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I. INTRODUCTION

The decomposition of the Laplacian operator,
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where the coefficient of the second term is proportional
to the square of the angular momentum operator, is
the basic relation between kinetic energy and angular
momentum in the quantum mechanics of the one-body
problem (or the relative motion of two particles).
When acting on a wave function which is an eigenfunc-
tion of total angular momentum [, the Laplacian
simplifies to
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in which form it is clear that the effect of this decom-
position is to reduce the Schrodinger equation with a
spherically symmetric potential from a three-dimen-
sional partial differential equation to a one-dimen-
sional (ordinary) differential equation. As such, this
relation is of fundamental mathematical importance.

The analogous procedure when more than one particle
is involved, in particular two identical particles in an
external force field, although known, is not as well
known, nor is it as well developed. When the external
field is that of a fixed nucleus, the wave function is
expanded in eigenfunctions of the total angular mo-
mentum of the two particles multiplied by functions of
the three remaining independent variables. The total
angular momentum eigenfunctions are functions of the
three Euler angles only. These angles are not unique,
but in some way they must describe the orientation of
the instantaneous plane formed by the two particles
and the center of coordinates (nucleus) in space. The
remaining three coordinates then describe the positions
of the particles in this plane, and the functions of these
variables are the generalized radial functions. Hylleraas’
original papers! in effect contained the reduced or
radial equations for total .S states in terms of the
residual coordinates 7y, 75, 712. In this case, the total
orbital angular momentum is a constant function,
and hence the reduction of a six-dimensional to a
three-dimensional partial differential equation is inde-
pendent of how one defines the Euler angles.

* National Academy of Sciences—National Research Council

Resident Research Associate.
LE. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929).

The standard treatment of the general problem is
due to Breit.2? He used the Euler angles that Hylleraas!
originally introduced: namely the two spherical angles
of one of the particles in the space-fixed coordinate
system and a second azimuthal angle between the
7% plane and the 7—r, plane. Breit’s remaining co-
ordinates were chosen as 71, 75, and 6, the latter being
the angle between r; and re. To describe two-electron
atoms or ions in the approximation that the nuclei are
fixed, one has an additional requirement of which
there is no analog in the one-body problem. That is
the Pauli principle: the requirement that the spatial
function be either symmetric or antisymmetric under
the exchange of the particle coordinates. It is clear
that the Hylleraas—Breit choice of Euler angles (which
we herein after refer to as the Hylleraas-Breit angles),
being quite unsymmetrical with respect to the two
particles, is not optimum in this respect.? In fact the
construction of the linear combinations of angular mo-
mentum functions with the appropriate exchange
properties is a very difficult task which depends not
only on the Euler angles but on 63, as well. It is not
surprising, therefore, that Breit’s original work? was
limited to P states, and work thereafter has always
been limited to specific angular momentum states.®

Actually a more symmetrical choice of Euler angles
has in the interim been carried out by at least three
groups independently of each other. The first treat-
ment is due to Holmberg® and applies to three particles
of the same mass of which two are identical.” A later
treatment due to Diehl ef al.® is identical as concerns

2 G. Breit, Phys. Rev. 35, 569 (1930).

3 A clear exposition of Breit’s work is contained in P. M. Morse
and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill
Book Company, Inc., New York, 1953), p. 1719 et seq.

4 U. Fano, private communication. One of us (A.T.) acknowl-
edges valuable discussions with Dr. Fano in 1959 at the outset of
the formulation of these ideas.

5 The D-wave equations in H-B angles have been worked out by
H. Feshbach, M.L.T. thesis, 1942 (unpublished) and by one of
us, A. Temkin, 1959 (unpublished). The wave functions for
several states have been derived by C. Schwartz, Phys. Rev. 123,
1700 (1961).

6 B. Holmberg, Kgl. Fysiograf. Séllskap. Lund Forh. 26, 135
(1956). G. H. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958).
G. H. Derrick, 2bid. 16, 405 (1960). H. Diehl, S. Fliigge, U.
Schroder, A. Volkel, and A. Weiguny, Z. Physik 162, 1 (1961).

“The characteristic of the three (or more) body problem of
tinite masses is that six coordinates can be eliminated, the three
additional constants of the motion coming from the center of
mass. Two papers dealing with the elimination of the six coordi-
nates of rotation and translation from a system of N particles
are: J. O. Hirschfelder and E. Wigner, Proc. Natl. Acad. Sci.
U.S. 21, 113 (1935); C. F. Curtiss, J. O. Hirschfelder, and I, T
Adler, J. Chem. Phys. 18, 1638 (1950).
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the choice of Euler angles but applies to the three-body
problem in general. The case when two of the particles
are identical is thus a special case of their results, and
they are more detailed concerning the transformation
properties of the Euler angles under exchange. To the
extent that all these results were meant to apply to
the three-nucleon problem, Derrick and Blatt® have
carried out the most realistic analysis in that account
is taken of a force which is considerably more compli-
cated than a simple central force between pairs of
particles. Thus in their treatment the orbital angular
momentum is not conserved, and the only constants
of the motion are parity, the total angular momentum,
and the isotopic spin.®

Two of the Euler angles that all these groups used
are essentially © and & (Sec. II). Their third angle ¥,
however, is related to moments of inertia of the two
identical particles relative to the third. As such it
depends on the lengths of the vectors of the problem.
As opposed to this our own choice of ¥ depends only
on the unit vectors of the problem, nevertheless both
sets of Euler angles have virtually the same transforma-
tion properties under exchange. Since the basic decom-
position is in terms of separable products of radial
(length-dependent) and angular variables, it is our
opinion that the previously defined ¥, which appears
to contain a subtle connection between the angular
and radial parts, is less advantageous than our own,
in which the separability is maintained on all levels.

The present paper also treats the case of two identical
particles in the field of an infinitely heavy nucleus. In a
certain sense this problem stands in the same relation
to the general three-body problem as the one-body
problem is related to the relative motion of the two-
body problem. With the addition of exchange, which
we have stated is a nontrivial problem, we attempt
here to make the theoretical framework of the reduction
to radial equations as accessible as the corresponding
reduction in the one-body problem is, even to the non-
specialist. On a practical level the results of this in-
vestigation apply most directly to two-electron atoms
and ions and the associated scattering problems
(Sec. IX).

In Sec. ITI we explain as lucidly as we can the trans-
formation properties of our Euler angles and the con-
sequent transformation properties of the vector spheri-
cal harmonics. The latter in our terminology are the
eigenfunctions of the total angular momentum, and
in Sec. IV we derive the angular momentum operators
in a straightforward way. These eigenfunctions even
with their concomitant transformation properties are
still not eigenfunctions of exchange. Since exchange
commutes with all the other constants of the motion,
it is possible to construct simultaneous eigenfunctions
of exchange. Complete exchange, however, acts on the
radial coordinates as well as the Euler angles. In Sec.
V, therefore, we show how the exchange vector spheri-
cal harmonics are combined with the functions of the
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Fic. 1. Perspective drawing of the Euler angles and the unit
vectors of the problem.

residual coordinates to give a total spatial wave func-
tion which is either symmetric (singlet) or antisym-
metric (triplet) under exchange. The derivation of the
kinetic energy in terms of the radial and (Eulerian)
angle coordinates is the last remaining step (Sec. VI)
before the derivation of the radial equations themselves.
The results of Sec. VI are necessarily quite tediously
derived. Our aim has been to give enough of the deriva-
tion and results (parts of which are included in the
appendices) to allow our formulas to be checked as
mechanically as possible.

When the kinetic energy has been put in suitable
form, the derivation of the radial equations for arbitrary
angular momentum (Section VII) is a comparatively
simple matter. One salient improvement of the present
radial equations over those of Holmberg® and Diehl
et al.b is that ours are completely real. The radial equa-
tions are a finite set of coupled three-dimensional
partial differential equations which can be written in
various forms and in two major sets of radial coor-
dinates. Most of the various possibilities are in fact
given in Sec. VII. Any of the various possibilities con-
stitute a rigorous decomposition of the Schrédinger
equation. In addition to the usual bound-state prob-
lems, the partial waves for the scattering of electrons
from one-electron atoms or ions are also governed by
these equations. We have therefore worked out the
boundary conditions for the relevant electron-atom
(ion) scattering in these coordinates (Sec. VIII).

II. THE EULER ANGLES

Figure 1 contains a perspective drawing of the Euler
angles which define the particle plane with respect to
the space fixed #, v, and z axes. The rotated axes
%', ¥, 2 are then defined by

71’(?2
T 1
|T1x7"2l ’ ( )

Y
e 2x2 )
Toygxg |’ -

=8 %4, (3)
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As is usual, a caret on a symbol is used to represent a
unit vector in the given direction. In particular %, 7, k&
are the three unit vectors along the (space-fixed) x, ¥,
and z axes, respectively, and thus are synonymous
with %, , and 2. Similarly %, 7/, k¥’ and &, ¢/, 2 are
identical.

The Euler angles are then

0= angle between 2 and #/, (4)
&= angle between 2’ and Z, (5)
V= angle between &’ and (7>—74). (6)

The ranges and planes of these angles are:

0<0LT, in -2’ plane;
0<®<L 2, in 2y plane;
0<v<L 27, in «’-y" plane.

It is clear from the figure that Z’, being in the x-y
plane has components

#'=1% cos®-+7 sin . @)

Since Z’ is perpendicular to the z-2’ plane, it is per-
pendicular to every line in that plane going through
the origin. This includes specifically the line of inter-
section of the -2’ plane with the x—y plane. However
the azimuthal angle of that intersecting line is the
azimuth of 2’ itself, and since #’ has azimuth ®, £’ has
azimuth $74® (cf. Fig. 1). The polar angle of 2’ is
clearly ©; therefore, we have the important relation:

#'=1%sin © sin ®—7F sin © cos ®+F cos ©.  (8)

The relations between the Euler angles and the
spherical angles of the individual particles are obtained
by substituting Eqs. (7) and (8) into the left-hand
side of Egs. (1) and (2) and using the ordinary de-
composition of 7; and 7, in the right-hand side: One
obtains

sin 015 cos O= sin &; sin Fa sin (p2—e1), (9)

sin @y sin O sin &= sin & sin ¢; cos F

— cos ¥y sin Pz sin ¢a,  (10)
sin 62 sin © cos &= sin & cos ¢; cos Iy

— cos ¥y sin Py cos @, (11)
2 sin (612/2) cos W= sin dy cos (g2— D)

— sin ¥y cos (o1—P), (12)

2 sin (01/2) sin U= (cos #— cos ¢4) sin O
+[sin & sin (pg—®) — sin J; sin (¢1—P) Jcos O, (13)
cos B12= cos ¥ cos ¥
+ sin & sin ¥¢ cos (p1—¢2). (14)

The latter relation is, of course, the well-known expan-
sion for the angle between two vectors.

It is also of interest to give the vectors 7; and 7, in
the particle plane (primed coordinate system):

71=1%"sin (¥ —13613) =7’ cos (¥ —36s), (15)
Tp=1"sin (W+2161) —7" cos (T+361), (16)
2=7"sin O+’ cos 0, 17
/=1 sin ®+7” cos O cos P—k’ sin © cos ®, (18)
&=1% cos ®—3’ cos O sin 4k sin O sin d.  (19)

The following relations, which are also very useful,
can now simply be derived by computing (71-2),
(72+2), etc. in the primed system.

cos ¥y=— sin O cos (¥—36:2), (20a)
cos ¥y=— sin O cos (¥+16;5), (20b)

sin ¢ cos 1= cos ® sin (¥ —16;,)
—+ cos O sin @ cos (T —16y2), (21a)

sin ¥ cos gs= cos ® sin (V+16:2)
+ cos O sin ® cos (P+3612), (21b)

sin ¢ sin ;= sin ® sin (\I/-—%Bm\)
— cos O cos @ cos (¥—3012), (22a)

sin &, sin po= sin ® sin (¥+36;3)
— co0s O cos ® cos (¥+361). (22b)

III. PROPERTIES UNDER PARITY AND
EXCHANGE

The operation of parity corresponds to the simul-
taneous inversion of both particles’ coordinates:
r——1I1, Iy—>—TIs. It can be seen from Fig. 1 that this
places 71 and 7, facing the opposite direction, but the
cross product and hence 2’ will not change as a result
of this operation. Thus the z-z’ plane will not change
and 2/ will not change. On the other hand (7p—7y)
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goes Into the negative of itself, so that ¥ gets increased
by . In other words under parity

6—6,
P—P,

Yo7, (23)

Exchange corresponds to the transformation ri2r,.
From the analytical definitions 2’ and #’, Eqgs. (1) and
(2), the new primed axes will go into the negative of
themselves. Also (7,—71) goes into negative of itself.
Clearly the inversion of the 2’ axis corresponds to the
transformation 6—r—6. Noting that & is the angle
in the x—y plane and measured as positive with respect
to the z axis, which is fixed, we see that ®—r-+®. The
simultaneous inversion of #' and (7;—7;) means that
the modulus of the angle ¥ remains the same. However,
since ¥ is an angle in the x’—y’ plane, it is measured as
positive with respect to the 2’ axis. Since the latter
goes into the negative of itself, it becomes clear that
¥—27—W¥., Thus we have under exchange

6—7r—6,
PP,

V—27r—W. (24)

The significance of these transformations relates to
the transformation properties of the vector spherical
harmonics under the same operations. These functions,
which are the eigenfunctions of the angular momentum
(next section), are the basic functions in terms of
which the complete wave function is expanded. They
can be written

[2(2+1) P
4r

X exp [+(m®+k¥) Jdm*(0),

D6, @, W) =

(25)

where the normalization has been so chosen that the
function is identical with what is given in Sec. IV and
the d/**(0) agree with those given by Wigner.8 Only
the dependence on © is nontrivial:
dim*(0)

4
[2(21+1) }

X cosl#+ml (§/2) F(—14+8/2—1,
I4+8/2; 14 | k—m |; sin? (6/2)),

where 3 and Ny are defined in Egs. (45) and (46).
F(a, b; c; 2) is the hypergeometric function in the nota-

= (—1)Hl=ml Hle—m] N e sinte—ml (9/2)

(26)
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tion of Magnus and Oberhettinger.® The important
property of d/*(0), proved in Wigner’s book 8 is

At (r—0) = (—1) Fmdm(0). (27)
The phase in (26) is such that this relation holds for
all values of 7 and £.%

Letting @ and &, represent parity and exchange, we
have from (23) and (24):

CDM (0, d,¥) =Dm*4(0, d, 7+T),
&1 D™ * (0, &, T) =§Dz’"'k(7r~ 0, m+®, 2r—Y),
which using (27) reduce to

CDMH(O, B, W) = (—1)*DmH(6, B, W),  (28)

D0, &, T) = (—1)DmH(0, &,%). (29)

The simplicity of Eq. (29) is the essential feature
which recommends these angles to the description of
the two-electron problem.

IV. ANGULAR MOMENTUM

The components of the total angular momentum are
readily expressed in terms of the particles’ spherical
angles. Thus, for example,

7 9 a d
— ZM,= sin or— td — s
5 sin <p1601+ cot ¢ cos ¢13¢1+ sin qaz——'a&z

5}
+ cot 95 cos p— . (30)
el2)

The particles’ angles &1, @1, 2, @2 via (9)-(14) are
implicit functions of the four angles 6, ®, ¥, 6. Thus,
the problem of finding M in these angles is a straight-
forward problem of partial differentiation. We can
write

a a
5\fI+AB”—

7 0
— M= Ao—
° 961’

0
As—
5 69+ §6<I>+A‘I’

8 E. Wigner, Group Theory (Academic Press Inc., New York
and London, 1959), p. 216. Cf. also, A. R. Edmonds, Angular
Momentum in Quantum Mechanics (Princeton University Press,
Princeton, 1957), Chap. 4.

9 W. Magnus and L. Oberhettinger, Formulas and Theorems
for the Functions of Mathematical Physics (Chelsea Publishing
Company, New York, 1949).

%9 This point is extremely subtle. Usually, the phase factor is
given for m>k>0 for which it is 1. For other ranges of m and
k the phase is given implicitly by the requirement that di™-* obey
certain symmetry properties (cf. in particular Edmonds’ book,
Ref. 8). As far as we know, the explicit form of this phase factor
is given for the first time in Egs. ?26) and (44). If this phase is
not included, then Eq. (27) is not generally valid. However, that
property is essential in constructing wave functions of the proper
excﬁange character. Such an omission was made in the work of
Diehl et al. (Ref. 6), so that the inferred exchange properties of
their radial functions are not completely consistent. However,
they are correct if their D functions are given the present phase.
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where

dx aIx ax
A= sin o;——+ sin ==+ cot #; cos p;—
5016 71+ (026 + 1 m{,w‘

. d
-+ cot ¥ cos goz‘l (31)
9¢s
and x can be anyone ot the angles 0, ®, ¥, or 6;,. Using
then Egs. (9)-(14), one finds that the following rela-
tions fall out quite easily:

A4,,=0, (32)
Ao=— cos P, (33)
Ag= sin ® cot O, (34)
Ag=— sin ®/sin O. (35)

Thus,

A a sin® 9
[z—— @'— - @ — g B 3
M [cos 96 sin ® cot Ga<p+ e 6\1/] (36)

One can, of course, proceed in a completely analogous
way to get the remaining components of the angular
momentum, however, let us note from Eqs. (20) that

and from (10) and (11)
01/0B= 03/ 9B =1. (38)

Since

L S (RN

“\od 3p; 9% 99,
substitution of (37) and (38) yields
0/09=08/301+3/0¢s.

However, since M,.= (%/7) (8/d¢1+03/d¢;), we there-
fore have the z component of M:

The remaining component of the angular momentum
may be derived from the commutation relation
[M., M,]=1ikM,. Straightforward substitution yields:

cosd 9

-—1. (40
sinO&‘I!J (40)

fi 9
M,= [sm ‘I>——=+ cos P cot eﬁ —

These relations are independent of 6;, corresponding
to the statement that the angular momentum only
depends on the (three) Euler angles 6, &, ¥. The forms
of the three operators is the same as one gets with the
Hylleraas-Breit angles.® The square of the angular
momentum is likewise the same. One finds directly
from the sum of the squares that

62 1 82 2
2 el t 9___
M= —#2 [ae2+ sin? e<a<1>2+a\1ﬂ)+ V%6

cot® 02
e t]
sin 6 9PV

The vector spherical harmonics, which have been
given in Eq. (25), are simultaneous eigenfunctions of
M:? and M, with eigenvalues %% (I41) and 7im:

M2D*(0, &, V) =7 (I+1)Dm* (0, d,¥), (42)
M. Dk (0, d,¥) =hmD*(0, &,7). (43)
They are given in a completely general, normalized
form in Pauling and Wilson.* With Wigner’s phase®-
they are explicitly
DME(O, B, ) = (— 1)dlk—mlth—ml N7 sinlt—ml (9/2)

X costtml (6/2) exp [(mdP+kEF) ]X

F(=1+36—1,14(8/2); 1+ | k—m ;sin® (6/2)), (44)

where

B=|k+m|+ | b—m]|+2 (45)
= (#/1)9/0®. (39) and the normalization constant is
Vo [(21—{-1)(1—}—1 [ktm | +3 | k—m )= | kdm | +L | b—m|)! ] 1 (46)
8r* (1= [ ktm | =5 [ k—m ) 1(0+5 [ ktm | —F [k=m )1 | [k—m |

In addition to the usual magnetic quantum number
m, the vector spherical harmonics depend on the
quantum number £, an integer whose range of values is
the same as m: —I<m, k<I. The physical significance
of £ derives from the fact that the D;™* are the eigen-
functions of the spherical top [for which (42) is the

Schrodinger equation ], and # is the angular momentum
quantum number about the body-fixed axis of rotation.
With regard to the applications that we contemplate

l°L Pauling and E. B. Wilson, Introduction to Quantum Me-
chanics (McGraw-Hill Book Company, Inc., New York and
London, 1935), p. 280.
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here, & can be considered a degeneracy label which
must be adjusted such that other requirements are
fulfilled.

V. CONSTRUCTION OF THE TOTAL WAVE
FUNCTION

We shall confine ourselves here strictly to the atomic
problem which implies that the potential energy as
well as the kinetic energy commute with the total
angular momentum. In this case the total wave func-
tion for a given / must be a linear superposition of the
degenerate D;*. In addition, m will be fixed for a
given magnetic substate and the “radial” equations
will be independent of 7 (cf. Appendix IT).

Considering, for the moment, the residual coordinates
as 71, 72, 612, we can therefore expand the total wave
function in the form:

!
\Flm(rl, I'z) = v_, glk(rh 72, 012) ngm,k(e’ Q, \II) . (47)
k=1

The parity operation, Eq. (23), only affects the Euler
angles, and from Eq. (28) it only multiplies the D;*
function by (—1)*. Therefore, by restricting the sum
to even and odd values of %, we guarantee that the
superpositions have even and odd parity, respectively:

Wyeven(1y, 1) = D' gt (11, 72, 012) D4 (O, B, ¥), (48a)

k even

If'lm()dd(rly 1'2) = Z"glk ("l, 72, 012)§Dlm'k(e: (1), ‘I,) ) (48b)
k odd

where the double prime on the summation emphasizes
that the sum goes over every second value of %.

In deriving the radial equations (next section) we
shall exploit the invariance of the radial equations with
respect to m, by choosing m=0. When the Hamil-
tonian is written in terms of the Euler angles and the
remaining variables, there will occur terms involving
3/3® and 9/9¥. By virtue of m=0, the former terms
vanish, but the latter terms would bring down the
imaginary coefficient 7k. In order to avoid complex
equations, it is therefore convenient to construct real
angular momentum functions. Let

DO*(—1)*Dp* (2+1)} cos k¥d0*(6)

D S T fonI—1]  2r [14+0(a—17’
(49a)
3.);“‘_:__53‘0'“— (;/21)‘3)10’_“: (ZZ;'-I)% sin k¥d*(0),
(49b)
for k>0, where
k= |k (50)
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The important property of these linear combinations
is that they are eigenfunctions of exchange:

812201‘i= =+ (‘— 1) H":Dl":h. (49C)
This then constitutes a set of real, orthonormal vector
spherical harmonics. These real vector spherical har-
monics are still eigenfunctions of parity with eigen-
value (—1)*

The property of exchange is a mite more complicated
than parity in the sense that it affects not only the
Euler angles, but the residual coordinates as well. The
advantage of a symmetrical choice of Euler angles,
however, is that there is no mixing, and independent
of whether we consider the residual variables 7y, 7y, 6y,
or r1, 9, 19, the effect of exchange on the residual co-
ordinates is simply rie27,.

Finally then, if we construct

Yuo(ry, 1) = D[ fiH(n, 12, 612) D+ (O, @, ¥)

+flx—(71’ 72, 012)331‘—(6: (b’ \I,) :]: (51)
the operation of exchange on this sum then gives, with
the use of (49c),

812 F1o(1y, Ig) = Wyp(1y, 17)

= 2"[fl"+ (72) 1, 012) (_ 1) Z+K3)l‘+ (e: Q;\I,)

+f= (1, 11, br2) (— 1) HHDF—(0, &, ¥) ).
Thus, if

fit(rgy 1, O19) = = (— 1) W5 (r, 72, 012),  (52a)

Ji(ra, 1, 612) = £ (= 1) H¥Hf (11, 13, B1),, (52b)

the function ¥y of Eq. (51) is a real, space-symmetric
(upper sign) or space-antisymmetric (lower sign),
eigenfunction of M2 and M, corresponding to the quan-
tum numbers / and m with m=0. The space symmetric
and antisymmetric solutions correspond to singlet and
triplet spin states respectively. Furthermore the re-
striction to m=0 is sufficient for deriving the radial
equations.

We have shown that the =0 function can be written
in manifestly real form, Eq. (51). However, in that
form it is not obvious what the generalization is to
arbitrary m states. The generalization is nevertheless
simply obtained. Let

= (1/V2) (fet—ife),

>0,  (53a)

and

g =[(—)VZ(for+ife),  «>0;  (53b)
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then the form (51) reduces to that of Eq. (47) for
m=0. For arbitrary = one then need only replace the
DLF functions by the appropriate D functions, the
radial g/ functions remaining the same.

Alternatively one can define generalizations of the

D, Eq. (49), for arbitrary m.

D[WMH—E [\/2'}'5@(2"‘\/7) ]—ll:ngm,x+ (— 1) ".(Df"‘—“]
Dym-= (v20) e (— 1D,

where D,09E=9D+ for m=0. Note for m<0 that the
modified spherical harmonics ©;¥% are no longer real.

The complete function for arbitrary m can then be
written

(54)

- Z”[flﬂfgl(m,x) ++flx~~3)l(m,x)-l

K

If'l,,,(rl, I'2) (55)
Note that by virtue of the action of the raising and
lowering operators (Appendix II), the phase of the
individual terms except possibly for an over-all minus
sign, is correct as it stands.

VI. THE KINETIC ENERGY

Just as in the case of the angular momentum, the
kinetic energy can be obtained by a straightforward
process of partial differentiation. In this case, however,
since second partial derivatives are involved, the differ-
entiation is a much longer job, and as we shall see, the
partial derivatives involving 6,2 no longer cancel out.

2 2 1
+V22_.}__§__. 1+}‘ 9 +_._

6 2 79 61‘2 7’12

% ¢} 1 0? ]
— sin " _
sm 01 601 61’1 Sll’l2 l’l a<p12

if v 9 9?
— . (56
+72 [sm F2 0% sin 8192+ sm” Fg Opa? ] (56)

The first two terms are, of course, unaffected by the
transformation. The angular differentiations then in-
volve the transformation from the variables &1, ¢,
Js, @2 t0 6, @, ¥ and 6.

Con51der the coefficient of the »;2 term. After some
regrouping, we can write

0 1 &
6:71+

Sl
a=1 3191 Sln2 171 6<p1 ax,,2

Z 0% a 1 62Xa aXa] 0
P 602 Sln2 1.91 6@ 6191 axa

— sin &y

sin & 0% sin? ¢4 @

+c

(57)

OXa O 1
+ZZE[ X Xﬂ

OXa axg] 92
a>p=1 301 (9'01 %mz 01 agol 6¢:,

0xa0%s

where for a=1, 2, 3, 4, x, refers to 0, &, ¥, 6;,. The
problem thus reduces to finding each of the square
brackets separately in terms of the Euler angles and
012. The results are given in Table 1.

The kinetic energy thus becomes

1 o

71 61’1

10
JIT— 12
7’261’22

Vi+Vi= {

1 1 1 a3
+(?E+725>sin o sin }+ +—;, (58)

where

1
= 70 [Sl 2 (W+3612) — 692+ cos? (W+365) cot 9—
cot © 6
+ cos? (\I/—i—‘ﬂlz) =5 6¢?+ sin (2\1/—{—012) 5 6<I>

92

2V -6, t O
+51n( +613) co 5296

—sin (2‘1/—}—012) — 6 300

tO 02 02
—2 cos? (‘I’+1012) < ]

n O g¥odP V30,
+4 16_\112_'_31 (59)
and
A=+ (cot? O/sin? 612) cos? (¥+26,),
(60)
By= (cos ¥/sin? 6y2) sin (I+6y5)
bt [sin (2\1’+012) /sin"’ 012 Sil’l2 6:|—~ 5 cot (;012) (61)

The expressions for Fsy, A,, and B, can be obtained by
replacing 612 by —6y; in the above formulas (including
the appropriate partial derivatives). This is equivalent
to operating with &;;

F2(e, CI), ‘I,, 612) = Fl(e: CI), \I’; _912)-

It is clear, since all the coefficients are independent
of ®, that M, commutes with the kinetic energy. We
have also explicitly verified that [M,, V24Vs*]=0.

Note that the partial derivative involving 65, and no
other angles has been placed in the curly brackets with
the radial derivatives. This is because this term, as
the radial derivatives themselves, do not affect the
orbital angular momentum, and are the only terms
which act on total .S states.!—3

In fact, in the action of the remaining terms on the
angular momentum eigenfunction rests the bulk of the
reduction of the Schrédinger equation to its 3-dimen-
sional “radial” form. With this reduction in mind
(cf. next section), it is convenient to write F; in terms

(62)
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TaBLE I. Coefficients of the angular derivatives in the kinetic energy.* Cf. Eq. (49).

Coefficient Derivative Coefficient Derivative
in2 1
%3@ 3/ 002 cot Oy /061
cos? (T+1615) o) a2 —sin (2¥-+6:2) 42
sin? 62 sin? © /0% sin2 62 sin © 9/ 960%
Ay ;)2/3\1,2 (MO_‘Q 62/096‘11
sin? 65
1 9%/902 0 82/008612
cot © cos? (¥+26;2) —2 cos O cos? (T+16:2) .
sin"’ 612 a/ae sin? 612 sin? 6 9 /aq)a\ll
cos O sin (2¥}-6;
s 3/0% 0 02/32 0012
B, a/ow —1 82/ 0W by,

2 Ai1 and Bi are given in Egs. (60) and (61).

of operators whose effect on the angular momentum
eigenfunctions is particularly simple. One can show

1 1 .
F1=m[-— —h—ZMZ—*- COSs 012(5111 Z\I/Az“— COs Z\I’Al)

2

d a
in f15(sin 2¥A 2¥Ay) |[— —— —1 cot Op—
+ sin 612(sin 17+ cos 2)] FryeTant: cot b

+(G- s (69
where
As=2 ;Ont Z % — (142 cot? 9)3?17
B silf o ag;<1>+2 cot ana;qf , (64)

and M? is the total angular momentum squared opera-
tor given in Eq. (41). Fq is again derivable from F; by
replacing 61 by —6ss.

VII. THE REDUCED OR RADIAL EQUATIONS

The essential properties of the combinations of the
operators appearing in F; and F,, Eq. (63), are the

following (cf. Appendix I):
2(sin 2WAz— cos 2WA;) Dt = — B (1— o 01) DD+
+61d (I+1) Dt — (14-80c) BreaDi®2+,  (65a)
2(sin 2WA;+ cos 2¥A) D+
= — By (1= 8o 61c— 82¢) D16 27— 81, (I4+1) Dy~
+ (14-80c) B1,e42D:6t9=,  (65b)
2(sin 2WAs— cos 2 A1) D~
= — B (1— Sox— 01¢— 02) Dy 2~ — 8y, (IH-1) D~

— (1—00c) B1,k120:*t2—,  (66a)
2(sin 2WA;+ cos 2% Ag) D~
=+ B(1— 8¢ 81) DD+ — 8, (14-1) D+
— (1= 80c) Brct2 D2+, (66b)
where (4 is needed in Appendix I)
_ (=0 (4141)
Alx—‘ 2(K+1) (67)
and
L=+ (=x42) (40 (=1
Pre= [1+oa(v2—1)] » (682)
Br=Bu[1+8(VZI—1) . (68b)

Recall that « is the absolute value of &, Eq. (50).
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We have proved in Appendix II that these relation-
ships are not altered if one replaces the D+ functions
by the $,¥+ functions of Eq. (54). As such it be-
comes quite simple to derive the reduced equations
from the original Schrédinger equation

II\II‘lm:= E‘Flm (69)

for any m, and to see that the radial equations are in-
dependent of m. One obtains

1 1
V K+ __ o
| Lot )= ()
1(1+1)—«2 K cot byz }
— L(141) 8yt [
X{{ 2sin? 6, @ 4 4sin612(+ Yot fr
cot 012
T2 poctas (D
4 sin 010 ! fl

cot 012

. ( 1— 60;(_' 61x+ 62:() lefl(x_2>+]
4 sin 012

1 1 o\,
+<;;5 —_ ;;)[—K(z cot 012"{—5—0;)]“[ —

B lx—i
4 sin 0y

1(14+1)

4 SiI’l 012

61« f lx~

f (KD~ — (1"" 60:("" 611(_ 62K)lefl<x—-2)*]

4 sin 012

=0, (70a)

| Lt E=7) |—(+5)

7 22

l(l+1)_lé2 e L cot 012 ; }
- I4+1) 01
x[{ 2 sinzﬁu 4 4: ( + ) : f

cot b9

1 6 Bx+2 (x+2)—
Ton 012( oc) B2y

0 1 1
+ cot 2 (1_ 50)(_ 61;’" 62:() Blel(K—z)—]+(;—2 - _)
1

4 sin 619 e

d 1(14-1)
1 ! K b} « K+
XI:K(Z cot frat aolg)fl 4 sin 010 ! fl
_ Q= 6"") Bet2f D+
" 4sin 012

——(1— 60— 31x+52«)lefz(“—2)+] =0. (70b)
4 sin 012

Ly, is the S-wave part of the kinetic energy, and only
the term containing it survives in the description of S

states!™3:
1 92 1 9
a"~r In? 7y drg?

1 1 1 9
—+— —{sin 6 71
+(?‘12+7’22) sin 612 3912( o e ) (1)

Equations (70) are the “radial” equations, which it
has been our purpose to derive. They pertain to both
types of parity and exchange states. Parity is deter-
mined by the evenness or oddness of . If, for example,
! is even, and we want to describe a state of even
parity, Egs. (70) couple the functions f#+ and f— for
k=0, 2,4, -+, 1. This involves //2 pairs plus one func-
tion (for k=0, D is zero, hence f*~ can be taken to
be zero) or I+1 functions. The odd-parity equations
for the same / correspond to the coupling of the func-
tion with k=1, 3, «-+, I—1. This relates /2 pairs of /
functions to each other. Both even and odd parity
together therefore involve (2/+4-1) functions correspond-
ing to the (2/41) degeneracy of the vector spherical
harmonics for a given m. For ! odd, there are / functions
involved in the even-parity equations and /41 func-
tions in the odd-parity equations.

For a given parity and 1, both singlel and triplet (space
symmetric and antisymmelric) states are described by the
same set of equations. The differences in the solutions
devolve from the different boundary conditions which
must be applied, Eqgs. (52). One of the key virtues of
the functions f#(ry, 79, 612) is that they are either sym-
metric or antisymmetric; thus they may be confined to
the region, say, r1>r.. If, for example, the exchange
character of f* is symmetric (which, according to (52),
implies that f*~ is antisymmetric), then these properties
may be embodied in the boundary conditions!:

a
| rremoa| =0, (12)
n ri=ry
where d/dn represents the normal derivative, and
LSt (r1, 73, 612) Jrira=0, (73)

and the solution from there on involves only the region
r1>792>0. Such equations have distinct advantages from
the point of view of numerical solutions.®?

One can define, however, an asymmetric function in
terms of which the radial equations can be more simply
written. Letting

F;"(h, 72, 012) Efl“+ (rl, 72, 912) +flh(71, 72, 012) (74)

and
F(11, ra, 010) =1+ (11, 13, 012) —f1= (11, 12, 01),  (75)

1t A. Temkin, Phys. Rev. 126, 130 (1962) ; P. Luke, R. Meyer-
ott, and W. Clendemn, ibid. 85, 401 (1952).
1 A. Temkin and E. Sul]lvan Phys. Rev. 129, 1250 (1963).
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then from Eq. (52)
F(ry, 71, 00) = (— 1) P (11, 79, 000) - (70)

for singlet (upper sign) and triplet (lower sign) cases.
One obtains by adding (70a) and (70b):
Fr
4) !

(1 1(4-1) — 2
[Lo1z+ (- V)]rz (ﬁﬂ m)[( e

cot 012

C0t912
(1) 6, F ¢ rt+2
4sm012(+)1 + n 612 B

XA Fpt2— 180, (F 2 — F;"“) }

cot by
4 sin 012

(1—8c— 1) Bu{ Fre2+4 52«171"_2} ]

11 1(i+1)
— — — ) k| 3 cot Grot— | F— ———=01F
+<7'12 722)[ (‘ €0 12+6012> 4 sin 012 wit

B tx+2
4 sin 012

{_ le»k2+%5ox(lﬁlx+2+ le—fz) }

le
4 sin 012

(1—601( le) { K 2“{—52,‘11 K_Z}] 0
(77)
These equations, depending as they do on F; and Fy,
are more analogous to the form of the P-wave equation
of Breit.2
The question may arise in connection with these, as
well as Breit’s equations, of whether they are well—
defined, since they involve two functions F* and F
and yet there is only one equation (for a given k). This
question, in fact would appear to be particularly
relevant as the previous form of our equations, (70),
does constitute a coupled set for a given «. To see that
both situations are meaningful and in particular that
(77) is well-defined, consider a numerical solution of
(77).In that case the space of the independent variables
is divided into a grid of points, and F* is the collection
of numbers associated with these grid points. I;* can
therefore be considered a vector with as many compo-
nents as there are grid points. The differential equation
is replaced by a matrix which operates on the vector
Fr Now everytime an F occurs in the equation, it is
completely clear what has to be done: namely, one
must let the matrix counterpart of its coefficient in the
differential equation operate on that component of F}*
which is its reflection point defined by (76). This is a
completely unambiguous prescription which is tanta-
mount to saying that the set (77) is well defined by
itself. The reason that (70) is composed of two equa-
tions for each « whereas (77) is not is due to the fact
that the functions F; are asymmetric and therefore
must be solved for in the whole 71, 7, 612 space. On the
other hand the f#* functions are either symmetric or
antisymmetric, and therefore they are restricted to the
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7>y, Ois (or equivalently to the 1 <ry, 612) space.
Since this is only half the independent variable space,
it Is necessary that there be double the number of
functions to recover the same information. This is
again to say that (70) and (77) are completely equiva-
lent. (Nevertheless a redundant equation with Fy* and
F interchanged may readily be derived.)

We have stated that (70) has certain advantages
irom the point of view of numerical integration. How-
ever, it should also be stated that the form (77) will
probably be more advantageous for ordinary varia-
tional calculations. This is because if one adopts a
specific analytic form of I/, one need only interchange
71 and 7, in the expression to obtain F %,

It should be emphasized that the form of these equa-
tions is different from that of Breit.? Nevertheless the
two forms must be equivalent. This is shown explicitly
for the P-wave equation in Appendix III.

The restriction of these equations to the atomic case
(two identical particles in a fixed central field) has
implicitly been made by assuming that the potential is
a function of the residual coordinates,

V=V(1’1, 72, 7'12), (78)

so that V commutes with the angular momentum and
therefore appears as an additional diagonal term in the
radial equations. The interparticle distance 7y is re-
lated to the independent radial coordinates that we
have thus far considered, 7y, 73, 12 via the law of cosines:

7122—: 712+7'22— 21’11’2 COs 012.

Alternatively, however, one can consider 74, 75, and 7y,
as the independent coordinates and derive radial equa-
tions involving them. Those coordinates, in fact, have
certain advantages since the three singularities in the
potential occur at their null points. As such they can
describe the wave function in the region of close inter-
action very well. These variables, therefore, are par-
ticularly suited to calculation of low-lying bound states
of two-electron atoms (where on the whole the electrons
are quite close to each other and to the nucleus) and
such successful calculations have been done ever since
the early work of Hylleraas.!

When one considers the equation in the form we
have previously given them, involving 65, one is
naturally led to expand the “radial” wave function in
terms of Legendre polynomials of cos 612 The expan-
sion is then truncated after some P,(cos 612) and con-
vergence is sought as a function of »#. In these classes
ol two-electron problems, this constitutes the idea of
configuration interaction in its most general form.
Recently this idea has come under some criticism®-15

13 A. W. Weiss, Phys. Rev. 122, 1826 (1961).

14 C. Schwartz, Phys. Rev. 126, 1015 (1962).

5 A. W. Weiss and J. B. Martin, Phys. Rev. 132, 2119 (1963).
For a somewhat different finding from those of Refs. 13 and 14

and the preceding paper of this reference, cf. W. Lakin, Atomic
Energy Commission Report NYO-10, 430, 1963 (unpublished).
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principally because such a relative partial-wave expan-
sion necessarily converges slowly where the electron-
electron interaction is large (712 small). The argument
has some validity for the above-mentioned low-lying
bound states. However, the argument can easily get
distorted and exaggerated, for instance when applied
to the low-energy scattering of electrons from hydro-
gen. The point there is that the long-range correlation
coming from the induced potential in the atom is at
least as important as the short-range correlations!® and
yet is only poorly approximated by the conventional
Hylleraas type of expansion. This situation has been
discussed elsewhere.?

These reservations notwithstanding, however, it is
nevertheless true that the most accurate three-body
calculations have been made using the 7y, 7,5, 712 co-
ordinates, or linear combinations of them,'” on the low-
lying states of helium!® and its isoelectronic ions.'” We
therefore give below the radial equations in terms of
71, 72, 712. The equations are in their asymmetric form
corresponding to Eq. (77), since it is assumed that
they will be utilized in connection with variational
calculations with analytic expansions of the radial
wave functions.

1 1
et}
1

¥o
2 2, 2 2
x[{[l(l+1) = k]%—ki—} Fe

7172 &

—1(I41) by (i re*—11a?) "“F

+Bz“+2(712+722-‘7’122)f21—;§{17 2 L6 (Fypet2— Fei2) )

Y17
+ B (1— Soe— b1) (ri2 472 —-7122)—1—2

~ 1 1
X {Fz"_2+52KFz"‘2}]+<'—2 — ’*2)

7y 79
% Kk (7341 —rig?
2

i) 7
2p

P 712 0119

172

X {— Frr- 380 (P24 Fpto) }— 8,0 (14-1) ——Fz"

+le°"‘lr'_2(1 60:(_51K){ { x 2+§2 FIK_Q}:I O

(79)

18 A, Temkin, Phys. Rev. Letters 6, 354 (1961).

17 C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

18 C. L. Pekeris, Phys. Rev. 115, 1216 (1959). C. Schwartz,
ibid. 128, 1146 (1962).

Here,

= [‘—7124— (712—“722) 2+27’122(1'12+7’22) ]%- (80)

The quantity whose square root p is can easily be
shown to be positive definite. In the equation (79) the
F is understood to be a function of 71, g, 712:

Fpr= Fl"(fl, 72, 7’12) .

In addition L., is the kinetic-energy counterpart of
the S-wave Lg,, in terms of 7y, 7s, 712:

1 9% 1 9% 2 02 l7'12—|'1’122'—1’22 02
L,,= ST T 512
71 6 7o 67’2 712 (97‘12 Y1%12 67’167’12
l7’22‘|-7’122—7’12 9?
f . (81)
¥or12 790712

The equations (79) can readily be put in the form of
coupled equations for a given «.

One salient feature of the various forms of the present
equations is that they are manifestly real, whereas one
term in the earlier treatments of Holmberg and Diehl
et al. is imaginary.® It is clear that the radial equations
as well as the solutions must be reducible to completely
real form for any given angular momentum state. The
accomplishment of this in the present case comes from
the “explicit construction of real vector spherical
harmonics, Eq. (49).

VIII. BOUNDARY CONDITIONS FOR SCATTERING

In this section we derive the asymptotic forms of the
radial functions corresponding to the scattering of an
electron from a one-electron atom in its ground state.
The Coulomb modifications when the target system is
an ion instead of an atom can readily be made and will
have no effect on the angular integrations with which
we are here concerned.

As we have seen in the foregoing sections culminating
in the last section, the selection of a symmetric choice
of Euler angles has allowed for a completely general
derivation of the radial equations. From the point of
view of a scattering problem, however, a symmetric
choice of angles is not the most advantageous since
here we are concerned with an intrinsically asymmetric
situation. Thus if we consider that region of configura-
tion space where 7, is large and 7, small, corresponding
to electron 1 being scattered from the atom to which
electron 2 is bound, the wave function in this region
alone will not be symmetric. However in terms of the
Hylleraas-Breit angles, the spherical angles of one of
the particles being defined as two of the Euler angles
the wave function in this asymmetnc reglon is easier
to describe. Nevertheless this is a complication of
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detail only, since all the angular integrations may
readily be performed as we shall now show.

We start with the statement that the complete wave
function must have the asymptotic form:

lim Wy (14, 1) = (1/r1) sin (kri+8;—3lr) Yo ()

>0

X[Rus(72) /721V00(R), (82)
where [Ry,(r2)/72]Y0(2) is the ground state of the
one-electron atom (hydrogen). On the other hand,
from Eq. (51)

1 R
lim ¥yu(r, r2)=— sm (krl—l—&;——l—) +(72)

r1>00 ]

DTt (612) Dt (0, 8, %)+ (012) D (0, &, %) ],

(83)

Dr(6, B,7) Vio(dh)

X sin ©d0 d® d¥. (84)

It should be noted that (82) refers to the state of
parity (—1)? as long as we are considering elastic
scattering from the ground (1s) state. This then de-
fines the evenness of oddness of the values over which
« goes in the summation in Eq. (83).

The quadrature in (84) can readily be performed by
recalling from Sec. II that ¢, is the angle between 2
and 7; whose spherical angles in the primed coordinate
systems are given in Eq. (20). One can then use these
spherical angles to expand P; (cos ¢) via the addition
theorem for spherical harmonics. In its real form?® this
gives in the present case

m)!
(H— )1

X P(w/2) P™(0) cos m(¥—30s).

Py(%) = P,(W/Z)P,(e)-I—ZZ( 1)

(83)

In (85) we have written both the Legendre and as-
sociated Legendre polynomials as functions of the angle
but what we mean in all cases is that the angle is to
be substituted into the transcendental form of the
function. For example P1(8) = cos 8 and not Pi(8) =5.
The sign of the Py is that of Magnus and Ober-
hettinger® [which differs by (—1)™ from that of Morse
and Feshbach®]. To complete the quadrature in (84)
we note that

dP*(8)=[(—«) i/ (k) I ] Pr(O). (86)
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Substitution into (84) now yields the desired result:

o= - ()

(87a)

= (81) = Pr(/2) [ (1— ) Y/ (-4-x) T sin (615/2).
(87b)

The radial functions themselves thus approach

1 Im\R
lim f*£ (71, 72, 612) = ; sin (kr1+ 8— -Z—W)—Maz“i (612)

7]>® 7’2

(88)

in which form we see that the r;, 7, dependence of all
the limiting forms of the fy** functions is independent
of k, so that none of them vanishes in the asymptotic
region. Since in all cases the 62 dependence is trivial,
it may be worthwhile to define new functions whose
asymptotic behavior is strictly the 7y, . dependence in
(88). (Cf. Appendix III.)

For bound-state problems, it is clear that all the
radial functions must vanish in all asymptotic regions.

IX. OTHER APPLICATIONS

In addition to two-electron atomic or ionic systems
the present equations apply to double mu to pi mesic
atoms, although as the mass of the identical particles
get heavier, the correction for the center of mass be-
comes more important. Also for the spinless bosons
(pi mesons) only the space-symmetric solutions will
presumably be relevant.

The equations can also be applied to two different
particles of the same mass (positron-hydrogen scatter-
ing, for example). In this case, the potential ¥ will no
longer be symmetric hence the solutions will not be
symmetric which implies that boundary conditions
like (72) must be changed to matching conditions of
the asymmetric solutions along the line =71 This
has the effect of giving one solution where formerly
there were two, in accord with the distinguishability
of the particles.

A major further application of this approach is to
two-electron diatomic molecules. In this case, the ex-
tension from one® to two electrons is non-trivial.
However, the analysis has been completed and will be
published elsewhere.?

18 A, Temkin, Proc. Phys. Soc. (London) 80, 1277 (1962).
20A, Temkln J. Chem. Phys. 39, 161 (196. )

A, Temkm and A. K. Bhatia (to be published). The deriva-
tion offthe radial equations with these Euler angles for two iden-
tical particles and a third particle of finite mass has now been
completed and is being prepared for publication.
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APPENDIX I

In this appendix, we prove the Eqs. (65) and (66).
For m=0, /9% terms give zero. Therefore, we can
write

62
Ar—)

— cot 9— — cot? 6‘—72 (11)

2

¢}
Ag—2 cot O—— — — —2cot’ 0 -—\—I,— . (12)

ovoe  Iov

We also write (for u>0)

Dt= Ny cos k¥ sin® OF,, (13)
D= Ny sin ¥ sin® OF,, (14)
where
—1)4 O
O e B
and
Fy=F(k—1, k+1+1; 1+4«;sin® (6/2)).  (I6)
Now
MO =Ny, cos k¥[ 2x(k—1) sin*2 O cos®> OF,
—k sin® OF 42« sin* © cos 04, ['ep1
+ sin**? 04 A1, 1 Fns2], (A7)

where we have used the well-known relations for the
derivatives of hypergeometric functions:

d
%Fx-i A sin eF:H—'i (18)

a2
F = Ay cos GFK_H—“—A l,(Az K1 sin? GFH_g (19)

ae?

A relation between F,, Fyy1, and Fy» can be obtained
from the differential equation satisfied by the hyper-
geometric function

08 OF 1= F,— sin? © 221;5:) Feo.  (110)
Using (110) in (I7), we find
ADrt= Ny, cos k[ 2x(xk—1) sin*2 O cos® OF,
—k sin® OF 42« sin* 04, F,
+(1/14«) sin? 04y A iFes].  (111)

Similarly,
AsDpt= — Ny sin K\I’[ZK(K— 1) sin*% O cos? OF,
— k sin® OF 42« sin® 64 i F

K . 1o .
o sin**2 64 z.Az,x+1Fx+z]- (112)

Multiply (I12) by sin 2¥ and (I11) by cos 2¥ and
subtract to get

(sin 2¥Ay— cos 2¥A) Dpt= — Ny cos (k—2)¥ G
— 5 (Vu/Niy2) Aved 1on® &2+, (113)

where
G=[2x(k—1) sin*2 O cos? O— « sin* O+ 2«4 sin* O ]F,
(1= 1) /2(144) ] sin*? O 444 1eiFers. (114)

Let k—«+1 in (110), then

cos OF ;o= Fyy1— sin’? O

2(K+2) Fusa

Substituting in the above for F,y; and Fy3 by using
(110), we get after some rearrangement

k+2 k+2 . Atya
2 2 2
[cos 6( )+2(K 1)25m 04141+ sin 82(:( 1)]
. Al.x+2Al,x+8 <K+2) .,
— oipt @ LAFRCLaAS
X Fyp9— sin 64(K D (++3) = 1 F..

Letting x—«—2 multiplying by 2(k—1)* sin*2 0 and
rearranging, we have for x>2

G=2k(k—1) sin*2 0 F_,. (115)
Also we find directly from (I11) and (112)
G=73sin* 0A A uls, k=0; (I116)
I(1+1
G- LD inOF, xk=1. (117)

Finally then with the substitution of the above in
(113) we obtain for k>2
2 (sin Z‘I’Az— COs Z‘I’Al) 5)1"+= "Bl'ﬂ)t(““z)-F

— Bl D=+, (118)

where B/ has already been defined in Eq. (68b).
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The special cases k=0, 1 can be determined from
(113), (116), (I17). With proper normalization

2(sin 2WAy;— cos 2VA;) D= —V2BpDt  (119)
and
2(sin 2¥Ag— cos 2V A;) D =1(14+1) D+ — BiDA.
(120)

We can combine (I18, 119, 120) to get Eq. (65a).
Similarly, we can prove (65b), (66a), (66b).

APPENDIX II

We can form the raising and lowering operators
My=M,xiM, by using Egs. (36) and (37). It can be
proved including phase factors that

(4o/h) M Dy *= —[(I—m) (I4+m~+1) JO*, (111)
(i/h) M_DyF=[ (I4+m) (I—m—+1) PD1*4  (112)

It is well-known that M, commutes with H, and in
particular with the kinetic energy. One can show
explicitly that they commute with the relevant part
of the kinetic energy given below:

[sin 2¥As— cos 2¥A;, M, =0, (113)
[sin 2WA;+ cos 2¥A,, M, ]=0. (114)
It may be useful to give the following relations
[A1, M ]==(2%/sin ©) exp (Fi®)A,, (II5)
[Ag, My ]="F(27/sin O) exp (£i®) A (II6)

Below we give the results of the raising and lowering
operators on the exchange vector spherical harmonics.
These results may be derived from Egs. (II1), (112)
and the definition (54).

(i/) MyD k= —[ (1= m) (I-m-+1) ooz,
(I17)
(i/B) M_Dm %= (I+m) (I—m~+1) PDm-10%, (II8)
Operating M, on Egs. (65a), we find
M 2(sin 2¥Ay— cos 2T A) D
1) My D248y, 0 (I4+1) M D+
— (14-60) By oM D&+, (119)

= —Bf‘(l—&»r

Using Egs. (II3) and (II7), we get
2(sin 2¥Ag— cos 2¥A;) D00+
= — B(1— 8o— 01) D2+ 451, (I+1) D0+

— (1460¢) Buxy D052+, (1110)
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With repeated operation of M, it follows by induction
that the above relation is true for any . Similarly we
can obtain Egs. (65b), (66a) and (66b) for any m.
Thus the radial equations are independent of .

It can also be shown that

Vo= (—1)"W,* (I111)

In order to show this it is only necessary to state the
easily derivable relation

[DymwE = (— 1) Do, (1112)

APPENDIX III

It can be seen very easily that the P-wave even-
parity equations are the same as that of Breit. For odd
parity, we show here that our radial equations are
equivalent to Breit’s.

The relation between Hylleraas-Breit Euler angles
(denoted by a subscript B) and our angles can easily

be shown to be
sin O sin (¥ — (I111)

(I112)

3012),
3612).

For the symmetric, odd-parity case, Breit’s wave func-
tion?? is

V= cos Op[ f(r1, 72, 012) + c0Ss O1a f (72, 71, b12) ]
+ sin Op cos ¥p sin b1y f (73, 71, O12)

sin O cos ¥p=

cos Op= — sin O cos (¥ —

= — sin O cos ¥ cos 1012( f+F)
— sin O sin ¥ sin 36,,( f—f), (I1I3)

where

f=1(r1, 12, 01),
J=Ff(rs, 11, 010).

Comparing (III3) with Eq. (51), we find that our
radial functions fi'* are related to Breit’s f and f by

fit=— cos 36u( f+]), (1114)
fi-=— sin 10.:(f—F). (I115)
Substituting (I114) in Eq. (70a) for I=1, k=1, yield
1
612 1 1 cot b9 -
1 1 1 P
X[2 cot 012 tan 2 r2 I 2 sin? 012 2 sin 012]( f+f)
1 1y, 012
(h2 722)[7 cot by tan 2 +2+2 sin 012 an 2 ]
1 9f 1 of
—f)—2 — — — —|=0.
X(f=D)—2tan 2 [?’12 301z 7o 3012] 0. (I116)
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Similarly substitution of (III5) in Eq. (70b) for [=1,

k=1 gives

[Lal,+ &0 |=n+(+)

610 1 1 cot b2 ~
L cotd t—— — — -
X[z cot Tz co 2 2 2 Sin2 012 2 SiIl (912](f j)
1 1 62 cot 3012
—_— =) —= to t——
+(r1? 722)[ 4 cot b co 2 2 sin 6 2](f 7
Gl 1y ] ,
2 ¢ 0. II17
+ 2 |:7’1 3012 1’22 (9012 ( )

Adding (III6) and (III7), we find after some
simplification

5}
[L912+ (E V) ]f+—(C0t 012'6—]: ’—f)
12
2o _
1’22 sin 012 6012

b

which is the same equation given by Breit.2:3

The equivalence of our equation with Breit’s anti-
symmetric, odd-parity, P-wave equation may be shown
in a completely analogous manner,



