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1. INTRODUCTION

N trying to understand the structure of the strong
. interactions, several higher symmetry schemes

have been proposed. " These higher symmetries
should conserve the isospin I and the hypercharge
Y. Especially interesting in this respect is the octet
model (unitary symmetry) proposed independently

by Oell-Mann' and Ne'eman. 4 In this model one
assumes the strongest interactions to be invariant
under transformations belonging to SU(3), i.e.,
under unimodular unitary transformations in some
three-dimensional complex linear vector space ("uni-
tary spin space"). The symmetry of these strong
interactions is broken by some unknown weaker
mechanism, but in such a way that the isospin and
the hypercharge are still conserved. A still weaker
interaction, the electromagnetic interaction, breaks
this lower symmetry in such a way that only the
hypercharge and the third component of isospin are
conserved. In this unitary symmetry model one as-
signs groups of strongly interacting particles with the
same quantum numbers (not the same are I, Y, I3,
and directly related ones as strangeness, charge,
6 parity, etc.), to irreducible representations (IR's)
of the group SU(3). The lowest nontrivial IR in the
octet model, which is physically possible (i.e., has
integer quantum numbers for the hypercharge), is
the IR {8}.The eight well-known baryons X,A, Z,
and, as well as the eight pseudoscalar mesons,

K,g,~, and K, are assigned to IR's {8}.One assumes,
moreover, the existence of eight vector mesons which

On leave from the University of Nijmegen, Nijmegen,
The Netherlands.

I A very nice survey of the different higher symmetry
schemes in strong interactions is given by R. E. Behrends,
J. Dreitlein, C. Fronsdal, and B. W. Lee, Rev. Mod. Phys.
34, 1 (1962). The reader is referred there to the large existing
literature about this subject.

2 D. R. Speiser and J. Tarski, Math. Phys. 4, 588 (1963).
3 M. Gell-Mann, California Institute of Technology, Re-

port CTSL—20, March, 1961 (unpublished); Phys. Rev. 125,
1067 (1962).

4 Y. Ne'eman, Nucl. Phys. 26, 222 (1961).

belong to such a representation. Perhaps the mesons

p, co,K*, and K* constitute this octet. A difFiculty here
is which K* to take. There seem to be two (Kvr)
resonances, one' at 730 MeV and the other' at 888
MeV. One favors the 888-MeV resonance because
it seems to have all the correct quantum numbers.
The next higher IR can contain 10 particles. It is
suggested' that the familiar (3,3) pion-nucleon
resonance, the Y*, (1385 MeV), the recently dis-
covered" I = —,', x resonance at 1532 MeV and a
still unknown baryon 0 (Y = —2, I = 0, & 1685
MeV) belong to this IR {10}.A discovery of this 0
would be a great triumph for this octet model.
Okubo" has derived a mass formula for the different
members belonging to the same IR. I&'or the octets
(IR {8}),this formula reduces to a mass relation
between the different members. This mass relation
is very well satisfied for the baryons and for the
pseudoscalar mesons. However, for the vector
mesons, neither the 888-MeV nor the 730-MeV
(Km.) resonance fulfills this relation. For the IR {10}
this mass formula is again very well satisfied. Cole-
man and Glashow" have given a relation connecting
the electromagnetic mass differences within the
baryon octet. This relation is also very well satisfied.

The main purpose of this paper is to derive the

& G. Alexander, G-. R. KalMeisch, D. H. Miller, and G. A.
Smith, Phys. Rev. Letters 8, 447 (1962).

6 For extensive references, see, Proceedings of the 1968 An-
nual International Conference on High-Energy Physics, at
CERX (CERN, Geneva, 1962), p. 781.

& M. Gell-Mann, Proceedings of the 1968 Annual Inter-
national Conference on High-Energy Physics, at CERN (CERN,
Geneva, 1962), p. 805.

8 G. M. Pjerrou, D. J. Prowse, P. Schlein, W. E. Slater,
D. H. Stork, and H. K. Ticho, Proceedings of the 1968 Annual
International Conference on High-Energy Physics, at CERN
(CERN, Geneva, 1962), p. 289.

9 L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S.
Mittra, G. C. Moneti, R. R. Rau, N. P. Samios, S. S. Yama-
moto, M. Goldberg, L. Gray, J. Leitner, S. Lichtman, and
J. Westgard, Proceedings of the 1968 Annual International
Conference on Hi gh-Energy Physics, at CERN (CERN,
Geneva, 1962), p. 279.

I0 S. Okubo, Progr. Theoret. Phys. (Kyoto) 2'7, 949 (1962).
II S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423

(1961).
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Clebsch —Gordan coeKcients" " (CG coefficients) of
8U(3) for the products of the most important irre-
ducible representations (Secs. 10, 11, and 18).Special
care is taken to define properly all the relevant phase
factors (Secs. 7, 10).Some useful symmetry relations
for the CG coefficients are derived (Sec. 14). The
Wigner —Eckart theorem" for this group is given
(Sec. 15) and applied to derive a general mass formula
for the octets (Sec. 16).A special case gives the Gell-
Mann-Okubo mass relation (16.3). Another special
case, however, gives a mass relation (16.15) for the
octets which is very well satisfied by the vector
mesons if one takes as the K* the 730-MeV (K—~)
resonance. For completeness and to demonstrate
how to handle some special phase assignments, we
have considered in Sec. 17 the Yukawa couplings
between the baryons and the mesons. To be able to
show clearly how the results in the later sections are
derived, some additional sections were necessary to
define properly the different symbols and concepts
used. This leads us to the alternate purpose of this
paper; only slight extensions of the existing sections
and a few additional ones were necessary to give a
rather complete insight in the mathematical frame-
work of this special model for the strong interactions.
The treatment is as much as possible "physical""
and tries not to rely too heavily on results obtained
by purely abstract group theoretic methods. How-
ever, where necessary, results only easily obtained
(to the author's knowledge) by such methods are
stated and used. A very good example is Sec. 12
where the beautifully simple method of Speiser" for
reducing the direct product of two IR's is explained,
but not proved.

2. TENSORSi8

The group SU(3) consists of all the unitary uni-
modular traosformations in the three-dimensional

i2 In several other papers [e.g., Refs. 13 and 14] tables of
CG coefFicients can be found. Special care has to be taken in
using these tables in combination with some of the theorems
of this paper. The phase definitions for these CG coefficients
are not the same and mostly not stated.

rs A. R. Edmonds, Proc. Roy. Soc. (London) A268, 567
(1962).

r4 M. A. Rashid, Nuovo Cimento 26, 118 (1962).
'5 C. Eckart, Rev. Mod. Phys. 2, 302 (1930); E. P. Wigner,

Gruppentheorie, Vieweg (1931).
i6 With "physical" we mean in this context: "Along the

lines familiar to most physicists with some knowledge of the
theory of angular momentum. " If in some place in the follow-
ing sections, jumps in the reasoning are made which are a
little large for the reader, he is advised to look at the analogous
situation in the theory of angular momentum and the point
will almost always become clear (at least this was our ex-
perience).

i7 D. R. Speiser, in Proceedings of the Istanbul Interna-
tional Summer School 1962 (to be published).

» R. H. Dalitz, Lectures, University of Chicago, summer
1962.

vector space C3 over the complex numbers. let us
denote a vector in this space by xi and its complex
conjugate by x, ; thus x, = (x')*. Under a transfor-
mation of the group, the vectors xi and xi get trans-
formed into the vectors x* and x; according to"

—tx = clijx (2.1a)

because unitarity of n implies"

i9 We will use the Einstein summation convention.
20 a+ denotes the Hermitian conjugate of n, n~ the transpose,

and o.* the complex conjugate.

+ —1= o.', Or o.;j = ~ji

In this vector space C3 we can define mixed tensors
A";, ;::~~ which transform according to

A ~pe ~ o p —1 —1 —1 gpss, ~ ~ vc'. ~ ~ 0 &a'ko'ps ' ' ' & vali Crmj ' ' ' &na ~ tm ~ n ~ (2 2)

Uery special tensors are 5, , ej', and e;;I„' they are
unchanged under a transformation of the group. We
have

—1 —1 i
AijcCE~j 8~ = (XipClpj = 8j &

and
ijk lmn ij0 ijf

cl ~o.' Ap„6 = det A6

because of the restriction to unimodular transforma-
tions (det n = 1).

The monomials M(p, q)

a px g . ~ 8Q;Vj ~ ~ WI,

with p upper indices and q lower indices are trans-
formed into each other by transformations of the
group. These monomials could, therefore, con-
veniently be used as a basis to construct represen-
tations of the group. These representations will, in
general, be reducible, as will be shown below, because
of the existence of the tensors 6,:, e", and e;;f,.

With the help of these special tensors, we can
construct, from the general mixed tensor A;;:::&with

p upper and q lower indices, the mixed tensors 8, C,
and D. Where

gp ~ ~ 8 )imp
~ ~ 8

js ~ ~ $ + ijo ~ ~

is a tensor with (p —1) upper indices and (q —1)
lower indices,

f4 ~ ~ gapv" ~
Ijij ~ ~ l &p~p~ ij

is a tensor with (p —2) upper and (q + 1) lower
indices, and

mij pop ~ ~ 6
C4. ijg+ ~ o

is a tensor with (p + 1) upper and (q —2) lower
indices. The tensors 8, t, and D are linear combina-



918 J. J. D E S W A R T

tions of the elements of the tensor A with p upper
and q lower indices. The transformation properties
of 8, C, and D are, however, different from a tensor
with p upper and q lower indices. The tensor A is
therefore reducible, unless 8, C, and D are identically
zero.

We And that 8 = 0 when A',:,:::I,= 0, thus when
the trace of A with respect to the indices ~ and i is
zero; C = 0 when A is symmetric in the indices n
and P; and D = 0 when A is symmetric in the indices
2 and g.

It is now clear how to construct bases for irre-
ducible representations of 8U(8). We take such
linear combinations P(p, q) of the monomials 3II(p,g)
that these polynomials P(p, q) are

(1) totally symmetric in all p upper indices,
(2) totally symmetric in all q lower indices,
(8) traceless. "

These polynomials I';;:::I, form a basis for the IR
D(p, q) of 8U(8). The dimension X of D(p, q), i.e.,
the number of basis vectors is

& = (1+p)(1+ 9)}.1+ '(p+ V)-l (28)

Proof: A tensor, with only upper indices symmetric
in these p indices, has —,

'
(p + 1) (p + 2) linearly

independent components. This can be seen in the
following way. Due to the symmetry requirement,
the order of the indices is irrelevant. We could,
therefore, arrange the indices in such a way that we
have first all the ones, then all the twos, and finally
all the threes. Let us assume that we have n indices
equal to one, then n could run from zero to p. For
the twos and threes are so left (p —o.) indices. We
could make up, therefore, (p —o. + 1) different
combinations, with 0. ones and the rest of the indices
twos and/or threes. In total there are thus

Z (p —~+ 1) = z(p+ 1)(p+ 2)
a=0

different components. A tensor with only lower
indices and symmetric in these g indices has —, (g + 1)
(q + 2) linearly independent components. A mixed
tensor totally symmetric in its p upper and q lower
indices has therefore Xi ———,

'
(p + 1) (p + 2) (q + 1)

(q+ 2) linearly independent components. The re-
quirement that the trace should be zero gives further
restrictions. The trace is a tensor with (p —1) upper
and (q —1) lower indices. The trace of a mixed
tensor, totally symmetric in its p upper and totally

2~ Due to the symmetry requirements 1 and 2, every poly-
nomial has only one trace. By trace we mean here only the
contraction of one upper and one lower index and not the
contraction of two upper or two lower indices.

symmetric in its q lower indices, has X& linearly
independent components, where Xz ———,

'
p(p + 1)

q(q + 1).All these components should be identically
zero. A traceless tensor symmetric in its p upper and
symmetric in its q lower indices has therefore N
= X& —X2 linearly independent components, q.e.d.

A way to denote an IR is to write {E},e.g. ,
D(l, l) = {8},D(2,2) = {27},D(8,0) = {10},etc.
When more than one IR has the same dimension
we could distinguish them by stars, primes, etc. For
example, D(p, q) and D(q, p) (p ) q) ha, ve the same
dimension. We denote then D (p, q) = {X} and D (q,p)

U= (8 1)
where H is Hermitian; H = H+. Also the inverse is
true; for any Hermitian H the U defined by (8.1) is
unitary. The requirement of unimodularity implies

TrH = 0. (8.2)
Also here the inverse is true; (8.2) ensures that U
defined by (8.1) is unimodular.

We can also write the transformations n in the
space (.s in the form (8.1) with the condition (8.2).
In a three-dimensional space, there exist nine
linearly independent Hermitian operators but only
eight traceless ones. To these eight operators in C3

(the generators of the group) correspond eight
Hermitian traceless operators F; in V&. We write,
therefore, '-

(8.8)

where F; = F,+, Tr F; = 0, and cx; is real. To obtain
the commutation relations for F;, it is more con-

22 We can always choose the basis such that the matrices
are unitary. See for example L. S. Pontrjagin, Topologische
Gruppen (B. G. Teubner Verlagsgesellschaft, Leipzig, 1957),
Vol. 1, Sec. 32.

23 The representations have to be unimodular, because
otherwise the unimodular matrices would form an invariant
subgroup. The group SU(3) does not have an invariant sub-
group, the representations are therefore unimodular.

3. GENERATORS OF THE GROUP

In Sec. 2 we have shown that a suitable basis for
the IR D(p, q) of 8U(8) is formed by the X poly-
nomials P(p, q). There polynomials span a linear
vector space V~. A transformation o. of 8U(8) in
the space C3 corresponds to a transformation U in
the space U~. These transformations U form the
IR D(p, q) of SU(8), they are unitary" (U+ = U ')
and unimodular" (det U = 1).

Any unitary transformation U can be written as
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H, = (1/~3)Is E4 ——(1/~8)I+. E, = (1/~3)I
H. = (1/~3)3f E. = (1/~3)K, E .= (1/~3)K

Es ——(1/~8)L+ E, = (1/~3)L
(3.13)

(A4)„. = 5;,64, —
s &;43,.

(i,k,p, ,4 = 1, 2, or 3). These operators satisfy

Ap = (A';)+. (3.5)

venient to express (3.3) slightly differently. We intro- For completeness we will also give the relation be-
duce a set of nine traceless operators'4 A&, which are tween our set of generators and the set used by
dered such that their representation in C3 is given Behrends et ajt.

by

Moreover, they are not totally independent but

A,'+ As + As ——0. (3.6)

H = Qp';A',

where the hermiticity of II requires

(3.7)

We can now write (3.3) in terms of these A&, we get

4. COMMUTATION RELATIONS

We note from the commutation relations (3.9)
that I3 and 3f are two commuting operators. Because
the rank of the group is two, there exist no other
linear operators commuting with these two. We will
combine them into a vector E = (Is, 3f). The com-
mutation relations can then be written as

(3.8)
It is easy to see that these matrices A& satisfy the
commutation relations

[E,I~] = wiI~,
[E,K~] = akK~,
[E,L~] = +1L~, (4.1a)

[As', A'~] = &lAs —54AI . (3 9) and

To these 9 operators in (.s correspond 9 operators in
every space V~ satisfying the relations (3.5) to (3.9).
Then they are, of course, not any more 8 by 8 but I4I

by N matrices.
We will introduce here still another notation for

the generators of the group, which we will use
throughout the rest of this paper. With the help of
this new notation the connection between the I';
(e.g. , Gell-Mann's notation') and the A& (e.g. ,
Okubo's notation") is readily made.

We denote

~1 I1 ) ~4 K1 ) ~6 Ll ) ~8 ~ )

[I+,I] =2i E,
[K4.,K ] = 2k E,
[L+ I ] = 21 E, (4.1b)

[I,K+) = L+, [K,I+] = L

[I4.,L+] = K+, [L,I ] = K
[K+,L ] = I4. , [I+,K ] = I (4.lc)

where the unit vectors i, k, and 1 are defined by

1 = (1,0), k = (l, l v'3), 1 = (—l, l v'3) .
The other commutation relations, less symmetric in
form, are

I"3 = I3

I'~ ——K2, Fg ——L2,

(3.10)

and the rest is zero.
We will introduce the operators"'

We can form then the operators P;=e' P4.,
——e' ', P~ ——e' ' . (4.2)

I~ = I1 & iI2,
K~ =K1&iK2,
L~ = L1 & F2. (3.11)

24 These operators AI', differ from the ones given by Okubo
(Ref. 10) by an over-all minus sign.

The operators Ai, are then expressed in terms of these
operators

Ar ——Is + —', ~83I, A4 ——I4. , As = I
A, = I, +-', ~831, A, =K—+, A,'=K
A', = ——,

' ~33II, A', = I+, A', = L . (3.12)

Then

P I~P;

Pg I~Pg

L+

K+ 7

P 1L P;

P)'L,Pg

P;K~P; =
PI, 'K~PI,

Pi'K, P)
—K

I+ )

—L~.

—K~,
I+ )

(4.3)
s4 Quite extensive use of these operators is made by C. A.

Levinson, H. J. Lipkin, and S. Meshkov, Phys. Letters 1, 44,
125, and 807 (1962); Nuovo Cimento 23, 236 (1962); Phys.
Rev. Letters 10, 361 (1962). See also A. S. Maefarlane, E. C.
G. Sudarshan, and C. Dullemond, Nuovo Cimento (to be
published).
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P, 'PIP; = Pg

PI, 'P;PI, = Pf, ',
P)'P;PI, ——PI,

Moreover, we have the relations

p—1 (4.4)

P EP; = E —2i(i E),
P~ EPg ——E —2k(k. E),
Pg'EPi ——E —21(1 E) . (4.5)

The relations (4.5) can easily be proved as follows:

PI, 'EPI, ——E + im[E, K2]

+ ((im. )'/2!)[[E,K,],K,] +
= E + k(k E) (cos m —1) + kK& sin n,
= E —2k(k E) .

5. COMPLETE SET OF COMMUTING OPERATORS

To denote the different eigenstates, it is con-
venient to label them with the eigenvalues of a com-
plete set of commuting operators which are linearly
independent. The set consisting of I, and 3II can be
extended with I' = I', + I,' + I,' and with two more
operators F' and 6', called Casimir operators. ""
These are"

These relations can easily be proved in the following

way:

Pg'I~Pg ——I~ + Ar[I~, K2] + ((i7r)'/2. )[[I~,K,],K,]
+

Igcos 2m'+Lpslll pm = Lp)

and analogously for the other relations. From the
relations (4.3) follows directly that

T., andmof I', I3, and M. Also for the eigenvalues of
E = (I8, M) we will use the vector notation e = (T„
m). We will denote by ~e,y) an eigenstate of the
operator E belonging to the eigenvalue e. The label y
describes the unspecified other quantum numbers.
For an IR, we can also de6ne the highest eigenvalue
e& and the highest eigenstate ~p, q, T, err, y). This
highest eigenvalue is that eigenvalue e within the
IR which has the largest T„the highest eigenstate is
the eigenstate corresponding to the highest eigen-
value.

6. TWO THEOREMS

We are now in the position to state some useful
the orems.

Theorem 1: Let ~e, y) be an eigenstate of E. If
K+~e, y) is different from zero, then K~~e, y) is also an
eigenstate of E with the eigenvalue e + k.

Proof: From [E, K+] = kK+ follows

EK+~e,y) = K+(E+ k)~e,y) = (e+ k)K+~e,y),
Q.E.D.

Analogously we have, if K
~
e, p) W 0, then K ~e,

y) has the eigenvalue e —k; if I~~e, y) W 0 then
I~~ e, y) has the eigenvalue e & i, and if L

~
e, y) W 0

then I ~ ~e, y) has the eigenva, lue e & 1.
This theorem has a simple geometrical interpre-

tation in a two-dimensional eigenvalue diagram (Fig.
1). In this eigenvalue diagram every eigenva. ue is

m I)

O' = Q A„"A"„Ag.

The operators F' and 6' have the property that they
commute with every F;. According to Schur's
lemma"" these operators are constants for an irre-
ducible representation. The IR's can, therefore, also
conveniently be labeled by the eigenvalues f' and g'
of these operators F' and O'. Of course, the set (p, q)
is equivalent with the set (f', g') The state. s within
an IR can be labeled by the eigenvalues T(T + 1),

» H. B. G. Casimir, Proc. Roy. Acad. Amsterdam 34, 844
(1931).

26 M. Hamermesh, Group Theory and its Application to
Physical Problems (Addison —Wesley Publishing Company,
Inc. , New York, 1962), Secs. 8—13.

~7 I. Schur, Sitzber. Preuss. Akad. Wiss. Physik. math. El.
24, 406 (1905).

28 Ref. 26, Secs. 8—14, lemma II.

T3

Fxo. 1. Part of a two-dimensional
eigenvalue diagram showing the regular
pattern (Theorem 1).

represented by a point e = (T., m). These points
form a regular pattern; the distances between neigh-
boring points being i, k, or i.

Theorem 8: Let
~
e, y) be a,n eigenstate of E, then

P;
~
e, p) is also an eigenstate of E with the eigenvalue

e —2i(i e). The degeneracy of the state P;~e, p) is
the same as the degeneracy of the state ~e, &).

Proof: From P;'EP; = E —2i(i E) follows

EP;~e,y) = P, IE —2i(i.E) I ~e,y)
= Ie —2i(i e) IP, ~e,y)
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Moreover, P; is a unitary operator; it conserves,
therefore, the multiplicity of the state.

Analogously we find that P&~e, y) and P&~e, y) have
the eigenvalues e —2k(k e) and e —21(1 e). The
degeneracy of these states is again the same as the
degeneracy of ~e, y).

Also this theorem has a simple geometrical inter-
pretation in the two-dimensional eigenvalue diagram.
If e& is an eigenvalue, then also the values e2, e3, and
e4, obtained from e& by reQection with respect to lines
through the origin perpendicular to the i, k, and 1

directions, are eigenvalues [see Fig. 2(a)]. Once more

applying P; gives two more eigenvalues es and es. So,
in general, the existence of one eigenvalue implies the
existence of six eigenvalues"" all with the same de-

generacy.
There are two exceptions. The first exception is

when the eigenvalue e& lies on one of the reQection
lines [see Fig. 2(b)]. In this case the existence of one
eigenvalue implies only the existence of three eigen-
values. The second exception is when the eigenvalue

ei lies in the center; e&
——(0,0). In this case no other

eigenvalues are implied.

m)l

I

2 2'

m]L
( I- 3I

I

2
I

2
I3

I
I l-

'llew 3

b.

7. IRREDUCIBLE REPRESENTATIONS I

In this section we consider the simplest irreducible
representations which are of interest to us.

D(0,0) = (I). This IR consists of only one state
and because of theorem 2, the eigenvalue e belonging
to this single state is e = (0,0). In the octet model,
one identifies the hypercharge opera, tor Y = 8 + B
with the operator

Y = (2/~3)M.
This state is, therefore, an isosinglet state with
Y = 0. The operators F; we can represent by 1 )& 1
matrices which are all identically zero (traceless).

P

Jl

po

Fra. 8. Eigenvalue diagrams of the IR's with N = 8. (a)
The irreducible representation D(1,0) = {8J.(b) The irre-
ducible representation D(0, 1) = {8*{.

PL Pk Pl

~ ~
5 3

o3

Ci ~ b.

Fre. 2. Two-dimensional eigenvalue diagrams showing the
results of the operators P;, Pq, and Pi on the state p(1)
(Theorem 2). (a) When e(1) is arbitrary,

P;e(1) = S(2), P;~(8) = ~(5),
Pe(1) = e(8), p'4(4) = 4(6) .
P~4(1) = 4.(4)

(b) When e(1) lies on the refiection line P ~,

P'~(1) = ~(2),
P.~(1) = ~(8),
P~4(1) = 4(l).

In Racah's lecture notes (Ref. 80) is shown that not only
e and e —i(i e) are eigenvalues, but the whole chain(iso-
multiplet) connecting these two eigenvalues.

se G. Racah, group Theory and Spectroscopy (Institute for
Advanced Study, Princeton, New Jersey, 1951).

We note that the operator P; is the charge sym-

metry operator. The symmet, ries implied by the
operators P& and P& are, therefore, generalizations of
the principle of charge symmetry.

D(1,0) = (3).There are three possibilities for this
case according to theorem 2. The erst possibility is
three degenerate eigenvalues at the origin I = Y
= 0. For this case, all the operators F; are identically
zero. Because they are 3 X 3 matrices, this case is
reducible. The two other possibilities have eigenvalue
diagrams as depicted in Fig. 3. Here we have to make
a choice. We make the conventional choice [Fig.
3(a)]. We leave the eigenvalue diagram [Fig. 3(b)]
for the contragredient representation D(0, 1) = [3*].
We are, therefore, able to write down

, (1 o 0'l , (I o 0'l
Is ———

(0
—1 0, and 3' =

2~3 (0 1 0)
0 0 0 0 0 —2

For the other matrices we have first to de6ne the
relative phases between these three states. We will

do this the following way:
(1) Within an isomultiplet we use the Condon and

Shortley phase convention. "This establishes that

I+bi = 0, I+)4 = 4i, I+4 = 0.
3 E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, Cambridge, England,
1935). See also Ref. 87.
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(2) The relative phases between the different iso-
multiplets can also be defined rather easily. We re-
quire also for the operators K~ the phase choice of
Condon and Shortley. Therefore,

With our phase conventions we have now

I+pi R1$2 p K+QC '5n$3 ~

We can identify" qh(3*) = —x, , y, (3*) = x„and
@,(3*) = x,.

All the IR D(p, q) can be formed by the direct
product of p times D(1,0) and g times D(0,1). This
direct product contains of course more than the IR
D(p, q). However, it is clear that the highest eigen-
state p(eJr) of D(p, q) can be formed in only one way

1 1 1y(e) = xy .s u t, w, . (7 2)
V V

p factors q factors

The highest eigenvalue is, therefore,

7.3

Moreover, it is clear that this highest eigenvalue is
nondegenerate. This highest eigenstate has hyper-
charge

Y = (p —V)/3. (7.4)

Physically the hypercharge is an integer. If we want
to restrict ourselves to the octet model, then not all
the IR's of SU(3) are interesting. The only IR's
realizable in nature" are IR's for which p —

q = 3n,
where n = 0, +1, ~2, +3 . . etc.

These are, therefore, the representations

{1}= D(0,0), {10}= D(3,0), {28}= D(6,0),
etc. ,

{10*}= D(0,3), {28*}= D(0,6),
etc. ,

3~ See Sec. 8 for the specific phases.
ss This comes from our special choice (7.1) for the hyper-

charge operator.

K+qh = 0, K+ys ——0, K+y, = y, .
The matrix elements of the operators I~ and K~ are
now totally defined and, therefore, also of L+ ——[I,
K+]. We can identify p, = x', g, = x', and &3 x'.
These states p&, q4, and gs in SU(3) are equivalent
to the states n (spin up) and P (spin down) in SU(2).

D(0,1) = (3*). The eigenvalue diagram is like
Fig. 3(b). We can, therefore, write

, I'-1001, I'-1 0 0)

{8}= D(»1),
)

{27}= D(2,2),

)

{64}= D(3,3),

{35}= D(4,1),
{35*}= D(1,4),
{81}= D(5,2),

{81*}= D(2,5),
etc.

etc. ,
etc. ,
etc. ,

etc. ,

To stay closer to the physics, we will work in the
following solely with the hypercharge operator Y
and its eigenvalues. The vertical scale in the eigen-
value diagrams we will, however, compress in such
a way that the unit of length along this vertical axis
still corresponds, as if we have plotted the eigen-
values of M. In this way we preserve the high sym-
metry in these eigenvalue diagrams.

To be able to refer simply to the different eigen-
states of an IR we will enumerate them from 1 to
Ã. We will choose the following ordering for the
states:

(a) within an isomultiplet, the states are ordered
so that I, decreases;

(b) the isomultiplets belonging to the same Y are
ordered so that I decreases;

(c) the groups for different Y are ordered such
that Y decreases.
For the contragredient representation {N*}, we
adopt an opposite convention for (a) and (c); we
order the states within a multiplet such that I, in-
creases and the groups of different Y we order such
that Y increases. In this way the eigenvalue diagram
for {¹jis the inverse with respect to the origin
(I. = 0, Y = 0) of the eigenvalue diagram for {N}.

To be able to define later uniquely the Clebsch-
Gordan coefficients of SU(3), it is necessary first of
all to define precisely the relative phases within the
IR's. We adopt, therefore, the following convention:

(1) The rela, tive phases tcifhin a definite iso-
multiplet are determined by the Condon and Shortley
phase convention. "Then

I y (I,I„Y) = [(I —I.) (I+ I.+ 1)]'p (I,I, + 1,Y),
I ~(I,I., Y) = [(I+I.)(I—I.+1)]'~(I,I.—1,Y),

(7.5)

P'e(I, I., Y) = (-)""e(I,—I., Y) . (7.6)

(2) The relative phases between the different iso-
multiplets we de6ne then with the help of the opera-
tors K~. Biedenharn"' has pointed out that

K y(I,I., Y) = 5 y(I + '„I,+ -'„Y+ 1)-
+ 5 y(I —'„I.+ -'„Y + 1), (-7.7)

s3' L. C. Biedenharn, Phys. Letters 3, 69 and 254 (1962); J.
Math. Phys. 4, 436 (1963). See also G. E. Baird and L. C.
Biedenharn, J. Math. Phys. 4, 1449 (1963).
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where

and

(I + I, + 1)[-', (p —q) + I + -', Y + 1][-', (p + 2q) + I + -', Y + 2] [-', (2p + q) —I —-', Y]
2 (I + 1)(2I + 1)

(I —I )[—'(q —p) + I —-'Y][—'(p + 2q) —I + —'Y + 1][—'(2p + q) + I ——'Y + 1]
2I(2I + 1) (7.8b)

We require thus always b~ to be real and positive.
This uniquely defines the relative phases between

all the states of an IH, .

8. CONTRAGREDIENT REPRESENTATIONS

The representation D(p, q) is called contragredient
to the representation D(q, p). These representations
are intimately connected.

If U = e' '~' is a representation of an element of
8U(3), then so is U* = (U ') ~. Now

/

II
—1)T —ia E + ia Ei

fl t

Therefore, we could choose [actually we do not, aee

Eq. (8.1)] the generators Ii,' of the contragredient
representation to be

Then we have

I3 = —I3,
Y'= —Y,

I' = —I,
K~ = —K

L~ = —L~,

I3' ———I3 and Y" = —Y . (S.la)

This is required because of the eigenvalue diagram
and the specific ordering of the different states. Our
phase conventions require the choice

(8.1b)

and the relation between the eigenstates is

y({N*},I,I., Y) = qy*({N},I, —I., —Y)

where g is an over-all phase factor.
This choice is certainly inconvenient, because it

implies that not all of the elements of the matrices
I~ and K~ are positive, which is required due to our
phase conventions (1) and (2). We have to take the
following choices for the matrices F" of the contra-
gredient representation {¹j if we have the matrices
Ii, of the representation {Nj.

Then the commutation relations (4.1c) require

I"= —L (S.lc)
The relation between the eigenstates of the repre-
sentations {Nj and {¹jis then

Q. IRREDUCIBLE REPRESENTATIONS II

In this section we will discuss the IR's which we
will use later on.

D(l, l) = {8}.One can immediately construct the
eigenvalue diagram [Fig. 4(a)]. The highest eigen-.
value e3 is I, = 1, Y = 0, hence I = 1. Because of
theorem 2 this eigenvalue ensures the existence of six
eigenvalues ei, e2, es, e~, ey, and es (all nondegenerate).
The existence of e4 (I = 1, I. = 0, Y = 0) is also
implied by the existence of e3, because e&, e&, and e&

form the I = 1 isomultiplet. We count so in total 7
eigenstates. The missing eighth state e6 can be noth-
ing else than a I = 0, Y = 0 state. The matrices I~
are given by Eq. (7.5), the ma, trices K+ by Eqs. (7.7)
and (7.8).

D(3,0) = {10}.The eigenvalue diagram is given
in Fig. 4(b). The highest eigenvalue e, is I = —,',
I. = —,', Y = 1. Theorem 2 implies the existence of
e4 and e10. The eigenvalues e2 and e3 have to exist to
make up the I = —,', Y = 1 isomultiplet. However,
the existence of e2 and e3 implies the existence of e~,

e7, e8, and eg due to theorem 2. The last eigenvalue e6

is necessary to complete the I = 1, Y = 0 multiplet.
D(0,3) = {10*}.The eigenvalue diagram is given

in Fig. 4(c). The matrix K+ is easily determined from
the corresponding matrix of the representation {10}.
We have

K+(10*) = [Kp(10)]

34In the octet model every IR possesses a state with
Iz = Y = 0. See also Sec. 14.

4({N*},I,I*,Y) = ~(—)'*"e*({N},I, —I., —Y) .
(8 2)

Here g is an over-all phase which could conveniently
be defined by the condition3'

y({ N*},I, 0, 0) = y*({N},I, 0, 0)

then g = 1.
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lines. The eigenvalue diagrams are given in Figs.
4(d)-4(g).

The representations

D(2,2) = {27}, D(6,0) = {28},
D(4, 1) = {35}, D(3,3) = {64}, etc. ,

Co. CLEBSCH-GORDAN COEFFICIENTS

t;he corresponding conjugate representations When one forms the product representation of
{28*},{35*},etc. , can be obtained along the same two IR's D(p&, q&) and D(p2, q2), then this product

2 I
~ I

—~

6,A
I3

3 2
~ I

—~

e 5g

I
Z

9 8
~ —~

IIO

8 9~ I —e

e.,

~ —4

7g
I I3

2 3 4

(&o) (Io')

b. C,

VJl vii v}i

~ 2i~ ~ ~ 2iI- ~

x I —x

2I 2 I3

d.

e 3— ~

x 2)I- x

2. 3

Flu. 4. Eigenvalue diagrams for the lowest irreducible
representations.

multiplicity I

II 2
0 II 3
0 4

9.
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representation is, in general, reducible. Symbolically
one writes

D(&„q,) e D(p. ,q, ) = Z e.(P,Q)D(P, Q), (101)
P, Q

where a(P,Q) is an integer. The series on the right-
hand side of Eq. (10.1) is called the Clebsch —Gordan
series (CG series). This symbolical equation states
that the representation D(P,Q) is contained 0(P,Q)
times in the direct product of the IR's D(p&, q&) and

D(p q)
We have seen in Sec. 5 that a complete set of

operators necessary to specify uniquely the states of
an IR is O', F', I', I8, and Y. The states of the product
representation D(p&, q&) D(pm, q2) are, therefore,
completely specified by the eigenvalues of the 10
linearly independent, commuting operators

6'(1), 6'(2), F (1), F (2), I (1), I (2), I (1), I,(2),

Y(1), and Y(2). (I)
If we define the operators

F, = F;(1) + F,(2) (i = 1, ,8) (10.2)

then a (noncomplete) set of commuting operators is

6', 6'(1), 6'(2), F', F'(1), F (2), I', Ig, and Y.

However, this makes only 9 operators. We need
another operator to make this set complete. This
operator I' is unfortunately not contained in the
group. We have to go outside the group to find this
operator" which is necessary to distinguish the
different D(P,Q) for the same P and Q, when

0 (P,Q) ) 1. A complete set of commuting operators
is therefore

6', 6'(1), 6'(2), F, F'(1), F'(2), I', I„Y,and 1'.

(II)
In the following we will use a shorthand notation
when there is no chance for confusion. We denote
then the eigenvalues g' and f' of 6' and F' collectively

by p, the eigenvalues I, I., and Y by v, and the eigen-
value of F by p. We denote the eigenstates of the
representation D(pi, qi) by p',",', the eigenstates of

D(p2, q2) by @'„",*'. We write the eigenstates of the set
(II) in the product representation as

&(~~~)
The dimension of the representation D(p;, q;) is X;.

35 This is about all that can be said about this operator I'.
In practice, one uses symmetry properties of the wave func-
tion.

In the %1%2 dimensional product space, we can
take as basis the vectors p',",' p'„" of the product
representation or the direct sum of the vectors

P1 P2
X

I I F I F IIsY ~I, sI sIg v v ~

Now we can combine the different y to obtain eigen-
states of the set (II)

I„Y, I1Yz I2Y2 IY

The coe%cients

I Y I y II Y

v~ p2
t'

&I1Y1 I2Y2 IF]'

(10.5)

are called isoscalar factors. "Note the dependence of
these isoscalar factors on the total isospin I.

Comparison of (10.4) and (10.5) with (10.3) shows

(
+1 P'2 +y ge Iu I P'1 +2

I1Y1 I2Y2 IY (10.6)

Because the CG coefficients of SU(2) are well known,
it is sufFicient to give the isoscalar factors to specify
the CG coeflicients of 8U(3) uniquely. Care has to
be taken, however, that the CG coeffmients of SU(2)
have the correct phase factors."

36 It turns out that one can choose the diferent arbitrary
phases in such a way that all the CG coef5cients are real. The
transformation matrix is then a real orthogonal matrix.

Pi IJ2vv
i

p )
of the different IR's contained in the product of
D(p&, qi) g D(p2, q~). These two different sets of
orthonormal basis vectors are connected by a unitary
transformation3'

(I I l P (P 0 P ~( )~( ~ ) (yog)
v, ,v, (Pl P2 V

The coefficients („";"„:„") are the Clebsch —Gordan co-
efficients (CG coefFicients) of 8U(3).

We could have looked at the above problem in
another way which is very useful. The product states

are eigenstates of the operators of the set
(I). Therefore, they are also eigenstates of I. = I&,
+ I2, and Y = Y& + Y2, but not of O', F', 1', and I'.
With the help of the Clebsch —Gordan coeflicients
Cl;j;'i. of SU(2), we can construct the eigenfunctions
x of the operators 6'(1), 6'(2), F'(1), F'(2), I, I„and
V, butnotyetof O', I",and F. Then
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To define uniquely the isoscalar factors, one has
to define the relative phase of the basis vectors of
the IR D(P,Q) in the CG series (10.1) with respect
to the basis vectors of the product representation

D(pi, q, ) D(p&, q2). We will take these phase factors
always real; this will result then in real isoscalar
factors. To decide on the sign of the phase, we con-
sider the highest eigenstate qI)(."„) of the IR D(P,Q),
then

~(() Iji IJ» Ijv (s.) (s.)(
(Pl V2 Virl

12. CLEBSCH-GORDAN SERIES

The direct product D D of two IR's of SU(8)
can be decomposed in several IR's of SU(3). This
is formally described by the Clebsch —Gordan series
(10.1). To find the different D(P,Q) with their
multiplicities 0.(P,Q) we will follow the method of
Speiser '" "

We start by making a (p, q) coordinate system (Fig.
5). In this coordinate system we can represent every

Among the different CG coeKcients, we choose the
one with the largest possible I~ to be positive. If this
is not sufficient; to decide, we take from the coef-
ficients with the largest possible I& the one with the
largest possible I~ positive. This convention was
sufficient to determine the phases in the cases met
here. Perhaps this is not, in general, sufficient; how-
ever, this convention can easily be generalized. We
have chosen this convention as the most direct
generalization of the phase convention for the CG
coeKcients of SU(2). There one requires FIG. 5. Coordinate system in which we can represent every

irreducible representation (Nl = D(p, q) by a point (p,q).

11. ORTHOGONALITY RELATIONS

The CG coeKcients of SU(3) form a real orthogo-
nal matrix. Therefore,

g ~

9'lb@
p ~

l4lbP
) (ii i)

r' (
p,py E p] p2 p (t V

The orthogonality relations of the CG coe%cients of
SU(2) are well known. " Therefore, the orthogo-
nality relations for the isoscalar factors are

( Iji P2 P~ IJ( Ps P~'f r

i, y, ) Ii Yi IsYs IY I(Yi IsYs IY'
(11.8a)

and

~~Y I1YI I2 Y2 IY I1Y1 I2Y2 IY
= &r, i, '&i, r, '8r, r, 'br, r, ' . (11.3b)

3~ M. E. Rose, Theory of Angular Momentum (John Wiley
4 Sons, Inc. , New York, 1957).

IR D(p, q) by the point (p,q). We make this co-
ordinate system oblique; the p and q axes make
angles of 30' (see Fig. 5) with a horizontal line, which
we will call the I3 axis. The axis perpendicular to the
I3 axis is called the Y axis. The unit of length along
the p and q axis we take'to be l/V3.

Next we can reQect this figure about the p axis
and a,bout the q axis. ReQecting now about the Y
axis, we obtain the "lattice" as shown in Fig. 6.
We give a, positive weight to the nonshaded sextants
and to the shaded ones a negative weight.

In order to obtain the Clebsch —Gordan series of
the direct product D(p), qi) (3 D(ps, qs) we need the
eigenvalue diagram of D(pi, q, ) or D(p, ,q,) with the
multiplicities of the eigenvalues. We will assume that
we have the eigenvalue diagram of D(p„q, ) drawn on
scale; the unit of length for I3 is t, the unit of length
for Y is -', ~3t. We place this eigenvalue diagram of
D(pi, q)) on top of Fig. 6 in such a way that the eigen-
value (Is, Y) = (0,0) coincides with the lattice point
IX, I

= D(p„q,) in the first positive weight sextant
and that the I3 axis of the eigenvalue diagram
coincides with the I3 axis of the lattice. The eigen-
values of D(p„q)) coincide now all with points of the

38 This method can be used for all the IR's of SU(3) and
not only for the subset of IR's used by us. Because we are
only interested in the octet model, we give this restrictive
version.
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lattice representing IR's, except those eigenvalues
which fall on the p, q, or Y axes. We can now state
Speiser's theorem:

Every IR covered by an eigenvalue of D(p&, q&),

in. the above described way, is contained in the

First, we will place the center of the eigenvalue
diagram [Fig. 4(a)] of {8}on top of the point {10}in
a positive-weight section of the lattice (see Fig. 7).
This point (IR) is covered by an eigenvalue of multi-
plicity two. This gives, therefore, a contribution to
the CG series of 8 2 X {10}.The points (IR's)
{8},{27},and {35}in the positive-weight sextant,
and the {10} in the negative-weight, sextant are
covered by eigenvalues of multiplicity one. They
give, therefore, a contribution

{8}+ {27} {»}e {10}
to the CG series. We can neglect the two eigenvalues
falling on the p axis. The complete CG series be-
comes now

{8} {1o}= {8} {27} {35}8 {1o} 2

X {10}

Fro. 6. The lattice. The nonshaded areas have positive
weight, the shaded areas negative weight.

direct product D(p„q, ) D(ps, q&) as many times
as the multiplicity of the eigenvalue which covers
it and with a sign equal to the weight of the
sextant. The contributions of the negative weight
sextants have therefore to be subtracted from (in-

T3

y lo» /27 /35 / FIG. 8. Determination of the CG
series for the directproduct {10} {8}.

I3

Fzc. 7. Determination of the CG
series for the direct product {8}8 {10}.

stead of added to) the Clebsch —Gordan series.
Eigenvalues covering the p, q, and Y axes can be

neglected.
To demonstrate the procedure we will obtain the

CGseriesof {8} {10}.Wewilldo thisin two ways.

To obtain the CG series the other way, we place
the (0,0) eigenvalue of the eigenvalue diagram [Fig.
4(b)] of {10}on the point {8}in a, positive-weight
sextant of the lattice (see Fig. 8). A}1 the eigenvalues
of {10}have multiplicity one. The positive-weight
sextant gives the contribution to the CG series

{1} {8} {1o} {1o*} {27} {»}
The negative-weight sextants give the contribution

8 {1}8 {1o*}.
We may neglect again the two eigenvalues of {10}
falling on the p and q axes. The complete CG series
is, therefore,

{10} {8}= {8}Q {10}63 {27}6 {35}
as we have seen before.
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13. IRREDUCIBLE REPRESENTATIONS AND

IRREDUCIBLE TENSOR OPERATORS

(18.1)
The basis vectors f'."' of the IR {li} = D(p, q)
= {X}transform then as

X = A'S ~

yr(s) Up()4) g p()4)D(s)@(
v =l

Here D'"' is a unimodular unitary matrix.
Therefore,

(18.2)

Under a transformation n of 8U(8) the vector x
in the space C3 transforms according to

and the inverse relation

lr
D'~'( )D'"'( )

p, p, Vl V2 V 4) Vl V2

= &.u'»v'D')'(n) (18 8)

In (18.2) we defined the transformation of the
basis vectors f'„"' of the IR D(p, q). We can now also
define irreducible tensor operators of rank p. This is
a set of N„operators T'„"' which transform under a
transformation n of SU(8) as

IIrr(l ) UIP(ÃU rg—
rIr(l, )D()4)4:( ) (18 9)

and

QD„"„( )D„„" (n) = b„„"
in complete analogy with Eq. (18.2).

(18.8)

14. SYMMETRY PROPERTIES OF THE
CG COEFFICIENTS

y( ) g D(s)( )yr()4) (18.4)

As already pointed out in Sec. 3, the matrices D'"'
form the IR {p} = D(p, q) of the group SU(8). In
that same section, we have seen that every transfor-
mation of 8U(8) is characterized by eight real
parameters n;. The matrices D'"'(n) are, therefore,
functions of the n;. It is possible to define a density
function p(n;) such thatss

In this section we will study some of the symmetry
properties of the CG coeflicients of SU(8) and of the
isoscalar factors. Unfortunately, our lack of knowl-
edge of the operator I' will reHect itself here in the
impossibility of defining rigorously some over-all
phase factors. Fortunately, these phase factors are
rather unimportant and can be fixed afterwards.

(18.5)dn, . dnsp(n. . ms) = 1 If the IR {p,},appears in the CG series of {pr}
S {)Ms} then it will also appear in the CG series

if the integral is performed over all the elements of {)(4s} (g) {pr},because these series are identical.
the group SU(8). We write" Therefore,

dD = dnr ' 'dnsp (nrr ' ' ' ins) .

Then one can also show that""
pl p2 p7 p2 p1 py (14.1)

rr&.)( )rr&.)( ) g 0 I& 0
~

l4l& 0
) g)&)( )

ylrgy Vl V2 V 1 2

(18.7)
89 Ref. 26, Chap. 8.

() For 8U(2) we have

1
27r 7l'

dQ = —
2 dn sin pdp

0 0 0

where a, p, and y are the three Euler angles.

27r

dp 7

4( For 8U(2) this is the well-known relation

4,Z24r, ~24' ~1 2 1 2

dQD,'&' (n) D,')'*(n) = —B„„b;,8s& . (18.6)

From the transformation properties (18.2) and (18.4)
of the basis vectors of the IR's and the definition
(10.8) of the CG coeKcients we find the relation

~ItzI, zIz ( J ~I, zIgzIz y

we obtain for the isoscalar factors the relation

(14.2)

)Mr )is )47
~ ( )r, +r, rps pr-

Il Yl I2 Y2 IY '
I2Y2 Il Yl IY

(14.8)

From this relation (14.8) we obtain directly that

i(, )4, p~ for)r ——1 if 2I, —I = odd
I,Y, I)Y) IsY( for], = —1 if 2I, —I = even.

where the $( ——&1 according to our phase convention
as given in Sec. 10. These $&

= $(()4„iis,p,) are inde-
pendent of the "magnetic" quantum numbers vl, v2,

and v. Therefore, we can take the highest eigenvalue
prr of {)4},and determine there the value of t, .

Because of the property of the CG coe%cients of
SU(2)
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Consider the integral

Using (13.7) and (13.6) we obtain

(]4 4)

1

Pl P2 P3y
( )I,+ Ys/2 (2I2 + 1)¹

Il Yl I3Y3 I3Y3 (2I3 + 1)¹
P1 Pg Pg~

I l 3 ~ 3 2 ~ 2
~

I1Y1 I3 Y3 I2 F2
(14 9)

From (14.8) and („"ill„") = 1

Therefore, the relation for the isoscalar factors is

~

Pl P383q III II3P3&
~

t'

¹3y ~Pl P2 V3 X1$2$3 )

From (8.2) we can write

(14.5) follows

rt'

( )
*+ II+l(Y+ II)N —

s (14 10)
Iv —v 0

where

~()s )
( )s~()s)" if the highest eigenvalue of {il} has I = III and

Y = YII,' and {p} = {N}.We find also

v = I, + —,'Y and —Y = (I, —I„—Y) .

The phase factor Yi is only dependent on il but not
on v. Equation (13.4) together with (14.6) gives

&I + l)'
IY I —Y00

(14»)
From (14.9) we obtain moreover that

Using (14.7) we can rewrite (14.4) as

(14.7)
P] Pg P2p

I12Y2 I2 Y2 I2 Y2

for $3=1
if I, + Y3 = odd,
for $3

———1
if I, + Y3 = even.

(
)vs+Xs+vs+)ss df1D()ss )

( )D()ss )
( )D(jh) ( )

P ( )s,+ss III P3 il3V

VI II3 II3

91 P3 P2y X,+X

Comparing this last expression for I with (14.5) and
noting that this equation should hold independently
of the values of the magnetic" quantum numbers
vl P3 P3 4 4, and 4 gives in case of only one quan-
tum number y

P1 P2 P'3p Ii z+ Yx/2 ~~ 3 +1 P'3 @27
7tT

2
&1 &2 V3 ¹ P1 P3 V2 )

(14.8)

It is expected that this formula holds, or can be made
to hold by a suitable choice of I', in case there are
different eigenvalues y belonging to the same p3.
For example, in the case {8}8 {8}= {8}l8 {8}3
and {8}8 {27}= {27}l8 {27},, (14.8) does hold.
The arbitrary phase b = $3(pl, iI3,)I3) = &1 is again
independent of the magnetic quantum numbers.
This phase can be determined in every specific case
by considering the highest eigenvalue.
For the CG coefficients of SU(2) we have the relation

1

I I I I I 2I3 + 1 —I I I,
I,.I,*I.* = (—),1

Cl, .-l, .-l„.
Zl2 ~

From the definition (10.3) of the CG coefficients,
from their reality property, and the relation (14.6)
we deduce

rr'

Pl P2 P3P
~ ( yl y2 P3P

~ (14 12)
k V1 V2 V3 ~ P] P2 V3

where p3 is independent of the magnetic quantum
numbers Y, , v3, and v3, and p3

——~1. It is important
to note here that the phase convention (8.3) cannot
always be applied consistently at the same time to

and {)I3}.Therefore, in certain eases

g3
———1. Because of the relation

I, I, I, I qI +12—Is~ I, I, Is
CIizlszlsz 4 J ~ -I~ z—Is z—Is z

we get for the isoscalar factors

(
Pl P3 il3) ( ( )I,+I, I, —

I1Y1 I2Y2 I3Y3

f
(14 13)

& I1 Y1 I2 —Y2 I3 Y3

Again the $3 is easily determined in any particular
case by considering the highest eigenstates.

15. %'IGNER-ECKART THEOREM

The Wigner —Eckart" theorem can also be stated
for 8U(3). This theorem concerns the matrix element

(p',",T'„" (tl'„" ) of an irreducible tensor operator
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T'„" between two basis states, p'„",' and p'„" of
IR's. It reads

(y( *& T( )y( &) g )" &'1's)
(y, ~~T( )~~/, )

V1 V2 V3

(15.1)

We have to sum here over y. The right-hand side
contains, therefore, as many terms as the IR {&us}

is contained in the product {&u, } (8& {its}.The Eq.
(15.1) is a theorem in as far as it predicts the de-
pendence of the matrix element on v1, v~, and v8. At
the same time (15.1) is a definition of the reduced
matrix elements ()is~

~

T'"'
~

~y, ),.
We can prove this theorem the following way.

From the Eqs. (18.4) and (18.9) follows

by some unknown weaker mechanism but in such a
way that the isospin I and the hypercharge Y are
still conserved. Through the action of this unitary
symmetry breaking mechanism, the mass degeneracy
of the particles belonging to the same unitary
multiplet will be removed. If one assumes the
simplest form for the symmetry breaking interac-
tion, then one can derive the Okubo mass formula""
for fermions and for bosons4'

3I = 3IIO + 3I~Y + 3Is {I(I + 1) —
4 Y'} (16.1)

m = m() + ms{I(I + 1) ——,
' Y'} . (16.2)

These formulas give the Gell-Mann —Okubo mass
relations

(
(s ) T(s ) (s )) Q D(s ) D(v )D( )s( f(v ) Zr/(I4) /(v ))

4&s&s

Making use of the combination property (18.7) of
the D functions one obtains

3I&( + 3f -. = ss 3IIg + —',3lg,
2 3 2 l g 2

m Jl, 4, mg ~ 4 m

2 3 2 g 2
ml( =4m +4m

(16.8a)

(16.8b)

(16.8c)

(~( )sT(s.)~(s.)) g (s.)' )» &Ps V&v P»&s &»v
r

g, X,X, (Vl Vs V (Xi }(s}( I
pvXy

X I (")(yl("' Tl("'y""')

The matrix elements are independent of our choice
of coordinate system; they are, therefore, independ-
ent of the eight real transformation parameters
nI, . ,n8. Thus we can perform the integration over
dQ. After making use of (18.6) we obtain

g (~ ~ ~, (~ ~ ~,
)

1
vl V2 V3 +3 X,/~X~ Xl X2 XB

(~(s.) T(v.)~(u.))

This gives us the form (15.1) of the Wigner —Eckart
theorem if one defines

The reduced matrix element is obviously independent
of the quantum numbers vi, vs, and vs.

16. THE MASS FORMULA

We will consider the mass formula specifically
here for the octet (the IR {8}).The discussion for
every other IH, can be done along the same lines. In
the octet model one assumes that the strongest
interactions are invariant under transformations be-
longing to the group SU(8). In the absence of any
other interactions the particles belonging to the same
IR of SU(8) should have, therefore, the same mass,
the unitary multiplet mass. The symmetry of these
strongest interactions (unitary symmetry) is broken

3II( ') —3II( ) + 3'(p) —3I(n)
= 3II(Z+) —3f. (Z ) . (16.4)

This relation is also very well satisfied.
We have seen that when the weaker symmetry

breaking interaction is switched on, the unitary
multiplets split up in isomultiplets. As this break-
down of unitary symmetry has to be done in such a
way as to preserve the selection rules for isospin and
hypercharge, every such mass operator must have
the form

g T(s) (16.5)

4s The use of the mass for fermions and the (mass)s for
bosons in formulas like (16.1) and (16.2) seems first to be sug-
gested by R. P. Feynman. It is related to the fact that in the
Lagrangian the mass term for bosons is m2&+p and for fermions
My/.

43%e note that for bosons a term linear in Y cannot occur.

The relations (16.8a) and (16.8b) are very well
satisfied; the relation (16.8c), however, is not so
well satisfied.

If one introduces then the electromagnetic inter-
action, this has to be done in such a way that Ts and
Y are still conserved. The presence of this interaction
results in mass differences between the different
members of the same isornultiplet. If one introduces
the electromagnetic interaction, but neglects the
presence of the unknown unitary symmetry breaking
mechanism, one can derive a relationship between
the mass differences of the members of the iso-
multiplets which make up the same unitary multiplet.
For the baryons one obtains"
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0 g T(v) (16.6)

where the summation goes over all the physically
allowable IR's of SU(3), therefore"'tt = 1, 8, 27, etc.
The breakdown due to the electromagnetic inter-
action has to be such that T3, as well as Y, are con-
served. The most general operator"' achieving this
is, therefore,

form as To j o i.e., a» ——0. In practice this condition
is rather well satisfied because 44 " a1 —— 1150.84
MeV/c', as, ——91.34 MeV/c', its, ———379.54 MeV
/c', and as7 11.9 MeV/c'.

The mass formula for the electromagnetic mass
differences can be obtained by introducing those
operators TI'"p', o, which exhibit explicitly the break-
down of isotopic spin conservation. Thus

where p runs over all the possible IR's and I over
all the values within an IR consistent with Y = 0.
One notices that the operator 01 is a special case of
02. Hence, the general mass operator must have the
form

(8) (10) (10*) (27) (27)T = Tz,o,o + Ti,o,o + Tz, o,o + Ty, o,o + Ts, o o .

3I~ + (~15/90) (9bs,

+ (1/2~3)bs, —
3IN —(~15/90) (9bs,

—(1/2V~)bs. +
3I=. —(M15/90) (9bs,

+ (I/2%3)b. . —
3I-. + (~15/90) (9bs,

—(1/2~8) b., +

—4bsr)

(1/~15) (b„
—4bsr)

(1/~&~) (b o

—4bsr)

—4b„)

bio") y

M („)= PT, ,..m p, ,I
(16.7) M„

—bm),
where 3I is the mass operator for fermions and m2

for bosons. For the IR I8 } only the irreducible tensor
operators belonging to the IR's Il}, I8}, I10},
I 10*}, and I 27 } give nonvanishing expectation
values. Therefore, if we restrict ourselves only to
these operators out of (16.7) which conserve the
total I spin, then

3II-.0

—bio ),
3I-.

3Ig,
~z+ —;c»,
3IIr ——,

' c» + (1/~3)bs.

+ (1/v 15) (bio —ho'),
3IIr ——,

' csr —(1/~8) bs,

—(1/~15) (b ~
—b ")

3I(or m ) = To,o,o + To o,o + To,o o .(1) (8) (27) (16.8)

Using the Wigner —Eckart theorem (15.1) we obtain
for the isomultiplet masses of the baryons

3I~ = a, —(~5/10)as, + —', tts, + (I/3~5)tt, r,
3II-. = a, —(+5/10)as, —

s tts, + (1/3~5)tt27,

3I& = a& —(~5/5)as, —(1/~5)a»,
3IIr, = ag + (~5/5)as, —(1/9~5) a»,

(16.9)

(16.12)

where

b„„= (81 I T,'",.',.I I8)„ (16.13)

where

a. = (8IIT'",', ll8) . (16.10)

c., = (811T'",', ll8)'
We notice from (16.12) that we have here essentially
four arbitrary constants (9bs, —4b»), b (bsi ohio"),

We have here four masses and four constants. Solving
(16.9) for the constants gives

th = ~~ [231)r + 23II„+3I~ + 33I~]

as, = (1/K5) [33IZ —3II, —3IIIr —3f=-]

a8, ——3Ig —3/I-. ,

a, r
———(9/8+5) }33' + 3f'g —23II„—2M-. ] .

(16.11)

The Gell-Mann —Okubo mass relation (16.3a) is based
on the assumption that the mass differences trans-

4" The IR's {10l and {10*i do not have states with
I =I, = Y=O.

43b Analogous results can be found in M. A. Rashid and I. I.
Yamanaka, Phys. Rev. (to be published).

44 We use here the following masses:

M„= 988.21 + 0.01 MeV/c2,
M = 989.51 + 0.01 MeV/c',
Mg = 1115,86 + 0. 14 MeV/cs,
Mg+ = 1189.40 + 0.20 MeV/c2
Mgo = 1191.5 + 0.5 MeV/c2
Mg = 1195.96 + 0.80 MeV/c2,
M„-.o = 1815.8 + 0.8 MeV/c2,
M= = 1821.0 + 0.5 MeV/c2.

The first six masses are from tables from W. H. Barkas and
A. H. Rosenfeld, University of California, Berkeley (1960),
UCRL-8050. The ™mass is from Ref. 45 and the o mass
from Ref. 46.

45 L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S.
Mittra, G. C. Moneti, R. R. Rau, N. P. Samios, I. O. Skilli-
corn, S. S. Yamamoto, M. Goldberg, L. Gray, J. Leitner, S.
Lichtman, and J. Westgard, ProceeChngs of the 1868 Annual
International Conference on Hi gh Energy Physics at C'E-RN
(CERN, Geneva, 1962), p. 487.

4o D. H. Stork, Bull. Am. Phys. Soc. 8, 46 (1968).
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and c». However, there are also only four independ- the p, this level is pushed up and perhaps this p
ent mass differences meson is the 1020-MeV resonance" in the KK system.

2
mp
2

mK'y

2 2 2
mp —2m1 —9m2

2 2 2
ms + 2m' — ms

2 2 2
m, — m, + 8m, (16.14)

where

mc ——a, , m', = (Q5/10)as, , m', = —(1/9+5)asr,
and cs, =0 ~

The assumption made by Okubo" to obtain (16.2)
was setting arbitrarily m2 ——0. One could just as
well set arbitrarily m,' = 0. This leads to the mass
relation

(3II„—3'„), (3fs+ —3Is ), -(3I-. —3I-. ), -
and

[kg —-,'(3Ig+ + Ms-)] .

The relation (16.4) between the electromagnetic
mass differences can be obtained by assuming 610
—b10' ——0. From the experimentally observed
masses44 one obtains bs, ——,

' b» ——(2.52 a 0.7) MeV
/c', bs, ——22.6 MeV/c', bio —bio' = (—0.12 ~ 0 6)
MeV/c'.

For the vector mesons, using"

m„= 782 MeV/c'

m, = 750 MeV/c',

(16.80) predicts m& ——774 MeV/c'. Now there exist
two Z* resonances, one' at 888 MeV/c' and the other'
at 780 MeV/c'. None of these values is very close to
774 MeV/c'. However, let us rewrite Eo(. (16.9) for
the vector mesons. We get

B1 ——P

B2 = n,
B3 ———Z+

B, =Z',
B5 ——Z

B. = A,
0

3II1 ——K+,

3I2 = Zp,

03I4=x,
315 ——m

3I = K',
3Is ———K . (17.1)

The antiparticles belong to the conjugate repre-
sentation. As the meson particle representation is
equivalent to the antiparticle representation, one
must be careful with the phases. We note that our
above assignment for the mesons is consistent with
the phase conventions (8.2) and (8.8) for the con-

jugatee

representation.
With the same conventions the antibaryon wave

functions 8+ are

17. YUKAWA COUPLINGS

In the unitary symmetry model of strong inter-
actions very definite relations are predicted between
the different meson baryon coupling constants. We
shall restrict ourselves here to the Yukawa-type
coupling between the baryon octet and the pseudo-
scalar meson octet. Generalizations to other couplings
are obvious. In unitary spin space we shall denote
the wave function of the baryons by B and of the
mesons by 3I.

We make the following assignments":

2 = 3 2 —1 2
mK* Qmp 2 m (16.15)

This formula predicts the K* at 788 MeV/c', sur-
prisingly close to the observed 780 MeV/c' K —s.

resonance. This might imply that the mass differ-
ences in the vector meson octet do not transform
according to the representation I8I, but perhaps
according to the representation I27} = D(2,2).

Another explanation" is that the ~ does not belong
to the vector octet, but is a unitary singlet. The
vector octet consists of the p, K* (888 MeV/c'), and
another I = 0 vector meson g. The mass relation
(16.8e) predicts me = es m~* —

s m', or me = 927
MeV/c'. Due to the presence of the to, with about the
same mass a,nd with the same quantum numbers as

4~ B. P. Gregory, Proceedings of the I988 Annual Inter
national Conference on High-Energy Physics at CERN (CERN,
Geneva, 1962), p. 779.

4s J. J. Sskurai, Phys. Rev. Letters 9, 472 (1962).

+ +
B7 R

Bs = —p,+ +

We assume an interaction Lagrangian of the Yukawa

type

2;.g
———g(B+B)M .

The Lagrangian should be a unitary singlet, i.e.,

belong to the IR I1I. The mesons transform as the

49 P. Schlein, W. K. Slater, L. T. Smith, D. H. Stork, and
H. E. Ticho, Phys. Rev. Letters 10, 368 I'1963); P. L. Con-
nolly, E. L. Hart, E. W. Lai, G. London, G. C. Moneti, R. R.
Rau, N. P. Samios, I. O. Skillicorn, S. S. Yamamoto, M.
Goldberg, M. Gundzik, J. Leitner, and S. Lichtman, Phys.
Rev. Letters 10, 371 (1963).

M We assign 83 = —z+ in analogy with M3 = —7i-+. This
gives Z m. = Z+vr + & x + Z 7l-+.
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Using the isoscalars from Table II, we obtain
(8 8 s„) s s

v, v, Pl P2V
(17.3)

rig" ——(1/2~5) {Bt Bs + Bs+B, —Ba"Br —B~B,}
—(1/V ~) {Ba'Bs —Bt'Bt + Bs Ba
—(1/~5) B;Bs

= (-1/2&5){(=- )'=- + p'p+ (=-') =-'

+ } + (»W5) {(x-)'x-+ (x') x'

+ (&')'x'} —(1/W5) ~'~
= —(1/2~5) {N,'N, + Na¹}

+ (1/~S) {x"x —x'x}

The interaction Lagrangian is, therefore,

2;., = —(g,g' ' + g,g"')M = —gM, (17.4)

where

atr = P(' ',') a,tr, . (17.5)

Introducing the constants

g. = {:(~30/40)g + (~6/24)g],

n = (~6/24)(g /g. ),

(17.6)

(17.7)
cls = a {Bt+Bs—BsBt —Ba Br + B7 Ba}

IR {8}.To preserve unitary symmetry the invariant with the baryons. We have r) = 3P E.quations (17.4),
g = B+B must also transform as the IR {8}.How- (17.5), and (14.10) give that
ever, there are two ways to couple {8} {8}to {8}.
The two possible currents r{"' and r{"' are given by &;.t = (1/2~2)gsMs .

g=-ZX = —
gy ~

We have used here the notation

(17.9)

KK, = (17.10)

A, X, ~, and g for the isospin wave functions of the
particles. To illustrate the procedure followed we will

consider in more detail the coupling of the g meson

we write the interaction Lagrangian as

cCtnt = gNNs(N1 ZNt) 'aa + g tt(Na 'aNa) 'aa

+ ggz (A X + X h.) aa —igzz (X+ x X) aa

+ gsss(Nt+Nt)t) + g=-.,(NaNa)a)

+ g„,(x'x)~+ g»(x' x)~
+ g&s.rr {(N, K)& + A+ (K+N, ) }

+ g-,.{(N+K,)~+ ~+(K+N.) }

1 gxzrr{x+ (K+~N, ) + (K,"sK) x}
+ g=zx{X (K,"~Na) + (Na~K, ) X}, (17.8)

where

g»» ——ga t g-. -. = —
ga (1 —2n„),

gkztt =
a ~8ga(1 —na), gzzt = 2gana,

gs~, = —', ~3g„(4n„—1),
g=-=' = —s ~3g.(1+ 2n.)

gzz, = s v 3g.(1 —n.) g~~s = —
s ~3g.(1 —n.)

glvAK a V 3ga(1 + 2na) t

g.g» = a v 3ga(4na —1), gs'zrr = g„(1 —2n„),

= -', {NiNt —NaNa} .

Therefore, using (17.6), (17.7), and (17.9), one ob-
tains

gs = gtgs + gaga = 2&2 I
— +

4 10 4 2&

NN(-.~-. ,l

+ (1/2~10)g, (x" x —x'x)

2~2[a ~8g„(4n„—l)N,+N,

——', ~8g„(1 + 2n„)¹N.

+ -', ~3g„(1 —n„) (x'.x —X'X)]

2V 2[gNNsNI Nt + g "sNa Na + gzzsx

+ g~~,~ ~] .

This leads directly to the interaction Lagrangian
(17.8).

Experimentally one knows g»„very well" and
one has a pretty fair idea about g&z and gzz . This
establishes that 0., is small" and perhaps" a„

Also the coupling of the vector mesons to the
baryons is described by a formula like (17.8). We
have only to make the replacement

aa +9, t) —+ tc(or ttt-), K t K*, and K, —+ K~ .

sr T. Spearman, Nucl. Phys. 16, 402 (1960); G. Salzman
and H. Schnitzer, Phys. Rev. 113, 1153 (1959).

52 J. J. de Svrart and C. K. Iddings, Phys. Rev. 130, 319
(1963).» A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455
(1963).



However, we have now two coupling constants g",
and g'. ' and two factors 0. '„' and n'. ' for the electric
type and magnetic type of coupling.

In case there should exist a meson @ which is a
unitary singlet, then the interaction Lagrangian of
this meson with the baryon octet is

g... = g{1V,'X, + A'A P X' Z P X;X,}y. (17.11)

A very nice special case of the vector meson octet-
baryon octet coupling is obtained by setting 0.(„'
= l. We recover then the universal coupling of the
I = 1 p meson to the isospin current and the uni-
versal coupling of the I = 0 octet vector meson &

(or p) to the hypercharge current as proposed by
Sakurai. '4 A unitary singlet vector meson is uni-
versally coupled to the baryonic current.

{8}3 {10}= {35}e {27}e {10}(l) {8}
{8}S {27}= {O4} (l) {35}e {35*}(I) {27},

6 {27}s9 {10}8 {10*}Q {8}
{10}8 {10}= {35}8 {28}g {27}(l) {1(j*}

{10}8 {10*}= {64}8 {27}6 {8}6 {1}.

With the help of the symmetry properties (l4.3),
(14.9), and (14.13), these tables can be extended
quite a bit. In fact, already some of the entries in
the tables are redundant, because they can be ob-
tained with the help of Eqs. (14.3), (14.9), or (14.13)
from other parts of the table. However, we feel that,
omitting these numbers would sometimes be con-
fusing. In Table I we will give for some cases the
phases $&, $s, and $s, this will facilitate the extension
of the tables of isoscalar factors for these cases.

18. TABLES OF ISOSCALAR FACTORS

In this section, we present Tables I—VI of isoscalar
factors for the following cases:

{8}Ca {8}= {27}(l) {10}8 {10*}8 {8}g9 {8}s
{1}

54 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).
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TxnLz I. Phase factors to be used in Eqs. (14.1), (14.8), (14.8), (14.9), (14.12), and (14.18).

8 10

27
10
10*
81
82
1

35
27
10
8

64
35
35*
271
272
10
10*
8

1-1
—1

1-1
1

I
—1-1

1

1-1
—1

1
—1

1
1
1

-1
-1

1
1

—1-1
-1

1-1
1

—1-1
1
1

—1
—1

1
—1

1
1
1
1

—1
1

1
1
1
1

—1
—1-1

1

8 10*

10 10

10 10*

10* 10*

35*
27
10*
8

28
35
27
10*

64
27
8

28*
35*
27
10

1
—1
—1

1

1
—1

1
—1

1
—I

1
—1

—1-1
—1-1

1-1
1-1

-1
—I
—1
—1

1
1-1

-1

1-1
1-1

TxnLz II. Isoscalar factors for {8} I8t {8}.Given are the isoscalar factors

8 8 pq
IIY1 I2Y2 I Y

for the CG series {8}g {8} = {27} 9 {10}8 {10'}ATE| {8}q f8 {8}sf8 {1}.
Y=2 I = I

I1, Y1, I2, Y2 27

1; 2', 1

Y=2 I =0
I1, Y1, I2, Y2 10* P„

1; p, 1 -1
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TxnLz II. (Continued)

935

Y=1 I =$
Iy) Y] ) I2) Y2 27 Ig) Yg ) I2, Y2

Y=O I =0
27 Sg 82 Pq

1; 1, 0 ~2 /2 —~2/2 1; —,') —1 ~15/10 ~10/10 1/2 ~2/2
—1; —;, 1 —~15/10 —~10/10 —1/2 ~2/2

1, 0; 1, 0 —~10/20 —~15/5 ~6/4 0
0, 0; 0, 0 8~80/20 —~5/5 —~2/4 0

Iy) Y] ) I2) Y2

Y=1 I =-,'
27 8g 82 10* p~

1; 1, 0 ~5/10 8~5/10 1/2 —1/2
1, 0; -'„1 —~5/10 —8~5/10 1/2 -1/2
g, 1; 0, 0 8~5/10 —~5/10 1/2 1/2
0, 0; s') 1 8~5/10 —~5/10 —1/2 —1/2

~, —1; 1, 0 ~2/2 —~2/2
~2/2 ~2/2

Y= —1 I=~
Ig) Yg ) I2) Y2 27

Y=O I =2
Ig) Yg, , I2, Y2 27 Ig) Yg) I2, Y2

I =-,'
27 8y 82

1, 0; 1, 0

1;
1 ] ~

1, 0;
0, 0;

k)
1, 0
0, 0
1, 0

Ig) Ygj I2, Y2 27

0
~80/10
~80/10

Y=O I =1
8y

—~80/10
—~80/10

0
~5/5

—1'

—1'
0, 0;

82 10 10*

~6/6 —~6/6 ~6/6
~o/6 ~o/6 ~o/6
~6/8 ~6/6 ~6/6

0 1/2 1/2
0 -1/2 -1/2

1, 0 —~5/10
—1 ~5/10

0, 0 8~5/10
—1 8~5/10

—8~5/10 1/2 1/2
8~5/10 1/2 1/2
—~5/10 —1/2 1/2
—~5/10 1/2 —1/2

Y= —2 I =1
Iy) Yyj I2, Y2 27

Y= —2 I =0
Ig) Yy ) I2) Y2 10

TzpLz pig. &soscalar factors for {8} {10}.Given are the isoscalar factors

8 10
I,Y) IsYs I P

for the CG series {8}8 {10}= {85}8 {27} 8 {10}8 {8}~

Y =2 I =2
I&) Y&) I2, Y2

Y= I I =+
27Ig) Ygj I2) Y2

Y=2 I =1 1; 1, 0 —2~5/5
—2~5/5

Ig) Ygj I2, Y2 27
Y=0 I =2

Ij, Yy,' I2, Y2 35 27

Y=l I = ~

I&) Y&) I2) Y2
1, 0; 1, 0 ~8/2 1/2

1/2 —~8/2

Y=1 I=-,' Ij) Y& j I2) Y2

Y=O I =1
35 27 10

I&) Yl j I2) Y2 27

—~5/4
—3/4
~2/4

~io/4
—~2/4

1/2

1, 0;

2) )
1 —1'2) )

1, 0 —~8/6
1, 0 ~2/2

~8/8
1 —~8/6

/10 ~8/8 ~80/15
/10 0 — 5/5

~5/5 ~8/8 80/15
~5/10 ~8/8 -2~80/15
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Txzx,z III. (Continued)

Ig, Yg,. Ip,

Y=O I =0
27

-2 I =1
Ig) Yj ) Ig) Yg 85 27 py

27 7 2)

~io/5
—~15/5

—~15/5
-~io/5 1, 0; 0, —2 1/2 ~8/2

—1; —',, —1 ~3/2 —1/2

Ig.) Ygi I27 Yg 85 27 py
Y= -2 I =0

1, 0; —,', -1
—1; 1, 0 ~2/2

~~/2
-v2/2

07 Oi 0) 2
1 ], 1 ]2) ) 27

—~2/2

Ij.) Ygi I27 Yg 85 10

Ig.) Ygi Ig) YP 85 27 10

1, 0;

2) —1'
27 7

—1 —1/4 —7~5/20 ~2/4 ~5/5
—1 3/4 —3~5/20 ~2/4 — 5/5

0, —2 ~2/4 3~10/20 1/2 10/5
1, 0 —1/2 ~5/10 ~2/2 —~5/5

Y= —8 I
Ig.) Yg i Ig) Yp 85

1' 0 —2

Txazz IV. Isoscalar factors for {S} {27}.Given are the isoscalar factors

8 27 p~
Ij.Yg IgYg I Y

for the CG series {8} {27} = {64} f8 {35}8 {35"}fo {27}i6 {27}sfO {10}63 {10*}g {8}.

Y=2 I =1
Y=8 I = 2

II) Yg i Ig) Yg 64

1; 1, 2

Y=8 I
Iy) Y] ) Ig) Y2 85 Pi~

Ig) Yg) Ig) Yg 64 85' 271 272 py

Ig, Yg,' Ig, Yg 10* p~

1; -'„1 ~14/21 —2/3 ~70/14 6/6
1 i

—'„1 2 ~70/21 ~5/6 —~14/2S 30/12
1, 0; 1, 2 —~21/21 —~6/6 —+105/14 1/2
0, 0; 1, 2 ~14/7 —1/2 —~70/2S —~6/4

Y=2 I =0

1; 1) 2 —1

Y=2 I =2
1) —,') 1

1) 0) 1) 2
—~30/6

~6/6
/6
/6

Ij) Yg,' Ig, Y2 64

27 17 27

1, 0) 1, 2
—~3/3

~6/3

Y=1 I=-',
II,, Yg,' I2, Yg 64

1; 2, 0 -~6/3
&3/3

YI; I2, 85 10

2) 1)
1;

1, 0;
1, 0;
0, 0;
1
2) 7

2, 0

2) 1
27 1

1
1) 2

~7/21
5~7/21

—~21/63
5~42 /63
+105/21
~35/21

-1/12
—5/12

7~3/36
5 6/18

15/12
~5/6

—~5/6
5/6

15/9
~30/1S

—~3/3
—1/8

Y=1 I

5 ~42/56
—3~42/56
-5~14/56

~7/7
~70/56

—+210/28

~io/s

0
—~6/s

—5~2/12
—~2/12
5~6/36

8/9
80/12

-~io/6

Ij, YI i I2, Yg 64 271 272 10*

1;
2) 1;
1, 0;
1, 0;
0, 0;
1
2) )

1)
0,
3
2)
1
2)
1

1)

~35/21
2~35/21
—~42/63

—+210/68
+210/21

—2~7/21

~io/6
~io/6
~3/9

5~15/36
—~15/12

3~105/70
—/105/70
—+14/7

—19~70/280
—13~70/280

—~21/2S

1/2
1/2
0

~6/s
-~6/s

—1/8
1/8

—~30/9
7~6/36
—~6/12
-~5/6

2~5/15
~5/15

2 6/9
80/45

—~30/15
—2/8



Iy) Yy ) I2) Y2

1;

1, 0;
1, 0;
0) 0;

—12)
4)
1, 0
2, 0
2, 0

64Iy) Yg ) I2) Y2

64

2 ~21/21
2~21/21
~210/21

0
~7/7

-~s/8
8/6

80/12
~2/4
-1/2
Y=0

85*

~s/6
8/8

80/12
—~2/4

-1/2
I =1

271

OCTET MODEL

Txsr.z IV. (Continued)

Y =0 I =8
Ij., Yg, I2, Y2 64

1, 0; 2, 0

Y=O I =2
85 85*

272 10

27$

—~210/28
—+210/2S

~21/14
0

~70/14

272

~2/4
—~2/4

0
~S/2

0

10'

987

4)
P

1;

0) 0;
1, 0;
1, 0;
1, 0;

3
2)
3
3)1
2)
1
2)
1,
0,
1,
2p

—1/9
5/18

-~5/9
2~5/9
—~5/6
2~5/9
~80/12
~10/86

—5/18
1/9

2 ~5/9
—~5/9
—~5/o
2 5/9

80/12
~io/so

Y

Iy) Yg ) I2) Y2

—1;

0, 0;

—12)
k)
1, 0
0) 0

2~21/21
—2~21/21
—~21/21

2~7/7

—1 2~85/68
1 —2~35/63

—1 10~7/68
1 10~7/68
0 5~7/21
0 10~/63
0 0
o —~14/os

3~14/2S
—8~14/2S
—8~70/70
—8 70/70

70/70
4~70/70

0
-~35/14

=0 I =0
27$

+210/70
—+210/70

—4%/210/70
—4~70/70

~30/12
~30!12
~6/6

—~6/6
0
0

1/2
0

272

~i/2

0
0

—2~5/9
-~5/9

—1/9
4/9
1/8
2/9

~6/6
5~2/18

-~5/9
—2~5/9

4/9
1/9

—1/8
—2/9
~6/6

—5~2/18

2~15/15
—2~15/15

2 ~15/15
-~5/5

4/9
-4/9

2~5/45
2~S/45

—2~5/15
-~S/45

0
2~10/9

Y=
Ig) Yg ) I2) Y2

-~6/3
WS/3

Ij) Yg)' I2, Y2

—1'2) )

1, 0;

1)

2, 0

3 —12)

Ig) Yg)' I2) Y2

-~7/21
5 7/21

1/68
5~42/68
+105/21
~35/21

1/12
—5/12

—7~3/36
5 6/18

15/21
~5/6

Y=
85

~5/6
5/6

15/9
~80/1S

—~3/8
—1/8

-1 I = —'
271

271

—5~42/56
-8~42/56

5~14/56
7/7
0/56

—+210/2S

272

272

~10/S
—~10/S

~so/s
0

~6/s
~2/4

10

10' pq

—5~2/12
~2/12

s~o/86
8/9

80/12
~i/6

1, 0;

2) 11

1, 0
0, 0
2)1 ]2) —1

—~85/21
2~85/21

42/68
210/68

~210/21
2~7/21

8/9
5 15/86
—~15/12
—~2/12

-8~105/70
—+105/70
-~14/7

—19~70/280
—18~70/280

~21/2S

1/2
-1/2

0
~6/s
~o/s

—1/8
—1/8

~80/9
7~v/36
~6/12

—~5/6

—2~5/15
~5/15

2 6/9
80/45

-~80/is
2/8

Y= —2 I =2
Ij) Yg, I2) Y2 64

~6/8 —&3/3
~6/3

Ij.) Yi; Ig) Y2

—2 I =0

~30/6
~6/6

10

/6
/6

I&) Y] ) I2) Y2

1
Q) )

0, 0;

Y= —2 I =1
64 85 27$

—1 —~14/21 2/8 —~70/14
—1 2~70/21 ~5/6 —~14/2S

1, —2 ~21/21 ~6/6 +105/14
1, —2 ~14/7 —1/2 —~0/2S

272 py

/6
/12

1/2
~o/4

Ig, Yg, I2,

—8 I =-',

Y2 64

—2 1

8 I
Iy) Yy ) I2) Y2 85
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Txazz V. Isoscalar factors for {10}g {10}.Given are the isoscalar factors

10 10 p~
Ij.Yg I2Yg I Y

for the CG series {10}8 {10}= {85}8 {28} 8 {27} 63 {10'}.

Y=2 I =3
Ig) Yg j Ig) Yg 28 Ig, Yi; I27

Y=O I =1
27

3
2)

Y =2 I =2

3
2)
1
'2 7

1

1
1 p

0;
2) 1
1, 0

-~5/5
-~5/5
-~5/8 0

-~8/8
—~8/8

~8/8

Ij.) Ygj Ig) Yg Y=0 I =0
Iy) Yy p Ig) Yy 27

Y=2 I =1
Iy) Yg ) Ig) Yg 27

Ig) Yj. ) Ig) Yp

1, 0; I, 0

Y= —1 I =$
28 35

3
27

Ig, Yj,' Ig, Yg 10*

2) 1)
0, —2;
1, 0;

—1'2) )

0) —2

2) —1

~5/10 1/2 8~5/10 1/2
~5/10 —1/2 8~5/10 —1/2

8~5/10 1/2 —~5/10 —1/2
8~5/10 —1/2 —~5/10 1/2

Y= —1 I =-,'
I&) Y& j I2) Y2 35 27 pyY=1 I=-',

Ij.) Yg ) Ig) Yg 28 —1; 1, 0 —~2/2

1; 1) 0 ~2/2
Iy) Yy p Ig) Yg

Y= —2 I =1
28 35 27

Y=1 I = 2

Ig, Yg,' Ig, Yg 35 27 py
1, 0;
1
2) 7

0, —2
1, 0
1
27

~5/5

~15/S

~2/2
—~2/2

0

~80/10
~80/10

—~10/5
1; 1, 0

Y=1 I =-',

Ig) Ygj Ig) Y2 27

1; 1) 0
1, 0;

Y=0 I =2

-~2/2

10* p~

~2/2
—~2/2

Y= —2 I =0
Ig) Yg ) Ig) Y2 35

-1' —' —1 —12) ) 2)

Y= -3 I=-,'
Ig) Ygj Ig) Yg 28

2) —1;

2) 17

1) 0;

1 ]2)
21 1
1, 0

Ij.) Yg ) Ig) Yg

~15/5

35

~2/2

0

27 july

~80/10
~80/10

-~io/5

Y= —4 I =0
I]) Y& j I27 Y2 28

0) —2p 0, —2
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TxaLz VI. Isoscalar factors for (10} {10'}.Given are the isoscalar factors

10 10'
IgYg IgYg I Y

for the CG series {10}8 (10}"= (64} 8 {27}9 {8}8 {1}.

Y=3 I
Ig, Yg, Ig, Yg 64 Ig) Yg, Ig) Yg

Y=O I =1
64 27

1; 0, 2

Y=2 I =2
Ij.) Yg)' Ig) Yg 64

1; g) 1 Ig, Yg,' Ig, Yg

1; -'„—1 ~21/21 ~14/7 ~6/8
1, 0; 1, 0 +210/21 8~85/85 —2~15/15

—1; —',, +1 ~210/21 —4~85/85 ~15/15

Y=O I =0
27

Y=2 I =1
Ij.) Yg,' Ig, Yg 64 27 py

1)
1, 0;

—1
0, —2;

2) 1

2) 1
0) 2

~85/85
2+105/35
8~70/85
2~85/85

+210/85~/14
—+105/85

-8+210/70

~io/5
0

5/5
0/5

~iO/5
—~80/10

~5/5
—+10/10

1, 0; 0, 2
~21/7
2~/7

2 /7
21/7 Y= -1 I =-',

Ij.) Yg, Ig) Yg 64

Y=1 I = ~

Ig) Yg, Ig) Yg 64

1; 1, 0

Y= I I =-',

Ig, Yg, Ig, Yg 64 27 fly

—1 I =$
Ig) Yg)' Ig) Yg 64 27 py

~85/7
—~14/7

1; 1, 0 ~85/7
-~14/7

Iy) Yg, Ig) Yg

Y= -1 I=-,'
64 27

Ig) Yg)' Ig) Yg

Y=1 I=qx
64 27

7/7
/7
/7

4~85/85
~85/85

—8~70/85

~io/5
-~io/5

~5/5

1; 1, 0 /7
/7
/7

4~85/85
~85/85

-8~0/85
~io/5

-~io/5
~5/5

Y= —2 I =2
Ig) Yg)' Ig) Yg 64

Y=O I =3
Ij.) Yg)' Ig) Yg 64

%) 1) 2)

-2 I =1
3
2)

Y=0 I =2

Ig, Yg,' Ig, Yg 64

2~/7

27 py

/7
/7

Ij, Yg,' Ip, Yg 64

~42/7
-~7/7

Y= -3 I=-,'
Ij.) Yg)' Ig) Yg 64


