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where Im 6 is the imaginary part of the optical-model
complex phase shift.

Two points require further examination. One is the
assumption of the independence of formation and decay
on the average, the other is the relationship between
average compound-nucleus formation and optical-model.
absorption. That the 6rst assumption does not have
unlimited validity was pointed out by Lane and Lynn'
and by Dresner, ' who showed that in the limiting case
of isolated resonances, where the compound-nucleus
contribution to the cross section may be approximated
by a sum over single-level Breit—%igner resonance
terms, the average cross sections are given by Eqs.
(1) and (2), provided one makes the substitution

Energy averages of resonant or fluctuating compound-
nucleus cross sections were first discussed by Wolfen-
stein' and by Hauser and Feshbach. ' They postulated
that, as in the case of an isolated compound-state reso-
nance, the contribution of each total angular mo-
mentum and parity of the system to the average partial
reaction cross section could be factored into an average
compound-nucleus formation cross section and an
independent decay branching ratio. Together with the
reciprocity theorem, ' this led to the well-known Hauser-
Feshbach formula which in the channel spin representa-
tion may be written as follows:

&ao.'

(2I +1) (2i +1) 4 QT "F.,-~

XZ(/JLJ, sL)Z(l'Jl'J, s'L) Pr, (cos e). (1)
~ah ~a'l's' 2~ ~y, alsI p,a'l's'J J

~a"L"s" DJIIJ I
Here ( ) denotes an energy average over resonance
fluctuations; do- ~ is the differential cross section for
the reaction proceeding from entrance channel o. with
fragment spins I and i to exit channel u'; l, s and l', s'
are relative orbital angular momenta and channel
spins in the entrance and exit channels, and J is the
total angular momentum. The first sum is over L, J,
and all combinations of partial waves l, s, l', s' con-
sistent with conservation laws, and the sum in the de-
nominator is over all partial waves and channels which
compete in the decay of the compound state. The
corresponding integrated cross section is

(o...)=m.X 'Qg ~~' ', (2)

where g ~= (2J+1)/(2I, +1) (2i +1). The total com-
pound-nucleus formation cross section in channel u
is obtained by summing Eq. (2) over all cr'

where DJII is the mean spacing of resonances with
angular momentum J and parity II; I'„ is the total
width of the resonance p, I'„~, is a partial width and

( )s(JQl denotes an average over resonances with
angular momentum J and parity II. Summing this
new average cross section over exit channels and corn-

paring with Eq. (3) yields in this single-level limit

(6)Tats = (2rrfazn) (I's,at3)s(urn

Following Porter and Thomas~ we assume that the
values of the partial widths are distributed in p and
are also not completely correlated with respect to
channel indices o., l, s. Therefore, the average compound-
nucleus cross section can no longer be factored into
independent formation and decay terms and, in fact,
the substitution (5) leads to a width fluctuation cor-
rection' ' to the Hauser —Feshbach formula as specified
by Eqs. (1), (2), and (6). If the partial widths have
the Porter —Thomas distribution, this correction varies
from a factor of unity to 2 for n/n', and from a factor
of unity to three in the case of elastic scattering. The
relative magnitude of the width Quctuation correction
decreases with increasing positive correlation of partial
widths and with increasing numbers of competing decay
channels. ' lt vanishes in the limits of completely cor-
related partial widths and of very many competing
channels. However, as the number of channels in-

(o cN) =re.'Qg ~T.g,~.

(4)T (,~ 1—exp (—4Im8 ~)t, ——
' A. M. Lane and J. E. Lynn, Proc. Phys. Soc. (London) A70,

557 (1957).
'L. Dresner, Proceedings of the International Conference on

Neutron Interactions with the Nucleus, Columbia University
Report CU-175 (1957), p. 71.

7 C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).' See, however, G. R. Satchler, Phys. Letters 7, 55 (1963),
where it is shown that correlation eGects in elastic scattering may
persist for large numbers of competing channels.
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' L. Wolfenstein, Phys. Rev. 82, 690 (1951).' W. Hauser and H. Feshbach, Phys. Rev. 8V, 366 (1952).
3 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(John Wiley 8z Sons, Inc. , New York, 1952).
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9g, 448 (1954).
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The corresponding compound-nucleus formation cross
section x-X 'T ~,

~ for the partial wave (cds J) will serve
for the present to dehne the transmission coefficients
T'

~,J. If the compound-nucleus formation cross section
may be identified with the optical-model absorption
cross section, ' then
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creases, the average total width to spacing ratio F/D
of the resonances will increase„ invalidating the assump-
tions underlying the above discussion.

The investigation of these questions in more general
circumstances is handicapped by the great complexity
of the theories of compound nucleus reactions. Two
methods based on E-matrix theory' exist which ex-
tend the scope of the above results. One, derived by
Thomas, " is based on an expansion about the limiting
case of one or two open channels and becomes un-
reliable in the presence of additional channels which
compete strongly in the decay. The other method" is
effectively an expansion in F/D and becomes useless
when that ratio is too large. These difficulties are not
removed in a simple way by resorting either to the
Kapur —Peierls" or Feshbach" formalisms, since the
implicit energy dependences of the resonance param-
eters of these theories must be investigated before
reliable energy averages can be obtained. We shall in-
stead employ the Humblet —Rosenfeld resonance ex-
pansion" as a formal representation of the reaction
process within a restricted energy averaging interval.
Ke will then be hampered somewhat by our lack of
knowledge regarding the detailed statistical properties
of the resonance parameters in that formalism. How-
ever, we will be able to express the effects of these
uncertainties largely in terms of a single parameter
which can be evaluated by comparison with experi-
mental data. "

The cross sections are bilinear functions of the ele-
ments of the transition matrix 3„., where the index c
denotes a particular partial wave (n, l, s, J ) .We assume
that the reaction mechanism can be separated into
direct and compound-nucleus processes, so that we may
write

,direct+ri, compound
CC Cc CC

where G„d'"" is sufficiently smoothly varying with
energy that we may regard it as a constant within our
averaging interval, and 3., " p' " is the compound-
nucleus reaction amplitude which is assumed to vary
rapidly with energy. The average integrated partial
reaction cross section

& -)= )t'(I&- I')

may then be separated into the following four terms":

( ,d irected &,correlation J &,fluctuation&cc' / &CC' ~ &CC' 1 &CC'

+ (0. , interference ) (9)
9E. P. %'igner and L. Eisenbud, Phys. Rev. 72, 29 (1947);

A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958) .
"R.G. Thomas, Phys. Rev. 9'7, 224 (1955)."P.A. Moldauer, Phys. Rev. 123, 968 (1961)."P.L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,

277 (1938).
~3H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287

(1962).
' J. Humblet and L. Rosenfeld, Nucl. Phys. 26, 529 (1961).
"See also Ref. 18.

,direct —~g 2 [ g,direct )2
CC C I CC (1Qa)

( optical' &,fluctuat ion
&CC' (=Occ' l OCC'

In the case where

(ri, compound )~Q
we find that

,correlatio~o
CC )

, interference $~0CC /

,opt ica~&,direct
Cc CC

(12b)

(13a)

(13b)

(13c)

(13d)

,compound )~&,fluctuat ion (13e)CC / CC

Entirely analogous decompositions of the angular
distributions can be made. The average total cross
section is given by

(0 total) —22r)( 2+ Re (ri direct+ (ri compound)) (14)

which shows that the limit (13) for the diagonal transi-
tion elements would imply no net compound-nucleus
contribution to the average total cross section.

The direct amplitudes 3 '"' include the effects of
nuclear potential scattering and point-charge Coulomb
scattering, as well as processes which may be dis-
cussed in terms of direct-reaction models such as the

"The classi6cation of cross sections given here enlarges some-
what on that used in the oral presentation of this paper at Gatlin-
burg. At that time the "direct cross section" was identi6ed with
what is here called o p"'a'.

"S.Yoshida, Proc. Phys. Soc. (London) 469, 668 (1956); D.
M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 1080
(1958).

,correiation —
&)1 2

I
(rd, compound ) I2 . (1()b)

,fluctuation=&)'t 2(I ri, compound (rim, compound) I2) (1Qc)

(&,interference) —~g 22 Re (ri, direct) 2'(ri, comPound)

(1Qd)

Clearly, the average compound-nucleus cross section
must be considered as given by

,compounds —&,correlation J &,fiuctuation (11a)CC / Cc i &CC' 7

so that

(&,)—&,direct+ (&,compound)+ (&,interierence) ( 1 1b)

The conventional optical model is a theory of scatter-
ing described by the average diagonal elements (3„).
A generalized optical model involving coupled channels,
is obtained by considering the scattering and reaction
processes described by the complete average transition
matrix. '~ The corresponding generalized optical-model
cross section is

opticai —0. directM& correlationM /O. , interference) (12a)cc' cc' cc' cc'

leading to a second decomposition of the average cross
section:
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distorted-wave Born approximation. These will not
concern us further here. In order to be able to discuss
3~ &'"" further, we make the assumption' that within
a suitable averaging interval we can write"

,compound s—+Lg g,/(E E +1sP )j (15)

of the g„,. The partial widths must be defined in terms
of a real normalization constant" N„&1,

which makes

with constant parameters g„„E„,and F„. The equa-
tion (15) has very general validity as a representation
of the Quctuating part of a causal transition amplitude
on the real energy axis within a finite interval which is
very far from the thresholds of certain channels. '8 The
physical interpretation of this representation has been
discussed by Humblet and Rosenfeld. "We shall make
the additional assumption that the real resonance
energies E„may be considered to be distributed with
uniform density and correlations from E&= —~ to
+oo and that the real I'„and the complex g„, have
uniform statistical distributions over the range of all
resonance indices p.' These distributions will, of course,
depend on the energy interval being considered.

In the case of an energy interval containing isolated
resonances for which the average total width F is
small compared to the average spacing D of the reso-
nance levels, Eq. (15) follows directly from R-matrix
theory. The E„are then distributed like the poles of
the R-matrix, exhibiting the well-known repulsion of
neighboring levels and other correlation effects."The
g„, can be written y„, exp (iq,), where y, is constant
in p, and the real p„, are normally distributed with
zero mean. The partial widths I'„,=y„.'= I g„. I' foHow
the Porter —Thomas distributionr (x' distribution with
one degree of freedom) and I'„=Q,P„„where the sum
is over all open channels.

For intervals in which I'/D is not small, the distribu-
tion laws of the resonance parameters in (15) may diÃer
from those discussed above. It is no longer certain that
the resonance levels E„will exhibit repulsion. The
distribution of the complex g„, is also not known, but
it appears likely on statistical grounds that both their
real and imaginary parts are normally distributed, so
that the

I g„, I
follow a distribution with characteris-

tics somewhere between a x' distribution with one and
with two degrees of freedom, depending on the rela-
tive magnitudes and correlations of the real and
imaginary parts. A two degrees of freedom distribution
of

I g„, I
results from an isotropic normal distribution

"P.A. Moldauer, Phys. Rev. (to be published). Questions oi
validity of these assumptions and their relation to the R-matrix
theory (Ref. 9) and Kapur —Peierls Theory (Rei. 12) are dis-
cussed there, as well as methods for treating the statistical
properties of the parameters of Kq. (15).

'~ The notation used here is related to that of Humblet and
Rosenfeld as follows: 3„'"0' and g„, are equivalent to—(k,k, )&Q„and (k,)&G,„exp gg, „fReio. 14, respectively. E„and
1'„mean the same as in Ref. 14.

~ E. P. Wigner, fourth Canadiarh, 3lathewatical Congress Pro-
ceed&sgs (University oi Toronto Press, Toronto, 1957), p. 174;
M. L. Mehta, Nucl. Phys. 18, 395 (1960); M. L. Mehta and M.
gaudin, ibid. 18, 420 (1960); M. Gaudin, sNd 25, 447 (1961). .

where it will be taken for granted that p=—p( JII), and
hence

The Quctuation cross section is given by

, fluctuation &g 2

D F„

2~' (P„+I'„
gycgsc'gvc gvc' 1 C'sl (20)

where Co is defined in terms of the resonance energy
pair correlation function" Rs(E„—E„) to be

(P D + deRs(e)
cpI —= —i—

&D x e—iF (21)

and has the properties of tending to zero for small
I'/D and maximum level repulsion" and approaching
unity for large P/D or when the resonance level energies
E„are uncorrelated. Therefore, as P/D becomes large,
I—40 tends to zero regardless of the level spacing dis-
tribution law. Using the fact that in any case Co is a
slowly varying function of its argument and assuming

'-'The parameter E„ is equivalent tu the q„' of Ref. 14 aud to
the [A„~-i oi Re&. 12.

ss 'Freeman J. Dyson, J. Math. Phys. 3, 166 (1962).
~g P. A. Moldauer, Phys. Letters 8, 70 (1964),

The distribution of the E„and their correlations with
the

I g„, I' are important because of their effects on the
distributions and correlations of partial and total
widths. Since E„ is essentially the normalization of
the eigenfunction of a very complex boundary value
problem of high dimension and may be considered
as a sum of a large number of random contributions,
we may suppose that the E„are fairly constant in p.
Ke also suppose that the distribution laws of widths
and spacings deviate from their known isolated reso-
nance limits in proportion to the magnitude of P/D.
Fortunately, we also find that as P/D becomes large,
the values of average cross sections do not depend
strongly on the precise details of the statistics of the
resonance parameters in (15). To some extent this is
also true of cross-section Quctuations, so that it may
be difficult to obtain detailed information on resonance
parameter statistics in the region of overlapping
resonances.

Averaging (15) gives
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that a sum of two total widths does not Quctuate very
much, we may take Co to be a function of the average
I'/D. Defining also

(22)e„=+e„„e„,=(2 /D)x„ I„„
we may write with the help of (16) and (17)

, fluctuation ~g 2
CC C

Is

2 (1 el& )&,correlation

(23)

Invoking Aux conservation we find that
„correlat ion

(e ) —T compound+2(1 el' )g , (24)
gran. 2cll

where T" p'u"d is the transmission coefficient of the
generalized optical model which is related to the trans-
mission coeKcient T, of the ordinary single-channel
optical model, defined in Eq. (4) by

T compound —T g (& „opticai/~g 2) (23)
c~~&c

By Eq. (22) the distribution of the fluctuations of
e„,about (e„,)„is governed chiefly by the distribution
of the F„, which we expect to follow a x' distribution
with one degree of freedom at low I'/D and with be-
tween one and two degrees of freedom at larger I'/D.
In general, when 0„, follows a y2 distribution with
p, degrees of freedom, the first term in Eq. (23) can
be evaluated in terms of the following integral"

(e„.e„../e„)„- dl

(e„.)„(e„,.)„/(e„)„

where
(26)

( ").,' (e.).
As the number of competing channels becomes large,
the above integral is expected to go to unity, and at
the same time I'/D is expected to become large so
that Co approaches unity. In this continuum limit we
then have

T compound g compound
C c'

, fluctuation~~g 2
CC C

T „compound
C

crt

(27)

1' (E„)p—=E, (29)

which defines the meaning and conditions of validity
of the Hauser —Feshbach formula (2) .

It is often assumed, and likely to be true at low
energies, that the width amplitudes for different
channels are uncorrelated, in which case we may write

(28)

where bc is a generally conlplex number whose mag-
iutude varies between unity for small I'/D and zero
if the g„, are distributed isotropically in the complex
plane. The assumption (28) means that the relations
(13) hold for chic'. If we also assume that

we can write

,correiation —~rt 2g, (~ b ~2/4+2) (e ) 2 (30)

X (—1)' "Z(/Jl1, sL)Z(/'Jl'J, s'L)
0„

+0 8„Z'(fJl' J', sL) (1—8„)
0„

gac gp"2~D' r.
.,(1—C")-- l..— i,s,, '- -(e„,)„(e„„)„,(34)2E'

'-' G. Breit, Definitions Of Compound Sorites, Topical Conference
on Compound Nuclear States, Gatlinburg, Tennessee, 10 October
1963;and I''ncyctopediu of Physics, edited by S. Flugge (Springer-
Verlag, Berlin, 1959), Vol. 41/1.

.. " - -= lt, I (e„.e„../e„)„—s„.—,'g, (e„,)„ I, (31)

(e ) —(2/g ) L1 (1 g T compound)-', ] (32)

where

g, = 2
~

b,
~

(1 C,)—/X. (33)

Clearly (e„,)„—&T mp'"" When either T o p'""d Or

g, is small. The former condition is expected to hold
near the threshold of channel c giving rise to the rela-
tion (6), the latter for large I'/D, leading again to
Eq. (27).

It should be noted that even in the limiting case of
Eq. (27), the assumption of statistical independence
of the average decay probabilities governs the mag-
nitude of the fluctuation cross section and that the
average compound-nucleus cross section (11a) exceeds
the fluctuation cross section by the amount of the cor-
relation cross section for those decay channels whose
amplitudes are correlated with the entrance channel
amplitudes. This preference for decay into correlated
channels is due to the interference effects which were
discussed by Professor Breit.24 Among these preferred
decay channels will ordinarily be the entrance channel
itself. However, when the cross-section decomposition
(12) is used, then the enhancement 0 c»re'«ion of the
compound elastic scattering cross section is included
in the optical-model scattering cross section 0-„'p""',
even in the case of the conventional single channel
optical model. In fact, 0.„"'"""'"is just the difference
between what is meant by the optical-model shape
elastic scattering cross section and the potential scatter-
cross section of resonance theory.

Observable integrated cross sections are obtained
by summing the above partial cross sections over ap-
propriate exit channels and, averaging over entrance
channels using g

s as a weighting factor as in Eqs. (2)
and (3). The differential fluctuation cross section'. is
given by

,fluctuat ion
yE

20aa' a
~~ Pr, costi

4(2I +1) (2i +1)„
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when the condition (28) is satisfied. The erst term in
the brackets is analogous to Eq. (1). The remainder
of the expression affects only elastic processes and does
not necessarily vanish even in the limit of large F/D.

The above methods may also be used to calculate
cross-section fluctuations. These results are reported
elsewhere ""

We 6nally turn to some calculations in which con-
sequences of some of the above formulas are compared
with measured low-energy neutron elastic and inelastic
scattering cross sections in iron, copper, zirconium,
and niobium. The procedure used was to obtain first
good optical-model 6ts to the elastic scattering data
of Smith and collaborators. "" These fits were based
on the low-energy neutron optical model of Moldauer. '8

Deviations from that model are indicated in the cap-
tions to Figs. 1(a), 2(a), 3(a), 4(a), where the cal-
culations are compared with the measured total
elastic scattering cross sections o.(ELASTIC) and the
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FIG. 2. (a) Elastic scattering of neutrons by copper. Data from
Ref. 26, calculation by optical model of Ref. 28. (b) Inelastic
neutron scattering to the first two excited states in each of the
stable isotopes of copper. Data from Ref. 26. Calculations as
described in~text based on optical model of Ref. 28 with spin and
parity assignments as shown.

Legendre polynomial expansion coefficients m~ of the
angular distribution defined by

do(EL)/dQ=fo(EL)/4']ga)gPg(cos g). (35)

-f
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I
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FxG. 1. (a) Elastic scattering of neutrons by iron. Data from
Ref. 25, calculations by optical model of Ref. 28 with the substi-
tution R=4.8 F. (b) Inelastic neutron scattering to the 0.845-MeV
level in "Fe. Data from Refs. 25, 29. Calculations as described in
the text based on the same optical model as in Fig. 1(a).

"A. 3. Smith, "Scattering of Fast Neutrons from Iron" (to be
published) .

~6 A. B. Smith, C. A. Engelbrecht, and D. Reitmann, "Elastic
and Inelastic Scattering of Fast Neutrons from Co, Cu, and Zn"
(to be published)."D. Reitmann, C. A. Engelbrecht, and A. B. Smith, Nucl.
Phys. 48, 593 (1963).

Particular attention was paid to energies below in-
elastic thresholds where all of the optical-model absorp-
tion cross section was assumed to produce elastic
fluctuation scattering, the angular distribution of which
was calculated by means of the formulas in the Ap-
pendix of Ref. 28.

The transmission coefficients of these optical models
were then used in Eqs. (31) and (32) to calculate
partial inelastic scattering cross sections in the respec-
tive nuclides. It was assumed that no direct or correla-
tion cross sections contribute to the inelastic scatter-
ing and that all 6„, have a Porter —Thomas distribu-
tion. In general, calculations were carried out for the
cases of all Q, =O and all Q,=1.The latter value would
be approximately applicable for most of the important

's P. A. Moldauer, Nucl. Phys. 47, 65 (1963).
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FIG. 3. (a) Elastic scattering of neutrons by zirconium. Data
from Ref. 27, calculations by optical model of Ref. 28 with the
substitution W =6 MeV. (b) Combined inelastic neutron scatter-
ing to the excited levels near 0.92 MeV in all isotopes of zirconium.
Data from Refs. 27, 30. Calculations as described in text based
on same optical model as in Fig. 3 (a).
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channels in these reactions if j b, j'/¹were unity and
if the full signer resonance level repulsion applied. "
The results of these calculations, together with the
predictions of Eq. (2) (labeled H.F.) are shown in
Figs. 1(b), 2(b), 3(b), 4(b), and are compared there
with the measurements of Smith and collabora, tors, " '
of Montague and Paul, " and of Lind and Day."The
results suggest that the neutron partial-widths are
uncorrelated in this region and that their distribution

29 J. H. Montague and E. B. Paul, Nucl. Phys. 30, 93 (1962)."D. A. Lind and R. B. Day, Ann. Phys. (N.Y.) 12, 485 (1961).

Fro. 4. (a) Elastic scattering of neutrons by niobium. Data
from Ref. 27, calculations by optical model of Ref. 28 with the
substitution S'=6 MeV. (b) Inelastic neutron scattering to the
6rst four excited states in niobium. Data from Ref. 27, calcula-
tions as described in text based on same optical model as in Fig.
4(a).

is close to that suggested by Porter and Thomas. Any
serious deviations from these conditions would cause
an increase in the values of most of the inelastic cross
sections. The comparison also suggests that for the
important neutron channels in this region, Q, is close
to zero for zirconium and niobium and small for iron
and copper.


