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Now there are four possibilities: if reactions (9) are
a direct-direct, simultaneous process (9a), or are de-
layed-direct (9d), they will have a bell-shaped energy
distribution of the coincidence spectra and imply that
r~ is zero and thus reaction (8) is direct. If reactions
(9) are a sequential reaction of either the direct-
delayed (9b) or delayed-delayed (9c) type, their co-
incidence energy distributions will have peaks, im-

plying that r2/0 for reaction (8) as well as (9). T'hus

a measure of the relative amounts of broad and peaked
coincidence energy distributions for the three-body
process (9) should allow one to conclude the relative
importance of the direct versus delayed nature of re-
action (8). To make this determination effective, how-

ever, it will be necessary to ascertain which particle
is emitted first if the reaction is sequential. As was seen
in Figs. 5—8, this appears to be a possible measurement
in some circumstances.

An example of such a possible measurement might
be to study the time delay of (d, p) measurements.
These reactions are generally assumed to be of the
direct type; yet they frequently have fluctuating cross

sections. If the three-body reaction (He', 2p) were
studied, and if it were to be found to be of the direct-
direct, or delayed-direct type, when the emitted protons
have the proper energy to simulate the (d, p) reaction,
then the direct nature of the (d, p) reaction would be
independently established. Alternatively, if the re-
action showed peaks in the angle-energy spectra, then
the reaction is either delayed-delayed or direct-delayed,
and in either case the (d, p) process could be presumed
to proceed with some time delay. Finally, as discussed
above, a comparison of the (d, p) cross-section Quctu-
ations with the energy —angle diagrams of the corre-
sponding (He, p, p) reaction will provide new informa-
tion about the widths of the states.
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I. INTRODUCTION

The concept of an energy-averaged cross section
has been relevant to the understanding of experimental
data for at least as long as the concept of scattering
experiments. However, it has been mainly in the analy-
sis of nuclear scattering experiments that the under-
standing of this concept has been sharpened to the
point where the new ideas that have evolved in the
rather specialized sphere of nuclear reactions may have
much broader implications in other areas of physics
and chemistry.

The cross section o„(E)for the reaction leading
from channel c to the channel c' is a function not only
of the energy E (or the driving angular frequency
~= E/5), but also of the parameters Ei, (energy posi-
tions) and yq, (reduced-width'. :amplitudes) for the
states X that are excited by driving channel c. Thus
we write

~..=~.. (E; {Ei,I, {vi,.I)
=0.;(E;II),

where the sets of parameters {E&,I and {y&,.I have been
replaced symbolically by the Hamiltonian operator

~ Supported by the United States Atomic Energy (:ommissiu».
t Deceased, 14 Au@list 1964.

,Jm

J,~
(2)

For one symmetry, the cross section can be written
in terms of the scattering matrix element U„J:

~..'.=~a,'g~. ) a„. v.;"~'—
If we drop the Jm labels and set g~ =1 (s waves),

we can more conveniently examine the notion of aver-
aged cross section. To average the cross section over
energy we introduce an energy resolution function
Rr(E—E') which we take to be a function of. the
energy difference (E—E') between the energy E' at
which the unaveraged cross section is specified and the
energy E at which the averaged cross section is de-
termined. In addition, the resolution" function Rl de-
pends on the interval I over which the average is
carried out. The interval I is important since it defines
the time 5/I which the measurement takes. If the time
f'i/I is small compared to the Poincare recurrence time
2~5/D, where D is the mean distance between the fine

H which defines the eigenvalues L&q and the eigen-
functions Xq, the latter of which enter into the y~, . Inte-
grated cross sections of the form of (1) are additive
with respect to symmetry (for example total angular
momentum I and parity m):
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structure levels, then the conditions for a thermo-
dynamically irreversible process are present; this is
what a complex potential is designed to describe.

If only an energy average needed to be contemplated,
then we would write the average cross section (o„)A„as

(0' (E; I) )A„= dE Rz(E E')—0' '(E ) ~ (4)

However, we have noted that the cross section depends
upon the parameters E), and y),

„

in taking the average
we actually average over a sample of these parameters
in addition. Thus we write (suppressing indices)

(0 (E; I) )g, = HP(H) dE'Rz(E E') 0 (—E'; H),

cc (tot)

o., (tot)
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where the Hamiltonian matrix ensenble P(H) =
P(Hii, Hi2, ~ ~ ) and its associated volume element
II=dII~~ dII~2 ~ ~ ~ have been introduced. The best-
known matrix ensemble is probably the Gaussian en-
semble for which

P (H) = C exp L
—Tr (H EpI) '/—4a']. (6)

It is well known that the consequences of (6) are the
independent eigenvalue and reduced-width amplitude
distributions (with Ep=0)

P(IE.})=c'-pI -ZE"«")II I E.-E I

y(v

P(Iv~.})=C"II exp I -2(v~, ~-'v~) j, (7)

in which a and the channel covariance matrix Z are
parameters. These results, at least in an extreme statis-
tical view, provide in principle the theoretical ma-

chinery needed to calculate cross-section averages.
In practice these calculations are not so easy.

From (3) we note that 0. depends, in general, quad-
ratically on the amplitude (scattering matrix element)
for the process in question. Only the total cross section
is an exception to this statement, i.e.,

0;(tot) =sX,'Qgz 2 Re (1—U„~). (8)
Ji

We know that if a typical neutron total cross section is
viewed with higher and higher resolutions we see a
sequence of cross sections that appear as shown in

Fig. 1. (In particular I~~ gives the classical geo-
metrical cross section. ) Figure 2 shows a recent collec-

tion of data' exhibiting fluctuations in neutron total
cross sections.

We remark brieQy that our comments apply strictly,
without some editing, to a sharp-surface system only.
Real systems have diffuse surfaces and hence, for
example, the hard-sphere cross section is increased
somewhat although it may be possible to speak of an
effective hard sphere.

' D. G. Foster, Jr., and D. %. Glasgow, (private communica-
tion) .

l

200
E (eV)

Fn. 1. Sketches of total cross sections observed with various
energy resolutions.

Neither the large-I (hard-sphere to classical-single-
number) nor the low-energy, small-I (fine-structure)
cases now present special conceptual difhculties. The
large-I cross section (or better, amplitude) serves as
a background for the fluctuating phenomena found as
I is decreased. Thus we are led to introduce a cross
section based on an averaged amplitude. Since such a
cross section usually depends on what we like to call
the size or shape of the target (or compound) system,
the cross section is referred to as a shape cross section
(sometimes it is called a direct cross section —shape or
size processes occur relatively rapidly). The average
total cross section can be split up into shape contribu-
tions and fluctuation contributions as follows:

(0', (tot) )„„=0.,(shape)+0. ,(fiuct),

o.,(shape) =go„.(shape),
c/

0,(fluct) = Qo.„.(fluct),
c/

0.. (shape) =n.X,'Qgg.
I
8„—(U„,.)„„I,

~,. (Quet) =~~,pgg, .(I bU„,~- Ip)„„.

It is not possible, for instance, to isolate at this stage
the compound nucleus events although it is reasonable
to assume that they enter in a major way into the
fiuctuation cross section. It is, however, reasonable
to define the compound cross section 0.(comp) as

0,(comp) = (0,(tot) )A„—0„(shape), (10)

i.e., to subtract out the shape scattering in channel c
from the total cross section and to consider the re-
maining scattering to involve a "compound" process
of some sort. The definition (10) gives the compound
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cross section the form of a nonelastic cross section ob-
tained from the average scattering matrix. From (9)
and (10) we find

o,(comp) = g o„(shape)+ g o.„(fiuct). (11)
c'gc aii c~

Thus the compound cross section may contain shape
channel-transfer processess. In order to compute
(U'„)A„for c'Nc and (I U„I')A„,more than the tradi-
tional entrance-channel optical model is needed since
cross-channel strength functions (yq.yq, )/D with
c~c' are not expected to vanish in general.

II. CROSS-SECTION PROBABILITY
DISTRIBUTION

As soon as any sort of average quantity is introduced,
it is immediately natural to ask what about Quctua-
tionsP In fact no statistical theory is complete until
the distribution underlying the average is exhibited.
In the case of cross sections, the distribution function
is extremely important because it can now be measured
and may be the only useful way to interpret the tre-
mendous amount of data exhibiting Ructuations that
is beginning to appear.

Since it is thought that the source of cross-section
Quctuations is somehow related to the Eq and yq,
statistics, it is natural to extrapolate from (5) to obtain
the distribution function of cr:

P(cr; E, I)

Thus the probability distribution for o- depends on the
energy E and the resolution interval I. Of course,
any parameters arising from JHP(H) also enter,
viz. , the level spacing D and the strength functions
(pz,pz, )/D. Equation (12) is a well-defined recipe,
but it is not so easy to carry out the integration in-
dicated.

Clearly it is essential to use (12) or something like
it in the resonance region of energy and probably also
in the energy region in which levels are just beginning
to overlap. However, once the levels begin to overlap,
another point of view may be useful. This point of
view has been developed especially by Ericson' and
3rink and Stephen. ' Following Ericson we write an
angular distribution (neglecting spins) as

do- (0 &)/dQ=If- (~) I' (13)
Now f.:can be written (suppressing indices)

f= (f)"+~f.
Thus

d l«=
I (f)" I'+I ~f I'+2 &e (f);*&y. (15)

Clearly, we recover the shape-plus-Quctuation feature
of the average cross section

(do/dQ)A
I (f)A. I'+ (I ~f I')A,

= (do/dQ) (shape)+ (do/dQ) (fluct). (16)
~ T. A. Ericson, Phys. Letters 4, 258 (1963).

HP(EX) d J.' gr(L' E') 6(a —o(E', IZ)). (12)— 3 D. M. 33rinh and R. 0. Stephen, private comtnunication via
G. R. Satchler.



C. E. PoRrKR ComPound Stutes 1097

we have

and therefore

(f)A, =a+ib,

bf=u+iv,

a'+b'+u'+v'+2(au+bv)
(u')"+ (")"

(u+a)'+ (v+b)'
2 (u')A„

(17)

(18)

P(g) =

exp L
—(u'+v')/2(u')A]

2v (u')A

(~+~)'+(~+&)')
2 (u')A,

(19)

Let s= (u+a)/(2(u')A„)l and t= (v+5)/(2(u')„,)l.

This gives

1
P(x) =—

Ericson argues that (ignoring thresholds) the real and
imaginary parts of bf represent the summation of a
number of Breit—Wigner amplitudes with large widths
(I'»D). Thus the major fluctuation arises from the
numerators which are assumed to be independent ran-
dom variables. The conclusion from the central limit
theorem is that the real and imaginary parts of Sf
follow Gaussian distributions with the same dispersion.
Letting

x= do/do (fluct),

x,=do (shape) /do (flue t),

so that

sin n= a/(a'+b')1,

cos n= b/(a'+b')1, (21)

1 2

. P(x) = exp [—(x+g,)]— dq)

0

(2x(a'+b') 1
Xexp ~, sin (q+n)

Av

=exp [—(x+x,)]Ip[2(xx,)l], (22)

where Io is a standard Bessel function. A check of this
distribution has been made by Good, Kim, Moak,
and Rayburn' for the reaction Mg(n, n )Mg among
others. Their results are shown in Figs. 3 and 4. Note
that data from diGerent angles has been combined.
The ground state of the target is of spin 0 and positive
parity, while the first excited state has spin 2 and posi-
tive parity. Fig. 3 shows the elastic-scattering results,
while Fig. 4 shows the inelastic-scattering results. The
latter have 2X2+1=5 degrees of freedom, while the
former have only one degree of freedom. The appro-
priate Bessel function is indicated in the figures. The
functional form of the distribution seems to coincide
with the data for a value of do (shape)/do (fluct) =3.

It is of interest to ask if Ericson's arguments are
applicable to the entrance channel and in particular
to total cross sections. Neglecting spin again, we have

o (tot) =4vA Im f(0)
=47rlt Im ((f)A„+bf), (23)

where now we evaluate (f)A„and bf at zero angle. In
the notation we have already introduced,

o(tot) =4~ii(b+v) .

f a )2 b '))s In particular

(2( P) )1)~ (2(us) )l&~
* o(tot) —(o.(tot) )A„——4)rkv,

(24)

(25)

2% QQ

dq dppb (x—p')
0 0

f a
Xexp —

] pcos&p —
) I pslnp

)

1
dp2' 0

which means that

(v')„„=([bo(tot) ]')A„/(47'')',

([bo (tot) ]')A„=8wVo (fluct) . (26)

Thus, the dispersion of a cross section is proportional
to a cross section. Since Ericson's argument implies
that v is Gaussian, we have

P(v) = exp (—v'/2 (v')A, )/(2m. (v')A, )'*, (27)
a ) )r . b

X exp —
~

xl cosy —
~

—
~

xi sill (p—
(2(u'). )'& & (2(u'). )'&

where now

v= [o (tot) —(o.(tot) )A„]/4vl).. (28)

1 2

=exp [—(x+x,)]— dq
2x 0

The data of Glasgow and Foster has not been com-
pared to (27) to see to what extent (27) is correct and

2x 4 Good, Kim, C. D. Moak, and Rayburn, private communica-
Xexp

~
(acosp+b sing) . (20) tion via G. R. Satchler. A recent letter by G. Temmer, Phys.

u' A.i Rev. Letters 12, 330 (1964), shows more evidence along this line.



1098 RzvIEws oz MQDERN PavsIcs - OcroazR 1964

C

3
D

O

SQLID CURVE FQR ( rp)

P(X) =e ' Jo (2i P X)-aX2

cr (8)
(~(e))
( (8»

=& (8)~~)

g(~(e)) (e), ,

(~(e)fg)
A N D (cr&= cr p I

+ (rr~~ )
0 0 p (

+ crfg + INT.

M ( a) M
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Data for all angles are combined.
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therefore how accurate the arguments leading to (22)
are in this case. The particularly special characteristic
of (27) is the zero slope at v=0; there is no peak ot
(27) for n')0.
';,The arguments leading to (22) are essentially in-
dependent of those leading to (12) except that the
distributions underlying (12) must exist and must be
sufficiently uncorrelated that the central limit theorem
apply. For this reason cross checks on the total cross
section are of tremendous importance.

In addition to one-exit-channel cross-section dis-
tributions at a given energy, it is possible to contem-

plate also a joint cross-section distribution for many
channels )we adhere to a binary channel language
even though this may not be completely realistic, for
example, for the (n, 2n) reactionj

I (e'cc& &cc'»' ' ' &c'c'& ' ') .

A derivation ot (29) along the lines of Ericson's argu-
ments leading to (22) does not seem to be so easy; it
is quite likely that it vrill be necessary to base a joint
distribution like (29) more directly on the underlying
I'(H) or equivalently E(IEqI) and P(Iyz, I); par-
ticularly P(Iyz, ]) is important since it contains the
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FIG. 4. Same as Fig. 3 except that
the data are for inelastic scattering
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channel correlation information in the covariance
matrix Z„=(yA,y&„)A„.Thus Z should enter as a
parameter in (29). It may be that rather generalized
arguments of Ericson's sort, not too intimately related
to the second of equa, tions (7),' could be developed to
yield the functional form of (29) and its appropriate
generalization to include angular distributions; how-
ever, at the moment, these arguments do not seem to
be in sight.

In analogy to Z, it is possible to dehne a four-index
cross-section covariance matrix:

~cc'c"c"' (~&cc'~0 "c"c')Av. (30)

From (30), we see that the cross-section correlation
coefficient C„',,", ~ is given by

—1&C„.,", & 1. (31)

Ot course, it is not obvious that the parameters of
(29) are all contained in the matrix Y or what the
connection between Y and Z is. On the other hand,
quantities like (31) should probably be especially
useful for analyzing data even though the ultimate de-
sire is to know the functional form of (29).

The concept of cross-section energy-displaced cor-
relation function was introduced some time ago by
Egelstaff' and has been particularly exploited by
Ericson. & The idea is to generalize (30) to contemplate
the Quctuations bo-„and bo, , ~ at displaced energies
E and E+e. This leads to a correlation coefflcient
E:„...., .(e) given by the symmetrized expression'

+cc';c"c"' (C)

Even joint distributions of more than one random
variable can be generated by the appropriate generali-
zation of (33).

In particular for c=c" and c'=c'", Ericson finds'
(neglecting spin eGects)

(80„.(E+e)80„(E))A„

=I I'/(I"+e')]L((~- )A)' —(0;, (shape) )'], (34)

where F is the mean total width of the underlying fine
structure levels. In particular,

((80cc ) ')„„/((0«)A„)'=1—Lo;, (shape)/(0;, )A„]'.

(35)

Using (34), values' of I' have been found for the
C"(0" a) Mg" reaction and also from (35) an estimate
of o„(shape)/(0„.)A„ is obtained. The cross-channel
correlation was also examined by computing essen-
tially (32) for c=c" and was found to be relatively
small.

Expression (34) agrees with the results obtained
from (22), as it must. It can be shown from (22) that

(x")A„=exp(—x,) (q'd/dq) "q exp (qx, ) I, q, (36)

so that ln paIticulal

(X)A„——1+X„
(x')A, =2+4x,+x,'.

1(&crcc'(E)~0'c'c"'(E+&))Ac+(~o'cc'(E+~)~0'c"c"'(E))Ac It is possible to examine polarization fluctuations

2 L((&~- ) ')A. ((&~""-) ')"]'* as well as more conventional scattering results. The

(32)

which reduces to C„',", ~ when e—+0. Even more com-
plicated (nonbinary channelwise) expressions than (32)
could be contemplated, for example, in the (n, n'f) reac-
tion. Note that the combination 8a„.(E)80;, (E+~)
is a random variable which is a function of E and e and
also the underlying Hamiltonian H. It is possible in
principle to construct the distribution P(Q) of any
quantity Q of this sort via the recipe

P(Q; E, I, e, ~ ~ ~ )

IIP H dE'E E—E,' 6 — E', e, ~ ~ ~ II

(33)
' T. J. Krieger and C. E. Porter, J.Math. Phys. 4, 1272 (1963).
6 P. A. EgelstaG, J. Nucl. Energy 7, 35 (1958).
'T. A. Ericson, Phys. Rev. Letters 5, 430 (1960); Advan.

Phys. 9, 425 (1960); Ann. Phys. (N. Y.) 23, 390 (1963).' M. L. Halbert, F. E. Durham, C. D. Moak, and A. Zucker
(private communication). We have generalized their expression
slightly here to admit more than one entrance channel.

usual formula for polarization of spin- —,
' particles for

an elastic process is

P= 2 «(f*g) /(I f I'+I g I') (39)

where f is the spin-nonflip and g is the spin-flip am-

plitude. Arguments analogous to those above can be
used to predict the form of the distribution function
for P Lor better (do/dQ) P] under various assumptions
concerning the correlation between f and g. Data on
neutron polarization exhibiting Quctuations is now

available. '

III. REMARKS CONCERNING THE
RANDOM-PHASE HYPOTHESIS

In general the notion behind all of the Quctuations is
a random-phase hypothesis. An orthogonal canonical
transformation 0 can be written

0= e~, (40)
~ A. J.Elwyn, J.E.Monahan, R. 0. Lane, and A. Langsdorf, Jr.

private communication).



1100 RKvIKws oz» MoDKRN PHYsIcs ' OcTQBKR 1964

where C = —4 = C ~. Now the mn matrix element
(m I 0

I n) of 0 is related to the relevant wave func-
tions in the coordinate representation via (this was
called to my attention by Professor A. Klein)

(mIoIn)= (mIOI*) d*(*IOIn) (41)

where 5 is the action. Hence

(m I n) = dx exp 1'i(S —S„)/tt],

i.e.,

(m I
eu

I n) = dx exp Li(S —S„)/Sj,

(m [ n) f(m=~ x) dx(w I n)».

But the usual way of writing (m I x) is

(m I x) =exp LiS„(x)/Sj, (43)

which means that the randomness of the phase operator
4 can be thought of as arising from random action
differences,

a rather attractive concept which may lead
to a useful correspondence characterization of the
various matrix ensembles.

The complementary notion of "explainiog" the
fluctuations as particle phenomena may be essentially
what is being pursued by Feshbach and his co-workers

Time Delay Measurements

R. M. EISBERG

Ur»ioersity of Catiforr»ia, Santa Barbara, Catiforr»ia

The title of this paper is a good example of poetic
icense since I actually describe a proposed technique

for measuring scattering amplitudes In fact., as in-
dicated by Austern in an earlier paper, there are
difhculties in giving an acceptable operational defini-
tion of time delay. Nevertheless, the qualitative idea
of time delay can provide a useful point of view, and
is certainly related to what I describe here. So I ask
you to let me use the idea of time delay in the beginning
of this paper —towards the end I will become more
sophisticated.

Kith these qualifications, it is evident that a funda-
mental distinction between the compound nucleus and
direct interaction processes is that the compound nu-
cleus process involves a time delay. Unfortunately,
the time delay cannot, at present, be measured by any
direct (e.g. electronic) technique —it is just too short.
Of course no problem arises in the case of an isolated
compound nucleus resonance since, as was 6rst pointed
out by Bohr, the uncertainty principle directly relates
the time delay to the measured width of the resonance.
But when the compound nucleus is excited to its con-
tinuum, it is necessary to be more subtle. Several years
ago Ericson developed an analysis of the fluctuations
in excitation functions which leads to the possibility
of measuring time delays in the continuum. At about
the same time a proposal for measuring time delays in
the continuum, by studying the bremsstrahlung emitted
in the nuclear reaction, was made in papers by Yennie,
wilkinson and Eisberg, ' and by Feshbach and Yennie. '

'R. Eisberg, D. Yennie, and D. Wilkinson, Nucl. Phys. 18,
338 (1960).' H. Feshbach and D. Yennie, Nucl. Phys. 3T, 150 (1962).

Ericson's proposal has received considerable experi-
mental attention, but, as far as I know, the experi-
mental work on our proposal has been done entirely by
Hansen. ' In this paper, I will review our proposal,
and then describe very briefly the work of Dr. Hansen.

The process of bremsstrahlung emission in nuclear
reactions seems to be one of those fortunate cases that
can be understood, within limits, from classical con-
siderations. Therefore, I will first describe it classically
and then indicate the quantal modifications to the
description.

To start, let us consider qualitatively a charged par-
ticle entering a nucleus and, after a time r, a product
particle being emitted elastically at some angle. In
this process there will be a certain net amplitude for
the emission of bremsstrahlung. One component of
this net amplitude arises from the cessation of the
current associated with the incident particle, and the
other component arises from the initiation of the cur-
rent associated with the product particle. The net
amplitude depends on the charge and velocity of the
particles, on the scattering angle, on the angle of emis-
sion of the bremsstrahlung, and also on the time delay
7.. The time delay comes in through the circumstance
that it leads to a phase difference exp(iu»r) between
the two components, where m is the angular frequency
of the emitted bremsstrahlung. For small values of
»or, the two components interfere coherently (either
constructively or destructively depending on the

'L. Hansen, Proceedings of the International Symposilm on
Direct Interactions and Nuclear Reaction Mechanisms, Padla,
edited by E. Clementel and C. Villi (Gordon and Breach Pub-
lishers, Inc. , ¹w York, 1963).




