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others. Spear, ' ' in England, has carried out a fairly
extensive study of the properties of amorphous selenium
and, more recently, Makinson and Roberts, " in
Australia, and Lax and Phillips, " in the USA, have
investigated the formation of bands in a one-dimen-
sional model of liquids and noncrystalline solids. One
may point out that the difference between a liquid and
an amorphous solid body resides solely in the fact that
in the latter the arrangement of the atoms is fixed
whereas in the liquid it varies with time; however,
the instantaneous potential pattern is quite analogous.

It will be remembered that the conventional band-
theory of solids started with the consideration of the
one-dimensional periodic structure. Because of its
simplicity, we first give an account of the one-dimen-
sional model of liquids and amorphous substances and
subsequently extend it to the three-dimensional case.

I. INTRODUCTION

II.THEORY OF THE ONE-DIMENSIONAL MODEL

It is first assumed that the atoms are distributed
periodically and that the spectrum of the electron has
a zone structure. Then the long-range order in the
distribution of atoms is broken entirely, but in a manner
that the distances between the nearest neighbors
change only insignificantly. This introduces perturbing
terms in the Schrodinger equation. It is proved that
these perturbing terms do not eliminate the zone
character of the spectrum, but only shift the zones
slightly.

Consider a one-dimensional chain of G atoms located
at equal distances from each other. Small disturbances
of the long-range order, related to thermal lattice
oscillations, exist even in this model. The (1V+1)th
atom is at a distance 1Va+y from the first atom, where
y((a, and so it is for any X. During melting, the dis-
tances between each pair of adjacent atoms change
slightly and will be equal to
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The properties of electrons in a crystalline solid are
usually explained on the basis of the band theory of
solids. The presence of energy bands of electrons in a
solid body is theoretically verified by the quantum-
mechanical calculation of the motion of an electron in
a periodic, self-consistent field. Thus, the zone energy
spectrum usually is associated with the presence of the
long-range order in the location of the body atoms.
The motion of a charge in a periodic crystal field is
mathematically similar to the motion of a free charge
in a vacuum with the difFerence that it is necessary
to employ the "eAective" mass m*. This theory has
been applied with great success to metals and semi-
conductors.

Taking into account the above concepts, it is hard
to explain that metals retain their metallicity when
melted. Experiments on metals and semiconductors
have shown that the energy spectrum changes little on
the transition from the solid to the liquid state if the
short-range order (coordination number and the
average distance between atoms) does not change on
melting. Furthermore, many substances (see Sec. 3.1)
are known to have semiconducting properties in their
amorphous state.

Thus, it would appear that the band structure of
the energy spectrum is not determined by the long-
range order, but is dependent on the short-range order.
Gubanov'' has indeed shown this theoretically and
has proven that the band structure of the energy spec-
trum remains correct far beyond the limits imposed
by the periodic field from which it was deduced.

Before we discuss the details of Gubanov's theory,
a word about the development of the work in this field
is in order. Most of the present-day efFort in this Geld
has come from the Russian school led by Ioffe, '4
Regal, ' ' Gubanov, ' ' ' " Fisher "" Nagaev, " and
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where e« i is a constant parameter that characterizes
the degree of slight short-order disturbances. y has a
diferent value for each pair of adjacent atoms and is
accidental and hence statistical in character, Let us
assume that there is no expansion or contraction
because, theoretically, a uniform chain deformation
does not introduce anything new. In this case, p=o.
Probability of the values y is preset by a normal dis-
tribution. Normalize the distribution so that the rms
error is equal to unity.

(7 )AY=1.

The distance of the (.7+1)th atom from the first
atom after melting is equal to iVa+y, where

g= ~~&8)

where F„v is the sum of Ã y values. According to
Liapunov's" theorem, with increasing X, the distribu-
tion of F~ approaches normal distribution. Considering

7=0 and (7')„=1

the probability density

f(I'~) = L1/(2sr&V)
'

exp (—r-'ts/2')

(cV—+~), (1'~)A, ——X (2)

(gs) * = ed%*.

If X)1/e'-, (y')&)a, the lattice constant, i.e., the
probability of the presence of the (/V+1) th atom is
smeared in a region that exceeds the lattice constant,
and the long-range order disappears. Thus, the ac-
cumulation of small disturbances of the short-range
order leads to a complete disappearance of the long-
range order at distances a/e'. It also follows from Eq.
(3) that substantial disturbances of the long-range
order take place only under the condition that the
number of atoms in the basic region is

G))1/e'

We here consider 6 to be a very large, but finite number.
Before melting, the potential energy of the electron

in a self-consistent field of the atomic chain was de-
scribed by some periodic curve V(x) with a period a.
During melting, this curve experiences two kinds of
distortions. First, all minima and maxima of the curve
shift in horizontal directions (along the x axis) ac-
cording to the displacement of atoms, consequently
each point of the potential curve shifts along the x axis
by the value y, introduced above. Second, due to the
changes in the distances between the nearest atoms,

"H. Cramer, Matheraatical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946).

Then the potential energy of the electron proves
to be a periodic function of $.

A. Wave Equation in Deformed Coordinate Scale

We solve the stationary Schrodinger equation in
adiabatic approximation, i.e. , neglecting the motion
of the atoms arising due to thermal vibrations.

5' d'f
+V(x)4=~4.

251 ds

According to Eq. (5)

dP dP d$ dP 1

dx d$ dx df (1+e7)

d'P d dP 1 df
dx' d$ d$ (1+e7) dx

1 1 d'p dp (—e) d7

(1+e7) (1+e7) dp dk (1+e7)' dk

1 d'p e d7dp
(1+e7)& dp (]+e7)s dt d$

'

or

d' 2.3 d' dvd—= 1 —2e7+- e'7' ——et1—3e7 ~ ~ j——.
dx' 2! dP d$ d(

Retaining terms up to e', we have,

d cP d dp d d=—,—c 27—+——+3e' 7' + +es. . .
dx' dP dP d$ d$ dP d$ d$

the height of the maxima and minima changes; each
point of the curve shifts in the vertical direction (along
the axis V) by the value AV, which is small due to the
smallness of ~ and is as random in character as y.

The distortions of the second kind do not nullify
the periodicity of the potential, but only introduce
small additions of the potential energy to the periodic
field, which may easily be taken into account using
the ordinary perturbation theory. Therefore, we neg-
lect these distortions and consider only the first of
them that actually lead to the elimination of the
periodicity V(x). At preassigned values, they cause
significant changes of the potential. In some points,
the minimum is exchanged for maximum and vice
versa.

However, if the coordinate scale is deformed ac-
cording to the deformation of the atomic chain in
melting and horizontal displacements of the points of
the potential curve, i.e., if the coordinate P is intro-
duced using the relationship

d(/dx= 1/(1+e7) .
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Therefore Eq. (6) can be written as &/=ED, where be calculated exactly, but the probability distribution
of their values may be determined by using Liapunov's

P= Pp+eW+e zt&+ ~ ~, theorem .This leads to

W= 2y—+——,
2m dP d$d$

'

P„s' ~.s exp (iq,() &
(10)

corresponds to each eigenvalue. U„I,is the modulated
function with a lattice spacing k=1, 2, ~ ~, 6; q~ is
the wavenumber of the electron.

The solution of the perturbed problem may be looked
for in the form of a linear combination of the total
system of eigenfunctions of the unperturbed equation.

Sf'' d2 d'y d
m= ——ys—+y——.

2m dP d$ d$

Since V($) is a periodic function, the solution of the
unperturbed equation Hs&P=E&P is the familiar solu-
tion of the problem concerning the electron in the
periodic field. The energy spectrum of the unperturbed
problem consists of a series of allowed quasicontinuous
zones, each of which consists of G levels (depending
on the number of atoms in the chain), separated by
forbidden zones. Let the energy eigenvalues be de-
noted by E„&',where the index m refers to the zone
number and k is the level number in the zone. The
Bloch wave,

(W.s,.s )A, =0,

(std». s ),A„(——3'/2m) L (1/a') +q„'),
qa ''I

(I I W",- s ~sI )"*'=,, ~. ' —+4q~'A+ —
~2mG' u4 g' )

qA ') '
+P»»&"' —+16—

I

g4 g2 )

I'& q'A,"
({~

tt.s,.s ~'I )J= .-' ~

—+q"+
2mG& &a4 a'

qj -'t '
+PAA'~ —+4

&~4 3 i

where nss and Pss& are multiPliers less than unity and
dependent mainly on the difference in k —O'. As (k —k')
approaches zero nss —+1, but pss —+0; as (k —k') —+G,

both tsss.~0 and Pss —+0. Also, we notice that

e tt »,»A))e(I
~

W»s, »»
~ I )A»

i.e., the diagonal matrix elements of the operator e'm

are larger than those of the operator elV. This necessi-
tates the retention of the term ~' in the expansion.

The number of unperturbed energy levels in each
zone is equal to G, and the width of the zone is of the
order of magnitude 5'/2mus (because lLP Ax~5 but
Ax~a) . Therefore

and, as is known from the perturbation theory, the
expansion coefficients C„I, are determined from the or
system of equations hE= (d p)'/2m f/2 Aa'm& (16)
(E»s'+ eWns, »s+ e'tt »s, »s E)G»s—

consequently, the distance between adjoining levels

(,W„,,+es~, ,) G, , 0 (12) E„ssin the same zone is of the magnitude fP/m&s'G.

~llr, /+~ P Taking into consideration that

where e and k run through all possible values; 8'„~
„ I,

and w„j,„.~ are the matrix elements of the respective
perturbation operators. Note that till now, we have
said nothing about the smallness of the perturbation.

The unperturbed eigenfunctions are normalized to
unity, so that

(13)

where L= Gu is the chain length according to the scale P.

B. Evaluation of Perturbation Matrix Elements

Since expressions for 8"„~,„~and m„~,„~.contain
the random variable y, these matrix elements cannot

qs& 1/a and G))1/es,

one finds that the nondiagonal perturbation matrix
elements feW„A„.A.f is larger than the distances be-
tween the adjacent, unperturbed energy levels. Con-
sequently, the ordinary method of consecutive ap-
proximations for a discrete spectrum cannot be ap-
plied to the problem discussed.

C. The Relative Degeneration Method"

The relative degeneration is a case in which the un-
perturbed energy spectrum may be divided into groups

"L. Landau and E. Lifshitz, Non-Relativistic Quantum Me-
chanics (Addison Wesley Publishing Company, inc. , Reading,
Massachusetts, 1958).
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(EP+e'wI ~
—E) C~+ g eWpy CI, =0.

k~Qk
(17)

The solvability of this system depends on a condition
that its determinant must approach zero.

Eg' —E eWg2 ~ ~ ~ eW0

E'—E ~ ~ ~ Wg

of levels separated by rather wide distances, but the
distances between the levels within each group may
be small at will. In our case, each such level group is
an allowed zone and the distances between them are
the forbidden zones. The only criterion for applying
this method —the smallness of the nondiagonal per-
turbation matrix element in comparison with the width
of the forbidden zon" obviously, meets demands due
to the smallness of e/(G)&.

From here on we drop the index e. Since e'm»))eW»
we may drop eW»m. r.t.e'z». However, since m». and
W» are of the same order of magnitude, let us drop
~'w» in nondiagonal terms. As a result, the system of
the zero approximation equations for each zone has
the form

EI,' E~o+—p(3fp/2)~) L(1/g2) +g23 k=1) 2, 6
it follows that the energy change is positive, i.e., all
levels increase in proportion to t.', where e is the degree
of the small disarrangement of the short-range order.
For the lower edge of each allowed zone q=0, for the
upper edge g=m./a, therefore the lower edge of the
zone increases by a smaller value than the upper edge,
i.e., the allowed zones expand and the forbidden zones
contract.

Let us evaluate the order of magnitude of the dis-
placement of the energy levels. If u=3X10 cm, then

3P/2ma' 5X 10 ' erg ~1 eV.

Since gI, varies between 0 and m/u, w„j,„q 1—10 eV.
Consequently if ~=0.1, then the lower edges of the
allowed zones shift by 0.01 eV and the upper edges
by 0.1 eV, which may be measured experimentally.

D. Investigation of the Solution Obtained

It was shown above that when the long-range order
in the chain is broken, the zone structure of the energy
levels is maintained, but all levels shift somewhat.
Since

A(e) = ~ =0, (18) E. Comments on the Zero-Approximation Wave-
function

where

&Weal ~ ~ I gg
To obtain some conception of the zero-approxima-

tion wavefunctions, let us use Eq. (17) which may be
written as

EI =El +& ~I~, k=1, 2, ~ ~ ~, G.
(EI' E) CI, = —~ Q W—II C~, k=1, 2, ~ ~ ~ 6

Expanding the determinant and dividing by the product
of diagonal elements, one obtains

(R '—E) (E~ '—E)

W» WI a WI"I

~,i~~, r«~ (EI —E) (R —E) (R" —E)/

r—terms j=l

From this, it is easy to show that only a fraction of
the coefficients C& (in fact only e'G), markedly differ
from zero.

This means that the zero-approximation functions
represent wave packets where the expansion coeKcients
of these wave packets into the unperturbed functions
PI,O are Gaussian functions from k —ko, where kq cor-
responds to the energy value E&p =E The width of
this Gaussian curve on the scale k is of the order of
e'G. Thus each wave packet includes functions that
correspond to the levels of the zone EJ,' in a strip, which
is a fraction e' of the entire width of the zone and lies
around the value K

To evaluate the order of magnitude of diferent sums
in the expression (19), we show in Appendix I that the
mean value of the product of symmetrical matrix ele-
ments Wzq Wz q is always positive. (This is not obvious
since W is not a Hermitian operator. ) Using this fact,
one can further show that Eq. (19) has a solution if,
and only if, 8 lies within the zone E&'.

F. Criticism of the One-Dimensional Model

Makinson and Roberts" have also considered a one-
dimensional model in which the potential energy of an
electron is nearly periodic over short distances but has
no long-range order. The liquid is simulated by a series
of 8-type potential wells with an equal power 5'E'0/2'
and the distances between adjacent wells are dis-
tributed. according to a cutoR parabolic distribution



1046 REvIEv/s 07 MQDERN PHYsIcs ' OcToBER 1964

about the mean value. Various values are taken for the
rms deviation cr, which corresponds to e in Gubanov's
model. The length of the chain, usually 2000 "atoms, "
was always sufBcient to ensure that long-range order
was breached many times over within its length.

In agreement with Gubanov's conclusions, the
authors find that a definite gap in the energy spectrum
exists and that it narrows as 0- increases. However,
in two important respects, their findings are in dis-
agreement with those of Gubanov's.

In Gubanov's theory, all the energy levels of the
periodic model are shifted upward, and the gap narrow-

ing is a consequence simply of a difference in the mag-
nitude of the upward shifts of the levels bounding the
gap. However, Makinson and Roberts show that there
is, indeed, an upward shift of the lower gap edge, but
a downward shift of the upper gap edge which is con-
trary to Gubanov's conclusions.

Also, while Gubanov gives no criterion for preserva-
tion of the gap, an order of magnitude estimate of a
representative narrowing is about 0.1 eV for o.=0.1.
In the present model, the gap is totally destroyed for
this value of a.

The neglect of variations in the shape of the potential
in diQ'erent cells is another point open to question in
Gubanov's model. Of course, this effect does not in-
fIuence the results of Makinson and Roberts.

III. EXTENSION TO THE THREE-DIMFNSIONAL
MODEL

As shown for the one-dimensional case, the result
of small deformation in the short-range order is the
disappearance of long-range order at distances of the
order of a/c' from unit cells. In the three-dimensional
case, this means not only that the probability of loca-
tion of a particular atom is smeared over a region
larger than the unit cell, but also that distant cells are
turned relative to one another through arbitrarily large
angles.

All the results obtained for the one-dimensional case
are applicable here. The zone structure of the energy
levels is retained except that each level is shifted by an
amount e'm '„~,„l„where

toI,p' ——(35'/2') (3/a'+k') .
The wavefunctions in a zero approximation are

linear combinations of all O' Bloch functions belonging
to the given zone. However, as was shown for the one-
dimensional case, in each solution only a fraction e'

of all the functions have coefFicients significantly dif-
ferent from zero. This estimate remains valid here.
Thus, the electrons in the liquid are not described by
standing waves, but rather by wave packets moving
in definite directions, i.e., the medium is a conductor.

The uncertainty in the momentum component in
the direction of the resultant motion of the packet is

of the order of

2 P = 6c'-'/a

if we note that the packet is built from c'G neighboring
values of this momentum component; from the un-
certainty relations, it then follows that the packet is
localized within a region of dimensions

A$= a/e',

i.e., precisely the same interval within which the long-
range order shows a noticeable breakdown.

A. Scattering of Electrons Due to Violation of
Long-Range Order

Although the disappearance of long-range order has
an unimportant eGect on the energy spectrum of the
electrons in the body and on the character of their
motion, the disappearance of strict periodicity in the
position of the atoms ought to lead to additional scatter-
ing of electrons, to a decrease in their mean free path,
and to an increase in resistance. The resistance of a
1iquid with electronic conductivity is determined in
part by the disorder of the regular positions of the
atoms and in part from the thermal vibrations of the
lattice.

The erst component of resistance is referred to as
the "liquid resistance" and the second component as
the "phonon resistance. "Mott" has already shown that
the length of mean free path I.~h, due to scattering
by phonons, decreases in fusion or on transition to an
amorphous state. For T)0, the Debye temperature,
Znt, O'. On fusion, 8 decreases (i.e., the frequency of
oscillation of the atoms decreases) and so does Z~q.
Wilson obtained the ratio for the conductivity in the
solid and liquid phases close to the melting point for
a series of metals and tried to explain the higher re-
sistance upon liquidation by a change only in the Debye
temperature 8, assuming that the other quantities do
not change appreciably during the melting process.
For several metals, the agreement between the ratio
of conductivities calculated by such a method and
those obtained experimentally were satisfactory. How-
ever, for mercury the experimentally measured ratio
was 4.1, the computed value, 2.23. Consequently, there
is here an appreciable amount of an additional mech-
anism for the scattering of the electrons —the liquid
resistance. It is not accidental that this resistance was
specifically observed in mercury; actually, mercury
liquifies at a low temperature at which point the lattice
vibrations are not very intense. One can assume that
in other metals, which liquify at much higher temper-
atures, the liquid resistance is masked by the phonon
resistance.

"N. F. Mott, Proc. Roy. Soc. (London) A146, 465 (1934).
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Gubanov has established that the mean free path
connected with the loss of long-range order is given
by I.s u/es Ta.king e=0.1 again, we find I.s~10 s cm.
At high temperature, in the liquid state, it is found
that L~& Lph and because reverse paths of motion are
put together on calculation of the number of scatter-
ing centers, the scattering connected with the loss of
long-range order may be said to have little effect on
the free path. For amorphous semiconductors at low
temperatures, L& may be the determining effect; and
the free path will be much less than in a crystal at the
same temperature. In fact, since solid amorphous bodies
can exist at low temperatures when "liquid scattering"
exists, the theoretical laws obtained for the length of
the mean free path of electrons are best compared.
with experimental data for amorphous semiconductors.

There is still another cause of electron scattering in
a liquid. When the disturbance of long-range order on
fusion of the crystals was examined, it was noted that
the maxima and minima of potential of the self-con-
sistent Geld in which the electron moves are displaced
in space; but it was not considered that with the atom
displacement the value of these maxima and minima
can also change. Further, in a liquid, besides the smooth
disturbance in the order of the atom positions, there
always occur local, sharper disturbances of structure,
cavities and other distortions. The result of all this is
that the potential of the self-consistent field does not
appear as a strictly periodic function of the deformed
coordinates.

The character of these deviations of potential from
periodicity agrees completely with the case of im-
purities and other defects in the crystal. All deviations
from periodicity of potential in the coordinate system
$ are referred to as defects, and we consider both de-
fects characteristic for the liquid state (cavities, scatter
of maxima and minima potential values) as well as
defects peculiar also to crystals (impurity atoms,
empty lattice positions, atoms in interstitial positions) .
It is the presence of these defects which causes addi-
tional electron scattering apart from the phonon and
liquid scattering.

IV. THE IMPURITY CONDUCTION IN LIQUID
AND AMORPHOUS SEMICONDUCTORS

In some conducting crystals both intrinsic and im-

purity conductions are observed, and the transition be-
tween them appears as a break in the curve which gives
the temperature dependence of the logarithm of elec-
trical conductivity. Venegal and Kolomiets23 studied
glasses of various composition in a wide range of tem-
peratures, and they found no breaks in the electrical
conductivity curves. Introduction into such glasses of
impurities which were found to be electrically active

'3T. N. senegal and B. T. Kolomiets, Zh. Techn. Fiz. 27,
2484 (1957) LEnglish transl. : Soviet Phys. —Tech. Phys. 2, 2314
(1957)g.

in crystals did not affect the electrical conductivity
curves. These results suggest that in amorphous semi-
conductors the mechanism of impurity conduction docs
not work; this fact should have a theoretical basis.

When an impurity ion is introduced into a crystal,
then electrons (holes) move in the vicinity of this ion
approximately in the same way as in a Coulomb 6eld
which is reduced by the permittivitv of the medium.
Although the magnitude of the crystal-lattice 6eld
may be considerably greater than the field of the im-

purity ion, it does not materially affect the conditions
because of its periodicity. An electron (a hole) may
be captured by the ion field and the binding energy of
such a state is the activation energy hE of a donor or
an acceptor. Theoretical considerations lead to a value
of the order of 0.1 eV, in agreement with experiment.

We now discuss an amorphous medium. Consider-
ing the short-range order, one can imagine a donor or
acceptor model of the same type as in a crystal, but
the motion of an electron (a hole) is now affected
(apart from the Coulomb field of the impurity ion)
also by an additional 6eld 6U which is due to departure
from periodicity in the atomic distribution in an amor-
phous body. The 6eld 6U gives the Quctuations of the
interatomic electric Geld and corresponds approxi-
mately to the potential perturbations which give rise
to liquid resistance in Gubanov s theory. The possi-
bility of the formation of bound donor- or acceptor-
type states depends on the relative values of bU and
AE. In a hypothetical glass, whose structure differs
very little from that of a crystal,

~
8U ~&&DE, and donors

and acceptors are possible, but the energy of activation
is smaller by an amount which is of the order of the
mean value of

~
8U ~. If the fluctuation of field 6U in

a glass or a liquid is comparable or exceeds the value
of hE in a corresponding crystal (i.e., if 5U) 0.1 eV)
then formation of donors or acceptors in it is impossible.

It follows that the existence of impurity conduction
can be settled by an estimate of the Quctuations of the
interatomic field in a glass or a liquid, which are related
to the fiuctuations of the atomic order.

The estimates of Fisher show that
~

8U ~) 1 eV and
hence the impurity conduction in noncrystalline con-
ductors is impossible.

V. AVAILABLE EXPERIMENTAL DATA

ExperiiTiental data show that one has to distinguish
between two cases on melting.

(1) Coordination number increases, the short-range
order radically changes, the density increases, and the
electrical conductivity becomes metallic in character.
This is observed for semiconductors with a diamond or
sphalerite crystal, lattice-type germanium, silicon,
gallium antimonide, indium antimonide, and others
for which the coordination number in the solid state is
4, in the liquid state 8.
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s (eV)

Hexagonal
Se

(PIessner)

Single
crystaP6 Se
(Henkels)

0.13 0.15

TAsLE I. Mobility in selenium.

Amorphous
Se

(Spear)

0.14

The improved calculations show that the widths of
the forbidden band can increase as mell as decrease; if
the expansion of the body during melting is consider-
able, an increase in the width of the forbidden band is
more probable, and, conversely, during small changes
in the volume, a contraction of the forbidden band is
more probable.

p (cm' sec 'V ') 0.14 0.13 0.13 —0.34

A. Amoryhous Selenium

(2) The coordinate number does not change, the
short-range order changes slightly, the density decreases
by a few percent and the semiconducting properties
are retained. This occurs during melting of oxides and
sul6des such as Tl2S, Cu2S, Ag2S, Bi203, V205, SbS3,
FeS, and CuS.

There are also intermediate cases and more complex
changes of the properties during the transition through
the melting point, but the above two cases are most
typical. The easiest experimental method to distinguish
between these two cases is the determination of density.

According to the calculations of Hund and Mrowka, '4

the energy spectrum of the crystal depends to a great
extent on its coordination number s. In particular, in
the case of diamond lattice (s=4), the position of
bands, corresponding to s and p electrons, lead to the
formation of the forbidden band, as a result of which,
the crystal is an insulator or a semiconductor; in crystals
of higher value of s, the forbidden band is not formed
and the conductivity is metallic in character. This
fully explains why there is a change to metallic con-
ductivity during melting of semiconductors in case
one, when s increases from 4 to 8. In this case, the
effective mass and other parameters are completely
diferent in the solid and liquid states.

From the point of view of the electron theory of
liquids, case two is more interesting because here the
only diGerence between the liquid and the crystalline
states is the absence of the long-range order and a small
increase of the volume, so that the diGerence between
the energy spectra is very small.

A crude analysis was made above to evaluate the
change in the forbidden gap on melting. It was shown
that a slight change in short-range order leads to small
changes in the forbidden gap. But this calculation
neglected the changes due to (l) actual changes in
volume, and (2) the change in the magnitude of the
potential. Further investigations have shown that the
inQuence of these and other distortions on the energy
spectrum has an eBect of the same order of magnitude
in some cases; for instance, in the case of electrons
strongly bonded to atoms. The distortions of potentials
due to both origins almost completely cancel each other.

24F. Hund and B. Mrowka, Ber. Sachs. Akad. Wiss. Math.
Phys. Ki, 87, 185, 325 (1935};F. Hund, Z. Physik. 36, 888
(1935).

Since amorphous selenium has been the most in-
vestigated of the amorphous substances, we will give
a brief account of its properties.

Spear Ands that mobility in amorphous selenium is
controlled by traps (acceptor levels above the valence
band) with activation energy e=0.14 eV and it is almost
the same for hexagonal and single crystals forms of
selenium. This is shown in Table I.""

The variation of mobility with temperature shows an
anomalous behavior. p, is found to be proportional to
exp( —s/kT). Normally mobility decreases with in-
creasing temperature due to increased thermal motion
and consequently decreased mean free path. This type
of variation has also been reported for many other sub-
stances with small mobilities, e.g. , 8, NiO, Fe203,
e—In2Te3, e—Ga2Se3, and e—Ga2Te3.

For thinner specimens, Spear observed a decrease
in p, with decreasing thickness (see Fig. 1).No suitable
explanation is possible at this stage. The samples are
too thick to make an explanation on the basis of sur-
face scattering plausib1. e.

Carrier density is found to be independent of tem-
perature, but the conductivity of hexagonal form is
greater than that in the amorphous form. This seems to
indicate that carrier density is related to long-range
order. In fact, a qualitative explanation of this can be
given on the basis of Gubanov's theory.

Hartke'~ has repeated Spear's experiments using
purer samples of amorphous selenium. The purity of

O.I4

O.I2
LJ
IL4

O.IO

0.08
2

d (MICRONS)

"K. W. Plessner, Proc. Phys. Soc. (London) 364, 671, 681
(&95&).

"H. W. Henkels, J. Appl. Phys. 22, 916, 1265 (1951}.~ J. L. Hartke, Phys. Rev. 125, 1177 (1962).

FIG. 1. Graph of mobility vs specimen thickness of selinium
films at 20'C (W. E. Spear'6).
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the samples is confirmed by a drop in conductivity.
Since Hartke's values for activation energy and hole
mobility are in excellent agreement with those of Spear,
it would seem unlikely that the shallow traps in amor-
phous selenium are caused by impurities. This is further
con6rmed by adding arsenic to selenium. Arsenic,
which is found to be very active in many crystalline
substances, is found to have no noticeable effect on
hole mobility and its temperature dependence. These
observations would seem to indicate the correctness
of Fisher s conclusions about the impossibility of im-

purity conduction in amorphous substances.

B. Amoryhous Boron Films

Work on amorphous boron films has been in progress
for approximately a year at Melpar. ' The work is
chiefly concerned with the passage of electrons through
thin layers. The boron films were formed by an electron-
beam deposition technique, yielding uniform amorphous
layers. These layers are deposited between deposited
metal electrodes (Al) and the conduction properties
are determined.

The salient facts acquired, to date, from this study
are as follows: (a) Films are amorphous as determined

by x-ray and electron-diffraction studies. (b) Films
have a band gap similar to bulk value. (c) Room-
temperature resistivity is very high, about 10" 0-cm
measured at 1 V. (d) Conduction through the layer
follows a general relation i =EV, where i and V are
the current and voltage, respectively, and e and E
are constants. (e) Conduction in the films depends
very strongly on the purity. That is, e and E are de-
pendent on purity; n varies between 6 and 8. (f) Films
formed, to date, do not seem to be photoconductive,
although this has not been closely looked for.

Typical current —voltage characteristics of amorphous
films are shown in Fig. 2. A theoretical treatment on
the conduction mechanism on the layer has not yet been
carried out.

2 See Reports 12—14, Bureau, Naval Weapons, Control:
NOw 60—0362—c.

I zG. 2. Current —voltage characteristics through 2700-L-
thick boron 61m. Scale: horizontal —10V/div. , vertical —0.5mA/
dlv.

APPENDIX I
Let us write TV as a sum of Hermitian operator S"

and anti-Hermitian operator W".

w= &+w",
5' t' d', dw'=-

I 2v—+2&'—+—
I,

2riz& dP dP 2 j'
A' f,dw"= ——

I
y'—+—,

2m', d$ 2

w««w«« = (w«« '+ w«« ")(w««'+ w««");
now

and WA, It, ~ = —Wp~p',

w««w««= (w«« '+ w«« ")(w«« '*—w«« "*)
=

I
w„.' I

—
I
w„."

I +w„."w., '*

(A1)

The last two addends in expression (A1), on an average,
as products of diferent random values, are equal to
zero. It is easy to prove that

I
w««

' I'&
I w««

" I'.




