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I. INTRODUCTIOK

The decomposition of the Laplacian operator,

where the coefficient of the second term is proportional
to the square of the angular momentum operator, is
the basic relation between kinetic energy and angular
momentum in the quantum mechanics of the one-body
problem (or the rela, tive motion of two particles).
When acting on a wave function which is an eigenfunc-
tion of total angula. r momentum t, the Laplacian
simplifies to

1 r'l, rl l(l+1)
V-' ———r~——

r' Br Br r'

in which form it is clear that the effect of this decom-
position is to reduce the Schrodinger equation with a
spherically symmetric potential from a three-dimen-
sional partial differential equation to a one-dimen-
sional (ordinary) differential equation. As such, this
relation is of fundamental mathematical importance.

The analogous procedure when more than one particle
is involved, in particular two identical particles in an
external force field, although known, is not as well

known, nor is it as well developed. When the external
6eld is that of a fixed nucleus, the wave function is
expanded in eigenfunctions of the total angular mo-
mentum of the two particles multiplied by functions of
the three remaining independent variables. The total
angular momentum eigenfunctions are functions of the
three Euler angles only. These angles are not unique,
but in some way they must describe the orientation of
the instantaneous plane formed by the two particles
and the center of coordinates (nucleus) in space. The
remaining three coordinates then describe the positions
of the particles in this plane, and the functions of these
variables are the generalized radial functions. Hylleraas'
original papers' in effect contained the reduced or
radial equations for total 5 states in terms of the
residual coordinates r~, r~, r~2. In this case, the total
orbital angula1 moment uil 1 1$ a coIl st a& t fuI1 etio Jl,
and hence the reduction of a. six-dimensional to a
three-dimensional partial differential equation 1% lIl(3t"-

pcndcfi't: ot Rior oAc defines the Euler aIlgle~.

"ibaiiorral Acadenly o1 Sciences —National Researcli Council
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~ E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929).

The standard treatment of the general problem is
due to Breit.' ' He used the Euler angles that Hylleraas'
originally introduced: namely the two spherical angles
of one of the particles in the space-fixed coordinate
system and a second azimuthal angle between the
rl-s plane and the rj—r2 plane. Breit's remaining co-
ordinates were chosen as r~, r2, and 0~2, the latter being
the angle between rt and r2. To describe two-electron
atoms or ions in the approximation that the nuclei are
fixed, one has an additional requirement of which
there is no analog in the one-body problem. That is
the Pauli principle: the requirement that the spatial
function be either symmetric or antisymmetric under
the exchange of the particle coordinates. It is clear
t.hat the Hylleraas —Breit choice of Euler angles (which
we herein after refer to a,s the Hylleraas —Breit angles),
being quite unsymmetrical with respect to the two
particles, is not optimum in this respect. 4 In fact the
construction of the linear combinations of angular mo-
mentum functions with the appropriate exchange
properties is a very difficult task which depends not
only on the Euler angles but on 6'» as well. It is not
surprising, therefore, that Breit's original work' was
limited to P states, and work thereafter has always
been limited to specific angular momentum states.

Actually a more symmetrical choice of Euler angles
ha.s in the interim been carried out by at least three
groups independently of each other. The first treat-
ment is due to Holmberg and applies to three particles
of the same mass of which two are identical. ~ A later
treatment due to Diehl et a/. is identical as concerns

' G. Breit, Phys. Rev. 35, 569 (1930l.' A clear exposition of Hreit s work is contained in P. M. Morse
and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill
Hook Company, Inc. , New York, 1953), p. 1719 et st.

4 I'J. Fano, private communication. One of us (A.T.} acknowl-
edges valuable discussions with Dr. Fano in 1959 at the outset of
the formulation of these ideas.' The D-wave equations in H-H angles have been worked out by
H. Feshbach, M.I.T. thesis, 1942 (unpublished) and by one of
us, A. Temkin, 1959 (unpublished). The wave functions for
several states have been derived by C. Schwartz, Phys. Rev. 123,
1700 (:l961).'B. Holmberg, Kgl. Fysiograf. Sallskap. Lund k'orh. 20, 135
(1956).G. H. Derrick and. J. M. Blatt, Nucl. Phys. 8, 310 (1958).
G. H. Derrick, ibid. 16, 405 (1960). H. Diehl, S. Flugge, U.
Schroder, A. Volkel, s,nd A. Weiguny, Z. Physik 162, 1 (1961).

'The characteristic of the three (or more) body problem of
hnite masses is that six coordinates can be eliminated, the three
additional constants of the motion coming from the center of
mass. Two papers dealing yvith the elimination of the six coordi=-

nates of rotation and translation from a system of Ã particles
are: J. 0. Hirschfelder and E. Wigner, Proc. Natl. Acad. Sci.
U.S. 21, 113 (1935); C. F. Curtiss, J. 0. Hirschfelcler, and F. T.
Adler, J. Chem, Phys. 18, 1638 (1950).
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the choice of Euler angles but applies to the three-body
problem in general. The case when two of the particles
are identical is thus a special case of their results, and
they are more detailed concerning the transformation
properties of the Euler angles under exchange. To the
extent that all these results were meant to apply to
the three-nucleon problem, Derrick and Slatt' have
carried out the most realistic analysis in that account
is taken of a force which is considerably more compli-
cated than a simple central force between pairs of
particles. Thus in their treatment the orbital angular
momentum is not conserved, and the only constants
of the motion are parity, the total angular momentum,
and the isotopic spin. 6

Two of the Euler angles that all these groups used
are essentially 8 and C (Sec. II). Their third angle 4',
however, is related to moments of inertia of the two
identical particles relative to the third. As such it
depends on the lengths of the vectors o$ the problem.
As opposed to this our own choice of 0 depends only
on the unit vectors of the problem, nevertheless both
sets of Euler angles have virtually the same transforma-
tion properties under exchange. Since the basic decom-
position is in terms of separable products of radial
(length-dependent) and angular variables, it is our
opinion that the previously de6ned 0', which appears
to contain a subtle connection between the angular
and radial parts, is less advantageous than our own,
in which the separability is maintained on all levels.

The present paper also treats the case of two identical
particles in the field of an infinitely heavy nucleus. In a
certain sense this problem stands in the same relation
to the general three-body problem as the one-body
problem is related to the relative motion of the two-
body problem. With the addition of exchange, which
we have stated is a nontrivial problem, we attempt
here to make the theoretical framework of the reduction
to radial equations as accessible as the corresponding
reduction in the one-body problem is, even to the non-
specialist. On a practical level the results of this in-
vestigation apply most directly to two-electron atoms
and ions and the associated scattering problems
(Sec. IX).

In Sec. III we explain as lucidly as we can the trans-
formation properties of our Euler angles and the con-
sequent transformation properties of the vector spheri-
cal harmonics. The latter in our terminology are the
eigenfunctions of the total angular momentum, and
in Sec. IV we derive the angular momentum operators
in a straightforward way. These eigenfunctions even
with their concomitant transformation properties are
still not eigenfunctions of exchange. Since exchange
commutes with all the other constants of the motion,
it is possible to construct simultaneous eigenfunctions
of exchange. Complete exchange, however, acts on the
radial coordinates as well as the Euler angles. In Sec.
V, therefore, we show how the exchange vector spheri-
cal harmonics are combined with the functions of the

F2- rl

2 Slfl g)p
2

FIG. 1. Perspective drawing of the Euler angles and the unit
vectors of the problem.

residual coordinates to give a, total spatial wave func-
tion which is either symmetric (singlet) or antisym-
metric (triplet) under exchange. The derivation of the
kinetic energy in terms of the radial and (Eulerian)
angle coordinates is the last remaining step (Sec. VI)
before the derivation of the radial equations themselves.
The results of Sec. VI are necessarily quite tediously
derived. Our aim has been to give enough of the deriva-
tion and results (parts of which are included in the
appendices) to allow our formulas to be checked as
mechanically as possible.

When the kinetic energy has been put in suitable
form, the derivation of the radial equations for arbitrary
angular momentum (Section VII) is a comparatively
simple matter. One salient improvement of the present
radial equations over those of Holmberg and Diehl
et al. is that ours are completely real. The radial equa-
tions are a finite set of coupled three-dimensional
partial differential equations which can be written in
various forms and in two major sets of radial coor-
dinates. Most of the various possibilities are in fact
given in Sec. VII. Any of the various possibilities con-
stitute a rigorous decomposition of the Schrodinger
equation. In addition to the usual bound-state prob-
lems, the partial waves for the scattering of electrons
from one-electron atoms or ions are also governed by
these equations. We have therefore worked out the
boundary conditions for the relevant electron —atom
(ion) scattering in these coordinates (Sec. VIII).

II. THE EULER ANGLES

Figure 1 contains a perspective drawing of the Euler
angles which define the particle plane with respect to
the space fixed x, y, and s axes. The rotated axes
x', y', s' are then defined by

f'y X f2
) (&)

Pxk
lax''

i

'

p =g xg.
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As is usual, a caret on a symbol is used to represent a
unit vector in the given direction. In particular z, g, k
are the three unit vectors along the (space-fixed) 2:, y,
and s axes, respectively, and thus are synonymous
with x, j', and 9. Similarly z', g', k' and x', j', 9' are
identical.

2 Sill (8!2/2) Sill 4= (COS 8'2 COS 8!) S111 0

+Lsin 82 sin (2!2—4) —sin 81 sin (y!—4') j cos 0, (13)

cos 0]2= cos 8y cos 8'2

+ sin Ill! sin Ili2 COS (22! p2). (14)
The Euler angles are then

e=—angle between z and 9',

C =—angle between x' and x,

4'=—angle between 2' and (r2—r!) .

The ranges and planes of these angles are:

(6) I'1= 2 Sill (4 28!2) —P COS (4 28!2) ~

72= 1 Sill (0 +28!2) j COS (4+28!2) ) (16)

The latter relation is, of course, the well-known expan-
sion for the angle between two vectors.

It is also of interest to give the vectors rl and r2 in
the particle plane (primed coordinate system):

0&e&&,

0&C &2&,

0&+&2&,

in s—s' plane;

in x—y plane;

in x'—y' plane.

i=g
' sin 0+k' cos 0,

y=2' sin 4+g' cos 0 cos 4 —k' sin 0 cos 4, (18)

x=2' cos 4!—P' cos 0 sin 4+k' sin 0 sin 4. (19)

It is clear from the figure that x', being in the x—y
plane has components

x'=2 cos4+g sin 4.

Since x' is perpendicular to the s—s' plane, it is per-
pendicular to every line in that plane going through
the origin. This includes specifically the line of inter-
section of the s—s' plane with the x—y plane. However
the azimuthal angle of that intersecting line is the
azimuth of i' itself, and since x' has azimuth C, 8' has
azimuth 222r+4 (cf. Fig. 1). The polar angle of z' is
clearly 0; therefore, we have the important relation:

z'=2 sin 0 sin 4 —
y sin 0 cos 4+k cos 0.

The relations between the Euler angles and the
spherical angles of the individual particles are obtained
by substituting Eqs. (7) and (8) into the left-hand
side of Eqs. (1) and (2) and using the ordinary de-
composition of rl and r2 in the right-hand side: One
obtains

Sill 8!2 COS 0= S1I1 8'I Sill 8'2 Sill (222 221) (9)

sill F2 sin 8 sin C'= sin 8'y sin py cos 8'2

COS 81 Sill 82 Sill 222, (10)

cos 8!=—sin 0 cos (4——,'8!2),

cos 82= —sin 0 cos (4+-,'8!2),

(20a)

(20b)

sill 8!cos (pl= cos 4 sin (+—2812)

+ cos 0 sin 4 cos (4—28!2), (21a)

sin 62 cos &p2= cos 4 sin (!I'+2812)

+ cos 0 sin 4 cos (4'+228!2), (21b)
I

sin 81 sin 2!!——sin 4 sin (4——,'8!2)

—cos B cos 4 cos (4'——,'8!2), (22a)

sin 82 sin 222= sin 4 sin (!1'+-2'812)

—cos 0 cos 4 cos (0'+-2'812). (22b)

III. PROPERTIES UNDER PARITY AND
EXCHANGE

The following relations, which are also very useful,
can now simply be derived by computing (r! z),
(r2 P), etc. in the primed system.

sin 8i2 sin 6 cos C = sin 8y cos py cos 82

cos 8'y sin 8g cos q&g„

2 sul (8!2/2) cos%'=-='. sill 8'2 cos (Ip2=- 4)

sin 8!cos ((p!—4&) i (12)

The operation of parity corresponds to the simul-
taneous inversion of both particles' coordinates:
ri~ —ri, r2~ —r~. It can be seen from Fig. 1 that this
places rj and r2 facing the opposite direction, but the
cross product and hence i' will not change as a result
of this operation. Thus the s—s' plane will not change
and g' will not change. On the other hand (r2—r!)
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goes into the negative of itself, so that 4 gets increased tion of Magnus and Oberhettinger. The important
by sr. In other words under parity property of dP s(8), proved in Wigner's book, s is

e~e,

C—~C,

%~w+%. (23)

d m, ,s(w 8) ( 1) t~gtm, —s(8) (27)

The phase in (26) is such that this relation holds for
all values of nz and k.'

Letting 6' and 8» represent parity and exchange, we
have from (23) and (24):

e~~—e,

C~sr+C,

4—+2+—%. (24)

The signi6cance of these transformations relates to
the transformation properties of the vector spherical
harmonics under the same operations. These functions,
which are the eigenfunctions of the angular momentum
(next section), are the basic functions in terms of
which the complete wave function is expanded. They
can be written

~ m.s(8 @ @)

Exchange corresponds to the transformation r~~~r2.
From the analytical definitions s' and P', Eqs. (1) and
(2), the new primed axes will go into the negative of
themselves. Also (rs—ri) goes into negative of itself.
Clearly the inversion of the s' axis corresponds to the
transformation 9~—9. Noting that C is the angle
in the x—y plane and measured as positive with respect
to the s axis, which is fixed, we see that C~7r+C. The
simultaneous inversion of x' and (rs—ri) means that
the modulus of the angle%' remains the same. However,
since%' is an angle in the x'—y' plane, it is measured as
positive with respect to the s' axis. Since the latter
goes into the negative of itself, it becomes clear that
4—+2m —0". Thus we have under exchange

(Pg) m, k(8 @ @) ~ m, k(8 (y w+@)

g»nt-s(8, C, e)=nt- (w —8, w+C, 2w —e),
which using (27) reduce to

(Pn,- s(8, C, e) = (—1)"nt" '(8, C, e), (28)

g 5) "(8 C e) = (—1)'m--'(8 C e) (29)

The simplicity of Eq. (29) is the essential feature
which recommends these angles to the description of
the two-electron problem.

IV. ANGVLAR MOMENTUM

The components of the total angular momentum are
readily expressed in terms of the particles' spherical
angles. Thus, for example,

z . 8 8 . 8—-M, = sin yi + cot. 8'i cos pr + slil ps
88g 8py M'2

8+ cot tts cos ys . (30)
8+2

The particles' angles tti, yi, tts, mrs via (9)—(14) are
implicit functions of the four angles 0, C, %', 8~2. Thus,
the problem of ending 3f in these angles is a straight-
forward problem of partial differentiation. We can
write

X exp Li(rNC+M) ddt"'(8), (25)

where the normalization has been so chosen that the
function is identical with what is given in Sec. IV and
the dt "(8) agree with those given by Wigner. ' Only
the dependence on 9 is nontrivial:

dt-'(8)
4m

1)—,'[[r;—m~+a —~q ,Xt s sin~" ~ (8/2)
L2(2i+1)j'

)& costs+"i (8/2) F( l+P/2 1, — —

l+P/2; 1+
~

k —nt j; sin' (8/2) ), (26)

where P and Et~ are defined in Eqs. (45) and (46).
F (u, b; c; s) is the hypergeometric function in the nota-

8 8 8 8——M,= Ae—+Ae—+As —+Ae„89 BC' 8%' 88i2

s E. Wigner, GronP Theory (Academic Press Inc. , New York
and L'ondon, 1959), p. 216. Cf. also, A. R. Edmonds, Angntar
Momentnm sn Qnantnm Mechanics (Princeton University Press,
Princeton, 1957), Chap. 4.

~ W. Magnus and I. Oberhettinger, Formulas and Theorems
for the Fnnctions of Mathematical Plsysics (Chelsea Publishing
Company, New York, 1949).

9 This point is extremely subtle. Usually, the phase factor is
given for m&k&0 for which it is +1.For other ranges of m and
k the phase is given implicitly by the requirement that d&~ ~ obey
certain symmetry properties (cf. in particular Edmonds' book,
Ref. g). As far as we know, the explicit form of this phase factor
is given for the first time in Eqs. (26) and (44). If this phase is
not included, then Eq. (27) is not generally valid. However, that
property is essential in constructing wave functions of the proper
exchange character. Such an omission was made in the work of
Diehl et at. (Ref. 6), so that the inferred exchange properties of
their radial functions are not completely consistent. However,
they are correct if their S functions are given the present phase.



1054 I~FviEms m Moemzw Parsecs ~ Oeroazx 1964

~X
stn pl + stn +2 + cot 8y cos py

Bdp ~PI

Ae= —cos (33)

~X+ cot 82 cos pm (31)
8+2

and x can be anyone or the angles B, C, %', or 0». Using
then Eqs. (9)—(14), one finds that the following rela-
tions fall out quite easily:

The remaining component of the angula. r momentum
may be derived from the commutation relation
PM„M, [=i5Ã„Stra.ightforward substitution yields:

r3 cos 4 8'
M„=—. sin C'=+ cos C cot 8—— —. (40)

BB BC sin 0 8%'

These relations are independent of 8~~ corresponding
to the statement tha, t the angular momentum only
depends on the (three) Euler angles 8, C, %. The forms
of the three operators is the same as one gets with the
Hylleraas —Hreit angles. ' The square of the angular
momentum is likewise the same. One finds directly
from the sum of the squares that

A~= sin C cot 0,

A~= —sin C/sin 8.

8' 1 f 8' 8' 8
(34) M'= FP —+ . I

+ . +cot6-
BB' sin' B&BC' B%' BB

(35)
cot B c}'—2. . 41
sin 68C8%

Thus,

8 8 sin C
M,=—. cos@ —sin C cot8—+ . —. (36)ae BC sin OM

M'K)p'(6, C, %') = fPl(l+1) Sp "(8, C, e), (42)

The vector spherical harmonics, which have been
given in Eq. (25), are simultaneous eigenfunctions of

One can, of course, Proceed in a comPletely analogous Mm and M with eigenvalues fP)(l+1) and gm
way to get the remaining components of the angular
momentum, however, let us note from Eqs. (20) that

88'/8C =882/8C =0,
M,Sp'(8, C, @)=SmSp'(8, C, C). (43)

and from (10) and (11)

Since

8'/8C =8'/8C =1.

8 ~ /8q 8 88; 8 )
8C; &t,8C=

substitution of (37) and (38) yields

8/8C =8/8q g+8/8q 2

They are given in a completely general, normalized

(3g) form in Pau1ing and Wilson. '0 With Wigner's phases "
they are explicitly

,k(6 @ @)—( 1)$[(k—[+~]~ „sin[a ( (6/2)

X cos~"+ ~ (6/2) exp Li(mC+k@))X

P (—l+2P —1, l+ (P/2); 1+ I
k—m [; sin' (8/2) ), (44)

where
However, since M, = (ft/i) (8/8rp~+8/8pm), we there-
fore have the s component of M: P= [ k+m [ + [

k tn
[
+2—(45)

M, = (5/i) 8/8C. (39) and the normalization constant is

(2f+1) (~+2 I
k+~ I+4[k—~ I) (f—k I

k+~ I+2 I
k —~ I)

g~2(Z —-'[kg~
[
——.; [k—~ I)!(t+-', [k+~ [

—-'., [k—~ [). [k—~ [. (46)

In addition to the usual magnetic quantum number
m, the vector spherical harmonics depend on the
quantum number k, an integer whose range of values is
the same as m: —l&m, k&l. The physical significance
of k derives from the fact that the X)p ~ are the eigen-
functions of the spherical top I for which (42) is the

Schrodinger equation), and k is the angular momentum
quantum number about the body-fixed axis of rotation.
With regard to the applications that we contemplate

"L. Pauling and E. B. Wilson, Introduction to Quantum Me-
chanics (McGraw-Hill Book Company, Inc. , New York and
London, 1935), p. 280.
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here, k can be considered a degeneracy label which The important property of these linear combinations
must be adjusted such that other requirements are is that they are eigenfunctions of exchange:
fulfilled.

8»$1"+=& (—1) '+"X)1"+. (49c)
V. CONSTRUCTION OF THE TOTAL WAVE

FUNCTION

We shall confine ourselves here strictly to the atomic
problem which implies that the potential energy as
well as the kinetic energy commute with the total
angular momentuni. In this case the total wave func-
tion for a given l must be a linear superposition of the
degenerate Sp~. In addition, m will be axed for a
given magnetic substate and the "radial" equations
will be independent of 212 (cf. Appendix II).

Considering, for the moment, the residual coordinates
as r~, r2, 0~2, we can therefore expand the total wave
function in the form:

l

~l (rl r2) ~ gl (21 r2 ~12)Sl ' (e, C, ~). (47)

This then constitutes a set of real, orthonormal vector
spherical harmonics. These real vector spherical har-
monics are still eigenfunctions of parity with eigen-
value (—1)".

The property of exchange is a mite more complicated
than parity in the sense that it affects not only the
Euler angles, but the residual coordinates as well. The
advantage of a symmetrical choice of Euler angles,
however, is that there is no mixing, and independent
of whether we consider the residual variables rj, r2, 8~2

or r~, r2, r~2, the effect of exchange on the residual co-
ordinates is simply r&~~r2.

Finally then, if we construct

+10(r1 r2) 2 Lfl (rl 12 012)+1 (e c +)

The parity operation, Eq. (23), only affects the Euler
angles, and from Eq. (28) it only multiplies the X)1"'"

function by (—1)2. Therefore, by restricting the sum
to even and odd values of k, we guarantee that the
superpositions have even and odd parity, respectively:

+f1' (rl, r2, s»)&1' (e, c,e) ),

the operation of exchange on this sum then gives, with
the use of (49c),

=~"t fl"+(r2, r1, 012) (—1) '+"nl"+(e, 4,@)It: even

X'1 " (rl, r2) = Q"gl'(rl, r2, 812)X)1"'(e, C, +), (48b)

812 I 10(rl r2) ~l0(r2 rl)
2''1 '"-(rl, r2) =g"gl'(r1, . 2, 812)&1-"(e,C, +), (48a)

k odd

where the double prime on the summation emphasizes
that the sum goes over every second value of k.

In deriving the radial equations (next section) we

shall exploit the invariance of the radial equations with
respect to ns, by choosing m=0. YVhen the Hamil-
tonian is written in terms of the Euler angles and the
remaining variables, there will occur terms involving
8/BC and 8/8%'. By virtue of 212=0, the former terms
vanish, but the latter terms would bring down the
imaginary coefficient ik. In order to avoid complex
equations, it is therefore convenient to construct real
angular momentum functions. Let

nl"+(—1)"nl' " (21+1)& cos K@dl''(e)
Q JC+—

v2$1+Bo~(~2 —1)) 2m' L1+boc(~2—1)g

(49a)

n"—(—1)"n' " (23+1)&
+l sin ll%'d12 "(e),

iV2 22r

Thus, if

+f1" (r2, rl, &») (—1) '+"+'nl"—(e, 4, @)).

fl"+(r2, rl, 012) =~ (—1)™fl"+(rl,r2, 01,), (52a)

fl" (r2, rl, 62) =+ (—1) '+'+'fl" (t 1, r2, e12), (52b)

the function Flo of Eq. (51) is a real, space-symmetric
(upper sign) or space-antisymmetric (lower sign),
eigenfunction of M' and M, corresponding to the quan-
tum numbers l and m with m=0. The space symmetric
and antisymmetric solutions correspond to singlet and
triplet spin states respectively. Furthermore the re-
striction to re=0 is sufhcient for deriving the radial
equations.

Ke have shown that the m= 0 function can be written
in manifestly real form, Eq. (51). However, in that
form it is not obvious what the generalization is to
arbitrary ns states. The generalization is nevertheless
simply obtained. Let

for ~&0, where

(49b)
and

Cl'= (I/~) (fl'+ —&/1' ), ll) O, (53a)

(50) al '= L(—1)'/v2j(fl"'+if 1" ),
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(m, c)+=/~2+8 (2 ~2) 7
—1L~ m, a+ ( 1)mf) m, —a]

(mK) ,
—(—V22)

—1[~m, s ( 1)a~ ma(, (54)

then the form (51) reduces to that of Eq. (47) for
m=o. For arbitrary m one then need only replace the
X)~ ~ functions by the appropriate X)p ~ functions, the
radial g~~ functions remaining the same.

Alternatively one can define generalizations of the
Sp+, Eq. (49), for arbitrarv 2)I.

where for n=1, 2, 3, 4, x refers to 0, c, 0', 012. The
problem thus reduces to finding each of the square
brackets separately in terms of the Euler angles and
0»2. The results are given in Table I.

The kinetic energy thus becomes

1 82 1 82
~I'+ & '= —,rl+—

1"» Bf» f2 Bt'2

where $~&' ")+=X)~"+ for m=o. Note for m/0 that the
modified spherical harmonics X)~& ")~ are no longer real.

The complete function for arbitrary m can then be
writ

where

B . B
+~ —,+—,

~
. sin 812 +—,+—,, (58)Ir2 j s'ln 812 Bg» 8812 rl

8
(r r ) = Q 'ff "+~ ( ")++f ~ ('". ) $(5—5) Fl= . sill (4+ 812) + cos2 (4+—8») cot Q

sin

Note that by virtue of the action of the raising and
lowering operators (Appendix II), the phase of the
individual terms except possibly for an over-all minus
sign, is correct as it stands.

VI. THE KINETIC ENERGY

Just a,s in the case of the angular momentum, the
kinetic energy can be obtained by a straightforward
process of partial differentiation. In this case, however,
since second partial derivatives are involved, the differ-
entiation is a much longer job, and as we shall see, the
partial derivatives involving 8»2 no longer cancel out.

1 cP 1
g '+7 '= — rl+ — r2+

t'» Bf» t'2 (9T2 t'»

cot e 8+ cos (++2812) . + sin (&+812)sin' () QC2 sin ed@

1 82 82—sin (2@+8») + sin (2%'+812) cot 6
sin e 88BC 8%88

cot 8
2 COS 4 2812' "

sin eWBC WB8„

82 8
+~1 +A—(59)

A I= + (co't2 e/sin' 812) cos' (++2'8»)

1 8 . 0 1 l9
X . sin BI +

sin 8» M» M» sin' 8» BP»'
BI= (cos%/sin2 812) sin (4+8»)

(60)

(By ))' 1 ((By ')(' B'

E B@I) Sln' 'BI E Bpll

B Xa 1 B Xa Bya
cot O'I

+2 +~Xe ~Xp 1 ~X~ ~XP

a)p=l „~1 ~l sin 8» ~+» ~P» . ~Xa~XP
(57)

1 8 . 8 1+—, . sin 82 + . (56)~2»n A ~2 ~2 s n 2 ~+2

The first two terms are, of course, unaffected by the
transformation. The angular differentiations then in-
volve the transformation from the variables 8», q»,

2, q2 to e, 4, + and 0»2.

'Consider the coefficient of the r» ' term. After some
regrouping, we can write

8
sin 8~ +

sin 8'» 88'1 ~1 sin 8'» Bpl

Lsln (2++812)/s111 812 sll12 ej——cot (2812) ~ (61)

The expressions for P2, A2, and 82 can be obtained by
replacing 812 by —8» in the above formulas (including
the appropriate partial derivatives) . This is equivalent
to operating with 8»2,'

F,(e, e, e, 8„)=Z, (e, C, e, —g„). (62)

It is clear, since all the coeKcients are independent
of C, that M, commutes with the kinetic energy. We
have also explicitly verified that L3II„VI2+V221=0.

Note that the partial derivative involving 012 and no
other angles has been placed in the curly brackets with
the radial derivatives. This is because this term, as
the radial derivatives themselves, do not affect the
orbital angular momentum, and are the only terms
which act on total 5 states. ' '

In fact, in the action of the remaining terms on the
angular momentum eigenfunction rests the bulk of the
reduction of the Schrodinger equation to its 3-dimen-
sional "radial" form. With this reduction in mind
(cf. next section), it is convenient to write Fl in terms
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Tanz, z I. CoeKcients of the angular derivatives in the kinetic energy. " Cf. Eq. (49).

Coefhcient Derivative CoeKcient Derivative

s1112 (4'+r28»)
sin' OI~

a'/882 cot 812 a/ae12

cos' (4'+~812)
sin~ OI2 sin~ 9 82/ag)2

—sin (2++81~)
sin~ HI2 sin 8 a2/aeac

AI

cot 8 cos' (N+-,'8»)
Sin2 812

82/a+2

a2/ae, 2

cot 8 sin (2%+812)
Sin~ 812

—2 cos 8 cos' (%+~822)
sin' 812 sin~ 6

82/898%'

a2/aeae»

82/a@a%'

cos 8 s111 (2%'+8»)
sin~ 8 sin~ 812

BI

82/82f288»

a /a@88»

AI and Bi are given in Eqs. (N) and {61).

of operators whose effect on the angular momentum following (cf. Appendix I):
eigenfunctions is particularly simple. One can show

2 (sin 2@As—cos 221'Az) 532"+= —&1"(1—ap.—&1.)&& " "+

2 Sln 812

——M'+ cos 812(srn 22IfA2 —cos 2%'Ar)
h2

+81.l (l+1)01"+ (1+ap, )—Br,.+sn1 &"+'&+, (65a)

2 (sin 2+At+ cos 2%'As) K)1"+

+ sin Hrs(sin 221 At+ cos 22I'As)
8—

g COt Hj2—
80»8%'

= —81"(1—ap, —ar. Bs,)X—)1&" " ar„l(l—+1)$1"

where-

r)2 r)' 1
A1= 2 —M'

tie' c)21 2 fi,'

+ (1+%.)&1,,+ &1'"+"-, (65b)
(i 1

(63) 2 (sin 2212A2 —cos 221 Ar) nr"
4 2 sins 812 8@2 '

= —812(1—ap„—ar„—as„) ~1&"—'&——arJ(l+1) g)12—

—(1—ap2) A,.+2$1&"+" (66a)

2(sin 221 Ar+ cos 2212As)X)12—

cot 8 8——(1+2 cot' e)—
sin 884 8%'

+~1 (1 ap2 al )+l'" 2 + a12l(l+—1)nt"+

—(1—ap.)&1,,+s&1'"+"+, (66b)

where (A 1„ is needed in Appendix I)2 8 82
2 cote, 64

sin e aeac aeae '
(2r —l) (2r+1+1)

2 (~+1)

[(l—22+1) (l—22+2) (1+21) (1+22 1)$'*—
[1+as„(v2 —1)jVII. THE REDUCED OR RADIAL EQUATIONS

and M' is the total angular momentum squared opera-
tor given in Eq. (41). Fs is again derivable from F1 by and
replacing tI» by —8».

(67)

8"=8„[1+8(v2 —1)j'. (68b)
The essential properties of the combinations of the

operators appearing in F1 and Fs, Eq. (63), are the Recall that a is the absolute value of k, Eq. (50).
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We have proved in Appendix II that these relation-
ships are not altered if one replaces the Sp+ functions
by the Sz(""'+ functions of Eq. (54). As such it be-
comes quite simple to derive the reduced equations
from the original Schrodinger equation

states' '.
8'

I-o„=—,rz+-
ry Br12 rg Brg~

&~i~= &~im (69)
)t1 1) 1 B . B )+I,+, I ~ sm 8»

I
(71)

&rz' rooj sin 8» B8» B8»l

for any m, and to see that the radial equations are in-
dependent of m. One obtains

2m
I-o +—(&—/') f)"+

I —,+——,

2 slI1 Oy2 4 4 sill gy2

+ g ~+of (x+2)+
cot »

4 sin ej9

cot 0»+ . (1—Bo.—8 +(8 )o~(.f((" ')
4 sin 0»

1 1, B & l(l+1)+ ————«o cot 8»+ If&" B&~f&"
rg' rq' rggg2 j 4 sin tII)2

g «+2

+ f(('+') —. - (1——bo„—bz. —bo„)8(„f((" ')
4 sin |)yg 4 sin 8)2

2m t'1 1)I.„,+ (~-/) f, --l —+—
I(r2 r2)

l / 1 —«' «' cot 8
X . , —+ . l(l+1) Bz. f("

2 sin'8» 4 4 sin 8»

Equations (70) are the "radial" equations, which it
has been our purpose to derive. They pertain to both
types of parity and exchange states. Parity is deter-
mined by the evenness or oddness of ~. If, for example,
/ is even, and we want to describe a state of even
parity, Eqs. (70) couple the functions fp+ and f)" for
«=0, 2, 4, ~ ~ ~, /. This involves l/2 pairs plus one func-
tion (for «=0, K)z™is zero, hence fP can be taken to
be zero) or l+1 functions. The odd-parity equations
for the same 1 correspond to the coupling of the func-
tion with «=1, 3, ~ ~ ~, l—1. This relates l/2 pairs of /

functions to each other. Both even and odd parity
(:ogether therefore involve (2l+1) functions correspond-
ing to the (2l+1) degeneracy of the vector spherical
harmonics for a given m. For l odd, there are / functions
involved in the even-parity equations and l+1 func-
tions in the odd-parity equations.

I'"or a giz)en parity and /, bottz singlet a&zd tri p/et (space
symmetric and antisymmetric) states are described by the
same set Of egzzations The differ. ences in the solutions
devolve from the diA'erent boundary conditions which
must be applied, Eqs. (52). One of the key virtues of
the functions f("+(rz, ro, 8») is that they are either sym-
n1etric or antisymmetric; thus they may be con6ned to
the region, say, r~&r2. If, for example, the exchange
character of f("+ is symmetric (which, according to (52),
implies that f("—is antisymmetric), then these properties
may be embodied in the boundary conditions":

8
f("+(rz, r—o, 8»)81

+ . (1 Bo.)&z"+'fz'"+"—cot Oi2

4 sin 8»
where B/Bn represents the normal derivative, and

Lf "-(,",8.) 3.,-.,=0, (73)
cot8» (1

(1—Bo.—B,.—8..)&(.fz("-')- +I —,——,
4 sin 0»

f, B & l(l+1)
X «I o cot8»+ If("+ . &z.f("+—

B8») 4 sin 8»

")P «+of (m+2)+

4 sin 0»

and the solution from there on involves only the region
r» r&&0. Such equations have distinct advantages from
the point of view of numerical solutions. "

One can define, however, an asymmetric function in
terms of which the radial equations can be more simply
written. Letting

~('(rz, ro, 8») —=f("+(«, ro, 8»)+f(" (rz, ro, 8») (74)

+ . (1 ~o. &~+4)&i.f(' "+—=0. (70b)
4 sin Oy2 ~z (zz ro 812) ~f( (rl r2 812) fl (rz, ro, 8»), (75)

I.g„ is the S-wave part of the kinetic energy, and only ~' +ego&n, Phys. Rev. 126, 130 (1962); P. Luke, R. Meyer-
ott, and %. Clendenin, ibid. 85, 401 (1952).

the term containing it survives in the description of S ~ A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (1963).
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then from Eq. (52)

Fi"(r„r,, 0„)= a(—1) 'i' F,"(ri, r;, 0,s) (76)

for singlet (upper sign) and triplet (lower sign) cases.
One obtains by adding (70a) and (70b):

2m ( 1 1 & (l(1+1)—«'
Lor+ (I'- V) F—i"

~ +, I ~, +12
&ris rsoj & 2 sin'g, s 4

cot, 0» cot Oj2
l (l+1)5i„Fi"+ Bi"+'

4 SlI1 8» 4 sin 8»

)( I F «+2 1$ (F «+2 F «+2)
I

cot 0»+ . (1—~o.—"oi.)A. I & i" '+or &'i" 'I
4 SII1 0»

1 15 /, 8 & l(l+1)+ —,——,
i «i s cot His+ iFg"— . Bi„Fg"

89io) 4 sin gis

. «-I-2

+ I gP «+s+r3 (F,«+2+ P «+s) I4 sin 0»

ri&rs, t)&s (or equivalently tn the ri&rs, gis) space.
Since this is only hajf the inclependent variable space,
it is necessary that there be double the number of
functions to recover the same information. This is
a,gain to say that (70) and (77) are completely equiva, —

lent. (Nevertheless a reduv. dant equation with Fi" and
Fi" interchanged may readily be derived. )

We have stated that (70) has certain advantages
from the point of view of numerical integration. How-
ever, it should also be stated that the form (77) will
probably be more advantageous for ordinary varia-
tional calculations. This is because if one adopts a
specific analytic form of FI,", one need only interchange
r-I and r2 in the expression to obtain I'" ~".

It should be emphasized that the form of these equa-
tions is different from that of Breit. ' Nevertheless the
two forms must be equivalent. This is shown explicitly
for the P-wave equation in Appendix III.

The restriction of these equations to the atomic case
(two identical particles in a fixed central field) has
implicitly been made by assuming that the potential is
a function of the residual coordinates,

+la+ . (1—&o.—Si.) I Fi" '+br. Fi" 'I =0. —
4 SlI1 Oy2

(77)

These equations, depending as they do on F'& and I&'&,

are more analogous to the form of the P-wave equation
of Breit. '

The question may arise in connection with these, as
well as Breit's equations, of whether they are well-

defined, since they involve two functions I&"&' and II'&"

and yet there is only one equation (for a given «) . This
question, in fact would appear to be particularly
relevant as the previous form of our equations, (70),
does constitute a coupled set for a given I(. To see that
both situations are meaningful and in particular that
(77) is well-defined, consider a, numerical solution of

(77) . In that case the space of the independent variables
is divided into a grid of points, and Ii ~" is the collection
of numbers associated with these grid points. F~" can
therefore be considered a vector with as many compo-
nents as there are grid points. The differential equation
is replaced by a matrix which operates on the vector
I'"I,". Now everytime an F&" occurs in the equation, it is
completely clear what has to be done: namely, one
must let the matrix counterpart of its coefficient in the
differential equation operate on that component of F~"

which is its reflection point defined by (76). This is a
completely unambiguous prescription which is tanta-
mount to saying that the set (77) is well defined by
itself. The reason that (70) is composed of two equa-
tions for each «whereas (77) is not is due to the fact
that the functions IiI," are asymmetric and therefore
must be solved for in the whole r~, r2, 0» space. On the
other hand the fi"+ functions are either symmetric or
antisymmetric, and therefore they are restricted to the

V= V(ri, rs, ris), (7g)

so that V coliimutes with the angular momentum and
therefore appears as an additional diagonal term in the
radial equations. The interparticle distance r» is re-
lated to the independent radial coordinates that we
have thus far considered, r~, r2, 0» via the law of cosines:

&12 1'i +fs 2&lrs cos Ols.

Alternatively, however. , one can consider r~, r2, and F2
as the independent coordinates and derive radial equa-
tions involving them. Those coordinates, in fact, have
certain advantages since the three singularities in the
potential occur at their null points. As such they can
describe the wave function in the region of close inter-
action very well. These variables, therefore, are par-
ticularly suited to calculation of low-lying bound states
of two-electron atoms (where on the whole the electrons
are quite close to each other and to the nucleus) and
such successful calculations have been done ever since
the early work of Hylleraas. '

%hen one considers the equation in the form we
have previously given them, involving 0», one is
naturally led to expand the "radial" wave function in
terms of I.egendre polynomials of cos 8»."The expan-
sion is then truncated after some P„(cos8„) and con-
vergence is sought as a function of e. In these classes
of two-electron problems, this constitutes the idea of
configuration interaction in its most general form.
Recently this idea has come under some criticism" "

"A. W. Weiss, Phys. Rev. 122, 1826 (1961)."C. Schwartz, Phys. Rev. 126, 1015 (1962).
"A. W. Weiss and J. B. Martin, Phys. Rev. 132, 2119 (1963).

l'or a somewhat different 6nding from those of Refs. 13 and 14
and the preceding paper of this reference, cf. W. Lakin, Atomic
Energy Commission Report NYO-10, 430, 1963 (unpublished).
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principally because such a relative partial-wave expan-
sion necessarily converges slowly where the electron-
electron interaction is large (r12 small). The argument
has some validity for the above-mentioned low-lying
bound states. However, the argument can easily get
distorted and exaggerated, for instance when applied
to the low-energy scattering of electrons from hydro-
gen. "The point there is that the long-range correlation
coming from the induced potential in the atom is at
least as important as the short-range correlations" and
yet is only poorly approximated by the conventional
Hylleraas type of expansion. This situation has been
discussed elsewhere. "

These reservations notwithstanding, however, it is
nevertheless true that the most accurate three-body
calculations have been made using the r1, r2, r12 co-
ordinates, or linear combinations of them, ' on the low-

lying states of helium" and its isoelectronic ions."Ke
therefore give below the radial equations in terms of
r1, r2, r12. The equations are in their asymmetric form
corresponding to Eq. (77), since it is assumed that
they will be utilized in connection with variational
calculations with analytic expansions of the radial
wave functions.

2mI., + (P V) F1" —+———
~»

f1 f2

2f] f2 K

X [l(3+1)—x2] — +—P1'
p2 4

Here,

P =[ —r12' —(r,' r2')—'+2r, 2'(r1'+r22) )l.

The quantity whose square root p is can easily be
shown to be positive definite. In the equation (79) the
Fp is understood to be a function of r1, r2, r12'.

p1 (r1 r2 r12) ~

In addition 1.„» is the kinetic-energy counterpart of
the S-wave I.e„ in terms of r~, r2, r12.

1 8' 1 8' 2 8' ri'+r1 ' r' 8'—
r1+ 2r2+ 2r12+

r1 Bf] f2 Bf2 f12 Br(2 f1r12 Bf18r12

22+rl22 r 2 g2
(81)f2f12 f2~f12

The equations (79) can readily be put in the form of
coupled equations for a given z.

One salient feature of the various forms of the present
equations is that they are manifestly real, whereas one
term in the earlier treatments of Holmberg and Diehl
et a/. is imaginary. ' It is clear that the radial equations
as well as the solutions must be reducible to completely
real form for any given angular momentum state. The
accomplishment of this in the present case comes from
the explicit construction of real vector spherical
harmonics, Eq. (49) .

VIII. BOUNDARY CONDITIONS FOR SCATTERING

+g a+2(& 2+& 2 r 2) I PSE+2 go (P&L+ —PP+ ) }
p

2 2
"'"

+81.(1—&2,—4,) (&1'+&2'—&12') 2,2p

r1+r2 r2+~ P +g +2
2J 2 f, 2 Q fr

p r12 ~f12 2P

rlf 2
+J31. (1—&0.—&1.) I «" '+~2.&'1" '} =o

2p

(79)
' A. Temkin, Phys. Rev. Letters 6, 354 {1961).
'7 C. L. Pekeris, Phys. Rev. 112, 1649 {1958).' C. L. Pekeris, Phys. Rev. 115, 1216 {1959).C. Schwartz,

ibid. 128, 1146 {1962).

In this section we derive the asymptotic forms of the
radial functions corresponding to the scattering of an
electron from a one-electron atom in its ground state.
The Coulomb modifications when the target system is
an ion instead of an atom can readily be made and will
have no effect on the angular integrations with which
we are here concerned.

As we have seen in the foregoing sections culminating
in the last section, the selection of a symmetric choice
of Euler angles has allowed for a completely general
derivation of the radial equations. From the point of
view of a scattering problem, however, a symmetric
choice of angles is not the most advantageous since
here we are concerned with an intrinsically asymmetric
situation. Thus if we consider that region of configura-
tion space where r1 is large and r2 small, corresponding
to electron 1 being scattered from the atom to which
electron 2 is bound, the wave function ifI, this region
alorIe will not be symmetric. However in terms of the
Hylleraas —Breit angles, the spherical angles of one of
the particles being defined as two of the Euler angles,
the wave function in this asymmetric region is easier
to describe. Nevertheless this is a complication of
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detail only, since all the angular integ rations may
readily be performed as we shall now show.

We start with the statement that the complete wave
function must have the asymptotic form:

Substitution into (84) now yields the desired result:

vri (E—ir)! ' 8p„ f eu&
err"+(~») = P&" —

I

—"+(1—Bp„) cos
2j (I+a)! V2 & 2 j '

lim ~m(rt, rs) = (1/rt) sin (krt+br ——,'l7r) F(p(Qt)
&/~00

X LE1 (rs)/rs]I'pp(f4), (82)

wiE, (r,)
»m &«(rt, r.) =—»n

I
kr&+b, —!—

I

rr i, 2j rp

~ g"C rr;+(e„)n;+(6, C, e)+, -(e„)n,"-(6,C, e) ],

where

(83)

g 2K 2'
rrP+(ets) = I'pp nr""(6, C, %') F'rp(8t)

o o o

X sin 6 d6 dC d%'. (84)

where Lgt, (rs)/rs]Fpp(Qs) is the ground state of the
one-electron atom (hydrogen). On the other hand,
from Eq. (51)

(87a)

n) (ets) =Pr" (m/2) I (l—~)!/(l+Ir)!$& sin (irets/2).

(87b)

The radial functions themselves thus approach

1 . f l~)Et, (rs)
»m j'i"'(rt, rs, gts) =- »n

I
~rt+&r ——

I

'
rr~"'(as)

(88)

in which form we see that the r~, r2 dependence of all
the limiting forms of the fp+ functions is independent
of K so that none of them vanishes in the asymptotic
region. Since in all cases the 0~2 dependence is trivial,
it may be worthwhile to define new functions whose
asyinptotic behavior is strictly the r&, r2 dependence in
(88). (Cf. Appendix III.)

For bound-state problems, it is clear that all the
radial functions must vanish in all asymptotic regions.

It should be noted that (82) refers to the state of

parity . (—1)' as long as we are considering elastic
scattering from the ground (1s) state. This then de-
6nes the evenness of oddness of the values over which
~ goes in the summation in Eq. (83).

The quadrature in (84) can readily be performed by
recalling from Sec. II that 8~ is the angle between
and r~ whose spherical angles in the primed coordinate
systems are given in Eq. (20). One can then use these
spherical angles to expand Pi (cos t7t) via the addition
theorem for spherical harmonics. In its real form this
gives in the present case

(f—m)!
P (~,) = P ( /2) P (6)+22(-1)",

m=1 e
XPP(w/2) PP(6) cos m(%' ——,'Hts). (85)

dP'(6) = f(l—ir)!/(l+~)!]'PP(6). (86)

In (85) we have written both the Legendre and as-

sociated Legendre polynomials as functions of the angle
but what we mean in all cases is that the angle is to
be substituted into the transcendental form of the
function. For example Pt(P) = cos P and not Pt(P) =P.
The sign of the Ep is that of Magnus and Ober-
hettingers /which differs by (—1)~ from that of Morse
and Feshbachs]. To complete the quadrature in (84)
we note that

Ix. OTHER APPLICATIONS

In addition to two-electron atomic or ionic systems
the present equations apply to double mu to pi mesic
atoms, although as the mass of the identical particles
get heavier, the correction for the center of Inass be-
comes more important. Also for the spinless bosons
(pi rnesons) only the space-symmetric solutions will

presumably be relevant.
The equations can also be applied to two diferent

particles of the same mass (positron —hydrogen scatter-
ing, for example). In this case, the potential V will no
longer be symmetric hence the solutions will not be
symmetric which implies that boundary conditions
like (72) must be changed to matching conditions of
the asymmetric solutions along the line r&= r2 ' This
has the effect of giving one solution where formerly
there were two, in accord with the distinguishability
of the particles.

A major further application of this approach is to
two-electron diatomic molecules. In this case, the ex-
tension from one' to two electrons is non-trivial.
However, the analysis has been completed and will be
published elsewhere. "

» A. Temkin, Proc. Phys. Soc. (London) 80, 1277 (1962).
20 A. Temkin, J. Chem. Phys. 39, 161 (1963).

A. Temkin and A. K. Bhatia (to be published). The deriva-
tion ofithe radial equations with these Euler angles for two iden-
tical particles and a third particle of 6nite mass has now been
completed and is being prepared for publication
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APPENDIX I Similarly,

In this appendix, we prove the Eqs. (65) and (66).
For m=0, (7/BC' terms give zero. Therefore, we can A2&P+= —)V&. sin «4' 2«(« —1) sin" '8 cos'BF„
Wllte

82 g2
A~~ —cot O——cot' 0

QO2

A2-+2 cot O — ———2 cot2 O —.
B%'BO

U~e also write (for p) 0)

(I2)

—«sin" BF,+2«sin" OA i,F„

K
sin'+' OAi„d i „+iF„+, . (I12)

«+1

Multiply (I12) by sin 2%' and (I11) by cos 24 and
subtract to get

&&"+=lV&„cos A' sin" OF'
(sin 2%'A2 —cos 2+Ai) Sp+= —Ãi. cos («—2)%"G

(I3)

where

and

S) =-0 )g sin K% sin OP

(—1)" 2l+1 (t+«)! l
iVg, =

($—) I

(I4)

(I5)

—
2 (iVi„/)V( „+2)A („A, „+,X)i&"+'&+, (I13)

where

G= [2«(«1) sin" ' 8 cos' 8—«sin" 8+2«A ~„sin" 8]F„

+[(1—«)/2(1+«) ] sin"+' BA i„A i,„~iF„+2 (I14).

I.et «—&«+1 in (I10), then

Now

F„=F(« l,, «+l+1—; 1+«; sin'- (8/2) ). (I6)
A) „+2

cos OF„+2 F„+i sin——' 8 —'

F„+;
2 «+2

A&5)i"+=iVi„cos «4[2«(« —1) sin" '-8 cos'- BF,

—«sin" OF„+2«sin" 8 cos OA ~„P„+i

+ sin"+' OA („A (,„+iF„+2j, (I7)

Substituting in the above for F„+j and P„+~ by using
(I10), we get after some rearrangement

(«+2 «+2 . . A i +2cos' B~ + sin' OAi, „+1+sii12 e
«+1 2 «ji ' '

2 «+1

where we have used the well-known relations for the
derivatives of hypergeometric functions:

( 3-2'it

84(.+1)(.+3) "' «+» "

—F„=At, sin OP„+,
dO

(IS) I.etting «~« —2 multiplying by 2(«—1)"' sin" 2 8 and
rearranging, we have for K& 2

dO2
P„=~,„cos OP„+,+~,„a,,„+,sin-. BP„+,. (19)

G=2 ( «1«) sin" '8 F, &.

Also we find directly from (I11) and (I12)

(I15)

-~ z,.+i
cos OF„+~=F,.—sin' O

' -- F„+2.
2 (1+«)

(I10)

Using (I10) in (I7), we find

AiSi"+= Xi„cos «%'[2«(« —1) sin" ' 8 cos' BF„

A relation between F„,F„+~, and F„+2 can be obtained
from the differential equation satisfied by the hyper-
geometric function

6=—sin' OA, A „F, K=o;

l(l+1)G=—
2

sin OPg ) K= 1. (I17)

2 (sin 2@A2—cos 2+Ai) Qi"+= —g&"Q&&"—2i+

Finally then with the substitution of the above in
(I13) we obtain for «& 2

—«sin" BP„+2«sin" BA i„F„ —&i,.pm&i'+"+ (I1S)

+(1/1+«) sin"+'OA&„A&, „+&F„+2]. (I11) where Fp has already been defined in Eq. (6Sb).
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and

The special cases ~=0, 1 can be determined from With repeated operation of M+, it follows by induction
(I13), (I16), (I17). With proper normalization that the above relation is true for any m. Similarly we

can obtain Eqs. (65b), (66a) and (66b) for any m.
Thus the radial equations are independent of m.

It can also be shown that

2(sin 2+Ap —cos 2&Ai) ni)+= l(l+1)nii+ —Bipn&P+. «~= (—1) (II11)

(I20) In order to show this it is only necessary to state the
easily derivable relation

We can combine (I18, I19, I20) to get Eq. (65a,).
Similarly, we can prove (65b), (66a), (66b).

APPENDIX II

[n (m, a)+)w —
( 1)mn (—,z)+

APPENDIX III

(II12)

AVe can form the raising and lowering operators
M~=M, &iM„by using Eqs. (36) and (37). It can be
proved including phase factors that

(z/5) M+ni "=—[(l—m) (i+m+1))'ni +' " (II1)

(i/5) M n" "=[(ljm) (l m+—1))ln& '—(II2)

It can be seen very easily that the P-wave even-

parity equations are the same as that of Hreit. For odd
parity, we show here that our radial equations are
equivalent to Hreit's.

The relation between Hylleraas —Breit Euler angles
(denoted by a subscript 8) and our angles can easily
be shown to be

It is well-known that M~ commutes with H, and in
particular with the kinetic energy. One can show

explicitly that they commute with the relevant part
of the kinetic energy given below:

sin Bs cos%'i) = sin B sin (4——,'8)p), (III1)

cos B~= —sin B cos (4—-', 8ip). (III2)

[sin 2%'Ap —cos 2%'Ai, M~]=0,

[sin 2@A)+ cos 2%'Ap, M~]=0. (II4) 4= cos Bi)[f(ri, rp 8ip) + cos 8ip f(rp, ri, 8ip) ]
+ sin B)) cos%i) sin 8)p f(rp, ri, 8)p)It may be useful to give the following relations

For the symmetric, odd-parity case, Breit's wave func-

(II3) tion' ' is

[Ai M~)=& (25/sin B) exp (&iC) Ap, (II5)

[A&, M+]= %(2))i/sin B) exp (&iC)Ai. (II6)

Below we give the results of the raising and lowering
operators on the exchange vector spherical harmonics.
These results may be derived from Eqs. (II1), (II2)
and the definition (54).

(i/A) M+ni(" ")+= —[(l—m) (i+m+1) ]in&("+' "'+,

(II7)

(i/5) M ni&" ")+=[(l+m) (l m+1) )**n—i&" '")+ (IIS—).
Operating M~ on Eqs. (65a), we find

M+2 (sill 2%'Ap —cos 2&Ai) n i"+

Bi"(1 Bp„8i„)M—+ni&" '—)++8—g„l(l+1)M+np+

—(1+8p„)Bi,.+pMgni('+P)+. (II9)

Using Eqs. (II3) and (II7), we get

2(sin 2% Ap —cos 2%'Ai) ni&' ")+

= —Bi'(1—8p„—bi„)ni&' "—')++8i„l(l+1)ni&'")~

—(1+bp~) Bi,~+2ni("+p)+ (II10).

fi = —cos p8)p( f+f) ~

f,' = —sin p8&p(f f). —
(III4)

(III5)

Substituting (III4) in Eq. (70a) for l=1, )&=1, yield

2m )'1
Lpu+ (&—I') (f+f) I

—+—I—)r' r'j

0~& 1 1 cot 0~2
X p cot8iptan —+-+ — (f+f)

2 2 2 sin' 8~2 2 sin 8~2

(1 11 Hag 1 1 gg2—
~
—,——,~,' cot 8„tan —+-+

Lrl r2 I 2 2 2 sin e~q 2

8ip 1 Bf 1 Bf
X (f f) —2 tan ——,—+—, =0. (III6)

yg2 jete y~2 gg)~

= —sin B cos 4 cos pi8)p( f+f)
—sin B sin% sin —', 8)2(f—f), (III3)

where

f=f(ri, r2, 8ip),

f=f(r2 ri 812) ~

Comparing (III3) with Eq. (51), we find that our
radial functions fi'+ are related to Breit's f and f by
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2m 2( 8fL~u+, (~—I ) f+ ,I
—cot8ia

A,
2 «Pk

Similarly substitution of (1115) in Eq. (70b) for I= 1, Adding (III6) and (III7), we find after some
a=i gives simplification

2m (1 1i
L~u+ (~—l') (f f)—+I —+—

~f2 «12 «22j

(1 1) 1 012 cot 2012
+i —,——,

i

——+-,' cot8 cot —— . (f+f)
k«1 «2 J 2 2 sin 012

8ig 1 Bf 1 Bf+2 cot ——, ——, =0.
~1 ~~12 ~2 ~12„

(III7)

012 Cot 012
&& ~i cot8i~ cot ——— . — . (f f)—

2 2 2 sin' 812 2 sin 012 2 I9 -=0
F2 sin 012 8012

which is the same equation given by Breit.2'
The equivalence of our equation with Breit's anti-

symmetric, odd-parity, I'-wave equation may be shown
in a completely analogous manner.


