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esting to us.

J. A. HuLBerT, Roval Radar Establishment: 1 just want to
make a remark in connection with Dr. Lynton’s remarks on
the puzzle about the Shapoval and the Gor’kov theories and
their relative ranges of validity. We have measured some
niobium-zirconium wires and looked at the upper part of
the transition where the last part of the normal resistance
had just returned. In these circumstances, we observe a
positive curvature in the relation between the critical field
and the temperature, down to temperatures of half the crit-
ical temperature. The amount of curvature is a function of
the value of kappa. The interesting thing about these re-
sults is when we work out the thermodynamic critical field
using Shapoval’s relations we obtain results which are very
close to those obtained by direct measurement (Blaugher
and Hulm, for example) on the 259, zirconium alloy. The
values of kappa obtained near 7. and from the zero-tem-
perature extrapolation using the Shapoval theory again are

extremely close, within 109, It appears from these results
that the curvature changes from positive to negative at a
kappa of about 20. Similar results on lead-bismuth (eutectic
alloy) which have a kappa value lower than 20 fit into the
general picture. It appears that the critical field defined by
the restoration of full normal resistance is not inconsistent
with both Gorkov and Shapoval theories in their stated
ranges of validity.

WEeRTHAMER: I've re-examined Shapoval’s derivation and
find that although he seems, in principle, to proceed along
correct lines, there’s a serious algebraic error at a rather
crucial stage in the calculation. In a preliminary attempt to
repeat the calculation with the error corrected, I find that
the mean free path drops out of the final expressions. This is
well-known to be true in the limit of vanishing magnetic
field, but is contradicted by Shapoval’s formulas. It appears
that Gor’kov’s result holds independent of the mean free
path.
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Until now, no direct measurements of the mean free
path of the excited electrons in a superconductor
have been made. The purpose of this investigation is
to determine experimentally the mean free path of
indium in the superconducting state by size effect
measurements of the thermal conductivity, and to
compare it with the mean free path of the electrons
in the normal state. Our results indicate that in the
limit of the precision of such size effect measure-
ments these two mean free paths are equal.!

If the mean free path is comparable to the dimen-
sions of the specimen, there will be an additional
scattering of the electrons at the boundaries. This
gives an additional term in the resistivity. If one as-
sumes that the thermal conductivity is proportional
to the mean free path I, and that all electrons are
scattered diffusely at the surface of the specimens,
one has for the thermal resistance W (d) of a cylindri-
cal wire of diameter d according to a qualitative argu-
ment due to Nordheim?

W@d) = W.(1 +1/d) .

W .. represents the thermal resistance of an infinitely
thick specimen. This formula agrees very well with

1 For preliminary results of this investigation, see P. Wyder,
Phys. Letters 5, 301 (1963).
2 L. Nordheim, Acta Sci. et Ind. No. 131, Paris (1934).

Dingle’s® exact solution. Now it is possible to de-
termine the mean free path for the thermal conduc-
tivity by measuring the thermal resistance of wires
with several thicknesses and by fitting the experi-
mental data either to Nordheim’s formula or to
Dingle’s table, using W., and [ as parameters.* This
can be done both in the normal and in the supercon-
ducting state. In this manner, the mean free paths in
the two states are determined. The measurements
have been carried out on indium of remarkably high
purity, where, in the temperature range investigated,
the heat conductivity due to phonons can entirely be
neglected compared with the conductivity due to
electrons. The specimens were extruded very care-
fully through nozzles made from sapphire, and self-
annealed at room temperature for several weeks.
Superconductivity was quenched with a longitudinal
magnetic field, and the resultant magnetoresistance
of several percent was corrected either by Kohler’s
rule or by using a quadratic extrapolation.

In Fig. 1, the measured thermal resistance W in
the normal and in the superconducting state is
plotted as a function of the temperature T for several
wires of different thicknesses. The ratio W,/W, is in-
dependent of the thickness and in good agreement

3 R. B. Dingle, Proc. Roy. Soc. (London) A201, 545 (1950).
4J. L. Olsen and P. Wyder, Helv. Phys. Acta 32, 311 (1959).



with Jones’ and Toxen’s® results. Fitting these data
to Nordheim’s formula, one gets the mean free path
in the normal and the superconducting state. This is
plotted in Fig. 2 as a function of the reduced tem-
perature 7'/T.. In the limit of the precision of these
size effect measurements, the two mean free paths
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are equal. It is worth noting that for the indium in-
vestigated, at T = 3°K about 509, of the thermal
resistance is due to inelastic electron—phonon col-
lisions.* This means that the mean free paths are
equal not only in the elastic impurity scattering re-
gion, but also at higher temperatures; this confirms
one of our assumptions recently made® to explain the
maximum in the thermal resistance in the inter-
mediate state.

Measurements of this kind have a certain interest,
since for many investigations of transport phenomena
of superconductors one uses the assumption that the
mean free paths of the electrons in the normal and
in the superconducting state are the same. This as-
sumption, which as far as we know has never been
directly proved, is made in the determination of the
energy gap in the superconducting state through
ultrasonic attenuation,” in certain tunneling investi-
gations,® and also in the discussion of measurements
of thermal conductivity, especially with respect to
measurements in the intermediate state where elec-
tron scattering at interphase boundaries makes a
sizable contribution to the thermal resistance,® and
also to the thermal conductivity of superconductor-

5 R. E. Jones and A. M. Toxen, Phys. Rev. 120, 1167 (1960).
(136%) Strassler and P. Wyder, Phys. Rev. Letters 10, 225

7 M. Levy, Phys. Rev. 130, 791 (1963).
8 D. Saint-James, Compt. Rend. 256, 2353 (1963).
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normal metal sandwiches.® However, this assumption
is in disagreement with the old Heisenberg theory,!°
which represents the experimental data on the tem-
perature dependence of thermal conductivity quite
well. In this theory, the mean free path of the
“normal”’ electrons in a superconducting metal—in
the sense of a two-fluid-model—is dependent on the
order parameter of the superconducting state. This
would mean that the mean free paths in the normal
and in the superconducting state are not the same.

More recently, Kadanoff and Martin'? have found
that the experimental data of Guenault® on tin, in
the temperature region where the electrons are
mainly scattered by phonons, can be fitted ap-
proximately by a theory in which it is assumed that
the relaxation time for electron—phonon interaction
is the same in the normal and superconducting state.
Because of the differences in the energy spectra of
the two states, this theory would also lead to differ-
ent mean free paths. However, their assumption does
not agree with the detailed calculations based on the
Boltzmann equation.**

If electrons are only scattered elastically, i.e. by
impurities, a relaxation time 7 can easily be cal-
culated. Bardeen, Rickayzen, and Tewordt* have
shown that in this case one has

r = B/,

where s and 7 refer to the superconducting and to the
normal state, ¢ is the Bloch energy for an electron
with wave vector k in the normal metal, and E; rep-
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resents the Bardeen—-Cooper—Schrieffer energy of an
excitation in the superconducting state, given by

B = (& + &)}
and A is the BCS-energy-gap.
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113, 982 (1959).
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The group velocity v of the excitations is given by

v, = (1/R)OE/dk = (e/Ex) -va .

For the mean free paths, one then has

Thus, if only elastic scattering is present, the two
mean free paths must be equal. When inelastic
phonon-scattering is present, a relaxation time can-

not be defined unambiguously, and this simple dis-
cussion no longer applies.

I am grateful to Professor P. Grassmann, the Di-
rector of the Institut fiir kalorische Apparate und
Kaltetechnik, for his interest in this research. My
special thanks are due to Professor J. L. Olsen for
very fruitful discussions and comments. This work
was supported by an Arbeitsbeschaffungs-For-
schungskredit.
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In the theory of the lattice thermal conductivity of
solids the thermal resistivity can be regarded, as a
first approximation, to be additively composed of the
resistivity of the various scattering processes present.
However, this approximation becomes progressively
poorer, the more these scattering processes differ
from each other in frequency dependence. In par-
ticular, in the lattice thermal conductivity of alloys,
the scattering of phonons by electrons and by point
defects (solute atoms) varies as the first and fourth
power of frequency, respectively, and the additive
resistance approximation underestimates the resist-
ance. Furthermore, the effect of point defects is ap-
preciable at somewhat lower temperatures than one
would have expected from the additive resistance
rule.

Hulm,! in his systematic analysis of the thermal
conductivity of superconductors, makes use of the
additive resistance approximation for the lattice
thermal conductivity «,. Thus, he obtained the fol-
lowing relation for the normal state

ko =We+ Wy, 1)
and for the superconducting state
1/kes = (Wo/h) + W, 2)

where W, is the lattice thermal resistance due to
phonon—electron scattering, W, that due to all other

* Present address: Institut fiir Angewandte Physik, Uni-
versitdt Hamburg, Germany.
1J. K. Hulm, Proc. Roy. Soc. (London) A203, 74 (1950).

scattering processes, and A, a function of 7/T., is the
reciprocal of the reduction of the phonon—electron
scattering.

If W, arises mainly from point defects, the additive
resistance approximation is a poor one, and if one
uses Eqgs. (1) and (2) to determine the » function
from observed values of «,, and «,, this function
should depend on the amount of point-defect scatter-
ing. Sladek? found, indeed, for a series of In-TI
alloys that the experimentally obtained h function
varied with solute content.

Point defect scattering can have a pronounced ef-
fect on «,, even at low temperatures where W, is neg-
ligible compared to W,, because in the superconduct-
ing state W, is reduced by 1/h: Furthermore, this
sensitivity will be increased if one discards the addi-
tive resistivity approximation [Eqgs. (1) and (2)], but
considers the effect of both scattering mechanisms on
each phonon frequency separately.

A further complication arises when one considers
that, in the treatment of the lattice thermal conduc-
tivity of superconductors® in terms of the BCS theory,
this reduction of W, arises from a reduction in the
phonon scattering cross section, which is not by the
same factor 1/h for all phonons, but which is sig-
nificant only for phonons of energy Aw less than the
gap energy 2A(T). The reason is that phonons with
ho < 2A(T) cannot decay into pairs of quasi-parti-

2 R. Sladek, Phys. Rev. 97, 902 (1955).
3J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev.
113, 982 (1959), referred to hereafter as BRT.



