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Archimedes is reputed to have said “Give me a place
to stand and I will move the earth.” This paper may
be expressed in the paraphrase: ‘“Given the appropriate
projection operator one can solve the problems of
nuclear structure and reactions.” The development of
this theme is contained in two papers® bearing the same
title as this paper. The use of the word unified in the
title is justified in two senses. It is shown that the
method contains the formalism of Wigner and Eisenbud?
and a generalized version of that of Kapur and Peierls.?
Secondly, it presents a treatment from which direct
interactions and compound nuclear processes are easily
and naturally abstracted. Related discussions have been
given by Newton and Fonda® and by Agodi and Eberle.
The applicability of the method to gamma-ray proc-
esses has been shown. We shall only briefly review the
principal ideas. Our main interest for the first part of
this paper will be to discuss how the resultant frame-
work may be exploited toward the calculation of various
nuclear reactions. So far, these procedures have been
applied to the calculation of neutron scattering and
strength functions for the pure elastic case.”~® Calcula-
tions involving inelastic scattering are in progress.?

We are concerned with a reaction in which we pro-
ceed from an initial state consisting of the incident
particle (which can be composite) and the target
nuclei in its ground state to an emergent particle (or
particles) plus a residual nucleus in a ground or excited
state. The corresponding wavefunctions are

|4)=@a[xo(ro)o(x1-+-14)], (1)

| fY=@[x(Tos 1) p(Trpse - +14) ], (2)

where @ is the antisymmetrization operator. The
projection operator P is defined in terms of the pos-
sible residual nuclear states: Namely, taking an ar-
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bitrary antisymmetric function ®,
Pd(rge+ 74)—C{v0(70) do (1 + Ta) F01(x0) (L1 + - T4)
<+ e Fwo(rery) go(Tee + +Ta-1)
+wi(rory) d1(rae e o raa) -} (3)

The arrow refers to that part of configuration space
in which the components are no longer interacting.
Most of our ideas can be developed using a P which
projects out all the open channels in the sum on the
right-hand side of (3), all closed channels being ex-
cluded. Open channels are defined as those reactions
which are energetically allowed, i.e., the amplitudes
of ¢¢ etc. are finite, or at worse decrease as (1/7) in
the asymptotic region. There are some occasions for
which one might want to restrict P to only the elastic
channel, or particularly near threshold to include some
closed channels in P. These, however, are minor tactical
variations and are not of interest to us at present.
So let P be the projection on the open channel sub-
space defined by the possible residual nucleus states.
We emphasize that P is not uniquely defined by Eq.
(3). There are many P. For example, for the Wigner—
Eisenbud theory

P=1 outside R,
=0 inside R, (4)

where R marks a region in configuration space outside
of which there are no interactions between the com-
ponent systems. But there are other possibilities for
P and the selection of the best one is a point to which
we shall return later.

For the moment, however, we shall ignore this issue
and see where the introduction of the P operator leads.
If ¥ is the wavefunction for the entire system, the
function P¥ contains all the amplitudes which are
observable at infinity so that all we need for compari-
son with experiment is to determine PV,

The equation for P¥ is obtained directly from the
Schrodinger equation. We find

[E—Hpp— Hpo(E—Hqq) 'Hop](PY) =0,
PHPEHPP, PHQEHPQ

We see that there is an effective potential-—or, if you
wish, an effective index of refraction—which is energy
dependent. This energy dependence is associated
with a time delay, as is indicated by the propagator
(E—Hgq)'. The very long time delays are associated
with the poles of this propagator. In the situation where
one pole dominates the energy dependence, the case
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of nonoverlapping resonances (the weak coupling case
of Lemmer and Shakin), we can separate out this pole
term, i.e., Hes=H'+pole term in which H’ varies
only slowly with energy. We then find that the transi-
tion amplitude consists of two terms

WO Hpe®s ) (PsHordi D)

T(f 1= Tam( i) e

(5)
with
Ns=2n[ X1 @Ot Pde,  (6)
m
Hoobs=8s®s, Es=8s+As, (7)

(E—H')i,s=0.

This is an exact expression. The sum here is over all
possible exit channels, and defines the width for emis-
sion into a given solid angle. Note that these expres-
sions are independent of the angular momentum
coupling scheme. One can now insert channel spin
scheme of Wigner and Eisenbud or the chirality scheme
of Jacob and Wick! and so on. Twg gives the non-
resonant amplitude associated with H’. It therefore
contains the direct inelastic and potential scattering
processes. The extension of this expression to the case
of overlapping levels (Lemmer and Shakin’s strong
coupling case) can and has been made.!* We turn now
to the matter of choosing the correct P. We emphasize
that up to this point our results are independent of P
except for one condition. It is necessary for the validity
of (5) that the effective Hamiltonian be short ranged,
i.e., decrease more rapidly than (1/7) except for the
known Coulomb term. But we also have some empirical
requirements. For example, for low-energy elastic
neutron scattering, the potential scattering is sub-
stantially given by the shell model potential extrapo-
lated to positive energies. This must be modified, of
course, when dealing with aspherical nuclei or situa-
tions in which vibrational or other collective modes
of excitation are important, where a more complete
model Hamiltonian must be used. These are cases
in which it pays to place some of the closed channels
into the domain spanned by P. In the simpler case
then, empirically H'= T+ Vgen.

What about Hpg? The operator Hpp did not involve
any excitation of closed channels. The operator Hpq
does involve such excitations and it is thus to be identi-
fied with the deviation of Hes from the average field.
The latter does not produce any excitation. This sug-
gests that Hpg and the residual interaction are directly
related:

H pQQP VRQ.

Finally, we turn to Hgq. Here we are dealing with the
closed channels—all transitions to the open channels
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are forbidden—and because the channels are closed,
the wavefunctions for physical energies of interest
decay exponentially at infinity. We are interested in
the bound eigenstates of Hgo. We may, for example,
employ the full shell model potential here for Hygg,
just making certain that transitions to the states in-
cluded in P are omitted. Shakin and Lemmer use the
harmonic oscillator well with a pairing force.

With these assumptions, we have then a defined
problem whose solutions will give the various desired
reaction amplitudes and one which is as solvable as
the shell model. These assumptions can and should,
of course, be modified for different nuclei. We have
already alluded to one such possibility. But the general
illustration which we have given indicates how one
employs the empirical knowledge generally available
to add to the kinematics of the formalism, the dy-
namics required to make predictions of reaction am-
plitudes. It is probably unnecessary to add that these
remarks do not pretend to be a solution of the problem
of what P is. We are hard at work on this problem.
Our point, rather, is that our formalism is so consti-
tuted that one can make use of empirical data to make
further explorations into nuclear structure.

The first application of these ideas were made by
Block,” later by Shakin® in their calculation of the s-
wave strength function for thermal neutrons. We will
not review these papers here but will restrict our dis-
cussion to the concept of doorway states and to an im-
portant experimental possibility. Briefly, we note that
if we make the critical assumption that Vg is a sum
of two-body potentials, and if we describe the target
nucleus in terms of a shell model, that Vg, will
contain only two-particle-one-hole states or three
quasiparticle states. These are the doorway states, for
only when there is at least one such state of appropriate
energy will the process of forming the compound state
proceed. It is through this same transition that the
compound state decays. In the expression for the width
| (BsVry:) |2 we see that only the three-quasiparticle
part of &g counts. We first consider the simplest (and
most unusual) case for which there is only one three-
quasiparticle state x, with energy E, close to E. Then
Ts=2m | asn [2| (Vi) |% | asn | has a Lorentzian
shape decreasing as the difference between & and E.,
increases. On the wings its decrease is more rapid than
Lorentzian. The width A,g, associated with this
Lorentzian form, is just the width of the three-quasi-
particle state against decay into more complex con-
figurations.

In a more realistic case, there are several three-
quasiparticle states, i.e., several doorway states which
are within each other’s width. This gives rise to a struc-
ture in the strength function associated with the con-
sequent overlap which can be observed by examining
the energy dependence of the strength function. To
begin with, there is of course the simplest structure,
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the giant resonance. But, in addition, the giant reso-
nance itself will have structure which will depend upon
the number of three-quasiparticle states which at that
energy can serve as doorway states. It is this structure
which was described in Block’s paper and which has
recently been discussed by Kerman, Rodberg, and
Young.!? The widths associated with the structure
can be estimated from Shakin’s calculation, and for
tin in the thermal region are of the order of 100 keV.
It mayv be that this structure has already been observed.
For example, Kerman ef al. point to an old experiment
of Schieffer, Moore, and Class®® in 1956 on %Ni-p.
We would also expect structure for states which are
observed by stripping processes. There is no need for
us to comment on the need for further experiments
to examine this conjecture.

We turn now to the last section of this paper. This
matter was discussed in some part in our paper in
Padua,* but we have made a little progress since that
time. Consider now the direct interactions. Since we
are, in general, dealing with several, say, N open
channels, the effective Schrodinger equation for Y™
will be a set of N coupled equations. Rather than
considering the nonresonant terms only, we shall add
on the proper average of the resonance terms and then
the N equations become modified by the addition of
complex diagonal and coupling potentials. These com-
plex terms will have structure effects as discussed just
above, i.e., they will be energy-dependent. It is also
clear that even in the absence of this compound nuclear
effect, there will be structure arising from the coupling
between the channels whose nature depends very much
upon the strength of the coupling terms, and on the
number of such coupled equations. The maxima in
the cross sections correspond to a long time delay,
though it will generally not be so long as to approach
that of a narrow compound nuclear state. This time
delay may be thought of as occurring when it is pos-
sible for the system to move from one open channel
to another without actually decaying. Or, stated in
another way, there are combinations of the open
channel wavefunctions which in the nuclear interior
are long lived. At the appropriate energy this combina-
tion is the principal one excited and therefore the long
time delay and the maximum in the cross section. These
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are the generalization of the doorway states to the
continuum.

Furthermore, suppose the incident channel is coupled
strongly to » other channels either directly, or, if not
directly, via only a few intermediate strong links. Then
we shall find that the density of maxima in the elastic
cross section will go up by at least a factor of ». When
v is small the various cross sections will show structure
which is characteristic of a few degrees of freedom.
The maxima will be sparse, and between them we
would have regions in which the cross section would
vary slowly with the energy. The statistical hypothesis
will fail and there will be asymmetric angular distribu-
tions, polarization, and so on. Even though we may
be dealing with a heavy target nucleus, this part of the
cross section will behave very much like those of light
nuclei at relatively low energies of excitation for which
the compound nuclear density is low. Because this is
a type of direct interaction, and since some channels
are weakly coupled to others, the independence hy-
pothesis may be expected to fail, i.e., the relative prob-
ability for the formation of two final states will depend
on the nature of the incident particle, and not only on
some appropriately chosen excitation energy. As the
density of open channels increases, these statements
need to be modified. Particularly if there are a large
number of channels with emergent particles of very low
energy, we may expect very narrow maxima and a re-
turn to approximate validity of the statistical and
independence hypothoses. It is in this region that
Ericson’s statistical theory of fluctuations should apply,
although our fluctuations are not of the same origin
as the ones Ericson is treating. Ericson’s fluctuations
are connected with the compound nucleus and are re-
lated, in the present formulation, to the energy de-
pendence of the complex part of the potentials in the
coupled equations. But, where the random phase
hypothesis fails, his theory does not apply and how his
predictions are to be modified is not as yet clear. We
can of course count the number of open channels, and
at least a posteriori see which are closely coupled and
which are not. On a purely statistical basis we can also
estimate that the width of the maxima will follow a dis-
tribution away from the average similiar to Wigner
semicircle law, so that there will be an appreciable
number of widths as narrow as the single particle width
divided by (»)3, i.e., I's.,/(»)} and even a few as small
as T's.,/v. Of course, as anyone who has worked with
coupled channels knows, occasionally very narrow
maxima can occur. The observation of these phenomena
experimentally would, of course, be of great interest.



