l —t)H. (0), H.(0)'/Sm = X(0) D(0)'/2,
where X(0) is the density of states at the Fermi sur-
face for a single spin orientation, and XL,,(0)'
3/8~&~&(0)e', we find that H.(0) = 6'*go/2~Br. (0)$0,
and hence that

(20)

For impure superconductors Eqs. (9) and (10) lead
to the same result, as expected.

Equation (20) is more convenient than Eq. (19),
in particular, since it permits us to notice that for

g & )i& the first term on the right-hand side is always
appreciably smaller than the second. Since the second
term varies as the square of the flux, it follows that it
is not energetically favorable for two or more flux

lines each containing a single quantum of flux to
coalesce into a single fiux line. Our choice of po ——A/2e

for an isolated flux line is therefore justified. For
$ « Xr. Eq. (20) reduces to

1.0 ln —+ 0.24 I .
C I

(21)

It is obvious from Eq. (21) for $ « Xl., and can be
shown also to follow from Eq. (20) when we merely
have P & )il„ that the flux line model predicts a lower
value of H, & than that given in Eq. (15) for the
laminar model, so that the former has the lower free

energy. Indeed, in retrospect, this seems to be a
natural consequence of Eq. (19),which indicates that
any pattern of flux penetration is unstable with re-
spect to the formation of isolated flux lines each con-
taining one quantum of flux.

In order to calculate the force of interaction betwe-
en two flux lines, the simplification by Friedel et at."of
Abrikosov's theory is again useful. When $ « Xl., the
contribution to the Helmholtz free energy arising

from the simultaneous presence of two parallel Aux

lines, separated by a distance r, can be shown to be
simply q4H(r)/4~, where H(r), the field at the center
of one Aux line due to the other, is given by Eq. (18).
From this result it follows that F(r), the force of re-
pulsion per unit length for two such Aux lines, is
given by

j (.) = — '-- ~' (') = y.J (.) = ~', Ka,

(22)

where J(r) is simply the contribution of one flux line
to the current density at the center of the other. This
is exactly the expression for a Lorent, z force. For
r)) XL,

2

P(r) = . . . exp
$0 r

(128 ~V.r)
(23)

The exponential decrease in this force for large r,
somewhat similar in character to that found for the
variation of the repulsive pressure between the
laminas of the previous model, again leads to a rapid
increase in the flux penetrating the specimen for H,
just larger than H,1. I'inally, although no simple ex-
tension of this model has yet been proposed which
would allow for the variation of the order parameter
in high magnetic fields, we may note that Abrikosov's
theory, which does this, predicts a second-order tran-
sition to the normal state at a field H, ~ given by

H„= +2~H, = (Xi,/P)H. . (24)

Bearing in mind the similarities and differences
between the two models which have been discussed,
we may draw the following conclusions from the ex-
periments which have so far been performed. Several
studies" "have all confirmed, as had first been sug-
gested by the measurements of Shubnikov et at. ,

"
that there exists a second kind of reversible mag-
netic behavior of superconductors which is charac-
terized by (a) an initially rapid penetration of the
specimen by the external field once the latter exceeds
H.& & H„and (b) the persistence of superconduc-
tivity up to an upper transition field H, 2 & H, . These
are just the two features of the behavior which the
two simple models lead us to expect when the surface

~6 G. Bon Mardion, B. B. Goodman, and A. Lacaze, Phys.
Letters 2, 321 (1962).

T. F. Stromberg and C. A. Swenson, Phys. Rev. Letters
9, 370 (1062).

~8 J. D. Livingston, Phys. Rev. 129, 1943 {1963).
T. Einsel, E. A. Lynton, and B. Serin, Phys. Letters 3,

30 (1962).
~0 L. W. Shubnikov, W. I. Eotkevich, J. D. Shepelev, and

J. N. Riabinin, Zh. Eksperim. i Teor. Fiz. '?, 221 (1937).
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energy becomes negative. Fo H.i & H. & «2
London superconductor is said to be in the mixed
state. Apart from the possibility that, if the mixed
state exists as an array of Aux lines, it may change
symmetry at some value of H„ the properties of the
mixed state vary continuously as a function of H.,

and nothing in particular happens at the point
H, = H, . The second-order nature of the transition
at H.2, observed by all the authors mentioned, ""
merely rejects the continuous reduction of the order
parameter to zero, brought about by the magnetic
field.

Any attempt to decide experimentally between a
laminar and a Aux line structure for the mixed state
must therefore, at present, rely on a more quanti-
tative comparison between theory and experiment,
and so we shall now examine more closely Abrikosov's
solution of the Ginzburg —Landau equations.

In Fig. 2 the relationship between H.s/H, and
H,&/H, predicted by Abrikosov" and Harden and
Arp" for the Aux line structure of the mixed state is
compared with the measurements of several au-
thors. """""" For a laminar structure of the
mixed state we would have, according to Eqs. (15)
and (16), H.&/H. = (H./H. &)*'. Unfortunately for
H 2/H. ( 20 these two relations between H,2/H, and
H„/H, differ by little more than the experimental
error of up to 20% in the measured va, lues of these
quantities, so that those measurements do not allow
us to choose between the two structures. Further-
more, for the only superconductor with a larger value
of H,2/H, on which measurements have been made,
V30a) ' 3 ' 6 the good agreement with the behavior
expected for a Aux line structure of the mixed state
is subject to the reservation that here H, 2 may be so
large as to be influenced by the spin susceptibility of
the normal state."

IV. ABRIKOSOV'S THEORY

Abrikosov" has obtained two limiting solutions of
the Ginzburg —Landau equations. In the low field
limit it is found that the Aux should penetrate the
specimen in single quantum Aux lines which quali-
tatively have the properties discussed in the previous
section. In particular, when Xr, )& (, Abrikosov finds

10
Hq

Hc

I I I I IIIII I I I I I II'-

+ HARDEN a ARP

ABRI KOSOV

ln
'

/I
—0.27

C I (25)

which is very close to the result [Eq. (21)j obtained
from simpler considerations. In Fig. 1 the chain
curve represents Eq. (25). Harden and Arp" have
obtained numerical solutions of the Ginzburg-
Landau equations for the minimum external field
necessary to introduce a single quantum Aux line for
values of H.s/H. = )I.n/P which are not large corn-
pared with unity. In Fig. 1 the continuous curve
which passes through their points tends towards
Abrikosov's relation for H„/H, )) 1, as it should.

If the normal nuclei which are the most easily
formed on increasing H, from zero are single Aux
lines, even when $ ) Xr, , then here Harden and Arp's
curve represents an upper limit to the magnetic
superheating field of a Pippard superconductor. Thus,
in Fig. 1, the upper case letters indicate the regions
of stability of the superconducting, mixed, and nor-
mal states, respectively, while the lower case letters
indicate the regions where a state may be obtained in
the metastable condition.

s' V. L. Harden and V. Arp, Cryogenics 3, 105 (1963).

10
10

I I I I I IIII I I I I I IIII
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FIG. 1. Reduced magnetic phase diagram for reversibly
behaved superconductors of zero demagnetizing coe%cient,
showing the regions of stability of the superconducting, mixed
and normal states. The stable phase is indicated by an upper
case letter and the metastable phase by a lower case letter in
parentheses.

The upper transition field found by Abrikosov,
given by Eq. (24), follows directly from the Ginz-
burg —Landau theory. ' Therefore, the excellent quan-
titative agreement that Berlincourt and Hake, " in
particular, have found between the experimental
values of H,s/H, and those predicted from

22 P. S. Swartz, Phys. Rev. Letters 9, 448 (1962).
23 F. J. Morin, J. P. Maita, H. J. Williams, R. C. Sherwood,J. H. Wernick, and J. E. Kunzler, Phys. Rev. Letters 8, 275

(1962).
24 W. DeSorbo, Phys. Rev. 130, 2177 (1963).
25 A. Calverley and A. C. Rose-lnnes, Proc. Roy. Soc.

(London) A255, 267 (1960).
26 B. B, Goodman, Phys. Letters I, 215 (1962).
27 A. M. Clogston, Phys. Rev. Letters 9, 266 (1962).
8T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140

(1963).
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Gor'kov's' " result

0.1

10 100
Hcs/Hc

FIe. 2. Comparison of the relation between H,2/H, and
H„/H, predicted by Abrikosov (Ref. 10) and Harden and Arp
(Ref. 21) (continuous curve) with experiment: & Ta and
alloys (Ref. 24), 6 V and alloys (Ref. 24), + Nb and alloys
(Refs. 17, 24, 25), 0 Pb —Tl alloys (Ref. 20), B Pb —Tl alloys
(Ref. 16), ~ In —Bi alloy (Ref. 19), )& V&Ga (Refs. 22, 23, 26).

We conclude that although the theoretical argu-
ments which indicate that the mixed state has a Aux

line structure rather than a laminar structure are ex-
tremely persuasive, there has not yet been performed
an experiment which succeeds in distinguishing un-

ambiguously between the two possibilities. The near-
est approach, so far, to a verification of the Aux line
structure is probably provided by the agreement be-
tween the values of ~ derived from different aspects
of the magnetizations curves of an In—Bi alloy
studied by Kinsel et at."

V. IRREVERSIBLE EFFECTS

So far we have been concerned principally with the
properties of the mixed state in thermodynamic equi-
librium, when each flux carrying region (which, from
now on, we assume to be a single quantum Aux line)

29 P. M. Marcus, Rev. Mod. Phys. 35, 294 (1964).

x = Kp + 0.167 X(0) '*ep&& (26)

(where pc is the resistivity in the normal state) does
not constitute an experimental verification of the
existence of Aux lines in the mixed state. Equations
(24) and (26) would apply equally well to the one-
dimensional solutions of the Ginzburg —Landau equa-
tions which Marcus has presented. "

Near H, 2 Abrikosov predicts that the Aux lines will

arrange themselves in a square lattice. The side of
this square lattice, which tends to 2s.l) when II, tends
to H, 2, is of the same order of magnitude as the spac-
ing between the laminas at H, = H, 2 in the laminar
model.

is in equilibrium under the influence of the repulsive
forces due to its neighbors and, if it is near the sur-
face of the specimen, the repulsive force due to the
penetration of the external field into the interior of
the specimen in accordance with Eq. (1).

In the presence of extended lattice defects we may
expect small local Auctuations in the values of a and

P in the Ginzburg —Landau equations to cause the
free energy of a Aux line to Auctuate with position,
thus giving rise to potential barriers of various am-
plitudes near the lattice defects. Anderson, "by a,s-
suming that the fluctuations in n and p were of the
order of a fraction of a percent, has derived a relation
between the Lorentz force J & gs, due to a current
density J in the neighborhood of the flux line, and
the rate of thermally activated creep of Aux lines or
bundles of Aux lines across the potential barriers.

The film shown by DeSorbo in Toronto at the 7th
International Conference on Low Temperature
Physics" illustrated rather well the process of Qux

penetration in an irreversibly behaved specimen of
niobium, a superconductor which we now know to be
of the London type. "Nothing resembling the inter-
mediate state was seen, and the mixed state, having
a structure which is too fine to be resolved by optical
techniques, appeared as a continuously variable Qux

density. As the field surrounding a virgin specimen
was gradually increased, the mixed state ate its way
into the superconducting interior of the specimen, the
existence of a fairly sharp front separating the two
states corresponding to the rapid increase in Qux

penetration at a field H, & in reversibly behaved speci-
mens. The apparent pinning down of the boundary
between the superconducting and the mixed states,
at certain points where the Aux lines must have been
particularly firmly held, was evident from the fact
that this boundary was concave outwards.

Occasionally this boundary moved too rapidly for
the eye to be able to follow it, exhibiting what is now
called a Qux jump. Kim et a/. 32 have suggested that
flux jumps are favored if the thermal energy released

by the movement of bundles of Aux lines is conducted
away more slowly than the electromagnetic energy
released by local heating is converted into heat, thus
giving rise to an inherently unstable process which

may ultimately render large parts of the specimen
normal. Now both the removal of heat from a locally
overheated region and the inAux of electromagnetic
energy through the normal conducting wake of a Aux

sc P. W. Anderson, Phys. Rev. Letters 9, 809 (1962).
3& W. DeSorbo and W. A. Healy, General Electric Research

Laboratory, Report No. 61-RL—2748M, 1961 (unpublished).
32 Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys.

Rev. 129, 528 (1963).
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D. = pc/4' . (28)

Using Gor'kov's result [Eq. (26)] for the case of a
very impure alloy (s )) so) we find

Dg, /D, = 0.17/s', (29)

so that we may expect Aux jumping to be favored by
large values of s Equa. tion (29) would, of course,
need modification for alloys in which the lattice plays
a large role in the thermal properties, and it is inter-
esting to note that Aux jumping does not seem to
have been observed in lead alloys, where the role of
the lattice is indeed important.

The suggestion that Aux jumping is due to a kind
of instability which can occur when D,& & D, finds
support in the effect of copper cladding on the
niobium —zirconium wire used in superconducting
solenoids. The transitions to the normal state which,
in solenoids, frequently take place at values of the
current density smaller than. the critical values
measured on isolated short specimens, and which are
thought to be connected with Aux jumping, '" are in-
hibited by copper cladding. Suppose that a niobium—
zirconium wire of radius a and residual resistivity p.
is electroplated with a thickness 6 of copper, of
residual resistivity p&. Then very crudely we may
consider that the composite wire has a mean re-
sistivity p, given by the usual expression for re-
sistances in parallel:

(c+ b)'

pc
+ (2 + b)b

pa pb

For the niobium —zirconium alloy itself, ~ = 40 and"
p. = 30 pQ-cm; Eq. (29) yields D&1./D. = 10 '.
Furthermore, neglecting both the difference between
the speciG.c heats of copper and niobium —zirconium
and also the composite nature of the wire (so that in

32a H. Riemersma, J. E. Hulm, and B. 8. Chandrasekhar,
to be published in the Proceedings of the 1968 Cryogenic En-
gineering Conference, Boulder, Colorado.

jump are governed by the diffusion equation, so that
Qux jumping should be favored if Dt&, the thermal dif-
fusivity, is small compared with the electromagnetic
diffusivity of the normal state, D, . If, as in many
alloys, the thermal conductivity and specific heat are
principally due to the conduction. electrons, we have
(neglecting differences in these properties between
the normal and mixed states)

Dfh +0/ Yps p (27)

where Io is the constant of the %iedemann —Franz
law and y is the eoeKeient of the electronic specific
heat per unit volume. Furthermore,

both respects we underestimate the inAuence of the
copper), we may use Eqs. (27) and (28) to predict
that the composite wire behaves as if it had a mean
value of D,./D. = 10 '(p./p. )'. On the basis of what
has already been. said, we may expect Aux jumping
to be inhibited once the latter quantity is large com-
pared with unity, or, inserting the usual values,
2a = 0.010 in. and b = 0.0015 in. , into Eq. (30),
when pb & 0.1 pQ-cm. The residual resistivity of
electrolytically deposited copper can, of course, be
much lower than 0.1 pQ-cm, so that the inhibiting
effect of copper cladding lends support to the sug-
gestion that we must have, at least approximately,
D,&/D,„(1 for flux jumping to be possible.

Finally, we must examine the claims of the other
hypothesis put forward to explain the magnetic be-
havior of supereonducting alloys, namely, that in
certain alloys there exists a mesh or sponge of super-
eonducting Glaments whose critical Geld exceeds that
of the matrix which fills the intervening space."Un-
doubtedly in certain special cases, such as that of
mercury in porous Vycor glass, "or perhaps in certain
very special metallurgical systems, this hypothesis
may be valid. The latter case might arise if there
were present different phases each extending over
distance sufliciently large compared with the co-
herence length for it to be possible to consider them
distinct superconductors.

However, the filamentary model fails to give any
indication of the existence of an initial penetration
field less than H„and the irreversible behavior of all
the more usual supercondueting alloys can be ex-
plained, qualitatively at least, in terms of the sug-
gestion, due to Gorter" and Anderson, "to the effect
that the mixed state may be pinned down by ex-
tended lattice defects. The critical value J.(H) of the
local current density necessary to overcome the pin-
ning force provides" a more natural basis than the
filamentary model for Bean's" earlier suggestion that
the magnetic properties of an irreversibly behaved
superconductor may be described in terms of the
function J,(H). Furthermore, while a number of
authors have interpreted their measurements in
terms of superconducting Glaments which were
thought to be dislocations, " it has been shown, be-
yond doubt, in two cases"" to be quite unnecessary
to invoke the latter. Thus, far from being essential

ss K. Mendelssohn, Proc. Roy. Soc. (London) A152, 34
(1935).

~4 C. P. Bean, M. V. Doyle, and A. G. Pincus, Phys. Rev.
Letters 9, 93 (1962).

ss C. J. Gorter, Phys. Letters 1, 69 (1962); 2, 26 (1962).
36 C. P. Bean, Phys. Rev. Letters 8, 250 (1962).» B. Bonnin, J. Geneste, and B. B. Goodman, Compt.

Rend. 256, 3274 (1963).
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for the persistence of superconductivity up to very
high magnetic fields, dislocations must probably be
regarded as just one of several possible kinds of ex-
tended lattice defect which may pin down the flux
lines in the mixed state. In agreement with the re-
sults of two very recent experiments"" on similar

»J. D. Livingston, General Electric Research Laboratory,
Report No. 63-RL—8815M, 1963 (unpublished).

alloys covering a range of compositions (and there-
fore of values of g/Xr) and of concentration of ex-
tended defects, we may safely conclude that the sign
of the surface energy plays an overwhelmingly more
important role in determining the magnetic be-
havior of superconductors than. was generally thought
two years ago.

Type II Superconductivity

T. G. BERLINCOURT
Atomics International Division of North American Aviation, Inc. , Canoga Park, California

I. INTRODUCTION

Two ideal types of thermodynamically reversible
superconductors are now known to exist. They
are distinguishable according to their respective
values for the Ginzburg —Landau' parameter

Xr, (0)/$, where )ir, (0) is the London penetration
depth at T = 0, and P is the superconducting coher-
ence length. Superconductors for which s: ( 1/V2
are characterized by a positive interphase surface
energy and are designated as type I. The case ~) 1/V2 corresponds to negative surface energy or
type II superconductivity.

This paper reviews developments of three decades
which have led to the identification, experimental
characterization, and theoretical understanding of
type II behavior. Recent advances are discussed
with reference to magnetic, thermal, and tunneling
experiments, and the implications of these findings
relative to the nature of very-high-Geld supercon-
ductors are explored. Size effects are also briefly
mentioned.

II. HISTORY

Early magnetic and thermal investigations led to
broad classification of superconductors as either
"soft" or "hard. "The former, principally pure strain-
free elemental superconductors, were characterized
by (1) nearly complete flux exclusion (Meissner ef-
fect) below the bulk thermodynamic critical field

II„(2) a first-order phase transition with associated
latent heat in the presence of a magnetic field II, (3)
near coincidence of the resistive transition with H„
and (4), except for some supercooling and superheat-

I V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950};V. L. Ginzburg, Nuovo Cimento 2, 1234
(1955).

ing effects, independence of final state on magnetic
and thermal history. Such characteristics comprised
rather precise classification criteria and justified the
early recognition of such behavior as characteristic
of a thermodynamically reversible system. Such
"soft" materials may be readily identified as positive-
surface-energy type I superconductors.

On the other hand, the so-called "hard" super-
conductor classification was quite imprecise. In fact,
with the advantage of hindsight we may discern two
distinct and divergent trends in the early experi-
mental evidence on "hard" superconductors. The
Grst trend may be identified with two-phase alloy
compositions in systems such as Pb—Bi, Sn—Bi, and
Sn—Cd. Such two-phase materials chvay8 exhibited
highly irreversible magnetic and thermal properties,
and flux penetration commenced at fields much less
than that required to restore a detectable resistance. '
Modern studies by Shiffman ef, al.' demonstrate that
coherence effects analogous to those encountered in
superimposed metallic films4 are operative in such
two-phase systems and may lead to a spatial varia-
tion of T, (transition temperature) sufhcient in some
instances' ' to obscure the characteristic supercon-
ducting specific-heat jump. Consisting of both high-
and low-critical-Geld material, two-phase alloys are
clear examples of the Mendelssohn sponge structure. '
Indeed, as correctly noted by Mendelssohn and
Moore' nearly 30 years ago, such materials will

atmays exhibit irreversible properties because the
state of a given volume element will depend upon

s E. Mendelssohn and J. R. Moore, Nature 135, 826 (1985).
3 C. A. Shift'man, M. Garber, J. F. Cochran, E. Maxwell,

and G. W. Pearsall, Bull. Am. Phys. Soc. 8, 66 (1968).
4For a discussion of superimposed 61m eReets see E. A.

Lynton, Superconductivity (Methuen and Company, Ltd. ,
London, 1962), p. 139 ff.

5 L. V. Shubnikov and V. I. Khotkevich, Physik. Z. Sow-
jetunion 5, 605 (1984).


