INELASTIC NUCLEON SCATTERING

ACKNOWLEDGMENTS

The bulk of this work was undertaken during 6
months’ leave of absence from the E.T.H. as a guest
at the Oak Ridge National Laboratory, for which
reason sincere thanks are extended to innumerable
colleagues at both institutions. At the E.T.H. thanks
are due principally to Professor P. Marmier and to
the members of the Ziirich group who generously
permitted inclusion of their results prior to publica-
tion, B. Gobbi, T. Niewodniczanski, R. E. Pixley,
M. P. Steiger, and R. Szostak; whereas at ORNL
thanks are due principally to G. R. Satchler, D. E.
Arnurius, R. H. Bassel, B. Buck, K. Denning, R.

REVIEWS OF MODERN PHYSICS

VOLUME 385, NUMBER 4

853

Drisko and F. Perey. Among the outstanding facilities
at ORNL which were greatly appreciated, special
mention must be made of the assistance in coding
and computation on an IBM 7090 computer, and
also of the preparation and photography of the many
figures whose excellence is eloquent testimony to the
Graphic Arts Department. Apart from the theoretical
support of ORNL and the experimental support of
ETH, the author finally wishes to acknowledge his
gratitude for the realization of this project through
financial support from the Swiss National Science
Foundation and the patient support of his wife.

OCTOBER, 19638

Spherical Nuclei with Simple Residual Forces*

LEoNARD S. KISSLINGER

Western Reserve University, Cleveland, Ohio
AND
RAYMoND A. SORENSEN
Carnegie Institute of Technology, Pittsburgh,

Pennsylvania
1. Quasi-particle and collective contributions . 892
CONTENTS 2. Contributions from configurations admixed
by a é-function force . . 893
I. Introduction . 853 B. Electric quadrupole moment of one-phonon
II. Description of Hamiltonian and wave functions . 855 state . . L . 895
A. The Hamiltonians . 855 VII. Electromagnetlc transitions . .. 897
B. The pairing solutions . . 855 . Odd-mass isotopes . 897
C. The long-range force . . 857 B Even-even isotopes . . .. 900
1. Even-even nuclei, QRPA approxlmatlon . 857 1. The one-phonon-to- ground-state ‘transition 900
2. Even-even nuclei, the adiabatic limit . 860 2. The crossover 2+ -two-phonon-to-ground-
3. Odd-mass nuelei . . . . . . . . . . 861 state transition. . 901
III. Energy-level systematics 862 3. The MI admixture in the two—phonon 2+ to
A. The parameters and descrlpmon of method of one-phonon transition .. 903
calculation ... 862 4. Transitions in two—quas1—part1cle states . . 903
1. The interaction strength parameters . . . 862 VIII. Beta decay . . 903
2. The single-particle parameters . . . . . 863 A. Beta-decay matrix elements—odd mass . 904
B. Energy levels of even-even nuclei . . . . . . 864 B. Beta-decay matrix elements—even mass . . 905
C. Energy levels of odd-mass nuclei . . . . . . 867 IX. Conclusions . . 907
1. The region 50 < Z < 82;82 < N < 126 . 867 Appendix I . 909
2. The region 50 < Z < 82;50 < N < 82. . 870 Appendix IT . 909
3. The region 28 < Z < 50;50 < N <8 . 875 Appendix III . 911
4. The region 28 < Z < 50; 28 < N <50 . 876
v 8d§3nergy levels(‘.h cg odd-odd nuclei —. .~ . . . 877
. -even mass erence . . . 882
V. k&aig\}lletlc dlp(’)ile nlloments . . 885 L. INTRODUCTION
agnetic dipole moments of odd-mass nuclei . 885 .
1. Quasi-particle and collective contributions . 885 HE large accumulation Of_data' on t}}e low—.en—
2. Higher seniority contributions . .. . 886 ergy spectra of many nuclei has made it possible
3. Results and discussion. 890 to stud t ticall d in detail the variation
B. Magnetic dipole moment of one-phonon states. 891 0 study systematically an .m etal vary 1
VI. Electric quadrupole moments . . . . . . . . . 892 from nucleus to nucleus of various nuclear properties,
A. Odd-mass nuclei . . 892

* Supported in part by the National Science Foundation,
the United States Army Research Office, Durham, and the
United States Office of Naval Research.

such as level energies, moments, transition rates, and
reaction rates. In many cases it has been possible to
identify, in the low-energy spectrum, states which
seem to correspond to the motion of a single particle
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or quasi-particle in an effective field and states corre-
sponding to collective vibrations or rotation of the
nucleus. Moreover, there is now accumulating more
information determining in which regions nuclei are
spherical or deformed and which cases seem to cor-
respond to the transformation between a spherical
and a deformed equilibrium shape.

It has thus been useful to utilize a nuclear model
from which the nuclear properties may be computed
in detail for many nuclei over a large region of the
periodic table. Such a model was that first studied in
some detail by Belyaev' in which particles interact
with a particularly simple two-body force. The force
is represented by two simple components, the pairing
force suggested by work in superconductivity and
first discussed in relation to the nuclear problem by
Bohr, Mottelson, and Pines,? and a long-range part
represented by a quadrupole force as suggested by
the work of Elliot.® Belyaev showed that the model
contained the main qualitative features of nuclear
spectra, including in particular the transition from
the regions of spherical nuclei with their quadrupole
vibrational spectra* to the regions of deformed nuclei
with their associated vibrational and rotational
modes of excitation.’

The first quantitative comparison of the model
with experimental data was made by the authors® in
a study of nuclei for which either the neutrons or
protons completely fill a major shell. (This work is
referred to here as I.) There have also been a number
of calculations applying this model to deformed nu-
clei, with the result that one now believes that an im-
portant part of nuclear structure effects can be ac-
counted for by these simple interactions.” The pres-
ent work carries out a detailed study of nuclei from
Ni to Pbin order to try to learn to what extent meth-
ods essentially the same as those used in I can be ap-
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plied to the other spherical nuclei. Also some phe-
nomena such as 8 decay, not treated previously owing
to the restriction there to single closed-shell nuclei,
are included.

The main assumption of the work is that the low-
lying states of spherical nuclei can be treated in terms
of two basic excitations, quasi-particles and phonons.
For the most part these are treated as separate modes
of motion. For even—even nuclei the lowest excita-
tions are the phonons, and only these are treated in
detail. For the odd-mass nuclei both of these modes
of excitation are low in energy and must be consid-
ered, as well as their interactions. We trace the states
of quasi-particles and phonons to see to what extent
systematic trends of the experimental data can be
followed.

While in I the shell-model levels (single-particle
levels) were chosen separately in each of the nuclear
regions considered, i.e., the Pb region, the Sn region,
ete., in the present work these levels must be chosen
once for all the nuclei in a large region of the isotope
table, since all these nuclei are considered together.
To obtain agreement with experimental results it is
found necessary to include a smooth variation of the
single-particle level spacings with A, and to use dif-
ferent level spacings for the neutrons and the protons.
Because the neutrons and protons are filling different
levels, the pairing force, which is effective only for
shell-model pairs coupled to zero angular momentum,
is assumed to exist only for protons and neutrons
separately and is described by two strength param-
eters G, and G.. The quadrupole force is effective
for protons, neutrons, and for proton—neutron pairs
as well and so is described by three coupling constants
Xp; Xny Xnp-

With the chosen set of levels and coupling con-
stants, the interaction is treated in the following
manner. First, the pairing Hamiltonian is approx-
imately diagonalized by the use of the quasi-particle
transformation for neutrons and protons separately.
The quadrupole force is then described as an inter-
action between the proton and neutron quasi-par-
ticles. The effect of this force is determined by the
quasi-particle random-phase approximation, through
which the phonons are introduced. Finally, for cer-
tain nuclear properties the effects of an additional
short-range interaction are derived by the use of
perturbation theory applied to the pairing plus quad-
rupole wave functions.

In Chap. II the quasi-particle transformation is
described and results used here are derived. The pro-
ton—neutron short-range force is also discussed. The
quasi-particle random-phase approximation as ap-
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plied to the quadrupole force is then outlined, and the
results compared with those of adiabatic perturba-
tion theory. The results are compared with experi-
mental energy level systematics in Chap. III. In
Chap. IV, the systematic binding energy data is dis-
cussed. In Chaps. V and VI the static electromag-
netic moments of the ground state and some excited
states of nuclei are considered. Chapter VII treats
the electromagnetic transition rates and Chap. VIII,
the systematic data concerning beta decay.

II. DESCRIPTION OF HAMILTONIAN AND
WAVE FUNCTIONS

A. The Hamiltonian

Starting from a shell model with a two-body inter-
action, we derive various single-particle and collec-
tive properties and compare the results with system-
atic data. Only the particles outside of the closed
shells are treated explicitly, the particles in the core
being neglected, except in so far as they give rise to
the single-particle potential and renormalize certain
properties of the nuclear particles, such as the charge.

The residual interaction consists of two compon-
ents, a short-range part, which leads to an approxi-
mate seniority spectrum, plus a quadrupole inter-
action, which is mainly associated with the collective
states. The pairing force used to approximate the
short-range component in this work hasthe property
that for two particlesin a j level only the state of zero
angular momentum (seniority zero) is affected. In
the regions in which detailed comparison with experi-
ments are attempted the neutrons and protons are
for the most part being placed in different shell-model
levels. This tends to make a force which acts most
strongly in states with all particles coupled two-by-
two to spin zero less effective between neutrons and
protons than between like particles. I'or this reason,
we use a pairing force only between neutrons and be-
tween protons separately, and neglect the neutron—
proton, short-range interaction (except the spherical
field producing part, as is described in the next sec-
tion).

The notation is the same as in I, with b%, (b%,,) the
creation (destruction) operators for shell-model par-
ticles of type (p,n)¢, angular momentum 5 and z com-
ponent m, with the time-reversed phases for the
states | — m) = bl_,|0). Thus, the Hamiltonian is

H = 3 &b, — 1 2 Gttt
Eoprotons, neutrons  mm
A Py EA Py
% XDQP' - % XnQn'Qn
- %an(Qp'Qn + Qn'Qp) )

’

(1)
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in which @ is the quadrupole operator

Q= X G|Vl mblf b, @)
the e are the single-particle energies, and G,, Ga, xp, Xa,
and x., are force constants which must be determined.
The choice of these constants is limited by the cal-
culation in the single closed-shell regions. From I one
knows approximate values for G,, G,, x. and x,, how-
ever, one does not know the magnitude of x., from
that work.

The only neutron—proton interaction which oceurs
explicitly in this Hamiltonian is via the quadrupole
force. With this assumption the energy spectrum is
extremely simple. The particlelike states are sepa-
rated from the ground state by the smaller of the
proton or neutron gap, the one-phonon vibrational
state occurs in the gap (except in the few cases, when
there is a low-lying 0+ first excited state), and the
vibrational states with more than one phonon lie
either in the gap or among the excited particle states.
This work studies the solutions to this system in
order to learn to what extent systematic nuclear data
can be fit by such a model.

B. The Pairing Solutions

The first two terms of the Hamiltonian (1) consti-
tute the pairing Hamiltonian, which is used to repre-
sent the short-range force because of the ease with
which fairly accurate solutions can be found regard-
less of the number of particles involved. Since there
exist rather complete descriptions of the method of
solution based on the work in the theory of supercon-
ductivity® and of the accuracy of the results (includ-
ing the effect of spurious states) for nuclear problems
in the regions studied in the present work,” we limit
ourselves to a brief discussion of the procedure in
order to define the various quantities and to try to
make the paper more self-contained. Since the neu-
tron—proton pairing interaction is neglected, the pro-
cedure which is described below is applied to neutrons
and protons separately and the index £ is dropped.

First, a Bogolyubov—Valatin canonical transforma-
tion is carried out to introduce the ‘“‘quasi-particle”
creation and annihilation operators

i = Usbim — Vibim ,
,Bjm = Ujbj—m + Vfbjm,
Ui4+vi=1, 3)

8J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957), N. N. Bogoliubov, Zh. Eksperim. i
Teor. Fiz. 34, 58, 73 (1958) [English transl.: Soviet Phys—
JETP 7, 41, 51 (1958)]; Nuovo Cimento 1, 794 (1958), J. G.
Valatin, Nuovo Cimento 1, 843 (1958).

9 A. K. Kerman, R. D. Lawson, and M. H. Macfarlane,
Phys. Rev. 124, 162 (1961).
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in which V? (U?) is the probability of occupation
(nonoccupation) of the j level. Since the seniority
coupling scheme is specified, one needs to know only
these quantities to specify the wave functions. The
chemical potentials A, introduced as Lagrangian
multipliers to adjust the average number of protons
and neutrons to correspond to the isotope under con-
sideration, serve as the Fermi energies of the proton
and neutron systems. The coefficients U; and V; are
determined by the solution of the equations
G —2+1
-z AT -
D2 ’s
250G+ D — (&= N/E]=n, 4)
where 7 is the particle number, and the quantities
B =[(¢ — N+ 47 )
are the quasi-particle energies. These are the energies
of the elementary excitations from the ground state,
which in turn depend upon the quantity A, defined
by
A=3G Z:‘ @7+ DUV, (6)

which is approximately one-half the gap in the even
proton or neutron spectrum. Having selected A and
A to satisfy Eq. (4) for protons and neutrons, one can
obtain the occupation coefficients from the relation-
ships
Ui=30+ (& —N/E],
Vi=3%0~— (¢ —N/E]. )

The Hamiltonian (1) can be then approximately
written as

HEP + 3 X Elalbabn — 3 e xeF-QF

— 3 x(@ Q"+ Q™ Q). (8)
The approximation made in Eq. (8) is the dropping
of terms in the scattering of quasi-particles due to
the pairing force and the neglect of the change of the
quantities N and A in the excited states. Although
these latter effects are sometimes large, especially for
the calculation of the states of odd-mass nuclei in the
deformed region (e.g., see Soloviev?), in the region in
which we calculate they are generally small [for an
extensive study of the so-called blocking effect, see
S. G. Nilsson (to be published)] . In the quasi-particle
representation a single-particle operator of rank L,

OF = > (7m/| OF|m)br mbim
has the form
L . Ly o -i11
O = 2 GOl CL + 1)U,V + UsV;)
X [AW 4+ (=1 A5 + UU; F V, V)02
+ 610 205 (27 + DIV O A+ 1), (9)
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with the upper (lower) sign holding for an operator
which does not (does) change sign upon time reversal.
For convenience, two operators have been introduced
in Eq. (9), the double quasi-particle creation operator

AR = [l (=)™ (10)

representing two quasi-particle creation operators
vector coupled to form a tensor of rank L [with a
phase (—1)"*"], and

(11)

a tensor of rank L corresponding to the transition of
a quasi-particle from state j to state /. The explicit
forms for these operators in terms of the quasi-par-
ticles with time-reversed phases are given in Ap-
pendix I, Egs. (A1) and (A2). The two quasi-particles
which are coupled to form A! are always either both
protons or both neutrons, and the notation [afaf]%
is used when we wish to consider a proton and a
neutron quasi-particle vector coupled.

The eigenfunctions corresponding to the pairing
part of the Hamiltonian are the quasi-particle states.
For an even—even nucleus the (unnormalized) states
are ¥, ALY, [AHAMN Y3, etc., with energies EJ,
ES + E\ + E», E3 + E, + E. + E; + E,, ete., re-
spectively, the quasi-particle vacuum, the two quasi-
particle states, the four quasi-particle states, etc. In
each state there are an even number of proton and
neutron quasi-particles. The ground state ¢3 is the
quasi-particle vacuum defined by

i
nii? = [y )

oo = 0. (12)

For an odd-mass nucleus the eigenfunctions are the
one quasi-particle states af.¢$, the three quasi-par-
ticle states [alA#]/"Y8, etc., with energies Ey + Ei,
E3 + E, + E. + E;, ete. In each odd proton (neu-
tron) state there are an odd number of proton (neu-
tron) quasi-particles and an even number of the other
type. The states of an odd—odd nucleus consist of
odd numbers of both neutron and proton quasi-par-
ticles with an energy spectrum E§ + Ep + E, etc.
Since the gap separates the zero quasi-particle
states from the two quasi-particle states, the low-
lying states for the even—even nuclei are the zero and
two quasi-particle states, and for odd—odd nuclei are
the coupled one proton and one neutron quasi-par-
ticles. Therefore, insofar as the quadrupole terms
can be neglected, the low-lying states of odd-mass
nuclei have the simplicity of a single particle in sev-
eral j levels, and the low-lying states of even—even
(except for the ground state) and odd-odd nuclei ap-
pear as two-particle spectra in those same levels re-
gardless of the number of nucleons involved. This
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enables one to compare systematically the theoretical
calculations to the experimental spectroscopic in-
formation with little difficulty. There is now good ex-
perimental evidence that there is a smooth and grad-
ual variation of the particlelike states as one proceeds
through the major shells, in agreement with the basic
assumptions of this picture. In the next section, the
effects of the quadrupole interaction are discussed,
but first the neutron—proton short-range force will be
considered.

The neutron—proton short-range force is expected
to play an increasingly larger role as one treats
nuclei of lighter mass. For the investigation of the
role of this force in nuclear structure, the nuclei with
one particle added to or removed from one closed
shell and various numbers of nucleons outside of the
other closed shell seem to give the most direct in-
formation. Silverberg, who has carried out extensive
calculations for these isotopes, concludes that he
must include a neutron—proton short-range force to
account for the level systematics of these nuclei; he
finds that he can successfully account for the general
features of these systematics by calculating the
radial overlap integrals between the neutron and
proton'® wave functions.

Let us consider the case of one proton outside of
the proton closed shell and a é-function interaction
between the proton and various numbers of neutrons

Tt
V = 2w (p'n’lgs(r, — 1) l0p)by bbby . (13)
A spin-dependent part gives no contribution for the
s-function force. Evaluating the energy shift due to
this force in perturbation theory for the states with
one proton and an even number of neutrons
T n, T Tn n
Yip = fg (()) = bjs H (Un + anfnmn in-mn)|0>;

jamn

(14)

one finds for the energy shifts of these states

AE;, = Z (27 + 1)V?ng_/ Rnplp(r)Rnnln(r)Tzdr .
0

nnlnjn
(15)

The R,.(r) are the radial wave functions. Since the
energy shifts AE;, of the different proton levels are
unequal, these can be interpreted as additional shifts
in the single-particle levels as a function of A. How-
ever, the interpretation is complicated by the fact
that there are other phenomena which can cause ef-
fective level shifts. For example, the particle inter-
acts with the phonon (see next section), and the level
spacings depend upon the parameters ¢, G, and x.

10 1, Silverberg, Arkiv Fysik 22, 289 (1962); and work to be
published.
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Moreover, the addition of other long-range forces to
the quadrupole force, to change the composition of
the phonon, can alter the energy levels of the odd-
mass isotopes without changing the systematics of
the collective states.'* In Chap. III systematic studies
with these energy shifts AE are discussed.

Similarly, one can evaluate the interaction, Eq.
(13), in pure quasi-particle states. Introducing the
quasi-particle transformation (3), one finds that only
the P, part of the force contributes and that, e.g., in
proton one quasi-particle states afyo, the energy shifts
of the quasi-particle states AE® are!®
V?p) AEfD .

AES = (U, — (15"

For the lowest quasi-particle states U? = V?so these
effects would tend to be reduced, and one would ex-
pect the maximum energy shifts at the single closed
shell plus one nuclei.

There are also contributions which arise from the
admixture of higher quasi-particle states. Because of
the low-lying phonon states which can be accounted
for by the quadrupole interaction, one can expect
that the quadrupole part of the neutron—proton force
might play an especially important role. This part is
included in our Hamiltonian, as is described in the
next section.

C. The Long-Range Force
1. Even—Even Nuclei, QRPA Approximation

The general experimental systematics® for the
even—even nuclei in the regions which are treated in
this work are that the first excited state is almost al-
ways a single 2+ state (at energy hw above the
ground state) with a fast reduced E2 transition to
the ground state. The next excited states, which are
2+, 44, and 0+ states, are at roughly 24w excita-
tion energy with a reduced E2 transition rate to the
first 2+ state of the same order as that of the latter
to the ground state, while the reduced M1 transitions
from the second 24 to the first 24- state and the re-
duced E2 crossover transition to the ground state is
much weaker. Although these systematics are not so
regular or so striking as the analogous ones in the ro-
tational region, these data strongly suggest that the
lowest states of the even—even nuclei in this region
are not properly described as two quasi-particle or
other simple-particle states, but more nearly as
quadrupole vibrational states.

Starting from the pairing force with its approxi-
mate quasi-particle solutions, one can see that the

11, S. Kisslinger, Nucl. Phys. 35, 114 (1962).
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simplest additional force which gives rise to such
adiabatic motions is the quadrupole interaction.
Therefore, for the long-range-force component we
use the quadrupole force. Whereas this force is im-
portant for particles in different orbits, it cannot be
assumed to be effective only among proton pairs and
neutron pairs as is the pairing force, but must also be
effective as a proton—neutron interaction. There are
then three coupling strength parameters x., x,, and
Xop, and the Hamiltonian Eq. (8) including the effect
of pairing and quadrupole forces may be written out
in terms of the quasi-particle operators as

t t t t
H — Eo= 2 By + 8:8,) + 2n Ealtacta + B:8,)
—36Q @ — 160" Q" — 1@ Q"+ Q- Q),
(16)
where the subscript p, n refers to proton, neutron
quasi-particle operators, and energies, respectively,
and @ is the proton or neutron quadrupole-moment
operator:
A T \
Qu = Z q‘v‘v'(Uva' - Vvvv') (avav' + 61!'.61')
v’ >0

3 UV + VU (@B + Buaw)

w’>0

(17)

and

@ = GIrYIY), v =jm. (18)

The lowest excited states of an even—even nucleus
are the two quasi-particle states, where both are
protons or neutrons. (A state of one neutron and one
proton quasi-particle corresponds to an odd-odd
nucleus.) The quadrupole force has its most pro-
nounced effect on the states, in which the proton or
neutron quasi-particle pair is coupled to 2+. The
approximation of linearized equation of motion in
terms of quasi-particle pairs called the quasi-particle
random-phase approximation, referred to hereafter
as QRPA, is used to treat this force.”> The result is
that only the 24- states among the many two quasi-
particle states are affected. In the absence of xa,, the
neutron and proton states remain independent and

12 The approximation used here was applied to the electron
gas by K. Sawada, Phys. Rev. 106, 372 (1957); G. Wentzel,
Phys. Rev. 108, 1593 (1957). Application to the nuclear problem
was made by R. Arvieu and M. Veneroni, Compt. Rend. 250,
992, 2155 (1960), T. Marumori Prog. Theoret. Phys. (Kyoto)
24, 331(1960), and by M. Baranger, Phys. Rev. 120, 957 (1960).
Application to K2 systematics has been made by T. Tamura
and T. Udagawa, Progr. Theoret. Phys. (Kyoto) 25, 1051
(1961), and with the adiabatic approximation by J. Bro-
Jorgensen and A. Haatuft, to be published. Octupole sys-
tematics have been considered by S. Yoshida, to be published.
Shell-model calculations using a particle-hole interaction have
been carried out for the dipole state by G. Brown and M.
Bolsterli, Phys. Rev. Letters 3, 472 (1959), and G. Brown,
L. Castillejo, and J. Evans, Nucl. Phys. 22, 1 (1961).

L.S. KISSLINGER AND R. A.SORENSEN

two 2+ states are lowered into the energy gap. One
is a linear combination of neutron 2+ states and the
other of proton 2+ states. In the presence of a large
Xu & Single 24- level, which is a linear combination
of both proton and neutron 24 states, is lowered into
the energy gap. In the QRPA approximation, that
24 level is the first excited state of a quadrupole
harmonic oscillator in the sense that it is followed by
an 0+ 2+ 4+ triplet at twice the energy, and by
the other well-known levels at integral multiples of
the energy Aw of the lowest 2+ states. The previous
calculations for single closed-shell nuclei (Ref. I) for
which only one kind of particle is free to utilize the
two-body force show that x. = x,. The experimental
observation of only one low 24 (and not a doublet)
shows furthermore that x., must at least be a sizable
fraction of x. and x,.

For even nuclei the QRPA approximation consists
in dropping the first sum in Eq. (17). The justifica-
tion for this is that the effect of this term is spread
over many pair states of various angular momenta,
and its matrix elements are small since they are pro-
portional to the number of quasi-particles in the
state. The second term of Eq. (17), the one which is
retained, has its effect concentrated entirely on the
24 pairs, and its matrix element is proportional to
the number of participating particles rather than
quasi-particles. The other approximations necessary
for the solution of Eq. (16) all involve dropping terms
of single-quasi-particle type spread over many angu-
lar momenta and so are consistent with the central
approximation above.

We may approximate the independent quasi-par-
ticle Hamiltonian as

> Bulosa + B8) 23 3 ()AL, (19)

17 d M
since both sides of Eq. (19) have approximately the
same commutator with all of the 4 and Af. In Eq.
19)

&(jije) = L;, + Ej, , (20)
and A{3" is the vector coupling of j, and j, quasi-
particle creation operators to a total angular mo-
mentum of J, M defined by Eq. (Al).

The A have the commutation relation,

s o mt
(A7, A1 1 = 8758 mm”(85,5,°85,5,"
Jitiatl 41,
— (=), 085,5,7)

+ single-quasi-particle scattering terms spread
over many angular momenta. (21)

With the omission of the last term in Eq. (21), Eq.
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(19) describes a set of independent harmonic oscil-
lators.

With the Wigner-Eckart theorem on Eq. (18),
the retained term of Eq. (17) may be written in
terms of the “4” operators

0 = S0 QAT + (—1)"4A%],  (22)
where
Qi = ¥ 57%1FY/YU U + ViVi) . (23)

In this approximation, the quadrupole terms of
Eq. (16) produce a harmonic coupling among the
otherwise independent harmonic oscillators described
by the first two terms. The problem is simply to find
the normal modes. The modes described by Af{#,
J # 2+ are already normal and retain the energies
8(j1J2)- Because of the commutation relation Eq. (21)
only the J = 2+ modes are coupled. Since the
coupling terms are themselves harmonic, the Hamil-
tonian Eq. (16) expressed in terms of its normal mode
creation operators will be a set of uncoupled har-
monic oscillators. Calling the creation operators for
these oscillators B}, and their energies w, and letting
Yo and E, be the ground state and ground-state energy
of the Hamiltonian such that Bge = 0 one has (with
the u index suppressed)

(H — Eo)Blyo = [H,BIo = wBlyo. (20)

Since [Q,47%"] = 0, the A7*" do form normal modes.
For J = 2, one also wishes to consider higher excita~
tions of the lowest mode oscillator, hereafter referred
to as the phonon, which requires

[H,Bl] = wBl, (25)

as an operator equation. Let us define the commu-
tators (which are ¢ numbers in our approximation)

[45Bl] = r.(8)
[4LBl] = 5.0,

where ¢ stands for a proton or neutron pair j,jo, or
JaJn, (with the two angular momenta coupled to 2-+).
Taking the commutator of Eq. (25) with 4, and
A}, one obtains with the use of (16), (17), (19), and
21):

[g(p) - w]rw(p) = 2QD{XP Zp' Qp'[’rw(p,) + Sw(pl)]
+ Xnp Zn, Qn'[”‘w (1’1,) + So (I’l’)]} ) (273')

[6(p) + w]su(P) = 2@uixe 2p’ Q'[re(P) + s (p’)]
+ Xow Don’ Quro(@’) + ()]}, (27b)

and two similar equations may be obtained using

(26a)
(26b)
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Ag— and A}... One may combine Egs. (27a), (27b) to
obtain
(XpSp - 1) Zp' Qp'[rw(pl) + Sw(D')]

+ XooSp Zn' Qn'[rw(n,) + Sw(nl)] =0,

and the two similar equations to obtain

anSn Zp' Qp'[rw (p’) + sw(p,)]
+ (XnSn bl 1) Zn' Qn’[rw(n’) + Sw(n’)] = OJ
27d)

(27¢)

where
S =425, (Q)8®)/[6() — ], (28)

and a similar equation defines S.. Since Eqs. (27) are
linear and homogeneous in the sums on r, + s, they
will have solutions only for certain values of w,
namely, those satisfying the relation

(XDSp - 1)(ann - l) - szSpSn = 0 . (29)

The nature of the solutions w satisfying Eq. (29) is
easily seen. If x.,, = 0 we get solutions when either
xS, = 1 or xaSa = 1. Each of these equations has as
the number of solutions the number of proton (neu-
tron) pair states coupling to 2+4. For x, > 0, xo > 0
the lowest proton w will lie below &(p) minimum and
the lowest neutron o below &(n) minimum. The
larger the x, the lower the state is (until for suffi-
ciently large x, o passes zero and becomes negative
corresponding to a permanent deformation). There
may thus be two low-energy 2 states in this case.
The effect on these states of changing x., from zero
is also easily seen. The product (xS, — 1) (}aSa — 1)
must now be positive. Thus, the lower of the two
x» = 0 levels must be lowered farther making each
factor above positive, while the higher energy is
raised making each factor negative. For sufficiently
large x.p, there will be essentially only one w left in the
energy gap. In particular, for xZ = xuxe, Eq. (29)
becomes

XoSs + %S = 1. (30)

For Eq. (30) to be satisfied it is clear that the lowest
w is below the lowest &(¢) while the other «’s are
spaced with one w between each adjacent pair of en-
ergies &(£). The spectrum in this case is similar to
that of the single closed-shell case.

The reduced electromagnetic transition rate from
the lowest 24 to 0+ may easily be computed. We
have

B(E2) = (ol Q.| Blyo)l?
= l Zp Qp[rw(p) + Sw(p)]egff

+ 3 Qure() + so(n)lecu|” (31)
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where ef,, are the total effective charge for protons

L.S. KISSLINGER AND R. A. SORENSEN

Tﬁv(p) = [‘Sn(l - XnSn)]%Qp/[é;(p) - w] ’ (343')
and neutrons, respectively. From Eq. (26) we see that
) :Snl—nSn%pS y 34b
— 3} D@l - s@4d, @) W0 7B eST/EE) f, G
so the normalization condition on B, requires ro(m) = [S,(1 — XpSp)]%Qn /[6(n) — ], (34¢)
11 2 _ 27 _ . )
[Bwwa:’ - 2 Z [1/"00(5)] lsw(g)l] 1 M (33) Sw(n) — [Sp(l —_ XpSp)]an/[S(n) + w] i (34d)
Aside from this over-all normalization Eqs. (27a)-
(27d) show that for positive xu, Thus, we have
B(E2) = I[Sa(l — XuSa)]*Spferr + [Sp (1 — x0S5)1* Sabert | (35)

8w{S.(1

— xaSa) Xo (@)'E(P)/[6() — T + S,(1 —

XiS) T (Qu)’E(m)/[6(n)° — T}

For the numerical results, the effective charge for protons and neutrons have been taken as 2e, and e,
respectively. The majority of the computations were performed with the parameters of quadrupole cou-
pling all chosen equal, i.e., Xo = Xa = Xup. In that case the B(E2) value takes the simpler form

[ Spbors + Saeets l :

B(E2) = . (36)
xoemal  8w{Y, (@)°8(p)/[8(p)* — T + Xn (Q)%8()/[8(n)" — T}
2. Even—Even Nuclei, the Adiabatic Limit we may write
Condition (29) may be rewritten Si' = e (1 — o ®y/Qy) (39)
Xp — l/Sp Xnp =0 (37> where .
Xa Xo — 1/ ' @ =2 2 (Qn)°/8(5), (40a)
In the adiabatic limit, i.e., for any » such that ®: =2 > (Q)°/6(8)°. (40Db)
@ K & (£) minimum , (38) In this limit Eq. (37) may be written
(3 G/;I - Xo) T %‘*’2639@;2 Xop -0
Xop Ga' —x) — 2S®aE" (41)
There are two values of «? which satisfy Bq. (41). with
Either one or both of these roots may satisfy the in- C:= 1@ — x¢, (43a)
equality (38). In the first case only that lowest root — L s
will be an approximate solution to the original rela- By = 3 By . (43b)

tion Eq. (29). In the latter case (which will hold only
for relatively small x.,), both roots are approximate
solutions of Eq. (29).

It is easy to show that Eq. (41) is also the result of
adiabatic perturbation theory. The quadrupole force
is replaced by the interaction of each particle with
two quadrupole fields—a neutron and a proton field.
The self-consistency conditions are applied that each
field have the same quadrupole moment as the cor-
responding particles. The inertial parameters are cal-
culated as in I. The resulting collective Hamiltonian
written in terms of the collective parameters @ is de-
rived in the same fashion as in I.

H =300 + 3 00 — xu@@»
B, (dQy/dt)’ + %

[N

1
2
l
2

B.(dQ./dt)*  (42)

It is then easy to show that the normal mode energies
of Eq. (42) are just given by Eq. (41).

In the special case x. = xo = xw = x the adiabatic
limit to Eq. (29) takes the particularly simple form

= ((Bp + (Bn)—l[(z)()_l - (@p + an)] . (44)

Equation (44) is also the result of an adiabatic-per-
turbation theory calculation. In this case a single-
quadrupole field is introduced which acts with equal
strength, given by the parameter x, on protons and
neutrons. A single self-consistency condition is ap-
plied that the field have the same quadrupole mo-
ment as that of all the neutrons and protons taken
together. The resulting collective Hamiltonian de-
scribes harmonic vibrations with a frequency given
in the adiabatic limit by Eq. (44).
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The adiabatic limit to the B(E2) value Eq. (35) is
also obtained by adiabatic-perturbation theory, with
the assumption that the lowest 24- state of Eq. (42)
contain the entire quadrupole matrix element with
the ground state. Thus, in the adiabatic limit, QRPA
and the harmonic oscillating quadrupole field model
are identical. For weaker quadrupole coupling, the
QRPA has the advantage of going to the correct
limit while in the oscillator model, the vibration is
introduced as an extra degree of freedom which per-
sists to zero coupling. .

It should be emphasized that the QRPA requires
a large effective degeneracy and a domination of
pairing effects. If A/G is not sufficiently large, the
terms can be as important as the A" terms and, for
example, the ground state can be lowered in energy
more than the 2+ state by the P® force.®

3. Odd-Mass Nucler

In odd-mass nuclei, the low states (in the absence
of quadrupole coupling) are the states of one quasi-
particle. With quadrupole coupling there will be in
addition some number of phonons. Considering only
the degrees of freedom associated with the phonons
and the quasi-particle we may obtain the approxi-
mate Hamiltonian for the odd-mass system by
simply adding to the phonon Hamiltonian Hhonon
= wB!.B, [which comes from Eq. (24)], the energy of
the quasi-particle given by X, E,(ale, + B18,), and
the interaction between the quasi-particle and the
phonons. The w is the phonon energy, i.e., the energy
of the lowest oscillator. The phonon operators B, and
the quasi-particle operators a, 8 are treated as inde-

Hoa = X E,(alay + B18,) + @ X BYBE —
v= »

proton

X [B:* + (—1)"BY]

"

Xp[Sn(l - XnSn)]%Sp + an[Sp(]- - XpSp)]%Sn
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pendent variables, i.e., the equality [B,al] = 0 is
assumed. This is justified by the fact that a phonon
contains only a small amplitude for the presence of
any particular quasi-particle. The interaction re-
ferred to above, between the quasi-particle and the
phonon, arises from terms in the quadrupole part of
the original Hamiltonian obtained from the first sum
of Eq. (17). Specifically, from the term Q-Q the cross
term is retained in which one of the Q is approximated
by Eq. (22), and the other retains the scattering term
> ¢(UU, — V,V,)(adew' + B)'8,). Although this
term is dropped for even—even nuclei, for odd-mass
nuclei it must be retained since it can scatter the odd
quasi-particle causing energy shifts comparable to
the original single-particle separations. This inter-
action term may be written in terms of 7 and A% of
Eqgs. (10) and (11), for a proton quasi-particle as

Huw = 2 (=10 20 57 11P Yl 7)
X (UUy — ViV
X {=x 2o QAT + (—1)47]
= X 2o QAT + (—1 42}, (45)
and a similar expression occurs for a neutron quasi-

particle. By the use of the inverse transformation to
Eq. (32),

Al = 3, [re®)BL + s.(8)B.], (46)

the interaction term Eq. (45) may be written in terms
of B, and B}, If only the phonon and odd-quasi-par-
ticle degrees of freedom are considered the odd-proton
Hamiltonian may be written

> (=DS7GIAYY WU — ViV

% B) (Sl — x8) To (@)8(0)/[8(0)° — &' + S(1 — 68) Ta (Q)8m)/[6(0)* — &}

In writing Eq. (47) we have included, for the quad-
rupole interaction, part but not all of the contribu-
tions from the three or more quasi-particle states. In
some cases the effects of the P; force on the quasi-
particle states are not properly described in this
manner, e.g., in the V® calculation of I, the low-
lying 5/2 state, which is associated mainly with the
seniority three state of the (f72)® configuration, is pre-
dicted by an exact solution of the pairing plus quad-

13 I, Hamamoto and A. Arima, Nuecl. Phys. 37, 457 (1962).

rupole interactions, while this state would remain
high in energy if one used the Hamiltonian (47). Al-
though the phonon—quasi-particle interaction does
not always reproduce accurately the quadrupole ef-
fects, in the regions included in this work the phonon
states are much lower in energy than the two and
more quasi-particle states (in the even—even nuclei)
whenever the quadrupole effects are large, so one
can expect that the Hamiltonian (47) will include the
largest quadrupole effects for the states arising from
the one quasi-particle states in the absence of a
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quadrupole interaction. However, for the states
which arise from the seniority three states, e.g., the
low-lying states of spin ;7 — 1 for pure j configura-
tions such as in the V* case, one would not expect
that the interaction will properly treat the effect of
the three quasi-particle states.

This Hamiltonian Eq. (47) which is in the form of
an intermediate coupling between quasi-particles and
phonons™ is diagonalized including the quasi-particle
states together with all admixed states containing up
to two phonons. The matrix elements for this calcula-
tion aside from the U, V factor and the r, s factor are

L. 8. KISSLINGER AND R. A. SORENSEN

(a5 Hoaal (B'ay);) = —x(5/4x) 17535
X (U;U;7 — V;Vr). (48)

As the two-phonon states are weakly admixed in low
states, the fact that [B'B' may not describe them
very well does not introduce much error. The one-
phonon to two-phonon elements are

((Bay) s\ Had [(B'BY) 10} )s) = —x(5/2x)1°17")
X C3-[@I + 1) (2 4+ 1]}

22J5"; 1) (U U — V;V,7) . 49
just those given by Chaudhury.** The no-phonon and X W (22775 17)( ) (49)
one-phonon matrix elements are The effective coupling constant x is
XD[SD(I - XnSn)]%’Sp + an[‘Sp(l _ Xpsp)]%sn (50)

i:

The equations for an odd-neutron nucleus are the
same type. The diagonalization of Eq. (47) was per-
formed on an electronic computer and the wave func-
tions and energies of all levels up to 1 MeV and
higher in some cases were retained. The results of
this diagonalization are presented in the following
section, together with the results on energy system-
atics for even nuclei and a few comments on odd—odd
nuclei.

III. ENERGY-LEVEL SYSTEMATICS

Since in the systematic studies of even—even, odd—
odd, and odd-mass nuclei for the spherical region one
is generally concerned with quite different aspects of
nuclear structure, we shall treat these systems sep-
arately. For the even—even nuclei the main energy-
level systematics concern the positions of the vibra-
tional levels, while for the odd-mass nuclei one has
information both about the positions of the quasi-
particle states and the states of quasi-particles and
phonons, and these states are often strongly admixed.
For the odd-odd nuclei the experimental data is not
so extensive, and seems mainly to give information
about the states of proton and neutron quasi-par-
ticles.

14 This kind of coupling was suggested by the work of J.
Rainwater, Phys. Rev. 79, 432 (1950), and L. L. Foldy and
F. J. Milford, Phys. Rev. 80, 751 (1950). Detailed calcula-
tions were then made by A. K. Kerman, Phys. Rev. 92, 1176
(1953); D. C. Choudhury, Kgl. Danske Videnskab. Selskab.
Mat.-Fys. Medd. 28, No.4 (1954); K. Ford and C. Levenson,
Phys. Rev. 100, 1 (1955), and more recently by N. K. Glend-
enning, Phys. Rev. 119, 213 (1960). The formalism of the
present work was applied to the single closed-shell nuclei by
R. A. Sorensen, Nucl. Phys. 25, 674 (1961).

(8) {8a(1 — xaSa) 2o (@)’ ()/[6(D)° — &1+ So(l — xSe) 2on (Qu)E()/[E (M) — 7} F

A. The Parameters and Description of
Method of Calculation

1. The Interaction Strength Parameters

The parameters which enter into the determina-
tion of the energy levels, and the wave functions
which are used subsequently to calculate the other
properties, are the two pairing force strength pa-
rameters, G, and G, the three long-range-force
parameters, xa, X, and x.,, and the single-particle
energy-level parameters ¢;. A fourth parameter g, de-
fined in Eq. (13), is used for studies to try to de-
termine the ¢’s, but does not actually enter into any
part of the calculation directly.

The most accurate information for the determina-
tion of the strength parameters of the pairing force
comes from the single closed-shell data. As we dis-
cussed in I, the main experimental information which.
goes into the choice of these parameters is the even—
odd mass differences, the gap, and the position of
certain states of high angular momentum and odd
parity in even—even nuclei. However, to the extent
that the calculated values of these quantities depend
upon the details of the single-particle spacing, there
is some uncertainty in the choice of the best value of
these parameters even in the single closed-shell re-
gions. We estimate that the over-all accuracy is ap-
proximately 209, for these isotopes.

It is surprising how little additional direct informa-
tion on these pairing force parameters can be ex-
tracted from the remaining isotopes, which constitute
the great majority of the nuclei included in this work.
Trirst of all, there are not many of these isotopes in
which one can clearly identify the lowest excited
quasi-particle states because the multiple phonon
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states are always in the gap or mixed in with the
lowest lying two-quasi-particle states. Secondly, be-
cause of the increased complexity in the spectrum as
soon as one leaves the single closed-shell isotopes, it
has been difficult for many determinations of states
of high spin and odd parity to be made in even—even
nuclei. Moreover, although there are some excellent
mass data, the theoretical uncertainties due to in-
creased importance of the long-range force do not
allow the even—odd mass data to be so clearly in-
terpreted, as is discussed in Chap. IV.

For this reason, we have used the force parameters
which are obtained from the single closed-shell re-
gions. Although there is some evidence for G, to be
slightly larger than G, in the deformed region,” and
one might expect this to be the case because of the
smaller Fermi energy for protons than neutrons in
heavy nuclei,’® we were unable to justify the use of
two different force parameters in our calculation. In
a rather extensive survey in various regions we could
not find an over-all systematic improvement in the
various states by using different values. Thus we
chose

G=0GC=G, (51)
for each isotope, and allowed G' to have a mass de-
pendence of G ~ 1/4, where A is the mass number.

As discussed more fully in Sec. B, there is nothing
in the systematics on the vibrational states which
contradicts the simple picture of the vibration being
formed by a force equivalent to the interaction of the
quadrupole moments of the particles with the quad-
rupole moment of the entire nucleus; i.e., in all of
these nuclei the spacing of the vibrational levels is
essentially that of a single-quadrupole vibrator. As
can be seen from Eq. (44) and the earlier discussion,
this suggests that the three-quadrupole force param-
eters are approximately equal. Since there was noth-
ing found in the calculations using different force
strengths to suggest that systematic improvements
could be obtained by using different force strengths,
we have made the choice that

Xp = Xo = Xmp = X (52)
for all of the calculations which are discussed here-
after.

In the even—even nuclei we attempt to determine
the best over-all values for this x parameter and its
A dependence. However, for the odd-mass nuclei we
do not directly use this value, as explained below.

15V, Weisskopf (unpublished notes).
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2. The Single-Particle Parameters

The greatest uncertainty in the numerical results
comes from the uncertainty in the values of the
single-particle energy parameters, ;. From the single
closed-shell nuclei and from the isotopes with one
particle away from a single closed shell one can often
obtain rather good information about two or three
levels, but usually one can only have reasonably good
values for the levels which are most important for a
particular isotope. However, because of the large
changes in the mass numbers, even in one region,
which are involved in these calculations, this is not
always easy to do in practice.

The most important aspect of this difficulty seems
to be effective changes which are produced by the
neutron—proton short-range force. In any calculation
with a phenomenological residual force, the simplest
correction which one can make, to take into account
the parts of the interaction which have been ne-
glected, is that of altering the effective potential for
the particles. In doing this, one effectively takes into
account the P, (spherically symmetric) part of the
interaction. We have done this here in a phenom-
enonological manner in a few cases where there
seemed to be clear evidence that it is necessary.

Although this adds a certain amount of arbitrari-
ness to the numerical results, such a device cannot
alter the essential picture which results from the
coupling schemes which are employed. When the
coupling schemes break down, low-lying states ap-
pear of character different from those which we can
obtain. Also, the limitations imposed by the necessity
of fitting so many of the low-energy properties con-
siderably reduce this arbitrariness. The main reasons
for these adjustments are to better test the validity
of the methods which are being employed and to
make the results more useful.

In order to try to estimate the energy shifts which
would be needed to incorporate the spherical field
part of the short-range neutron—proton force, we cal-
culated the energy shifts for one particle in all of the
levels used in the various regions, interacting with
the particles of the other type by the method de-
seribed in Chap. II. For the single closed shell plus
one isotope one does obtain over-all improvement,*®
however, there are a number of difficulties which
make it impossible to apply the method consistently.
For example, using a force parameter of sufficient
strength to account for the 1/2-3/2 spacing in the T1
isotopes, the change in the spacing which occurs for
the Hg isotopes causes the gap to get extremely small
or vanish for the protons which contradicts the data;
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and although the changes in the 1/2-9/2 separation
in the In isotopes are in good agreement with the ex-
periments, the resulting values for the pi/2—go/2 spac-
ing in the lighter isotopes in that region are not satis-
factory.

On the other hand, from these studies we can see
which levels are most strongly altered and can es-
timate the energy shifts which might be reasonable.
The results of the calculation mentioned above are
not given.

We also incorporate the energy shifts which are
known to occur in nuclei; the separation of all of the
¢; vary as A~% and in addition change with the spin—
orbit splitting dependence A%

Having decided upon the parameters, the occupa-
tion numbers V; and the quasi-particle energies E;
are determined from Eqs. (4). The even- and odd-
mass calculations are carried out independently. For
the even-mass nuclei we determine the phonon en-
ergy « with several choices of the quadrupole param-
eter, while for the odd-mass nuclei we attempt to
carry out a more nearly accurate calculation by using
the experimental value of the phonon energy and fit
the force strength from the neighboring even—even
nuclei.

B. Energy Levels of Even—Even Nuclei

Although most of the calculations were performed
using the QRPA approximation and x» = xp = Xup, &
number of preliminary studies were made of the ef-
fect of using different coupling constants and of the
relation of the QRPA approximation to the adiabatic
approximation. With the exception of a few nuclei,
the adiabatic approximation to QRPA is quite good
for the calculation of the vibration of spherical nuclei.
Most of the exceptions are among the nuclei with a
closed proton or neutron shell and thus a particularly
high energy for the 24 vibrational level. A few other
cases occur for nuclei at a subshell such as Z = 40 for
which the energy gap is particularly small. In the
worst cases, the QRPA energy and B(E2) can differ
from the adiabatic approximation by as much as a
factor of 2. In all other cases the energy and B(IE2)
agree within a few percent for the two methods of cal-
culation. This indicates that the nuclear vibration is
indeed adiabatic and that it is correct to picture the
motion as a vibration of the nuclear shape of low
enough frequency that the individual particle orbits
can follow the motion.

The same values were used for the proton and
neutron long-range strength parameters x. and x, for
most of the studies, in agreement with the results
found for the single closed proton shell and single
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closed neutron shell nuclei. The value of x., in rela-
tion to x, and x. has two main effects. Firstly, a very
small value of x., leads to two low-lying 2+ states
(except for the single closed-shell nuclei) contrary to
the experimental fact. Secondly, its value determines
the 2+ energies and B(E2)’s of the nuclei away from
closed shells as compared with those quantities for
the closed-shell or near-closed-shell nuclei. This is be-
cause the value of x,, has no effect on a single closed-
shell nucleus in the approximation used here. One
might, for example, choose x. and x, to fit the 2+
energies of the single closed-shell cases, and then
choose xap 50 that the nuclei just two particles away
from the single closed shell would have the right en-
ergy. Although these latter 2+ levels are much lower
in energy than the former, the above procedure leads
to a rather small x,. In each region of isotopes only
a limited number of proton (and neutron) single-
particle levels are considered; namely, those of a
major shell. Thus, for example, for the nuclei below
Sn the protons are in the 28 < Z < 50 shell while
for the nuclei above Sn they are in the 50 < Z < 82
shell. For Su itself, the protons do not exist for the
calculation. Since different numbers of levels are used
in the different cases the effective coupling constant
may be a little different due to renormalization ef-
fects. In particular, it may be a little extreme to
eliminate the protons entirely for Z = 50. The effect
of the inclusion of the levels of two shells has been
examined and found to suggest that the closed shells
are probably not completely inert. For example, the
inclusion of the fr,» level below, for protons and
neutrons in the 28 < Z < 50 shell, has quite notice-
able effects (softens the vibrator), particularly for
the Ni isotopes. The inclusion of this fi/. gives more
than just a renormalization effect, since it changes
the shape of the 24 curve for the Ni isotopes, lower-
ing the predicted energy much more for Ni*® than for
the heavier Niisotopes. The shape of this curve could
be corrected again by bringing the go/2 neutron level
more into the picture. With the single closed-shell
vibrators softened somewhat, the previously de-
scribed prescription would give a larger x., since x,
and x. could be chosen smaller.

While many of the detailed variations of the 24
energy seen in a particular sequence of isotopes could
be reproduced by a particular choice for x,, x., and
Xapy 1t Was not possible, with a single set of param-
eters, to fit all these details for all the spherical
nuclei. However, a reasonably good compromise is
possible. It is found that the choice x, = Xa = Xup
seems to give over-all results as good as any. This
choice together with a judicious choice of the single-



SPHERICAL NUCLEI

particle energies and pairing strength reproduces the
variation of 2+ energy fairly well.

The exact values of w near the point at which «?
becomes negative for a particular isotope series are
extremely sensitive to the value of x because w is in-
creasingly sensitive to x for increasingly small w. This
can be seen from the adiabatic limit Eq. (44). For
w =0,

w < (xo—x)*, (53)
where x, is the value of x for which w = 0. Thus, it
is not surprising that while the fit is reasonable if w
is not too small, for those isotopes for which F,,-is
less than about one-fourth of the pairing gap, the
smallest change in x or isotope number can mean the
difference between FE,. = % gap and a predicted
deformation. On the other hand near mass number
150 the point in the isotope table at which w® becomes
negative is such a general feature of nuclear structure
that for any reasonable choice of parameters one can
only change this point by about one isotope. In order
to use the model for nuclei as far toward the de-
formed region as possible, the value of x used in the
calculation of other properties was chosen to fit the
experimental 2+ level energy. Such a set of x values
is plotted in Fig. 1.
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Nevertheless, considerable detailed agreement with
experimental 2 energies is obtained with fixed x in
each region as can be seen in Figs. 2(a) and 2(b). The
shape is right in the Pb isotopes, as observed in Ref.
I; in addition the lower energies in Hg and Pt are
well fit if not in fine detail. Then for all of the lighter
nuclei of the so-called deformed region with the ex-
ception of Os, which is just on the edge and can be
made to vibrate or not with slight parameter adjust-
ments, the «® < 0 indicating a theoretical deforma-
tion. From the other side, starting with the good Sn
results, the decrease of the 2+ energy for heavier
nuclei Te, Xe, Ba, etc., and the increase at N = 82
is well represented (only the most neutron deficient
Xe and Ba isotopes have w® < 0). Above N = 82 the
deformation quickly sets in in agreement with ex-
periment on energy-level systematics as well as the
photonuclear experiments'® which show a double
dipole resonance as one enters the deformed region
near mass number 150. Presumably our result that
the prediction of spherical symmetry in the Os iso-
topes is uncertain within the range of our parameters
is in agreement with the experiments which show a

16 See G. H. Fuller and E. Hayward, Nucl. Phys. 30, 613
(1962) for other references.
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Fic. 1. The coupling parameter X = 5/4w(r?)}x chosen to bring Es, into agreement with the experimental data; (r?), is
the matrix element of 72 in the most usual orbit of the shell under consideration.
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SPHERICAL NUCLEI

gradual transition from spherical to deformed shape
in the Os region.”

The rapid drop of the 2+ energy as one moves
away from closed shells for nuclei lighter than Sn is
also well represented with she same parameters. How-
ever, these parameters lead to negative w? values for
some regions away from closed shells, in which the
nuclei do not exhibit the extremely low E,; values
and the clear-cut rotational spectra characteristic of
the rare-earth nuclei. In particular, the region of iso-
topes with N ~ 42, 32 < Z < 36 and the heavy iso-
topes for Z = 44, 46 are predicted to be deformed.
Although these nuclei do not exhibit rotational
spectra, they are the ones with lowest F,. values in
the vicinity, and in several cases the odd—mass nuclei
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C. Energy Levels of Odd-Mass Nuclei

In states of one quasi-particle with zero, one, and
two phonons

¥ = fooaj\bo + Z;" C;:'Iz[az'Bf]ﬂPo
+ X Crailey (BB 4o, (54)
the Hamiltonian (47) with the interaction term (45)
is diagonalized. Since we are using force parameters
X = Xp = Xa = Xup, this interaction has the simple
form
+
Hi = xK(0,G)e;) Z:‘j’f:‘j’ﬂj’j(B + B), (55)
in which the f;; represent the coefficients in the sum
in BEq. (47) and K is a quantity which only depends
upon the single-particle energy levels, the pairing

Mev

13/24)

F1c. 3. Energy levels of odd-mass Pb
isotopes. The pairing and single-particle
energy parameters are given in Appendix
II; the long-range force is chosen to fit the
even-even spectra. The experimental
points are given as open circles and the
theoretical results as solid lines.

have low states corresponding to anomalous coupling
which might indicate incipient deformation. For ex-
ample, these are cases for which the simplest in-
terpretation of a low £+ state is that it is a seniority
three configuration of (ge/3)7/2+. This is essentially the
configuration which would be predicted by the
Nilsson model and is thus suggestive of deformation.

Nevertheless, in the rest of the discussion, the
value of w for these isotopes is taken from experiment
and the computations are performed as if the 24
was a vibrational state of a spherical nucleus.

17W. R. Kane, G. T. Emery, G. Scharff-Goldhaber, and
M. McKeown, Phys. Rev. 119, 1953 (1960), and G. T. Emery,
W. R. Kane, M. McKeown, M. L. Perlman, and G. Scharff-

Goldhaber, Electromagnetic Lifetimes and Properties of Nuclear
States N.A.S., N.R.C. Nuclear Science Series Rept. No. 37.

parameter, and the phonon energy. In this work we
have used the experimental value for the phonon en-
ergy from the neighboring even—even nuclei for both
the unperturbed energies and K for each odd-mass
isotope, and fit the value of x from experimental
phonon data. This allows us to proceed with the im-
portant odd-mass data without the necessity of a se-
lection of parameters so accurate as to fit the very
sensitive phonon energy, as was described above. The
parameters used and the results of the calculations
are presented in the figures and in Appendix II.

1. The Region 50 < Z < 82;82 < N < 126

This is the region in which there is probably the
least uncertainty in the parameters. From the Pb*”
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isotopes one knows the neutron energies for the 82—
126 shell in the region below Pb and from the T1 iso-
topes one has quite a good idea of the important
proton levels. The results for the odd-mass Pb iso-
topes are so similar to I and the work of Sorensen,
Ref. 14, that we shall not discuss them.

Let us first discuss the nuclei above the deformed
region, Figs. 3-7. For the odd-neutron nuclei as one
proceeds from the Pb isotopes to the deformed nuclei
at mass number 190 one is removing neutrons from
the pu/z, fsr2, and pa/2 levels and the 73/ quasi-particle

L.S. KISSLINGER AND R. AL.SORENSEN

state is dropping just as in the odd-Pb isotopes. In
the Hg isotopes, where the no-phonon and one-
phonon states generally remain well separated one
can see this effect. Since the “‘opposite’” parity states
in any region are generally not so strongly admixed
by the quadrupole force, in Hg the mixing is still
weak enough for the 13/2* quasi-particle to move
through the one-phonon state. The comparison with
experiment shows good agreement for this state and
the fact that one does not see the isomeric state after
Hg'® is predicted by the fact that the 13/2 level is
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moving into the one-phonon levels of higher spin for
Hg** and Hg?®. The other one quasi-particle states
are affected by the long-range force much more than
in the Pb cases, and the results are in reasonable
agreement with the experimental values. For the Pt
isotopes the one-phonon states do not fall quite as
low in energy as the experimental ones, while the oc-
currence of low-lying phonon states in the experi-
mental data for the Os isotopes suggests that one is
in a transition region where the methods employed
here are beginning to be inadequate.

The $1/2, da/2, and hii/z levels are the important ones
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for the pairing part of the odd-proton calculation.
For the Tl and Au isotopes the theory and experi-
ments show the phonon states separated from the
no-phonon states, while the theoretical calculation
does not seem so show the no-phonon state being
sufficiently admixed into the one quasi-particle states
for the Ir isotopes. An increase in the strength of the
quadrupole interaction would markedly improve the
results in the Tl isotopes, and then in Au the phonon
states would fall lower, which would be more nearly
consistent with the experimental data.

In order to describe better the effects of the quasi-
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particle-phonon interaction we show the energies of
the quasi-particle states and the states which arise
from them in the presence of the quadrupole force in
Fig. 8. The quadrupole force has little effect in the
odd-Pb isotopes, while for the odd-Hg spectra one
can see that the phonon effects are large and very
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Fi1a. 8. The effect of quadrupole interaction on states of odd-
neutron nuclei above the deformed region. The quasi-particle
energy levels in the absence of the quadrupole interaction are
given as solid lines while the low-lying states in the presence
of the quadrupole interaction are given as dashed lines. The
experimental ground-state spins are included.
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An effect occurs here which seems to be present in
all of the spherical nuclei, that of the compressing of
the quasi-particle states due to the stronger inter-
action of the higher lying quasi-particles with the
phonons [see Eq. (47)]. This is an important system-
atic feature of our coupling scheme which seems to
be verified by the empirical data.

There are not much data below the deformed
nuclei for this region, and one expects our methods
to give rather inaccurate results for cases with even
a few neutrons added to the 82 neutron shell because
of the approaching deformed region. The only sys-
tematic data concern the odd-proton nuclei shown in
Fig. 17 in which one sees the 7/2 and 5/2 states with
relative motion due to both the change of the quasi-
particle energies as one adds protons, and the effect
of the quadrupole force. However, the density of
states does not seem to be in agreement even as the
phonon states begin to fall low in energy as one can
see in Figs. 13 and 17.

2. The Region 50 < Z < 82;50 < N < 82

In this region the protons are being placed into the
g2 and ds/s levels and the neutrons into the huys,

Ol(w2+)
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O w2 Fic. 9. Energy levels of
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much improve the agreement with experiment, since
the 3— state is lowered with respect to the 3/2—
and 5/2— states. In fact, a moderate increase in the
quadrupole strength would make 1/2— be the
ground state in Hg'" and Hg', and perhaps in
Hg™™.

si/2, and ds/z levels (see Figs. 9-17). Insofar as the
single-particle level shifts can be neglected, the
two important proton levels are accurately known
from the N = 82 isotopes. Referring to Fig. 14, one
sees that the Sb energy levels give clear indication
that, in fact, the relative motion of these levels occurs
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Mev

Fia. 10. Energy levels of odd-mass Te
isotopes.

o(li/2-)

more rapidly with changing neutron number than
can be accounted for by the phonon interaction of
the strength used here. In Fig. 14 the calculation is
shown with dashed lines including the energy shifts
due to a delta interaction between the single proton
in Sb and neutrons. This effect is smaller for the
other odd-proton isotopes, since one is approaching
the N = 82 shell closing.

A very interesting phenomenon which is occurring
in the odd-proton isotopes is the important role of
one particular state. Both in the theoretical calcula-
tions and in the experiments, one can see a spin-1/2
state moving quite rapidly with respect to the other
states, Figs. 14-16, and even becoming the ground
state in Cs'®, This state is mainly of phonon char-
acter according to the theoretical calculations. It
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would be nice to obtain information about the tran-
sition rates for this state, since we would predict that
E2 transitions to, say, the 5/2 state would be highly
enhanced.

The odd-neutron isotopes are also interesting,
with very good systematic data. The Sn results differ
from the results in I mainly in that it was found that
a different ordering of the single-particle levels could
account for the systematics of the 24 first excited

states in the even Sn isotopes and give much better
fits away from the closed proton shell. The positions
of the 1/2, 3/2, and 11/2 states are fit adequately in
the Te, Xe, and light Ba isotopes. However, as one
approaches the case of one particle away from the
closed shell at Ba', Ce*®®, and Nd'* there are errors
either in handling the effect of the quadrupole force
or of the neglected neutron—proton force. Because of
the special nature of a calculation with one particle
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F1g. 13. Energy levels of odd-mass
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away from the closed shell, the phonon calculation
might be particularly inaccurate for those cases. As
for the neutron—proton interaction, because of the
dependence upon the occupation numbers of the
states [see Eq. (15)] and the sudden decrease in the
pairing effects as one reaches one particle outside of
a closed shell, there might occur a marked difference
in the shifts in the 11/2-3/2 and 11/2-1/2 separa-
tions as one goes from 79 to 81 particles.

In Figs. 18 and 19 are shown the effects of the
quadrupole interaction on the quasi-particles for the
odd-proton and odd-neutron isotopes, respectively.
For the odd-proton cases in the absence of the quad-
rupole force one would have only the 7/2 and 5/2
low-lying levels. First one sees that the relative mo-
tion of the experimental 5/2 and 7/2 levels in I, Cs,
La, and Pr is much larger than could be explained by
the motion of the Fermi level. Also, the neutron—

9
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proton short-range interaction gives very small con-
tributions since one is near the 82 closed shell at
which the energy levels have been determined. The
quadrupole force thus not only brings down the 1/2
state and other one-phonon states, but semiquanti-
tatively accounts for the 5/2-7/2 relative motion.
In Fig. 19 one can see that there are large effects
of the quadrupole force which generally give im-

portant improvements when compared to the quasi-
particle levels. The main effects are to keep the 1/2
level as the ground or low-lying level for high neutron
numbers to give consistency to the spectra of Sn, Te,
Xe, and Ba. It also tends to lower the 3/2 state, keep-
ing the 11/2 level from being the ground state or very
low-lying state in all of the isotopes with N > 69. In
the light Sn isotopes one sees that the relative shifts
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F1ac. 18. The effect of quadrupole interaction on states of odd-proton nuclei for 51 < Z < 59,

64 < N < 84. The notation is the same as in Fig. 8.

in the 1/2-7/2 levels go in the wrong direction mak-
ing the fit a little poorer, although the energy shifts
involved are only 0.1 to 0.2 MeV. From all of the
evidence it seems that the general description and
approximations used in this work are adequate for all
of the isotopes in this region.

3. The Region 28 < Z < 50;50 < N < 82

For the odd-proton isotopes in this region, the
/2 and go/2 levels are mainly involved, Figs. 20-23.
Because of the great difference in the radial wave
functions of these two states, their overlap integrals
with the g7z and ds» neutrons are very different. For
this reason one can expect these levels to change ef-
fectively their relative spacings as one changes the
neutron number. In the calculation there is included

52Te

PHONONS

0.5

>

(¢}

a shift of the go/2 level of 0.1 MeV per neutron to ac-
count for this effect.

For the Te¢, Rh, and Ag isotopes it seems almost
certain that our coupling scheme is breaking down.
The occurrence of the low-lying 7/2 and perhaps 5/2
positive parity states would have to be explained in
our method by a coupling of the g2 quasi-particle
to the phonon. However, we are never able to bring
that level nearly as low as required, and-do not seem
to have a mechanism for causing such rapid changes
in these levels as do occur for the spin-1/2 states. If
we were to include the three-quasi-particle states,
important corrections would probably be introduced.
This would be analogous to the type of calculation
done for the configuration (ge/2)%, which has been used
by Talmi for calculations which do have a 7/2*
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state,’® but it is not clear that such a modification
would be adequate to handle this situation. The
even—even isotopes in this region show great in-
stability for the spherical shape.

A similar situation seems to be present in the odd-
neutron isotopes, Figs. 24-27, where for the Ru and
Pd isotopes there is obviously a strong admixing of
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F1e. 21. Energy levels of odd-mass Ag isotopes.

phonon states in the low excited states. However, in
these cases it is not clear that the coupling scheme is
inadequate, although there is a tendency for the
phonon states to remain too high to account for the
density of low-lying states.

18T, Talmi and I. Unna, Nucl. Phys. 19, 225 (1960).

4. The Region 28 < Z < 50;28 < N < 50

In this region the protons and neutrons begin to
have a large probability of being in the same j levels,
so that one can expect the neutron—proton short-
range interaction, which has been neglected except
for its field producing parts, to become very im-
portant. Moreover, the inclusion of the f7/, levels in
the calculation of the energy of the 24 state con-
siderably alters the relative positions of the 2+ states
in the even—even Ni isotopes and indicates that at
least for the lighter isotopes in this region the fi/.
particles must be included—which makes the neu-
tron—proton short-range force important even for
such isotopes as Ni and Cu. In fact, the level spectra
in this range cannot be understood in terms of the
approximations used in this work.

In the odd-proton isotopes shown in Figs. 28 and
29 this is most evident in the As and Br isotopes for
which the neutrons are filling the go/; levels. Here one
sees many low-lying levels which originate from the
phonon states and other states of higher seniority.
We can understand a little of this in our coupling
scheme, such as the low-lying 9/2% state in Br in
spite of the 9/2* quasi-particle being at 1.5 MeV, but
since a number of the levels apparently originate
from the seniority three states we cannot hope to ac-
count for them (see Chap. II).

Similar results hold for the odd-neutron isotopes,
shown in Figs. 30, 31, and 32. Once again the 9/2*
state can be lowered by the quadrupole interaction
while the 7/2* state is not much affected, just as in
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the cases of the odd protons filling the go/» levels dis-
cussed in the preceding section. Near N = 50 and to
a lesser extent near Z or N = 40, the vibrations
stiffen and the picture once again simplifies ap-
proximately into the quasi-particles. Because of the
obvious inadequacies of the model, no attempt was
made to obtain the best parameters in this region and
only a few sample calculations were tried. Both a

better treatment of the phonon-quasi-particle cou-
pling and the introduction of the neutron-proton
short-range will be needed for a semiquantitative
treatment of this region.

D. Energy Levels of 0dd—0dd Nuclei

Owing to the large number of low-lying levels, both
theoretical and experimental, in odd-odd nuclei, it
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Fra. 24. Energy levels of odd-mass
Cd isotopes.
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would be difficult to use the energy-level systematics
to help determine the parameters of the theory. How-
ever, the odd-odd levels can be shown to be con-
sistent with the theory parameters determined from
other data (particularly the odd-mass level energies).
All the levels of odd—odd spherical nuclei of known
spin and parity may be described consistently as a
state of the lowest (or other low) proton quasi-
particle coupled with the lowest (or other low) neu-
tron quasi-particle. The effect of a coupling of the

quasi-particles to a phonon vibrator is suggested in a
few cases, discussed below, and the coupling force
between the two quasi-particles (not discussed here)
shows itself in the fact that only one or two of the
angular momentum states arising from the proton-—
neutron quasi-particle pair are seen in the low-energy
spectra. (No coupling force would imply a degenerate
multiplet of levels which is not seen experimentally.)

Since the quasi-particle energies correspond to the
odd-mass low-energy spectra, and since the param-

O3/2-
10 - 5 o
3 8

N4

njo PN

_ (772-)

(&)

ol
]

o5 2 2-)

32
3’—% 2
2 U o —gw2, 12y o ;

Fic. 25. Energy levels of odd-mass
Pd isotopes.
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eters were chosen to agree (as well as possible) with
the experimental odd-mass spectra, the above de-
scription of the odd-odd states means that these
states are made up of the angular momenta appear-
ing near the ground state in the adjacent odd-mass
nuclei.’® This description is used by Brennan and

19 Such a scheme was used by L. W. Nordheim, Phys. Rev.
78, 204 (1950); Rev. Mod. Phys. 23, 322, (1951).

Bernstein® who, in addition, deduce coupling rules.
In general, we agree with their assignment of the
proton-neutron configuration (proton—-neutron quasi-
particles in our case); however, we note a few ex-
ceptions.

For P < 28, N > 28 all the odd-odd levels of

20 M. H. Brennan and A. M. Bernstein, Phys. Rev. 120,
927 (1960).
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F1c. 28. Energy levels of odd-mass
Cu, Ga, and As 1sotopes.

known spin and parity can be fitted with an f;,, pro-
ton quasi-particle and a ps2 or fs» neutron quasi-
particle. For P > 28 but N < 42 there are three
cases for which Brennan and Bernstein make the
P, N assignments ps,2, f52 for a 14 state. For ;,Culs
and 5:Ga$? a more likely assignment would be sz,
P12 as the B decay (1+ — 0-) rates have log ft val-
ues of about 5.2 (see the section on 8 decay of even-
mass nuclei). In the neighboring odd-mass nuclei the

8 decay rate is known for six proton —ps,, neutron
—fs/2 transitions and the log fi values range from 5.7
to 7.4. We agree with their assignment for 5Bri? for
which the log ft of 8.4 suggests that it is { forbidden.
It is a bit surprising to find the fs,2 neutron quasi-
particle so low for N = 41. For 42 < N < 50 many
of the levels have an [ = 1 proton and a ge/; neutron.
There are, however, four cases with N = 43, 45 where
a 14 level has a fast 8 decay (log ft ~ 4.6) to the
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adjacent 04 ground state. This must have the ps.
proton coupled to the p;,; neutron. For N = 43, 45
the go/2 neutron quasi-particle lies ~0.2, 0.6 MeV be-
low the pi,2 quasi-particle, but the particularly strong
coupling of the p,/» quasi-particle to the phonon vi-
brator lowers the pi/. level to an energy comparable
with the go/2 energy. For P < 50, N > 50 the positive
parity levels are explained as a go/2 proton and a g/,
or ds;2 neutron. There are a number of negative parity
states explained as pi/. protons with a ds. neutron.

Such levels occur, e.g., for Z = 45 where once again
the phonon coupling is important in bringing down
the pi/2 proton level enough to compete with the go/.
proton level. Brennan and Bernstein assign P =
(gor8)7/2, N = ds/2 to four 14 levels in this region. All
of these have fast 8 transitions to the neighboring
ground state 04 the average log ft = 4.7. This would
suggest P = goy» N = gz to be more reasonable.
Brennan and Bernsteins’ assignment comes from the
neighboring odd-mass ground states which are in

Fic. 31. Energy levels of the odd-
mass Ge and Se isotopes.
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some cases 7/2+4 and 5/24. The 8 decays between
these levels are seen in several cases and have, in
general, ft values an order of magnitude or two higher
than the 14+ — 0+ ft’s. This argument is weakened
somewhat by the occurrence of two fairly fast 7/2+
— 5/2+ B decays in this region with log ft ~ 5.0.
For Z > 50, N < 82 all the odd—odd levels of
known spin may be obtained from a ds/. or gz/2 proton
quasi-particle coupled with a 8y/2, ds/2, OT h11/2 Deutron.
Many of these states could be composed with the
1/2+ proton state which is often low lying in this
region. For N > 82 up to the deformed region, the
neutrons move in the hg/» and fr/2 levels. The odd—odd
nuclei with 186 < 4 < 206 have mostly negative
parity levels which can be explained among other
possibilities as an Au/e proton and an ;32 neutron.
The few positive parity levels for A > 200 can be
formed from an A/ proton and an fs» neutron.

L. 8. KISSLINGER AND R. A.SORENSEN

types of odd-even mass difference which are observed
experimentally.®* We define three odd—even mass
differences

P,(Z,N) = E(Z — 1’N)+E(Z+1;N) _2E(Z;N)7

(56)
P.(ZN) = E(ZN — 1) + E(ZN + 1) — 2E(Z,N),
(57)

Puw(ZN) =E(Z+ 1N — 1)+ E(Z — LN + 1)
—2E(ZN), (58)

where in (56) Z is odd, N even;in (57) Z is even, N
odd; and in (58) both N and Z are odd integers.
E(Z,N) is the binding energy of the Z,N nucleus.
Aside from the effect of the long-range part of the
force, which we ignore, these mass differences are
simply related to the quasi-particle energies. P, com-
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F1c. 32. Energy levels of the odd-
mass Kr, Sr, and Zr isotopes.
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It is seen that no difficulties arise in describing
odd-odd nuclei on the quasi-particle basis, but to
use the theory to predict level positions quanti-
tatively, it would be necessary to include accurately
residual interactions that have not been considered
here.

IV. ODD-EVEN MASS DIFFERENCE

There is now available such a large body of data
on nuclear masses of sufficient accuracy that it may
be possible to see finer details of shell and interaction
effects. The pairing force acting between pairs of
protons and between pairs of neutrons produces the

pares an odd-Z nucleus to the adjacent even—even
nuclei and should thus just be equal to 2E,, twice the
energy of the ground-state proton quasi-particle.
Similarly, P, = 2E, and P,, = 2E, + 2E, where E
represents in each case the ground-state quasi-par-
ticle energy.

To test the agreement between the theoretical E’s
and the experimental P’s we plot all the experimental
data for P(Z,N) with Z as the abscissa, see Fig. 33.

%1 The experimental mass differences were obtained from
F. Everling, L. A. Konig, J. H. E. Mattauch, and A. H.
g}flapst-ra, Nucl. Phys. 18, 529 (1960) and the Nuclear Data

eets.
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F1a. 33. The quantities
Py(Z,N) vs 2Ey(Z). The
curve EyZ) is ELZ,N),
the proton quasi-particle
energy averaged over N.
The points are the experi-
mental Py(Z,N).
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On this same graph the heavy line is 2E,(Z). Actually
E, depends on N as well as Z, but to make the plot
readable we simply average over this small N de-
pendence for each Z value. Similarly, on an N scale
we plot all P,(Z,N) data against 2E,(N) averaging
over the small Z dependence of the theoretical en-

50 z 60 70 80 90

ergy, see Fig. 34. The theoretical curve 2E, shows
considerable structure including a sharp dip at N =
50,82,126, and a less marked one at N = 40. Each
of these features is also seen in the data although
there is considerable scatter of the points. Also, the
over-all trend as a function of N is well represented

40}
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Fic. 34. The quantities Pu(Z,N) vs
2E,(N). The curve Ey(N) is Ey(Z,N),
the neutron quasi-particle energy av- 2.0
eraged over Z. The points are the ex-
perimental Py(Z,N). e
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by this choice of parameters. The theoretical E, curve
has less noticeable structure showing a little dip at
Z = 50 and otherwise being a decreasing function of
Z to Z = 82. The experimental points show a large
scatter with little structure. A general decrease in P,
is only seen in that the points above the deformed
region 65 < Z < 75 are lower than those below.
The quantity 2E, + 2E. depends equally strongly
on Z and N. To show any possible structure of the
data without resorting to a two-dimensional plot we
show all of the P, data on each of two plots once
against Z and once against N as the abscissa (see

Figs. 35, 36). As the scatter of the data does not seem
to justify a more detailed comparison the plots are
compared to the theoretical curves averaged on N
and Z, respectively, for the two plots. The main
structure noticeable in the theoretical curves, the dip
at Z = 40, N = 50, shows up even more strongly in
the experimental points. The lowest points are for
Z = 39 where the isolated py,: level is filling giving a
small effective degeneracy and thus a small energy
gap, while the Z = 41 points are higher. This effect
is also observed in P,. The smaller dip at N = 82 can
also be seen in the data and the rapid drop as N ap-
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Fp ° F1a. 36. The quantities Poy(Z,N) vs
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proaches 126 is also reflected in the data. For Z > 45,
N > 60 the magnitude of the theoretical curves and
experimental points agree well, but for the lighter
nuclei, while the theoretical curves rise higher, the
experimental points have a constant average magni-
tude from A ~ 50 to A ~ 130. This is in opposition
to the P, data which show a steady rise with decreas-
ing A4 in this region in agreement with the theoretical
curves. Although there are some discrepancies, the
pairing force model can account for shell and subshell
effects in the even—odd mass differences in some de-
tail. Forces other than the pairing force must be in-
cluded to account for the large fluctuations.

V. MAGNETIC DIPOLE MOMENTS

A. Magnetic Dipole Moments of Odd-Mass Nuclei

The magnetic dipole moments have played an im-
portant role in the shell model since its earliest be-
ginnings, and from them we have been able to derive
important properties both of the nuclear coupling
scheme and the nuclear forces. From the observation
that in many instances the experimental values of
these static moments for odd-mass nuclei tend to be
associated with the value expected with a single par-
ticle in a level with the spin and orbital angular mo-
mentum of the state, one can conclude that the
coupling scheme must be similar to that suggested by
Mayer and Jensen (‘“simple’”’ seniority) for these
regions.?? In other regions they provide evidence for
the deformation and offer some quantitative informa-
tion about the collective properties of the states.?
For the spherical nuclei we attempt a detailed study
to try to derive in terms of particle coordinates both
the important particle and collective effects involved
in producing deviations of these moments from the
single-particle values.

1. Quasi-Particle and Collective Contributions

The operator for the magnetic dipole moment in
the quasi-particle representation is

po = 225 37 XF |l DU Us + ViVl
mT m —m

+ 1 UV, — U VAT + (=1)"4571} (59)
in terms of the single particle operator u = ¢.S. +
gil. with g, = 5.585 (—3.826) and g, = 1(0) for pro-
tons (neutrons). The operators n' and A' are the
quasi-particle scattering and double creation op-
erators, respectively, of rank one. (See Chap. IT and
Appendix I.)

22 M. G. Mayer, Phys. Rev. 75, 1969 (1949), and O. Haxel,
J. H. D. Jensen, and H. E. Suess, Phys. Rev. 75, 1766 (1949).
23 See A. Bohr and B. R. Mottelson, Ref. 5.
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This operator must be evaluated in the states of
one quasi-particle with various numbers of phonons

¥ = Choaio + 257 Clralal /Bl

+ Zf'J Cj:’JzJ[aj’[BTBT]J]ﬂPo , (54)
which have been discussed in Chap. I1. The 5 and A*
parts of the magnetic moment operator are of en-
tirely different character, since the 5 operators do not
change the number of quasi-particles, while the other
terms create or destroy two quasi-particles. Although
the At terms are almost entirely responsible for the
M1 transitions between the collective states, and are
treated in Chap. VII, they play a very minor part in
the calculation of the magnetic dipole moments, and
are neglected here. The n terms contribute both from
the quasi-particle and the phonon parts of the wave
functions. It is convenient to separate this operator
approximately into two parts, one of which operates
only on quasi-particles and the other on phonons.

pon = D57 37X | Wl YU U 4 ViVir) (0h)ap + grR-

= HMap + gRRz ) (60)
with
[(MaB'] =0, (61a)
and
[R] = 0. (61Db)

This is possible because of the adiabatic character of
the vibrational states, which enables quasi-particles
to be distinguished from phonons to a good approxi-
mation as long as the first vibrational level is well
into the gap. The operator R, appearing in Eq. (60)
is the collective angular momentum operator, which
is diagonal in phonon number and has diagonal
matrix elements in states olno, [of'B;mbo, and
[a}[B'B';];m0, which are given in Appendix III,
Eqgs. (C1), (C2), and (C3). In Sec. B the phonon ¢
factor gz is derived, and the results of systematic cal-
culations are presented, but in the calculation of the
odd-mass nuclei we use gz = Z/A, since the results
are insensitive to this value.

The only nonzero matrix elements of the particle
part of the magnetic moment operator ug, defined by
Eq. (60) are for states of no phonon diagonal in the
quasi-particles, states of one phonon diagonal in the
quasi-particles or with quasi-particle spin-orbit pairs,
and states of two phonons diagonal in the quasi-par-
ticles or with quasi-particle spin-orbit pairs. Equa-
tion (C3) shows that the weak coupling limit for the
magnetic dipole moment is just the single-particle
(Schmidt) value wi;, and the only deviations from
the shell-model results are produced by the collective
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effects in this approximation. In I the coefficients
were determined in perturbation theory. In this work
we determine these coefficients by the method de-
rived in Chap. II. However, the qualitative con-
clusions of I are unchanged, i.e., that the phonons
themselves do not contribute very much to these
moments, but that the major effect is due to the ad-
mixture of other quasi-particles; and that the pre-
dicted deviations from the single-particle values are
much too small to account for the experimental re-
sults.

2. Higher Seniority Contributions

In the spherical region, the major cause for the
deviation of the odd-mass magnetic dipole moments
from the single-particle values for one shell-model
configuration is the admixture of small amounts of
other configurations of higher seniority, as Blin—
Stoyle* and Arima and Horie** have demonstrated.
Although the wave functions (54) deviate strongly
from pure seniority one, neither the pairing nor the
quadrupole force can account for these particular
types of configuration admixtures. For this reason
we calculate the additional contributions which arise
from a é-function interaction in the manner described
in I.

Systematic calculations of this effect have been
carried out by Freed and Kisslinger.” From the
quasi-particle states are projected states of the
proper number of particles

@py = 2 Q| (0)22(0) - - -

nytngee.

+ X

Nytng e Fp=n,

@i, al gt (0)75°(0) - - -5°(f)jm) ,  (62)

in which 7n.(n,) is the number particles of the even
(odd) type. The other notation is that of Ref. 27.
The n; are even, p is odd, j#:(0) indicates the seniority
zero state of n; particles in the j; level, and j»(5) is
the seniority one state of particles in the j level. The
admixture coefficients ¢ and a are given by

1@7(:)12 — !Z@c(e)lﬁz H U?ii+1—niv?i(ji + %)%ni

even type

(1;4 :]5;{) J. Blin-Stoyle, Proc. Phys. Soc. (London) 66, 1158
53).
% A. Arima and H. Horie, Progr. Theoret. Phys. (Kyoto)
12, 623 (1954). .

%6 A. Arima, H. Horie, and H. Sano, Prog. Theoret. Phys.
(Kyoto) 17, 567 (1957).

%7 N. Freed and L. Kisslinger, Nucl. Phys. 25, 611 (1961).
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X (Gl + 3 — 3ol
@il = 12 a1 IT U™ + 5™

odd type
i)

X [Ga)Gi+ 5 — )
XUTVIG+ DG = DG - 5907
(63)

The subscript ¢ stands for a configuration n,, n,,- - -
for the evens or ni, ns- - -p for the odds. With the §-
function interaction between all particles which was
the same used by Arima and Horie, [V;; =
$ (11 + 6i0,)Vo(r; — r;)], to each of the even and
odd configurations in Eq. (62) are admixed config-
urations of seniority two or three, respectively, which
are important for the magnetic moments. These are
configuration admixtures in which particles in spin—
orbit doublets are coupled to angular momentum
unity, the rank of the dipole moment operator. This
is discussed in detail for pure configurations in Ref.
26.

As a result of these configuration admixtures, the
magnetic moment of a quasi-particle of orbital
angular momentum ! and angular momentum j is
altered from u.,(lj) to

o) = we(l) + 2 1@l + ; @ 5ul” .
(64)

In Eq. (64), the sums run over the configurations
with even and odd numbers of particles. The pro-
cedure for calculating the changes in the magnetic
moments due to the admixtures to the even and odd
types of configurations, su® and 6u‘?, respectively,
is exactly the same as that described in Ref. 27, ex-
cept that in the present work harmonic oscillator
wave functions are used for the radial integrals
I(nirinr®) = § [ R:.R:p*dr. The third column of
Tables I and II lists these quasi-particle moments
for various states in the spherical nuclei with the
same parameters for the pairing force and the single-
particle energy levels as are used to obtain the energy
systematics discussed in Chap. III.

Having calculated these quasi-particle moments,
one simply combines these results with those of the
previous part to obtain the magnetic dipole moment
of an odd-mass nucleus. Separating the contribution
from the zero-, one-, and two- phonon parts of the
wave function, the final result is

Wiltool¥s) = (Choo)van (@) + w2+ w2,  (65)
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TasLE I. Magnetic moments of odd-proton nuclei. The isotope and state are listed in columns 1 and 2, the ground state being
starred when known. Columns 3 and 4 list the quasi-particle (Schmidt) moments and the quasi-particle moment corrected by
higher seniority configurations admixed by a é-function force, respectively. Columns 5, 6, and 7 list the contributions from
the zero-, one-, and two-phonon parts of the wave function. Columns 8 and 9 list the theoretical moments with g, = 0 and
g- = Z/A, respectively. The last column is the experimental moments in nuclear magnetons. The experimental values were
taken from a compilation kindly furnished by Dr. G. Fuller.

Isotope  State Hsp Hap 7 u1 B2 gr = gr=2Z/A Hexp
29Cubl 3/2* 3.79 1.33 0.96 —0.10 0.00 0.67 0.95
Cut3 3/2% 3.79 1.31 0.95 —0.11 0.00 0.67 0.84
Cuss 3/2* 3.79 1.27 0.90 —0.12 —0.01 0.60 0.78
31Gas 3/2* 3.79 2.32 1.46 0.15 0.07 1.47 1.68 1.90
Ga®? 3/2% 3.79 2.27 1.25 0.17 0.09 1.24 1.51 2.02
33As™ 3/2% 3.79 1.97 0.98 0.97 0.10 1.89 2.05
AsT5 3/2* 3.79 2.19 0.99 0.88 0.14 1.77 2.01 1.439
AsT 3/2* 3.79 2.21 1.20 0.55 0.13 1.65 1.88
35Br7 3/2* 3.79 2.15 0.93 0.85 0.20 1.86 1.98
Br™ 3/2* 3.79 2.14 1.25 0.68 0.11 1.93 2.05 2.106
Bré! 3/2* 3.79 2.18 1.59 0.49 0.06 2.06 2.14 2.270
Br# 3/2% 3.79 2.27 1.94 0.27 0.03 2.20 2.24
37Rb81 3/2* 3.79 2.10 1.15 0.35 0.10 1.47 1.61 2.05
5/2 0.86 1.32 0.75 0.68 0.09 1.30 1.51
Rb83 3/2 3.79 2.10 1.45 0.28 0.04 1.68 1.78
5/2% 0.86 1.33 0.91 0.50 0.04 1.31 1.45 1.42
Rb3s 3/2 3.79 2.09 1.61 0.25 0.02 1.82 1.89
5/2% 0.86 1.35 0.97 0.44 0.02 1.32 1.42 1.35
Rb& 3/2* 3.79 2.21 1.87 0.20 0.01 2.05 2.09 2.75
5/2 0.86 1.32 1.04 0.35 0.02 1.32 1.42
30Y® 1/2% —-0.26 —0.26 —0.26 0.00 0.00 —0.26 —0.26 —0.137
9/2 6.79 6.14 5.25 0.54 0.02 5.78 5.81
21 NDb% 1/2 —0.26 —0.26 —0.26 0.00 0.00 —0.26 —0.26
9/2* 6.79 5.94 5.76 0.16 0.00 5.91 5.92
Nb% 1/2 —-0.26 —0.26 —0.20 —0.01 —0.01 —0.24 —0.22
9/2% 6.79 5.68 4.02 1.36 0.16 5.46 5.54 6.17
Nb% 1/2 —-0.26 —0.26 —0.19 —0.00 —0.01 —0.24 —0.20
9/2* 6.79 5.65 3.69 1.57 0.22 5.39 5.48
43T 9/2* 6.79 5.36 4.59 0.67 0.04 5.29 5.30
T 9/2*% 6.79 5.37 4.34 0.88 0.06 5.24 5.28 5.60
Telot 9/2% 6.79 5.33 3.50 1.47 0.02 5.08 5.17
+sRh103 1/2*  —0.26 —0.26 —0.14 0.03 —0.02 —0.18 —0.13 —0.0883
9/2 6.79 5.00 4.78 0.20 0.00 4.98 4.99
Rhit 1/2 —0.26 —0.26 —0.13 0.04 —0.02 —0.16 —0.11
47AgL® 1/2* —0.26 —0.26 —0.16 0.04 —0.00 —0.18 —0.13  +0.101
Agl? 1/2* —0.26 —0.26 —0.15 0.04 —-0.02 -0.18 —0.13 —0.114
Aglo9 1/2* —0.26 —0.26 —0.15 0.04 —0.02 —0.18 —0.13 —0.131
Agltl 172  —0.26 —0.26 —0.14 0.04 —0.02 —0.17 —0.11 —0.145
AglBs 1/2* —-0.26 —0.26 —0.13 0.05 —0.02 —0.15 —0.10
10Ini® 1/2 —0.26 —0.26 —0.20 0.00 0.00 —0.23 —0.20
9/2* 6.79 6.01 3.60 1.15 0.12 4.80 4.90 5.53
Initl 1/2 —-0.26 —0.26 —0.20 0.00 0.00 0.23 —0.20
9/2% 6.79 6.03 3.67 1.13 0.12 4.85 4.92 5.33
Ini 1/2 —0.26 —0.26 —0.20 0.00 0.00 0.23 —0.20 —0.21
9/2* 6.79 6.05 3.76 1.08 0.11 4.89 4.95 5.52
Inls 1/2 —0.26 —0.26 —0.20 0.00 0.00 —0.23 —0.20
9 /2% 6.79 6.09 3.75 1.11 0.11 4.91 4.98 5.53
Inlt? 1/2 —0.26 —0.26 —0.20 0.00 0.00 —0.24 —0.21
9/2* 6.79 6.11 3.77 1.10 0.11 4.94 5.00
Inl® 1/2 —0.26 —0.26 —0.20 0.00 0.00 —0.24 —0.21
9/2* 6.79 6.03 3.82 1.02 0.10 4.87 4.93
51Sb11e 1/2 2.79 0.54 0.12 —0.01 0.02 0.26 0.12
5/2% 4.79 2.60 1.68 0.49 0.05 2.09 2.23
7/2 1.72 3.78 2.85 0.73 0.07 3.55 3.65
Shi2t 1/2 2.79 0.62 0.11 0.04 0.02 0.31 0.16
5/2% 4.79 2.58 1.73 0.47 0.05 2.11 2.24 3.36
7/2 1.72 3.80 2.96 0.67 0.06 3.60 3.69
Sb123 1/2 2.79 0.60 0.10 0.07 0.02 0.35 0.19
5/2 4.79 2.56 1.75 0.45 0.05 2.13 2.25
7/2% 1.72 3.83 3.03 0.64 0.05 3.64 3.72 2.55
Sh125 1/2 2.79 0.58 0.09 0.11 0.02 0.38 0.22
5/2 4.79 2.56 1.79 0.43 0.40 2.16 2.29
7/2% 1.72 3.85 3.12 0.57 0.44 3.68 3.75
31126 1/2 2.79 1.59 0.22 0.08 0.10 0.50 0.40
5/2* 4.79 3.81 1.46 0.89 0.20 2.42 2.55 3.0
7/2 1.72 2.77 1.47 1.02 0.25 2.50 2.73
1127 1/2 2.79 1.56 0.21 0.15 0.11 0.59 0.47
5/2% 4.79 3.50 1.65 0.85 0.09 2.42 2.60 2.809
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TasLE I. Continued

Isotope  State Hsp Kap Ko K1 B2 gr = g-=2Z/A Mexp
7/2 1.72 2.79 1.72 0.86 0.15 2.58 2.75
12 1/2 2.79 1.55 0.20 0.25 0.11 0.71 0.57
5/2 4.79 3.50 1.92 0.77 0.12 2.61 2.80
7/2* 1.72 2.81 2.02 0.65 0.09 2.65 2.77 2.617
1 1/2 2.79 1.56 0.20 0.38 0.11 0.86 0.69
5/2 4.79 3.51 2.27 0.63 0.07 2.84 2.98
7/2* 1.72 2.82 2.32 0.43 0.03 2.72 2.79 2.738
[ 1/2 2.79 1.57 0.20 0.50 0.10 1.02 0.81
5/2 4.79 3.52 2.66 0.48 0.05 3.09 3.18
7/2* 1.72 2.83 2.62 0.20 0.01 2.79 2.83 2.84
55Cs129 1/2% 2.79 1.73 0.26 0.07 0.10 0.53 0.44 1.47
5/2 4.79 3.61 1.50 0.89 0.20 2.26 2.58
7/2 1.72 2.52 1.39 1.04 0.25 2.45 2.78
Cst3t 1/2 2.79 1.73 0.25 0.18 0.10 0.67 0.55
5/2* 4.79 3.63 1.80 0.83 0.15 2.52 2.78 3.52
7/2 1.72 2.53 1.96 0.54 0.14 2.49 2.64
Cs133 1/2 2.79 1.73 0.25 0.33 0.11 0.85 0.69
5/2 4.79 3.65 2.27 0.67 0.08 2.86 3.03
7/2% 1.72 2.53 2.33 0.20 0.03 2.51 2.56 2.58
Cs135 1/2 2.79 1.76 0.23 0.70 0.07 1.22 1.01
5/2 4.79 3.69 3.18 0.27 0.01 3.40 3.46
7/2% 1.72 2.53 2.49 0.04 0.00 2.52 2.53 2.73
Cst37 1/2 2.79 1.80 0.03 1.42 0.00 1.72 1.46
5/2 4.79 3.75 3.74 0.00 0.00 3.74 3.74
7/2% 1.72 2.53 2.52 0.00 0.00 2.52 2.52 2.84
s7Latd 5/2 4.79 3.77 3.36 0.21 0.01 3.52 3.51
7/2* 1.72 2.28 2.22 0.05 0.00 2.26 2.27
Lal® 5/2 4.79 3.84 3.83 0.01 0.00 3.84 3.84
7/2% 1.72 2.26 2.25 0.00 0.00 2.25 2.25 2.78
soPridl 5/2% 4.79 4.02 4.02 0.00 0.00 4.02 4.02 4.0
7/2 1.72 2.00 1.99 0.00 0.00 2.00 2.00
Priss 5/2 4.79 3.83 3.10 0.29 0.05 3.32 3.44
7/2 1.72 2.18 1.61 0.47 0.05 2.04 2.12
1 Pml45 5/2 4.79 3.62 3.35 0.17 0.02 3.48 3.54
7/2 1.72 2.23 1.51 0.59 0.07 2.07 2.17
Pm47 5/2 4.79 3.64 2.92 0.36 0.08 3.21 3.36 (3.6)
7/2% 1.72 2.21 1.11 0.83 0.18 1.95 2.12 (3.0)
Pm4 5/2 4.79 3.65 1.51 0.75 0.29 2.08 2.55
7/2% 1.72 2.19 0.75 0.97 0.35 1.83 2.06
77Iriol 3/2* 0.12 2.02 0.77 0.23 0.05 0.97 1.05 0.18
1119 3/2* 0.12 1.02 0.82 0.20 0.04 0.99 1.05 0.19
70Aul® 1/2 2.79 0.37 0.34¢ —0.08 —0.01 0.24 0.25
3/2% 0.12 0.80 0.61 0.30 0.01 0.84 0.93
11/2 7.79 5.30 2.46 2.12 0.49 4.95 5.07
Al 1/2 2.79 0.33 0.31 —0.06 —0.01 0.24 0.25
3/2% 0.12 0.79 0.63 0.27 0.01 0.84 0.92 0.145
11/2 7.79 5.29 2.61 2.03 0.43 4.97 5.08
Aul® 1/2 2.79 0.32 0.31  —0.04 0.00 0.25 0.26
3/2% 0.12 0.78 0.64 0.24 0.01 0.82 0.89 0.24
11/2 7.79 5.30 2.78 1.95 0.38 5.00 5.10
g1 T1199 1/2% 2.79 1.13 1.11  —0.02 0.00 1.08 1.09 1.57
T]201 1/2* 2.79 1.04 1.02  —0.01 0.00 1.00 1.01 1.58
T)208 1/2% 2.79 1.00 0.99 —0.01 0.00 0.97 0.98 1.61
T1205 1/2% 2.79 0.70 0.70 0.00 0.00 0.70 0.70 1.63
with X (g1 — ¢.) (66)
=S () {J G+ +5G + 1) = 6 p)
- J
i 2+ L 7 and
J(J+1) 77U +1)4+6 I} = S () 2JiGH D) + 7+ 1) = JJT+1)
2%+ 1 g=f Mo = 2 (Cra)y 27+ 1,
+ 20]1’+%1201’—%12 (Ul’+§Ul'—§ + v 1'+%Vz’_§.
; ) >\qu(l )+J(]+1)+J(JT1)‘“J(J +1) }
2+ 1)

><[(H—j+7/2)(l’—j+5/2)(l'+j—3/2)(j—l’+5/2)]'*‘ 7
2(7+ 1)@+ 1) (67)
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TasLe II. Magnetic moments of odd-neutron nuclei. [See the caption of Table 1.]

Mtheor

Isotope State Msp Hap Mo M1 M2 g-=0 g, =Z/A Mexp
28Ni%® 3/2* —1.91 —0.68 —0.40 0.54 0.11 —0.05 0.24
5/2 1.37 0.60 0.35 0.15 0.16 0.32 0.66
Nist 3/2* —1.91 —0.65 —0.51 0.20 0.05 —0.44 —-0.25 +0.3
5/2 1.37 0.80 0.64 0.15 0.09 0.69 0.88 +1.15
Nis3 3/2* —1.91 —0.68 —0.55 —0.14 0.00 —0.80 —0.69
5/2 1.37 0.90 0.72 0.26 0.03 0.90 1.02
30Zn%® 3/2 —1.91 —-0.71 —0.45 —0.18 0.00 —0.67 —0.62
5/2 1.37 0.97 0.64 0.23 0.05 0.73 0.92
Zmb7 3/2 —1.91 —0.67 —0.36 0.05 0.00 —0.40 —0.30
5/2* 1.37 0.79 0.52 0.18 0.05 0.52 0.75 0.876
32Ge™ 1/2* 0.64 0.64 0.29 0.17 0.50 0.97 0.86
9/2 —-1.91 —1.20 —0.46 —0.38 —0.07 —1.09 —0.90
Ge™ 1/2 0.64 0.64 0.29 0.17 0.57 0.92 1.00
9/2* —1.91 —1.03 —0.40 —0.30 —0.05 —0.93 —0.76 —0.879
Ge™ 1/2* 0.64 0.64 0.29 0.15 0.47 0.85 0.92
345€7 5/2% 1.37 0.86 0.12 0.36 0.28 0.01 0.77
Se’ 1/2* 0.64 0.64 0.31 0.15 0.53 0.92 0.99 0.534
Se™ 1/2 0.64 0.64 0.36 0.12 0.40 0.83 0.88
Sedl 1/2 0.64 0.64 0.42 0.08 0.28 0.75 0.79
36 Kr7® 1/2 0.64 0.64 0.30 0.16 0.56 0.94 1.02
Kr8t 1/2 0.64 0.64 0.39 0.11 0.34 0.79 0.84
Kr# 9/2* -1.91 —-0.39 —0.27 —0.03 0.01 —0.38 —0.30 —0.970
Kb 9/2% —-1.91 —0.35 —0.16 —0.03 0.02 —0.32 —-0.17 +1.005
Kr®7 5/2% —-1.91 —0.92 —0.64 0.04 0.05 —-0.71 —0.55
38187 9/2* —1.91 —0.43 —0.38 —0.02 0.00 —0.43 —0.40 —1.093
Sr8d 5/2* —1.91 —0.83 —0.82 0.01 0.00 —0.82 —-0.81
40Z1% 5/2% —-1.91 -0.91 —0.87 0.02 0.00 —0.88 —0.85 —1.303
Zx9%3 5/2* —-1.91 —0.44 —0.40 0.05 0.02 —0.40 —0.32
42Mo% 5/2* —1.91 —0.44 —0.38 0.07 0.03 —0.37 —0.28 —0.914
12Mo? 5/2* —-1.91 —0.16 —0.14 —0.01 0.02 —0.22 —-0.13 —0.933
44 Ru¥’ 5/2 —1.91 —0.44 —0.37 0.08 0.04 —0.36 —0.25
u 5/2* —1.91 —0.14 —0.11 0.01 0.06 —0.20 —0.04 —0.63
Rul® 5/2% —1.91 —0.09 —0.06 —0.03 0.06 —0.20 —0.03 —0.69
16Pd103 5/2 —-1.91 —0.07 —0.05 —0.01 0.03 —0.16 —0.04
Pqios 5/2% —-1.91 —0.10 —0.06 0.05 0.02 —0.19 0.01 —0.57
Pqor 5/2 —1.91 —0.14 —0.05 0.16 0.00 —-0.31 0.10
Pquoe 5/2 —1.91 —0.18 —0.05 0.18 —0.01 —0.38 0.12
pqi 5/2 —1.91 —0.22 —0.05 0.18 0.02 —0.37 0.14
48Cd17 1/2 —1.91 —0.40 —0.27 —0.01 0.05 —-0.38 —0.22
3/2 1.15 0.57 0.16 0.13 0.08 0.29 0.37
5/2% -1.91 —-0.13 —-0.09 0.00 0.02 —0.20 —0.07 —0.617
11/2 —1.91 —0.21 0.22 0.30 0.11 0.48 0.62
Cd1o9 5/2* —-1.91 —0.17 —0.10 0.07 0.01 —0.26 —0.03 —0.829
Cdit 1/2* —1.91 —0.48 —0.34 —0.31 0.02 —0.64 —0.63 —0.595
5/2 —-1.91 —0.23 —0.10 0.13 0.00 —0.34 0.02 (0.73)
Cdis 1/2* —1.91 —0.50 —0.34 —0.33 0.01 —0.63 —0.66 —0.622
3/2 1.15 0.60 0.23 0.37 0.12 0.38 0.72
5/2 —1.91 —0.26 —0.09 0.17 0.00 —0.38 0.08
11/2 —1.91 —0.39 0.17 0.19 0.06 0.31 0.42
Cqus 1/2* —-1.91 —0.49 —0.33 —0.26 —0.01 —0.51 —0.59
505ni1! 7/2 1.49 0.72 0.69 0.07 0.01 0.74 0.78
Snls 1/2 —-1.91 —0.81 —0.69 —0.18 0.01 —0.88 —0.86
7/2 1.49 0.80 0.75 0.08 0.00 0.83 0.80
Snltb 1/2* —1.91 —-0.79 —0.68 —0.22 0.00 —0.89 —0.91 —0.918
Snlt? 1/2* —1.91 —0.82 —0.69 —0.18 0.00 —0.84 —0.87 —1.000
3/2 1.15 0.73 0.61 0.15 0.01 0.68 0.77
11/2 —1.91 —0.76 —0.63 —0.08 0.00 —0.75 —-0.71
Snld 1/2% —1.91 —-0.79 —0.66 —-0.07 —0.01 —0.69 —0.74 —1.046
3/2 1.15 0.73 0.66 0.10 0.00 0.72 0.76 0.7)
11/2 —-1.91 —0.68 —0.63 —0.03 0.00 —0.67 —0.66
Sn121 1/2% —1.91 —0.70 —0.58 0.07 —0.01 —0.49 —0.52
3/2 1.15 0.71 0.66 0.07 0.00 0.71 0.73
11/2 —1.91 —0.54 —0.53 0.00 0.00 —0.54 —0.54
Sni28 1/2 —1.91 —0.63 —0.48 0.22 —0.01 —0.27 —0.27
3/2 1.15 0.71 0.65 0.05 0.00 0.69 0.70
11/2 —-1.91 —0.40 —0.40 0.00 0.00 —0.40 —0.40
Sn12 1/2 —1.91 —0.58 —0.41 0.31 0.00 —0.15 —0.09
3/2 1.15 0.71 0.65 0.01 0.00 0.66 0.66
11/2 —1.91 —0.26 —-0.25 0.00 0.00 0.26 —0.26
s2Tel2l 1/2% —1.91 —0.58 —0.35 —-0.10 —0.04 —-0.39 —0.49
3/2 1.15 0.65 0.42 0.36 0.02 0.66 0.80
11/2 —1.91 —0.49 —0.32 —0.08 0.00 —0.47 —0.39
Tel2s 1/2* —1.91 —0.51 —-0.31 0.19 —0.04 —0.09 —0.16 —0.736
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Mtheor
Isotope  State Ksp Map “o K1 K2 gr=0 g =2/A Hexp
Tel2s 1/2% —1.91 —0.47 —0.26 0.43 —0.02 0.13 0.16 —0.887
3/2 1.15 0.64 0.48 0.15 0.01 0.56 0.64
11/2 —1.91 —0.22 —-0.22 0.00 0.00 —0.22 —0.22
Tel?? 3/2* 1.15 0.64 0.51 0.04 0.01 0.52 0.57
11/2 —1.91 —-0.11 —0.10 0.01 0.00 —0.11 —0.09
Tel2® 3/2* 1.15 0.66 0.52 0.01 0.02 0.50 0.56
11/2 —1.91 —0.05 —0.04 0.03 0.00 —0.05 —0.01
saXel2? 1/2¢ —1.91 —0.54 —0.24 0.47  —0.03 0.18 0.19
3/2 1.15 0.66 0.30 0.30 0.07 0.42 0.67
11/2 —1.91 —-0.32 —0.32 0.00 0.00 —0.32 —0.32
Xel29 1/2* —1.91 —0.51 —-0.20 0.58 0.01 0.28 0.40 -0.777
Xeldl 3/2% 1.15 0.68 0.44 0.05 0.05 0.42 0.53 0.691
11/2 —1.91 —0.15 —-0.10 0.15 0.01 —-0.15 —0.07
Xeld3 3/2* 1.15 0.71 0.50 0.04 0.03 0.48 0.57
11/2 —1.91 —0.18 —-0.12 0.01 0.01 —-0.17 —-0.10
s6Baldl 1/2% —1.91 —0.58 —-0.21 0.58 0.01 0.27 0.38
3/2 1.15 0.69 0.32 0.17 0.09 0.36 0.58
Bal3s 1/2* —1.91 —0.60 —0.19 0.57 0.04 0.23 0.43
3/2 1.15 0.70 0.40 0.08 0.07 0.39 0.54
11/2 —1.91 —0.26 —0.15 —0.02 0.01 —0.25 —0.16
Bal3s 3/2% 1.15 0.73 0.55 0.03 0.02 0.53 0.61 0.837
Bal¥7 1/2 -1.91 —-0.84 —0.52 0.13 0.00 —0.54 —0.39
3/2* 1.15 0.78 0.77 0.00 0.00 0.77 0.77 0.936
11/2 —-1.91 —-0.37 —-0.37 0.00 0.00 —0.37 —-0.37
53Celdd 3/2* 1.15 0.79 0.79 0.00 0.00 0.79 0.79 +0.8
11/2 —1.91 —0.48 —0.48 0.00 0.00 —0.48 —0.48
solNd141 3/2* 1.15 0.78 0.78 0.00 0.00 0.78 0.78
Nd43 7/2% —1.91 —1.04 —1.04 0.00 0.00 —1.04 —1.04 —-1.0
NJ4s 7/2* —1.91 —1.07 —0.46 —-0.11 0.05 —0.75 —0.52 —-0.7
Ndw¥ 5/2* 1.37 0.96 0.13 —0.18 0.09 0.04 0.03 +0.6
625m 147 7/2* —1.91 —1.05 —0.51 —0.09 0.05 —0.76 —0.55 —-0.8
Sm49 7/2* —1.91 —1.07 —0.40 —0.12 0.09 —-0.72 —0.44 —-0.6
760s18 3/2* -1.91 0.15 0.03 0.36 0.33 0.21 0.73 0.657
Qs191 3/2 —1.91 0.36 0.10 —0.06 0.33 0.03 0.38
78Pt193 1/2* 0.64 0.64 0.21 0.00 0.09 0.31 0.30
Pt1% 1/2* 0.64 0.64 0.24 —0.03 0.09 0.14 0.13 0.606
soHg!% 1/2* 0.64 0.64 0.27 —0.02 0.03 0.29 0.29 0.535
13/2 —1.91 0.63 0.43 0.21 0.03 0.61 0.67 —1.039
Hgl¥7 1/2* 0.64 0.64 0.31 —0.05 —0.04 0.26 0.22 0.527
13/2 —1.91 0.65 0.40 0.25 0.05 0.62 0.69 —1.04
Hgl% 1/2% 0.64 0.64 0.38 —0.05 0.00 0.39 0.32 0.530
Hg201 3/2* —1.91 0.95 0.69 0.23 0.02 0.89 0.95 —0.357
52 Pb207 1/2* 0.64 0.64 0.64 0.00 0.00 0.64 0.64 0.590

3. Results and Discussion

In Tables I and II the experimental® and theoreti-
cal results are listed for the odd-proton and odd-
neutron magnetic dipole moments, respectively, in
units of nuclear magnetons. We use harmonic os-
cillator wave functions and take the quantity V.[
as a dimensionless radial integral multiplied by
CA~% in which C is a constant. The value of
C = 50 MeV is used for all of the calculations. Some
systematic improvement can be gained in the fitting
of the data with some variation in the magnitude of
the force in the various regions, as discussed below.
In Appendix II we include sufficient information
about the states to make possible a rapid calculation

28 (3. Fuller (private communication).

of special cases with different values of the param-
eter. In the tables the ground state is starred when
known (column two), the fifth column lists the con-
tribution from the no-phonon component w, =
(Cioo)uin(lj), and the other columns are defined in
Eqgs. (C4) and (65)—(67).

For the most part the largest portion of the dipole
moments arise from the quasi-particle with no
phonon, with the higher seniority corrections playing
an important role. Therefore this aspect of the cal-
culation is an average over the results using pure
configurations, with the averaging determined by the
pairing force. The two-phonon contributions are al-
most always quite small. Although the one-phonon
contributions are frequently large this is usually due
to the quasi-particles which are admixed with the
phonon rather than the phonon itself. We have also
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given the results with the phonon gr factor equal to
zero—thereby keeping the contributions of the ad-
mixed quasi-particles but neglecting that of the
phonon itself. In very few cases are the results
changed very much and there is not sufficient sys-
tematic dependence upon the value of this collective
g factor to estimate its magnitude from the odd-mass
data.

For the odd-proton nuclei the theoretical results
are in good agreement with the experimental data.
The main errors seem to come from the treatment of
the admixtures due to the § force. For the Tl ground
states, in which the phonon admixtures are neg-
ligible, a decrease in the force strength C' of some
309, is needed to increase the theoretical values to
about 1.6 nm. However, for the 3/2 states in Au and
Ir it might be difficult to fit the experimental values
unless the admixtures introduced by the long-range
force are altered, for although a decrease in C reduces
the magnitude of the magnetic moment of the 3/2
quasi-particle it increases those of the 1/2 and 5/2
quasi-particles, which are admixed by the phonons.

There is also a large inaccuracy in the calculated
value of the 1/2 ground states in Cs'®. This is not
unexpected since this is the rather unusual state aris-
ing in the zeroth order from the 5/2 quasi-particle
coupled to one phonon and is therefore especially
sensitive to the parameters (see Chap. III). In fact,
only a moderate increase in the admixture of the 5/2
quasi-particle and one-phonon component of the
state would be needed to increase the theoretical
value to 1.4 nm, since the 5/2 quasi-particle has the
largest moment of 3.61 nm for this isotope.

The results for the 1/2-states are of special interest.
Although the configuration mixing due to a é-func-
tion force is unable to alter these moments from the
single-particle values, which is an important argu-
ment for the validity of these methods since the ex-
perimental values are also close to the single-particle
values,* the configuration mixing due to the phonons
does accomplish this. The best systematics are found
in the Ag isotopes, from which one sees that the mag-
nitude of the shifts from the single-particle value are
in general agreement with the experimental results.
This is the clearest case for which one can separate
the effects of the long-range force from the short-
range force for the magnetic dipole moments. There
is no indication of a need for a quenched particle
moment.

The numerical results for the odd-neutron isotopes
are not in as good agreement with the experimental
values as for the odd-proton cases. In the lighter iso-
topes the calculated results follow the experimental
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trends but vary too strongly from the single-particle
values. However, a decrease of the constant C by
about 209, would bring all of the theoretical results
into satisfactory agreement for this region. For the
isotopes above the deformed region a large change in
the value of the strength of the § force is called for.
A choice of the constant C' of 25 MeV instead of 50
MeV would bring the 13/2 and 3/2 states into ap-
proximate agreement with the experimental values
without changing the 1/2 quasi-particle moments,
which is consistent with the results for odd-proton
nuclei in this region.

The large discrepancy in the moments of the 1/2+4
states in Te and Xe is due to the large phonon plus
3/2 quasi-particle component. This could mean that
the wrong spin-1/2 level is dropping down, a result
which could follow from a relatively small change in
the unperturbed states before the quadrupole force
is included.

The general conclusion for the magnetic dipole
moments is that there are a number of different ef-
fects which are important for at least some of the
nuclei, and that one must include all of them to gain
quantitative agreement with the systematic data.
However, since the phonon contributions are often
about equal to the decrease in the no-phonon con-
tribution from the pure quasi-particle value, the
final numerical result is often similar to the pure
quasi-particle moment, although the interpretation
is quite different. Thus these moments are rather in-
sensitive to important nuclear structure considera-
tions.

B. Magnetic Dipole Moment of One-Phonon States

In the preceding section we have used for the g
factor of a phonon gr a value of Z/A which is the ap-
proximate prediction of the collective model.?® In this
section we evaluate gz in terms of particle quantities.
It is the scattering terms n in the moment operator
which lead to a nonzero moment. From Eq. (59) the
magnetic dipole moment of a phonon is

2= 237K ul ) U U + V, V) WoBln}s| B'to).
(68)
The matrix element in Eq. (68) is evaluated by tak-
ing the commutator
(ol BalrsBlgo) = WonsiBB'Yo) + (ol B,s1B'vo)
= <ll/07l}'j’//0> + <¢0[B;7I;"j]BT¢0> , (69)

in which the Sawada approximation, [B, Bf] = 1, has
been applied in the first term. This first term, which
involves the interaction between quasi-particles in
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the ground state is generally considerably smaller
than the second term, and is neglected henceforth.
Applying the commutation rule for [np, A2] [given
in Appendix I, Eq. (A4)] and the analogous com-
mutation rule for [ni, 4%™], one finds that

W = XSGy + V¥ )G (1727572)

X [ra (77" )7 (37") + 8u(577")s6(35")],  (70)

in which the r, and s, are the coefficients which ap-
pear in the expansion of the phonon into quasi-par-
ticles [Eq. (34)]. Writing this out fully, one has

2 = 850N X (D
X (U;U; + ViV )W (1525";52)
X UV 4+ UV UV + UiVy)

(B, + By -+ 20, Gllal X7l
[(B; + Ey)’ — SI(By + Er)* — o]

N, is defined by Eq. (94).
The results of sample calculations for the parameters
used in Chap. III are given in Table III.

(71)

TasLe III. Gyromagnetic ratio for the phonon. Since there
are no experimental results for any of the nuclei studied, only
the results for the 50-82 shell are presented.

Isotope Jon Isotope goh
50Sn1§§ 0.01 54Xe1%§ 0.26
Snli —0.02 Xel28 0.25
Snli6 -0.09 Xeld0 0.28
Spls —0.14 Xels2 0.33
Q120 —0.15 Xeld4 0.38
Sni22 —0.14 Xel36 0.49
Sni24 —-0.10 56 Bald] 0.34
52T61%§ 0.20 Bals2 0.36
Tel22 0.17 Bal 0.41
Tet24 0.16 Bal36 0.42
Tel26 0.18 Bal8 0.52
Tel28 0.21 53Celgs 0.57
Tel30 0.09 Cel40 0.95
soNd1g3 1.95

a The calculation includes only the particles in the outer shells. The core
contribution would shift the g values toward 0.45.

VI. ELECTRIC QUADRUPOLE MOMENTS

Although the experimental data for quadrupole
moments are less extensive and often less reliable
than that for magnetic dipole moments, they offer
new possibilities for information about nuclear struc-
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ture. In the first place, even in the Mayer—Jensen
coupling scheme, the quadrupole moment changes
from a maximum positive value for one particle to a
maximum negative value as one adds pairs of par-
ticles, so that the magnitude of the moment gives in-
formation about the filling of the particle levels. As
was pointed out above, if one knows the occupation
numbers of the particle levels in the pairing scheme,
one completely specifies the wave funection, so that
in the absence of other effects the quadrupole mo-
ments provide quite direct evidence about the wave
functions in our model. However, the other point in
which there is a strong qualitative difference be-
tween the systematics of magnetic dipole and elec-
tric quadrupole moments, is large additions to the
quadrupole moments which arise from the admixture
of phonon states to quasi-particle states, so that the
particle contributions are often considerably smaller
than the collective ones.

A. Odd-Mass Nuclei

1. Quasi-Particle and Collective contributions

The expression for the quadrupole operator in
terms of quasi-particles has been given in Chap. II,
Eq. (17) [here we include the extra factor of (16x/5)%
to conform to the usual definition]:

Qo = (47"%/5) Zi’:‘ <.7.'|IQHJ'>[%(U1V1’ + U;V;)
X (Af'ti + (=1)"A%) + (UUy — V, V)] .
(72)

For the evaluation of this operator in the states of
odd-mass nuclei [see Eq. (54)], the # terms connect
the parts of the wavefunction with equal numbers of
phonons, while the A terms change the number of
phonons. Let us first treat the latter terms.

Because of the nature of the collective states as
quadrupole vibrational states, in case of competition
between particle and collective parts of the wave-
function, we can expect the collective aspects to be
much larger for the quadrupole operator. Therefore,
in evaluating the A terms in Eq. (72) we can neglect
the quasi-particle contributions compared to the
phonon contributions with an accuracy which can be
estimated by comparing the single-particle E2 tran-
sition rates to the experimental values, i.e., with an
error of less than ten percent in most nuclei. Since
the quasi-particle transitions are hindered for E2
transitions (see Chap. VII), the accuracy is probably
considerably better than this in most cases. The most
important part comes from the off-diagonal elements
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between the one-phonon and zero-phonon states. The
matrix element involved is

<‘I/0a1‘m| Q0| [011;' ’Bf]jm|¢0>
=~ (—1) "ol anQ[B'al Limle) . (73)

This is most easily evaluated by recoupling the
phonon operator to the quadrupole operator:

Woctsn] Qol [t B mlo) = (— 1) €2
X 2o [27 4 1) @S + DI (25 ;89)
X (Yoarm {[QoB"it ) o) (74)

in notation indicating that the quadrupole operator
is vector coupled to the phonon operator, which is in
turn coupled to the j' quasi-particle to form a quan-
tity of angular momentum j. One can take advantage
of the fact that

(ocsm| B' = 0 (75)

to replace the factor [@QoB]" by the commutator
[Qo, B'’, which we define by

[Qo, BT = S (00 B ™05 . (76)

Using the approximate commutation rules (26), this
commutator is

[QO,BT]S = 850 2o 2 UV + VUG alls)
X 3 (ro(J77) + 8(J77)), (77)

which is the result used to obtain the B(I2)’s. This
result must be intimately connected to the B(E2)’s,
since the same operator is involved, and the expres-
sion for the matrix element in question, with the
above approximations (which, essentially, are the
distinguishing of the quasi-particles for the phonons),
is simply

f ot o1 j2=-1 _f
<‘PoaﬁIQ0|[a:‘B ]jj[¢0> - 5% l:(] + 1)(2]' + 3)jl
X [B(E2)]F. (78)

These matrix elements give most of the contribution
of the At terms in Eq. (72) and are the only ones in-
cluded in our calculations.

In evaluating the 5 terms in Eq. (72), we make the
same type of approximations as were used in the case
of the magnetic moments (see Chap. V. A.1). How-
ever, we shall keep only the one-quasi-particle matrix
elements of 5 since the one-phonon and two-phonon
matrix elements are never more than about 259, of
these terms. Moreover, (for the quadrupole mo-
ments) the purely collective contributions from the
At (derived above) are usually considerably larger
than the 5 contributions. The collective contributions

893

to the one-phonon diagonal matrix elements are of
the same magnitude as the quasi-particle contribu-
tions, and they are also ignored. The matrix element
of the n terms in the state of one quasi-particle and
no phonons is

Qo = <¢0aiona§j%>
= —eiu(U; — VII©) — 1)/2( + DIGIFL),
(79)

which is the same result as derived in I. However, in
addition to the pure quasi-particle results, there are
contributions of about equal magnitude from the ad-
mixture of other configurations. This is treated be-
low.

2. Contributions from Configurations Admized
by a 6-Function Force

Just as in the treatment of the magnetic dipole
moments, there are certain configurations admixed
by a é-function force, or any other short-range force,
which are not admixed by the pairing or quadrupole
forces in the approximations used in this work, but
which contribute to the quadrupole moments
amounts of the same general magnitude as the single-
particle contributions.

On the other hand, one has already included a
certain amount of configuration mixing by introduc-
ing the effective charges ef; in Eq. (31). These ef-
fective charges are presumably due to the polariza-
tion of the closed shells by the particles in the major
shell being filled,? and are associated with configura-
tions at the energy required to break a double closed
shell. The configurations considered in this section
are essentially associated only with the particles in
the levels being filled, and are at energies of the mag-
nitude of the gap, which is considerably smaller than
the energy needed to break a closed shell (an essen-
tial assumption of this model). Still, the separation
of these effects is not at all complete, and effects such
as the blocking of some shell-model levels by adding
particles outside the closed shells will also change the
magnitude of the effective charge which arises from
the closed shells. Thus the calculation of this section
alsp gives an estimate of the magnitude of changes
in the effective charges as one fills a major shell.

Referring to Eq. (62), for both the odd and even
pure seniority-one and seniority-zero configurations,
there are additions to the quadrupole moments. Let
us refer to the state in which the odd number of par-
ticles are in the lyjo level, with p odd particles in a
particular configuration. For each level in which
there is an even number of particles, ie., I; # I
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whether of the even or odd type of particles, there
are admixtures to the quadrupole moments of the
form

8Qu, = [— (2Jo + 1 — p)f]/(Aei + 2E5) . (80)

In Eq. (80) the factor f depends upon the single-
particle values for the I's and j’s, the occupation
numbers, the force strength V,, and the radial in-
tegrals. The explicit form is given in Ref. 26. In the
energy denominator, when the admixed configura-
tions involve elevating a particle to its spin-orbit
partner, we use the parameters of Chap. III or
7(2l; 4+ 1)A~% MeV. There are also admixtures for
which Ae; is zero. These are simply the broken pair
contributions of spin-2 which give the major effects
for the additional quadrupole moments arising from
the configuration mixing of the particles in the shell
being filled. The quantity 2F, is the energy for the
lowest excitations which break a pair, and is used to
represent the average energy to break a pair for each
of the pure configurations. There are similar equa-
tions for the admixtures from the odd level [Ref.
(26)], which are treated in the same manner.
Equation (80) shows that there is a slight complica-
tion for these admixtures to the moments compared
to the analogous magnetic dipole moment calculation,
since the admixtures of the even type depend upon p,
the number of particles in the odd level. The physical
interpretation is that the quadrupole moment for a
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half-filled subshell is zero, for a shell less than half-
filled it is negative, and for more than half-filled it is
positive. Thus, if for each p the 6Q,; are summed
for the even type with occupation numbers ni, ny- - -,
and this is referred to as 6Q%.,---, the resulting
change in the moment from the even configuration
N1y M-+ - 18

= >, PoQ....,

where P, = probability of finding p particles in the
J level. 6Q:4, the change in the quadrupole moment
arising from an odd configuration, is calculated as in
Ref. 26 with the modifications mentioned above.
Therefore, we obtain as the electric quadrupole
moment of a quasi-particle

8Qmms-.. (81)

) = —d &’Z:I% R Rkl SICP
qu(l.]) - eeff[ 5 (UJ VJ) 2(]+ 1) <Jlr |.7>
+ 20 e @ToQT™ + 3 e @l Pae

odd ¢

even ¢

(82)

Finally, combining Eqs. (78) and (82), the electric
quadrupole moment is

<‘I/J’|‘Qopl\[/f> = (Cjﬂo)zQ;p(lj)
8t v i | J@2i—1) ] )
+ 5 0“20]00[(,]._——4‘ 1)(2_7.“" 3) [B(E2)] .

The results are given and compared to experi-
ments® in tables IV and V for odd-proton and odd-

(83)

TasLe IV. Quadrupole moments of odd-proton nuclei. The isotope and state are listed in the first two columns, the ground

state being starred when known. The next three columns contain the quasi-particle moment, and the moment corrected by

wave functions admixed by a & force for two effective charges. The phonon contribution is in column six, and the last two

columns are the theoretical and experimental moments in units of 10724 cm?2. The experimental values were taken from a com-
pilation kindly furnished by Dr. Gladys Fuller.

eP =2, ¢n =1

er=1l,er=0 e =2 e =1
C C

P =2 en =1

Isotope State Qup Q5 Qo Qoh Q theor Qexp
31Gab” 3/2* —0.03 —0.02 —0.04 —0.17 —-0.19 0.22
31Ga® 3/2% —0.03 —0.02 —0.04 —-0.16 —0.18 0.20
31Ga/ 3/2* —0.03 —0.02 —0.04 —0.16 —0.18 0.12
33As™ 3/2* 0.02 0.02 0.09 0.26 0.33
33As7 3/2* 0.01 0.02 0.07 0.18 0.21 0.31
33As™ 3/2* 0.002 0.01 0.04 0.06 0.08
35B177 3/2* 0.06 0.05 0.17 0.51 0.58
35Br7® 3/2% 0.05 0.05 0.16 0.42 0.51 0.32
35818l 3/2* 0.04 0.04 0.13 0.30 0.39 0.27
35]?B{X§:5 %ég: 8(1)g 8.03 0.09 0.16 0.24
37 . 11 0.35 0.40 0.65 0.28
3/2 0.09 0.08, 0.21 0.26 0.44
37Rb% g;z* 8‘18 0.12 0.25 0.34 0.54
2 .08 0.07 0.14 0.20 0.32 0.14
391%?:% g;g* —8%3: —8‘13 —-0.31 —0.28 —0.56
41 —0. —0.1 —0.28 —0.42 —0.62 —0.13
41 Nb% 9/2% —0.19 —0.12 —0.31 —0.58 —0.78
43%‘02; g;g: —883 -—-8.05 —0.09 —0.53 —0.61
43’T¢ —0. —0.04 —0.09 —0.71 —-0.77 +0.3
43Tcl0t 9/2* —0.08 —0.04 —-0.10 —1.07 —1.13
45Rh101 9/2 0.02 0.03 0.17 0.32 0.49
45Rh103 9/2 0.03 0.03 0.20 0.46 0.65
49In109 9/2* 0.25 0.14 0.62 0.52 0.97 1.20
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TaBLE IV. Continued
eP=2,en=1 e=1en=0 =2 =1 eP =2 en =1
Isotope State Qap ()2 Qb Qpn Qtheor Qexp
49Intll 9/2% 0.25 0.14 0.62 0.53 0.97 1.18
49Inl3 9/2* 0.25 0.14 0.62 0.54 0.98 1.0
29Inlls 9/2% 0.25 0.14 0.62 0.56 1.01 1.1
49Inlt? 9/2* 0.26 0.14 0.61 0.55 1.01
49In11® 9/2* 0.26 0.14 0.64 0.52 1.01
515b119 5/2*% —0.31 —0.12 —0.06 —0.41 —0.45 —-0.2
7/2 —-0.27 —0.10 +0.02 —0.46 —0.46
515b121 5/2% —0.31 —0.12 —0.07 —0.39 —0.43 —0.26
7/2 —0.27 —0.10 —0.01 —0.43 —0.44
515b123 5/2 —0.31 —0.12 —-0.07 —0.37 —0.42
7/2% —0.27 —-0.10 —0.04 —0.40 —0.43
515b125 5/2 —0.31 —0.12 —0.07 —0.34 —0.40
5/2* —0.28 —0.11 —0.06 —0.36 —0.41
531125 5/2* —0.25 —0.16 —0.60 —-0.75 —1.00 —0.89
7/2 —-0.17 —-0.11 —0.45 —0.88 —1.05
531127 5/2% —0.26 —0.17 —0.61 —0.70 —0.99 -0.79
7/2 —-0.17 —-0.11 —0.43 —0.81 —1.08
531129 5/2 —0.26 —-0.17 —0.59 —0.63 —0.96
7/2*% —-0.17 —-0.11 —0.39 —0.67 —0.95 —0.55
53I131 5/2 —0.26 —-0.17 —0.54 —0.52 —0.87
7/2*% —0.17 —0.11 —0.35 —0.49 —0.76 —0.40
55Cs181 5/2% —-0.21 —-0.14 —0.48 —0.80 —1.04
7/2* —0.04 —0.02 —0.04 —0.46 —0.49
55Cs133 5/2 —-0.21 —0.14 —0.45 —0.68 —0.96
7/2% —0.04 —0.02 —0.04 —0.27 —0.31 —0.003
55Cs13 5/2 —0.22 —-0.15 —0.41 —0.39 —-0.74
7/2% —0.04 —0.02 —0.04 —0.08 —0.12 0.049
55Cs187 5/2 —0.22 —-0.15 —0.30 —0.03 —0.33
7/2*% —0.03 —0.02 —0.03 —0.005 —0.03 0.05
57112’ 5/2 —-0.15 —0.10 —0.28 —0.38 —0.66
7/2* 0.08 0.05 0.19 0.21 0.38
s7Lal® 5/2 —0.16 —-0.10 —0.21 —-0.04 —0.25
7/2% 0.08 0.05 0.12 0.02 0.14 0.23
soPrldl 5/2% —0.08 —0.05 —0.09 —0.14 —-0.10 —-0.07
7/2 0.18 0.13 0.25 0.03 0.28
591143 5/2* —0.08 —0.05 —0.13 —0.48 —0.58
7/2 0.18 0.13 0.41 0.92 1.22
61Pm145 5/2 0.03 0.03 0.08 0.16 0.23
7/2 0.26 0.18 0.54 0.96 1.33
61Pm47 5/2 0.31 0.17 0.37 0.21 0.51
7/2% 0.27 0.19 0.70 1.27 1.62 +0.95
s1Pm1% 5/2 0.03 0.03 0.11 0.04 0.09
7/2* 0.27 0.19 0.80 1.55 1.82
7711191 3/2* 0.01 0.005 —0.05 0.20 0.16 1.0
771119 3/2* 0.01 0.005 —0.05 0.19 0.15 1.0
70Aul% 3/2* 0.12 0.09 0.53 0.68 1.08
79Auly? 3/2% 0.13 0.09 0.57 0.62 1.07 0.56
79Aul 3/2* 0.13 0.09 0.55 0.55 1.00
51 T119 3/2 0.26 0.15 0.54 0.12 0.62
81 T120 3/2 0.26 0.15 0.57 0.11 0.65
81 T1203 3/2 0.26 0.15 0.53 0.07 0.58
g1 T1205 3/2 0.26 0.17 0.44 0.03 0.47

neutron nuclei, respectively. The third column in the
tables gives the uncorrected quasi-particle quad-
rupole moments, Eq. (79), the fourth and fifth
columns give the corrected moments for two choices
of the effective charges, and Qin.r is the total result
using effective charge of 1 for the neutron and 2 for
the proton. In these tables one can see that although
the phonon contribution often dominates, in many
cases the single-particle parts are as large or larger
than @, and that the higher seniority terms are very
important for the quasi-particle quadrupole mo-

ments, Q. In many of the cases in which the cal-
culated result is too large, the use of the experimental
value for the B(E2)’s improves the comparison with
experiment.

B. Electric Quadrupole Moment of
One-Phonon State

In exactly the same manner as the magnetic dipole
moment of the one-phonon state was found (Chap.
V), one can calculate the electric quadrupole moment
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TaBLE V. Quadrupole moments of odd-neutron nuclei. (See the caption for Table IV.)

=2 e =1 e =1e"=0 e =2,e0 =1

Isotope State i Q5 oo Qpn @ theor Qexp
30Zn85 3/2 0.02 0.04 0.09 0.30 0.35
Zn85 5/2% 0.035 0.05 0.14 0.50 0.59
30Zn87 3/2 0.047 0.04 0.17 0.38 0.47
5/2* 0.072 0.05 0.22 0.55 0.66 0.18
32Ge’8 9/2* —0.076 —0.05 —0.21 —0.91 —0.99 —0.2
34Se;§ 5;2: 0.10 0.11 0.42 0.24 0.30 1.1
34Se 7/2 0.8
36KI§Z 9;2: 8.063 0 Ig 0.31 0.67 0.89 0.22
Kr 9/2 .12 0.1¢ 0.41 0.71 0.89 0.30
:281‘37 9/2* 0.12 0.05 0.25 0.31 0.53
339189 5/2* —0.094 —0.06 —0.26 —0.054 —0.31
40719 5/2% —0.094 —0.05 —0.25 —0.079 —0.34
40Z1‘9395 5;3: —8.027 —88% —-8.05 —0.12 —-0.22
Mo 5 —0.029 —0. —0.07 —-0.17 —0.28
:§M097 5/2% —+0.038 0.05 0.16 +0.29 +0.36
«Au®® 5/2* 0.032 0.05 0.16 0.31 0.37
44Rulf! 5/2* 0.073 0.06 0.26 0.80 0.82
16Pd105 5/2*% 0.085 0.06 0.30 0.76 0.91
43Cd107 5/2% 0.078 0.04 0.24 0.63 0.79 0.78
150dI 5/2* 0.095 0.04 0.29 0.58 0.75 0.80
48CdM1! 5/2% 0.11 0.05 0.31 0.48 0.62
5o Tel2 3/2 —0.03 —0.02 —-0.12 —-0.33 —0.42
11;2 -—8.03 +88i 8‘03 —0.60 —-0.63
52 Tel2d 3/2 .03 . .07 0.19 0.25
11/2 0.08 0.14 0.36 0.61 0.84
54X 129 3;2 8.007 —8 (1J05 —0.003 0.19 0.19
11/2 .06 0 0.35 1.1 1.3
54X 131 3;2* 80(3) 8 (1)2 0.32 0.37 —-0.12
11/2 1 0.46 0.99 1.29
54X el33 3/2* 8‘06 0.04 0.18 0.31 0.44
11/2 .15 0.15 0.56 0.78 1.16
s6Bals® 3/2* 0.06 0.05 0.19 0.33 0.47
11/2 0.15 0.16 0.56 0.84 1.25
s6Bald? 3;2* 0.06 802 8.26 0.01 0.26
11/2 0.22 .1 .63 0.06 0.68
53Celd9 3/2% 0.06 0.08 0.25 0.03 0.28
» 1’]7./2* 82% 8 1? 0.57 0.12 0.69
Cel4l /2 —0.2¢ —-0.1 —0.49 —0.03 —0.54
:(B,Ndl‘“ 3/2* 8(2)8 8 10 0.29 0.02 0.31
11/2 . .16 0.59 0.07 0.66
6o N5 72 —0.23 —0.13 —0.53 —0.03 —0.56 +1.0
5/2 —0.19 —0.11 —0.45 0.0 0.005
goINd143 7;2* —8.20 —8,12 —8.52 —0.94 —1.06
5/2 —0.19 —0.11 —0.49 —-0.15 —0.20
60N d47 7/2* -—8.15 —-8.11 —0.49 —1.08 —1.23
5/2 —-0.1 —0.11 —0.52 —0.31 —0.38
625m147 7/2%* —0.20 —-0.12 —0.52 —0.94 —-1.19 <0.7
625m 149 7/2% —0.18 —0.11 —0.50 —1.10 —1.29 <0.7
7605189 3/2% —0.03 —0.02 —-0.10 —0.34 —0.36 +0.6
760s191 3/2 —0.001 —0.005 —0.004 0.05 0.05
7P 119 3/2 —0.002 —0.01 —0.012 0.01 0.01
552 —-883 —-0,86 —0.29 —-0.94 —1.09
78Pt195 3/2 .035 0.02 0.14 0.54 0.64
5/2 —0.055 —0.03 —-0.14 —0.72 —0.82
78Pt197 3/2 +0.073 0.04 0.29 0.64 0.85
5/2 —0.001 0.02 0.05 0.02 0.05
soH g 3;2 832 0.00 0.13 0.26 0.37
13/2 . 0.04 0.59 1.18 1.55 1.53
soH g1 3/2 0.07 0.01 0.28 0.46 0.68
13/2 0.26 0.03 0.61 1.19 1.53
S 0138 003 0% Y08 e 050
. . 1 1.43

of a phonon. The result is

Q" = WBQuBYo) = 8-57CIENG 3 (5'llall)

E;, + By + 2E;~
[(B; + E;)* — S (By + Er) — o]
There is not the regularity to be expected for these

X UUy = ViViW (2'27"352) UV 4+ Us"Vi)  moments that is expected with the magnetic dipole
X (U; Vi 4+ U VidGllall7) 137 moments. That this is true is apparent from the

X (84)
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factors (U;U,;» — V,;V,), which produce cancellation
and wide variation in the results. Since there are no
experimental data, we do not carry out the numerical
calculations.

VII. ELECTROMAGNETIC TRANSITIONS

Since the electromagnetic field is so well under-
stood and electromagnetic radiation from nuclei has
been carefully worked out, the data on the gamma
transitions provide important information about
many aspects of nuclear structure. In addition to the
purely spectroscopic information obtained from the
general character of the multipole radiations, many
of the details of the nuclear wave functions can be
learned from the transition rates. Moreover, because
this type of experimental information is so extensive,
it is often possible to pick out particular transitions
in a number of nuclei which stress particular parts of
nuclear wave functions, thereby providing system-
atic studies of various aspects of nuclear structure.

A. Odd-Mass Isotopes

The pairing correlations play an important role in
the electromagnetic transitions. Because a quasi-
particle is composed of particles plus “holes’” in the
shell-model states, the transition between two quasi-
particles states involves both particle and hole transi-
tions, or, in other words, the transition involves par-
ticle states and time-reversed particle states. This is
the origin of the result given in I that the matrix
element of single-particle operator O = > 12(1/0|2)blb,
in one quasi-particle state is related to the single-
particle matrix elements by

(ll/ga;/m/| 212 <11 ®|2>b'1rb2|at,m,\//g>
= (U,Us; — (=1)"V;,V:)Grms| 0] jims)

where T is the time-reversal property of the operator,
i.e.,, T = 0 or 1, if the operator does not change sign
or does change sign, respectively, under time reversal.
Tor electromagnetic transitions the result is that the
matrix elements of the electric and magnetic 2*-pole
transition operators in quasi-particle states are re-
lated to the single-particle matrix elements by

WSats m |M(EL) | alonity = (UU: — V, V)

(85)

X (gym,|M(EL)|jim:) , (86a)
Woats g | (ML) | o) = (UUs + V, V)
X (Gyms | M(ML)|jims) ,  (86b)

since the magnetic operators change sign while the
electric ones do not. This effect was studied for single
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closed-shell nuclei in some detail, and gives an ac-
curate estimate of some of the transition rates, since
for those isotopes, the effect of the long-range force
on the one-quasi-particle states is not important.

In order to carry out a quantitative study of the
systematics of the isomeric transitions for all of the
spherical nuclei, it is necessary to include the effect
of the phonon admixtures. For the transitions of high
multipolarity, such as the E3 and M4 transitions, it
is a good approximation to neglect the terms in the
single-particle operators which change the number of
phonons. In that case the most important effect of
the long-range force is to deplete the amount of one-
quasi-particle state in the wavefunction. In this ap-
proximation, the relationship between the single-
particle lifetime, 7, and the lifetime in states [Eq.
(54)] is

/10 = D(1/7%) , (87)

with this retardation factor D being approximately
D= (UU, F V;‘V/)Z(C;:fooczoo ' (88)

In Eq. (88) the upper sign holds for electric and the
lower one for magnetic transitions. The coefficients
Cio are the no-phonon components of the wave
functions of an odd-mass system of spin j, obtained
from Eq. (47).

The most useful data for systematic studies of
electromagnetic transitions in the one-quasi-particle
states are those of the isomeric transitions, especially
the M4 and E3 transitions. Let us first consider the
M4’s. The single-particle transition rates have been
calculated by Moszkowski and others. For M4 transi-
tions the theoretical single-particle transition prob-
ability is approximately®

theor 22 C(M4)A*(AE)’S (jiyh,5i) (89)

with C'(M4) a constant proportional to the radius
parameter, 7, to the sixth power, and equal to
1.56 X 107° or 2.86 X 107° for neutrons or protons,
respectively, for a choice of 7, = 1.1 X 107 cm.
S(7;,4,7:) is the “statistical factor’” and A4 is the mass
number. The experimental values for the transition
probability P.,is found in terms of the experimental
half-life, T'y, conversion coefficient «, and the fraction
of M4 involved in the transition F,

P, = F/144T;(1 + «) . (90)

The experimental results are given in terms of the
reduction factor

Dexp = exp/Pstl})meor . (91)

29 S. Moszkowski, in Gamma and Beta Spectroscopy edited by
E. Siegbahn (Interscience Publishers, Inc., New York, 1955).
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Results are given for the M4 transitions in our re-
gions in which the half-lives have been measured. In
most cases I is known from experiment, but in a few
cases it is estimated from theoretical considerations.
In a number of cases the internal conversion co-
efficients have not been measured and the calcula-
tions of Rose® have been used. If only the K and L
conversion coefficients are known, the total con-
version coefficient is taken to be a = ax(l +
1.3 ar/ax).
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transitionsin the Pt, Hg,and Pbisotopes. In the Pbiso-
topes the most important effects are due to the pair-
ing correlations. As one removes particles from Pb2?
the vibration does become a little softer, tending to
reduce the calculated transition rates a bit faster
than when the phonon effect is neglected, but the
experimental information shows the constancy ex-
pected from the pairing effects. In any case, the fact
that the Pb®” D.,, is less than that of Pb*® is hard to
understand.

05¢

F1e. 37. Reduction factors for M4
13/2 4 -5/2— odd-neutron transitions.
The theoretical results are given by the
solid line, while the experimental ratio
of the transition probability to the
single-particle value is given as tri-
angles or circles connected by dashed
lines with the assumption of a radius
parameter of 1.0 and 1.1 F, respec-
tively. The sequences are labeled by
the proton numbers.

L
193 195 197 199 201 203

The most striking feature of the systematics of M4
transition rates is their constancy, which was first
pointed out by Goldhaber and Sunyar,® for none of
the measured rates differs from the single-particle
estimate by more than a factor of about ten. Equa-
tion (88) shows that the pairing part of the reduction
factor is (U;U; + V.V;)?, which tends to be constant.
Since the magnitude of the one-quasi-particle com-
ponent in the states being considered is usually at
least fifty percent, the theoretical reduction factor D
also tends to be constant. Let us now look in detail
at the several regions to see if not only the constancy
produced by the pairing correlations shows up, but
also the effects of phonon admixtures.

Figure 37 contains the information about the iso-
meric transition between the 7152 and fs/; odd-neutron

30 M. E. Rose, Internal Conversion Coefficients (North-
Holland Publishing Company, Amsterdam, 1958).
( 31 IV)I Goldhaber and A. W. Sunyar, Phys. Rev. 83, 906
1951).

205

207

Following the Hg isotopes from mass 195 to 199,
both the 13/2 and 5/2 states are filling, and the pair-
ing part of the reduction factor increases. This is
partially offset by the phonon factor, which de-
creases, resulting in a slowly increasing D, which is
in agreement with experiment. In the case of the Pt
isotopes, the pairing factor is increasing at nearly the
same rate in isotopes 193, 195, and 197 as the Hg
isotopes, for the same neutron numbers are involved,
but in this case the phonon factor is quite strongly
increasing. As a result, the theoretical reduction in-
creases in the Pt isotopes much more strongly than
in the Hg, a fact which seems to be supported by the
experimental evidence.

There is a great deal of experimental information
concerning the neutron hu/; and ds levels from the
M4 transitions in the Sn, Te, Xe, and Ba isotopes as
shown in Fig. 38. In going from smaller to larger
mass numbers in these isotopes, one is proceeding
from 67 to 81 neutrons in the 50-82 neutron major
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shell. Since the first fourteen particles in this shell
mainly occupy the gz/; and ds/2 levels, one is essentially
going from unfilled A1, and das/» levels to filled ones.
However, due to the fact that these two levels are
rather closely spaced, the factor (Uw/zUs/z + VivzVarz)
stays quite close to unity. Therefore almost any
variation in the theoretical results must come from
the changes in the phonon admixtures. In the se-
quence of six isotopes Te'®73 experimental results
show a general increase of the D.,, factor. In the
theoretical calculation there are two competing ef-
fects, since the ng;’go coefficient increases from about
0.8 at Te' to unity at Te'®, while the C1i/30 has a
maximum at mass numbers 125 and 133. Although
the detailed variation predicted by the theory does
not seem to show up, the general tendency for the
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transition revealed by the Y, Nb, T¢, and In isotopes.
Since the protons are involved, the pairing factor re-
mains almost constant and just helps to determine
the general magnitude for each element, so the vari-
ations in each element are mainly due to the phonon.
One striking result is the strong maximum in the
three Y isotopes at the 50-neutron closed shell. This
can be explained by the fact that the phonon ad-
mixtures increase as one leaves the single closed-shell
case, as the theoretical curve shows. For the four Nb
isotopes, one is adding neutrons to the 50 closed
shell, starting with the single closed-shell Nb* case.
Therefore, the theoretical results display a decreas-
ing magnitude for this D factor, which is in agree-
ment except for the very uncertain Nb* point. In
the three Tc isotopes with mass numbers 93-97, this

1.5}
Aso
P 7
7
D g
1.of .
F1c. 38. Reduction factors for s24°7 T~a
M4 h11/2-d3/2 odd-neutron tran- <050
sitions. The notation is the same p -
ag in Fig. 37. M
__-O-_ 7
os} 52 0~ ~~0
e I L I L b 1 il I L .
"nr 19 121 123 125 127 129 131 133 135 137

nuclei to become stiffer to vibration and thus contain
less phonon admixture as one approaches the 82-
neutron number leads to a general increase of the
theoretical D factor which is consistent with the ex-
periments.

The theoretical results for the sequence of isotopes
Xe 129-135 show a similar dip at the 131 mass num-
ber, due to the minimum in the C}}/3q0 coefficient,
with a general increase thereafter to the case of 81
neutrons. The experimental results are in good agree-
ment, even having a minimum at Te'. Finally, the
three isotopes Ba'®~7 have an experimental reduction
factor which increases sharply, which is in agreement
with the strong phonon changes which occur with 56
protons.

Figure 39 presents the study of the pi/2—ges2 proton

effect is seen quite clearly in both the theoretical and
experimental reduction factors. Finally, for the In
isotopes, the pairing factor is constant and the
phonon admixture is also almost completely un-
changed as the neutrons increase from 64—-68, so the
Dipeor remain constant in In'*'7 in agreement with
D exp-

Another interesting thing in this region is a pairing
force effect for the three single closed-shell N = 50
isotopes Y*, Nb®, and T¢®. The minimum in the re-
duction factor seems to come from the change in the
gap at 41 particles, as was discussed in I. Finally,
there is a little information concerning the neutron
Pr/2—gosz M4 transition. Figure 40 shows that one can
just conclude that the experimental and theoretical
results are consistent.
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Figures 37-40 show that, for a choice of the radius
parameter somewhere between 1.0 and 1.1 F, the
magnitude of the experimental vs theoretical reduc-
tion factors is in agreement. We can conclude that
this extensive information on M4 transitions seems
to give good evidence for the accuracy of the wave
functions which result from this method.

The experimental data on E3 transitions is not so
extensive as the M4 data, and it turns out not nearly
as useful for this work. The main reason is that the
best systematics concern the transition between the
7/2+ state and the 1/2— state for isotopes in which
the odd particle is in the 28-50 shell. These are just
the cases with which this method seems to be least

L. 8. KISSLINGER AND R. A.SORENSEN

and 1/2— states mentioned in the preceding para-
graph have these very strong reductions, indirectly
supporting the conjecture that those states contain
other admixtures than the pairing picture would pre-
dict.

There are numerous other lifetimes measured in
the spherical odd-mass isotopes. Although there is
not so much in the way of systematics, there are
some interesting cases. Of special interest are some
of the E2 transition rates. Here one has the tendency
for the reduction of the contributions from the single
quasi-particle states, but enhancements arising from
the phonon admixtures. Thus, e.g., recent experi-
ments on Sb'*® which show an enhanced E2 transi-

Fi16. 39. Reduction factors for M4 py/2-ge/2 0dd-
proton transitions. The notation is the same as
i Fig. 37.
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able to deal, at least without including the three
quasi-particle states (see Chap. III). Therefore we
do not attempt to calculate these transition rates.
The only systematic data which we can treat in-
volve the neutron Au/—ds/» E3 transitions in Pd®-11,
Cd", and Xe'. This is an interesting sequence, for
the neutron Fermi level is crossing between the two
levels at about N = 63. Therefore, one can expect a
sharp reduction in the D factor at this point, since
the factor (UU — VV) goes approximately to
zero there. The very small transition rates® com-
pared to the single-particle values for Cd"'! and Pdit
seem to be correlated with this theoretical predic-
tion. None of the E3 transitions between the 7/2-+

tion give evidence that g and dy, states contain
considerable admixtures of phonon states

B. Even—Even Isotopes

1. One-Phonon-to-Ground-State Transition
The most extensive data on electromagnetic inter-
actions in the even—even nuclei are on the B(E2)
values for the transition from the lowest 2+ state to
the ground state. In Chap. II this was defined as

B(E2) = || QIB'ya)l* . (92)

Since in all of our calculations we take the three long-
range-force parameters as equal, X, = Xa = Xup, the
B(E2) can be written in the simplified form,

B(E2) = + N} [Z (U Vy + V,Up)'@f + 1) (€)'
5 € (E; + E;)* —

P28 + F)} 93)

2
w

32 G. Scharff-Goldhaber (private communication).



SPHERICAL NUCLEI 901

where

2 4 E1+E2
| 2
H IRy

X @i+ DA [ o)

The theoretical values of the B(E2)’s seem to be in
reasonably good agreement with the experimental

(UVa + UsTH)
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F1a. 40. Reduction factors for pi1/2-ge/2 odd-neutron transi-
tions. The notation is the same as in Fig. 37.

data.® There is a general tendency for the calculated
B(E2)’s given in Table VI to become increasingly
larger than the experimental ones as the vibration
gets softer and one approaches the deformed regions.

2. The Crossover 2-+-Two-Phonon-to-Ground-
State Transition

There have been many measurements in recent
years of the B(E2)’s for the transition from the
second phonon 2+ state (referred to hereafter as the
2’ state) to the 0+ ground state. In the linearized
QRPA theory we have applied here this transition
is forbidden, which is in agreement with the small
B(E2)(2' — 0) value compared to the B(E2)(2 — 0).
However, one of the promising features of this
method is the relative ease with which some correc-
tions can be made. For these transitions it is rather
straightforward to carry out the necessary correc-
tions to the QRPA approximation.

33 The B(E2) and B(E2) crossovers are taken from an un-
published compilation by Y. Yoshizawa.

TasLE VI, B(E2) Values for ground-state transitions in even-
even nuclei. The column labeled B(E2):peor lists the calculated
B(E2)o4—24 values using the same parameters used to cal-
culate the energies in Figs. 2(a), (b). In the few cases for
which the calculated energy (of Fig. 2) is far below the ex-
perimental value, the B(E2) is listed in parenthesis for a
lower X chosen to fit the energy. The experimental values are
listed in units of €2 x 107 c¢m% and compared with the
single-particle value of 3 x 1075 ¢2 x 10748 A3 cm?.

Isotope  B(E2)meor B(E2)exp X sp Source
2sNi8 0.017 0.072 11 .
Ni® 0.051 0.091 13 .
Nif? 0.100 0.083 12 s
Nié4 0.092 0.087 12
30Znb4 0.264 0.170 21 a
Znb6 0.245 0.145 18 a
Zn%8 0.164 0.125 16 a
32Ge™ 0.458 0.172 18 8
Ge'2 0.476 0.230 24 a8
Ge' 0.609 0.317 33 a
ge;g 8 . Z?El) 0.263 28 a
€ .
348874 0.696 0.21 21
Se’6 (0.919) 0.480 48 L
Se’8 (0.770) 0.385 38 a
Se80 (0.594) 0.283 28 2
Ses? 0.327 0.213 21 8
36KI‘78 1.784 0.51 51
K80 (0.812) 0.34 34
K82 (0.550) 0.18 18
K84 0.313 0.15 15
3381'86 0.205
Sréé 0.143 0.13 12 b
40%]‘22 0.141
o ooi) 07 6
42M094 0.166 0.27 21
Mo% 0.360 0.30 23
Mo 0.683 0.27 21
Mol00 0.915 0.61 47
14Ru% 0.279 0.25 19
Ru% 0.563 0.48 37
Rult® 0.947 0.57 41
Rul®?  (1.424) 0.73 52
16Pd104 (1.006) 0.55 37
Pd1s  (1.261) 0.65 44
Pd®  (1.603) 0.74 50
Pd0  (2.009) 0.86 58
48C(106 0.447 0.47 31
Cd18 0.571 0.54 35
Cduo 0.687 0.50 33
Cdu2 0.758 0.54 35
Cdi4 0.799 0.58 38
Cdus 0.809 0.60 40
5050112 0.350 0.18 11
Snil4 0.381 0.20 12
Snli6 0.399 0.21 12
Snlis 0.414 0.23 14
Sn120 0.416 0.22 13
Sn122 0.365 0.25 15
Sn124 0.273 0.21 12
52Tel20 1.183 0.55 29
Tel22 1.307 0.65 35
Tel24 1.080 0.39 21
Tel26 0.729 0.53 28
Tel28 0.468 0.41 22
Tel30 0.289 0.34 18
seXel?8  (1.654)
Xeld0 1.174 0.48 24
Xel32 0.592 0.32 16
§eg: 0.344
e 0.198
“gaﬁi ( (1) -814) 0.73 36
a .929
Ba136 0.509
Bal38 0.294 0.30 14
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TaBLE VI. Continued
Isotope  B(E2)meor B(E2)exp X sp Source

5306138 0.631
Cel®0 0.392 0.36 17 b
Cel42 0.828 0.59 27

soNd142 0.361 0.34 15 c
Ndu4 0.908 0.44 19 °
Nd46 2.101 0.84 37

625m146 0.900
Sm48 2.189 0.89 37
Sm150 (4.0) 1.32 56

64Gd148 0.974
Gd1eo 1.872

7605188 (11.8) 2.80 85
Qgs190 (9.3) 2.55 78

78 Pt194 (5.2) 1.94 59 d
P19 4. 086 1.27 37 d
Pt198 3.060 1.35 39

snglgs 1.250
Hgl98 1.355 1.13 32
Hg200 0.982 0.85 24
Hg202 0.749 0.59 17
Hg204 0.461

sszm 0.337
Pb202 0.280
Pp204 0.216 0.17 5 e
P06 0.101 0.13 4 e

a P, H. Stelson and F. K. McGowan, Nucl. Phys. 32, 652 (1962).
b S. Ofer and A. Schwarzschild, Phys. Rev. Letters 3, 384 (1959).
¢ Q. Nathan and V. I. Popov, Nucl. Phys. 21, 631 (196

d F. K. McGowan and P. H. Stelson Phys. Rev. 122, 1274 (1961).
e Q. Nathan Nucl. Phys. 30, 332 (1962).

Other experimental data was obtained from a compilation kindly fur-
nished by Dr. Yasukaza Yoshizawa.

The crossover B(H2) is defined,

B(E2) = (ol |QIFIB'BT/ V). (95)
F is a normalization constant which takes into ac-
count the deviation of the Bt operators from bosons
for the two-phonon states. This factor can be quite
different from unity when the vibrational states are
low in energy. Since the numbers of quasi-particles
differ in the zero- and two-phonon states by zero,
four, etc., the A" parts of the quadrupole operator
cannot lead to the transitions. Therefore, the 5 parts
of the operator, which do not contribute to the
B(E2)’s (0 — 2%), are entirely responsible for the
transitions, which we can thus expect to be of the
order of single-particle magnitude. We need the mat-
rix element (Yo {n2,;[B!B?}°¢s) in which the operators
have been vector-coupled to total angular momentum
zero. Applying the commutation rule given in Ap-
pendix I, Eq. (A4), plus the condition By, = 0, one
readily finds that

WolnlH[B' BT} %) = 10-5! 3, v (i) su (7771)
X W(27'25:;72) . (96)

Therefore, the reduced lifetime for the direct cross-
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over transition is

B(E2) [ZE Zi]" 10F€§H(U:‘U1’ - ViV)

X (GINFYN2T 2o ra (i) s (5'0)

X W (27'25;72)]°. (97)

The results shown in Table VII are calculated by
choosing F = 1 and taking the effective charges of
the proton and neutron to be eX;; = 2¢ and e2¢; = e
(column two), and for comparison el = e and
ed¢s = 0 (column three). From Eq. (97) it is evident
that the theoretical results are sensitive to the param-
eters both because of the cancellations due to the
factors (U;U; — V,V,7) and because of the inter-
ference between neutrons and protons, which is illus-
trated by the comparison of columns two and three.
The theoretical values are frequently an order-of-
magnitude smaller than the experimental results.®
One important reason for this is the error in the
choice of unity for the normalization factor F, which
can change the results by a factor of two according
to rough estimates. However, since these transitions
are of single-particle magnitude, an accurate estimate
of these B(K2)’s requires the use of more detailed
properties of the wave functions, and an investigation
of other effects which might be important in some
cases.

TaBLE VII. B(E2)o,;-2 crossover rate. The same single-par-

ticle estimate is used as in Table VI. Effective charges er = 2,

e» = 1,and e?r = 1, en = 0 used to compute B(E2)heor in umts
of €2 X 10748 cmt,

B(EQ)Lheor B(Ez)lheor B(Ez)expa
Isotope e =1,en=0 e =2, =1 B(E2)ex,* B(E2)s,
32Ge™ 0.0026 0.0016 0.007 0.8
Ge™? 0.0048 0.0035 0.0017 0.2
Ge™ 0.0058 0.0064 0.022 3.
GeT® 0.0042 0.0115 0.004 0.4
34574 0.0000 0.0023 0.005 0.5
Se'® 0.0031 0.0015 0.010 1.
Se'® 0.0018 0.0046 0.010 1
Se80 0.0016 0.0030 0.019 2.
Ses2 0.0011 0.0101 0.008 0.8
36 K178 0.0000 0.0102
Kr80 0.0000 0.0002
K82 0.0000 0.0008
K84 0.0001 0.0026
Krsé 0.0005 0.0019
385136 0.0008 0.0007
Srs8 0.0009 0.0037
402190 0.0006 0.0024
Zr92 0.0005 0.0006
Zr94 0.0008 0.0008
Zx9% 0.0022 0.0070
12Mo% 0.0005 0.0006 0.005 0.5
Mo 0.0009 0.0008 0.011 0.9
Mo9% 0.0015 0.0040 0.014 1.
Mo100 0.0048 0.0191 0.013 1.
4Ru® 0.0001 0.0001 0.005 0.4
Rul® 0.0003 0.0002 0.015 1.
Rul0? 0.0005 0.0014 0.017 1.
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TaBLE VII. Continued

B( E2)theor B(E2)theor -B(E)2)expa
Isotope e?=1,er =0 e =2, =1 B(E2)exy* B(E2)sp
Rul% 0.0010 0.0040 0.010 0.8
16Pd106 0.0007 0.0034 0.014 1.
P8 0.0010 0.0041 0.007 0.5
Pq1o 0.0012 0.0039 0.010 0.6
48Cd10 0.0019 0.0071 0.020 1.
Cqu2 0.0022 0.0077 0.010 0.6
Cqr4 0.0025 0.0067 0.007 0.4
Cdquse 0.0026 0.0051 0.011 0.7
so5n14 0.0000 0.0001
Sn!ié 0.0000 0.0012
Snl18 0.0000 0.0022
Sn120 0.0000 0.0019
Sni22 0.0000 0.0011
Sni4 0.0000 0.0004
s2Tel22 0.0000 0.0045 0.019 1.
Tel2 0.0000 0.0026 0.016 1.
Tel26 0.0000 0.0010 0.005 0.3
Tel28 0.0000 0.0002 0.012 0.7
Tel30 0.0000 0.0001 0.011 0.6
54 Xel28 0.0006 0.0002
Xel30 0.0004 0.0008
Xel32 0.0002 0.0011
Xeld4 0.0001 0.0007
5682130 0.0043 0.127
Bal32 0.0025 0.0072
Bal3¢ 0.0016 0.0068
Balsb 0.0035 0.0017
58Cel38 0.0015 0.0073
Cel*0 0.0000 0.0001
Cel#2 0.0049 0.0244
soNd14 0.0039 0.0192
NJ6 0.0080. 0.0470
Nd48 0.0164 0.106
N0 0.0767 0.512
625m?46 0.0019 0.0104
Sm148 0.0029 0.0203
Sm150 0.0073 0.0577
Sm152 0.054 0.437
7605186 0.0136 0.0856
Qs188 0.0107 0.0702 0.20 6.
QOsl90 0.0074 0.0480 0.18 5.
Qs192 0.0053 0.0325 0.21 6.
78Pt192 0.0004 0.0003
P94 0.0003 0.0003 0.009 0.3
P96 0.0002 0.0004
P19 0.0001 0.0007
goH g9 0.0044 0.0155
Hgl® 0.0043 0.0160
Hg20 0.0046 0.0206
Hg202 0.0022 0.0140
Hg204 0.0019 0.0186

a The experimental results were obtained from a compilation kindly
furnished by Dr. Y. Yoshizawa.

For the region 28 < Z < 40;28 < N < 50, the
theoretical B(E2)(0 — 2’) values were also calculated
including the f/2 protons and neutrons from the shell
below. These results are not included in the table,
but there was a large difference in the results indi-
cating the sensitivity of the calculations to the
parameters, especially in this region. Since these
transitions are essentially of single-particle type, the
results can be expected to depend much more upon
the details of the nuclear structure than those for the
one-phonon B(E2)(0 — 2+4). In particular, with
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more systematic empirical data we expect that there
will be more scatter in the experimental values for
these transition rates than for the transition rates
found for the one-phonon to the ground-state transi-
tions. Of course, this simple treatment of the two-
phonon states cannot be expected to be very ac-
curate. Moreover the general tendency for the
B(E2)’s to be so small in this calculation indicates
that the corrections are quite large, and that in fact
the treatment of the second phonon state as BtB%,
is not very accurate.

3. The M1 Admixture in the Two-Phonon
24 to One-Phonon Transition

From the magnetic-moment operator, Eq. (59),
one can see that in the matrix element needed to cal-
culate the M1 transition between the two-phonon
24 (2') state and the one-phonon state,

(ol Buoo[B'BT|0) (98)

only the 5 terms contribute. However, the calculation
of this matrix element is rather intricate. In this case
the commutation rules Eq. (A3) and (A4) along with
the condition Bye, = 0 are not sufficient to evaluate
the matrix element, and one is required to make
statements about the magnitude of rather compli-
cated terms. Because of the accurate data it is im-
portant to carry out this calculation, this is not done
here. Also we do not calculate the change in the
value of the cascade B(E2)’s of the 2/ —- 2 — 0
transitions from the QRPA value.

4. Transitions in Two-Quasi-Particle States

As soon as one leaves the single-closed-shell iso-
topes, there is actually very little information about
transitions in the quasi-particle states beyond those
studied in I. With new experimental apparatus and
techniques, one can look forward to the possibility
of systematic studies in the future. One interesting
case has been recent measurements of a highly for-
bidden E2 transition in Sn*'® and Sn'® in states which
should be rather pure-quasi-particle states, showing
the particle-hole cancellations predicted by the pair-
ing corrections.?*

VIII. BETA DECAY

Nuclear beta-decay rates have been used in the
past to help determine nuclear spins and parities, and
moreover, when the spins are known and the type of
decay determined, the rates may be related to the
nuclear state involved.

34 H. H. Bolotin, A. C. Li, and A. Schwarzschild, Phys.

Rev. 124, 213 (1961), and H. Tkegami and T. Udagawa, Phys.
Rev. 124, 1518 (1961).
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A. Beta-Decay Matrix Elements—Odd Mass

In the same fashion as with electromagnetic transi-
tions, the effect of pairing correlations on the g-decay
nuclear matrix elements may easily be determined.
The simplest case to consider is a transition between
two one-quasi-particle states. This will be a transi-
tion between an odd-proton and an odd-neutron
nucleus, and will thus be between a neutron one-
quasi-particle state and a proton one-quasi-particle
state. The B8 operator Og for the nuclear matrix ele-
ment is of single-particle type (bib.) or (blb,) depend-
ing on whether N — P or P — N in the transition.
The initial state is of the type al|yo)or af|ys), depend-
ing on whether the neutron or proton number is odd
in the initial state. The final state is then of opposite
type. The matrix element M may be evaluated in
terms of the single-particle matrix element M,, by
performing the quasi-particle transformation on the
operator b'b. [See Eq. (9)].

Four cases may be distinguished depending on the
nuclear species involved:

(1) N — P odd jumping, (odd N even Z)
- (N - 1,Z + l)y M = U.U,M,,

(2) P — N odd jumping, (even N odd Z)
- N+1,Z—-1),M = UUM,,

(3) N — P even jumping, (even N odd Z)
>N —-1L,Z+1),M = F VoV, M,,

(4) P — N even jumping, (odd N even Z)
> N+1,Z-1),M = F V.V.M,

In (3) and (4) the sign is plus or minus depending on
whether the operator is odd or even under time re-
versal. These expressions differ from the reduction
factors derived for electromagnetic transition owing
to the fact that here (1) and (3) [or (2) and (4)] cor-
respond to different transitions, while in the electro-
magnetic case, where the same particle merely
changes levels, the corresponding (1) and (3) [or (2)
and (4)] both contribute to the same transition, i.e.,
the even jumping and odd jumping both contribute
to the same transition.

An absolute comparison of these reduction factors
with experimental data would be quite difficult for
medium to heavy nuclei. However, for a group of
one-quasi-particle transitions all between the same
quasi-particle levels, the entire dependence of the
nuclear matrix element on the particular nuclear
species (i.e., on A) should be contained in the reduc-
tion factors, the single-particle matrix element being
common except for small changes due to the slow
change in the shell-model well shape with A. Then
for such a group of transitions (of allowed type), the
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comparative life (ft) value is proportional to M2 so
we should have, aside from the statistical factor (see
below),

ft « (UaUy)72 cases (1), (2), odd jumping,  (99)
(100)

One such group occurs in nuclei 115 < 4 < 141
between the proton ds;; level and the neutron ds/
level (see Fig. 41.) The figure shows experimental log

ft < (VaVy)72 cases (3), (4), even jumping.

ALLOWED B DECAY

ds/ PROTONS

Aj =21 2
d’/z NEUTRONS

——==0 CURVE

EVEN-MASS

- —-x CURVE 14— 0+
~N

0DD- MASS

LoG ft

o

1 1 l | { { I l 1 | | 1
"z 121 125 129 133 137 14l A 18 122 126 130 134

Fic. 41. Allowed transitions involving a ds/2 proton and a
ds/2 neutron, odd mass and even mass. The o and x points are
the experimental log f¢ values including the statistical factor
for odd-jumping and even-jumping transitions, respectively,
for the odd-mass points and for P — N and N — P transitions
respectively for the odd-odd — even-even transitions. The
dashed o curve and dot-dashed x curve are the corresponding
theoretical curves log C/R?, where R is the appropriate re-
duction factor U,U, and V,V,, respectively, for the odd-mass
cases and V,U, and U,V;, respectively, for the even-mass
cases. An arrow indicates the value log C chosen to fit both
the even- and odd-mass data.

ft values minus log § (2J7 4 1) and compares them
with the theoretical reduction factors log C/(U,U.)?
and log C/(V,V.)2. The normalization C is chosen for
each level pair to fit the data for both the odd-mass
and even-mass transitions (see Sec. B below). On
each plot, a small arrow marks log C. The statistical
factor 3 (2J; + 1) is chosen so make the correspond-
ing factor for the 14-to-0+ transitions discussed
below equal to unity. Most of the experimental ft
values correspond to odd-jumping transitions. This
is in general accord with the upward trend of log ft
with increasing 4, since filling levels means decreas-
ing U’s, and thus decreasing M and increasing ft.
The few even-jumping transitions which occur for
large-mass isotopes exhibiting this transition have
lower ft values than the neighboring odd-jumping
transitions. This is reasonable since both shells are
nearly filled for these isotopes, i.e., ¥V > U and
M even jumping > M odd jumping.
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For other level pairs there is much less systematic
information. For 57 < A < 67 there are a few cases
of ps/e—psse transitions (see Fig. 42). It is difficult to
see the effect of the reduction factors with so few
cases. Also, the excitation energy is high in some of
the cases, involving a particle from the next shell, so
there may well be appreciable three-quasi-particle
and phonon admixtures to the wave function in those
cases.

ALLOWED @ DECAY
A=0 p¥2PROTONS
—_O CURVE  p3/2NEUTRONS|
_._.X CURVE
oo
\
\
\
\.
89T Lecoo \ Frc. 42. Allowed transi-
Ay tions involving a ps3/2 neu-
. . /X tron and proton, odd mass.
N é‘ e The points and curves are as
iCo / described in Fig. 41 odd-mass
b part.
° ZnCuX 'y
- 7
5.0} C/J Gazngd’
CuNi pid
7
.
e
-
LogC
Bkl B,
4.0 L ‘N oIR M 1

For 69 < A < 87 there are about a dozen cases of
a transition between a proton ps/. level and the neu-
tron py/z level (see Fig. 43). For these, the trend, with
one exception, is (with increasing A) increasing ft
value for odd-jumping cases and decreasing f¢ value
for even jumping as expected. For the exception, a
particularly fast even-jumping case s:Ge3s(3—)
aGali(@—) log ft = 4.3, the low ft value may be due
to exceptional purity (small phonon admixture) of
the wave functions owing to the proximity of the
nearly magic neutron number 40. The agreement
here is only qualitative, but the normalization was
chosen to fit the corresponding even-mass cases as
well (see below).

Finally there are for 101 < 4 < 111 a few cases
of a transition between a go/2 proton and a g/ neutron
(see Fig. 44). The normalization of the theoretical
curves was chosen as a compromise to fit these data
and the more numerous even A (see following) cases.

These comparisons are valid only if the phonon
component (or other three-or-more quasi-particle
components) of the wave functions may be ignored
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or assumed to have an effect independent of mass
number. Otherwise, the matrix elements to this part
of the wave function must be included. However,
such a calculation can not be done without essentially
making an absolute evaluation of the matrix elements
to various single-particle levels as the different levels
will come in with different reduction factors.

There is also some systematic data for unique 1st-
forbidden transitions. For 89 < 4 < 97 there are a
few transitions between a proton pi2 level and a
neutron ds/z level (see Fig. 45). Even if the ft value
can be used as a measure of the relative magnitudes
of the matrix element, there are too few data to see a
trend.

For 123 < A < 137 there are a few transitions be-
tween a proton g-/2 level and a neutron 4 11/2 level (see
Fig. 45). Once again there are too few data to believe
the trend shown by the experimental points, al-
though the even-jumping cases here are all lower
than the odd-jumping cases.

B. Beta-Decay Matrix Elements—Even Mass

The large majority of even-mass decays proceed
from the ground state of an odd-odd nucleus to the

ALLOWED B DECAY p, PROTONS
Aj=tl , %
/ p,/ NEUTRONS
———-0 CURVE / 2
-—-—-x CURVE ///
6 J
0DD-MASS /-
Kr Br Oy EVEN-MASS
I+ —= 0+
el \ Br Kr
8 ~ 3 2 2
S CuNi Y~_ O ‘GaGe ,
5 \ e e
\ e -
\ e
~. - 0\
~—_ SRb Rb Kr
<
41—
1 1 1 1 1 1 1 1 1 1 1
69 73 77 8l 85 A 62 66 70 74 78 82

Fic. 43. Allowed transitions involving a ps/2 proton and a
p1/2 neutron, odd mass and even mass. See caption of Fig. 41
for details.

0+ ground state or the 2+-or-higher vibrational
state or a two-quasi-particle state of an adjacent
even—even nucleus. By far the most abundant sys-
tematic data are for a transition from a 14 state by
allowed 8 decay to both the 0+ ground state and
first excited 24 state. For 27 transitions from
62 < A < 136 the average log ft value is 4.9 for the
0+ transition and 5.5 for the 2+ transition. The
spread of values is quite small (rms = 0.4 for 0+
case).
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The initial state in this case is primarily a two-
quasi-particle state of the type (afal)|¥o) or a com-
bination of such states. For the 04 ground-state
transition, the final state is primarily the quasi-
particle vacuum [¢o). Thus we must distinguish two
cases

(1) N — P odd—odd — even—even M = U,V,M,,
(101)

(2) P — N odd—odd — even—even M = V.U, M,
(102)

where M,, = (1/V3){p||c||n). The operator here is
the spin operator o, and the neutron and proton
levels must be spin-orbit partners. If in any cases
the two-quasi-particles forming 14 were not spin-
orbit partners, i.e., having the same [ value, the transi-
tion would be ! forbidden and presumably have a
larger ft value. There are three groups of nuclei cor-
responding to different probable levels for the neu-
tron and proton (see Figs. 43, 44, and 41.)

Proton  Neutron Average
Level Level log ft
62 <4 <82 Pslz P1/2 4.95
104 < 4 < 118 Jo/2 G/2 4.73
118 < 4 £ 136 ds/2 ds/z 4.98
ALLOWED B DECAY g,, PROTONS
Aj=t] 72
g, NEUTRONS
——--0CURVE 7
-—-X CURVE
ek
0ODD-MASS EVEN-MASS
— - l+—= 0+
— e
© ,
3 / Rh Pd
Pd Rh ,/
S X/ Ag Pd
LN N
’ ‘\
/
! inCd >y ~. Aq){/ln—cd/
To R sn > o
4 —
] | 1 1 | 1
oI 105 109 A 104 108 12 16

F1a. 44. Allowed transitions involving a ge/2 proton and a
g7/2 neutron, odd mass and even mass. See caption of Fig. 41
for details.

The reduction factor UV does not vary greatly as U
is a decreasing, and V an increasing function of A.
The single-particle matrix element of ¢ does depend
on the I value (Il + % ||o||l,l — %) « {[I( + 1)]/
(20 + 1)}* being larger for large I. Thus, the g/
— go/2 transitions should be fastest as they are. This
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argument makes the dubious assumption of the same
overlap for neutron and proton wave functions for
each set of quantum numbers. It also assumes pure
quasi-particle wave functions. The constancy of the
ft's indicates that any deviation from this picture
must have a uniform effect independent of mass.

UNIQUE FIRST FORBIDDEN B DECAY
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F1c. 45. Unique transitions involving a pi/2 proton and a
ds/2 neutron, and unique transitions involving a g7/2 proton
and an hi1/2 neutron odd mass. For details see the caption of
Fig. 41, odd-mass part.

Exactly the same reduced single-particle matrix
element of o occurs for these 14+ — 0+ transitions
as in the one-quasi-particle — one-quasi-particle
transitions previously described for the same N and
P states as those making up the 14 level. Thus, the
theoretical reduction factor curves for corresponding
single-particle states are plotted with the same
normalization in the odd-even — even—odd cases as
in the corresponding odd-odd — even—even plots.
This same normalization works fairly well in both
the even- and odd-mass cases implying that the re-
duced single-particle matrix elements are the same
in the two cases. This is a nice verification of the
quasi-particle picture for odd-mass nuclei and the
proton and neutron-two-quasi-particle picture for
odd-odd cases. It shows that the odd-odd quasi-
particles are similar to the more familiar odd-mass
quasi-particles.

The “Experimental Single Shell Model Particle
Estimate” may be obtained by setting the reduction
factor equal to unity. The value is marked on each
figure by an arrow. This lifetime is about ten times
the value obtained (from the neutron and 0 decay
rates) on the assumption of perfect overlap between
the neutron and proton orbital wave functions. The
difference is largest for the heaviest nuclei. This dis-
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crepancy may be due to lack of overlap between the
pure n and p shell model states, the omission of
coupling to phonons, and the omission of neutron—
proton short-range forces.®

The matrix element 1+ — 24 phonon state may
easily be written in the QRPA approximation, but
terms with different reduction factors for different
quasi-particle levels are involved requiring an ac-
curate knowledge of the n—p overlap of the different
wave functions. For the 1-phonon transition for an
N — P case, the matrix element is

M = (B| Z; (p'laln')(Up'U,,’al'an' + Vp’Vn’a:'ozp')

X | (alad) o) . (103)

Since n’, p’ are spin-orbit partners and for the cases
considered there is also a large amplitude for n and p
to be spin-orbit partners, the main contribution to
the matrix element comes from those terms of the
phonon amplitude with two identical protons or
neutrons (in the initial p- or n- quasi-particle state)
coupled to 2+. This will be but a fraction of the
phonon amplitude, leading to a reduction of the ma-
trix element compared to the ground state transition.
The angular-momentum recoupling makes a further
reduction.

The allowed transition to the two-phonon 24 state
may also be computed. This involves corrections to
the Sawada commutation rules for the phonon op-
erators and should thus be expected to give larger ft
values than those for the one-phonon transition. This
is in agreement with the experimental observations
for higher-energy 24 states.

All of the calculations for Figs. 41-45 have been
made with the assumption of pure quasi-particle
states. It is not easy to see a priori how the phonon
interactions change the results because this depends
upon which quasi-particles are admixed. However, a
tendency might be expected for the isotopes closer
to the closed shells to have smaller ft values in some
cases, which seems to be borne out in some of the
data.

IX. CONCLUSIONS

For nuclei with proton numbers besween 28 and
82, with the exception of the well-known deformed
nuclei, we have calculated the low-energy states in a
shell model with a pairing force between the neutrons
and protons separately and a quadrupole force be-
tween all pairs of particles. The Bardeen approxima-
tion has been used to introduce the quasi-particles,

3 The last point has been considered by L. Silverberg
(private communication).
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which approximately diagonalize the pairing inter-
action, and the quasi-particle random phase or dilute
quasi-particle approximation has been used to intro-
duce the phonons, which approximately account for
the interaction between the quasi-particles due to the
quadrupole interaction. Studies are then carried out
to see if the low-energy properties can be at least
semiquantitatively understood in terms of these basic
types of excitations.

In the even—even nuclei, the only states for which
there are systematic experimental data are the col-
lective states. For these nuclei one can approximately
trace the extremely rapid drop of the first 2+ (one-
phonon) state as one goes from the single-closed-shell
cases until the energy of these vibrational levels is
about one-fourth of the gap. At about this point the
vibrations seem unstable in the theory and the ac-
curacy is lost due to the large average number of
quasi-particles mixed into the ground state. As one
adds particles above the N = 82 closed shell, there
is a very rapid drop in the phonon energy until at
about neutron number 86 the spherical shape be-
comes unstable. Thus, for any reasonable choice of
parameters, the deformation is expected to appear
rather suddenly at around mass number 150. The
transition into the deformed region above mass num-
ber 190 is much more gradual, so that one can make
the theory predict, e.g., either that all of the Pt
nuclei and, say, Os' and Os®? are spherical, or that
all of the Os nuclei are unstable and only the heaviest
Pt nuclei are spherical, with moderate changes in the
parameters. A

Other possible regions of instability of spherical
shape occur for either protons or neutrons near the
middle of the go/2 shell and for the neutron deficient
Xe and Ba isotopes. In these cases the tendency for
deformation does not seem so strong, and with rea-
sonable changes in the parameters one could find con-
sistency with a spherical shape.

For the odd-mass isotopes the two basic excita-
tions, the quasi-particles and the phonons, both ap-
pear in the states which we consider. Although for
the single-closed-shell isotopes the quasi-particle
states are the only ones for which there is systematic
information, the states with one-phonon excitation
enter the picture rather quickly when one has both
neutrons and protons outside of the closed shells. For
nuclei with mass numbers 100 < 4 < 150 and
190 < 4 < 208, the effects, often large, of the quad-
rupole interaction upon the quasi-particle spectrum
improve the agreement with experiment in almost
every case. The positions of levels which arise from
pure quasi-particle states, and the energy at which
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one begins to see states which arise from one-phonon
and one-quasi-particle states (in the absence of the
quasi-particle-phonon interaction) occur at ap-
proximately the energies given by experiment, within
the accuracy expected by the simple forces and ap-
proximations used in this work. The coupling scheme
seems to be maintained especially well for the iso-
topes from 50Sn to ¢ INd and one can follow a number
of interesting details of the spectra.

In the region below the Sn isotopes, the general
coupling scheme seems to be completely adequate
only for cases in which at least one kind of particle is
near the 28, 38, 40, or 50 closed shell. The most
striking discrepancy is the appearance of low-lying
7/2+ states in nuclei which in a pure shell model
would be described as having three or five particles
or holes in the go/2 level. This suggests that either the
three quasi-particle states are playing an important
role, or that the strong quadrupole interaction makes
necessary a quite different coupling scheme. In many
cases for Z < 50 and N > 50, such as the Ag iso-
topes, the other levels can be accounted for within
the accuracy of the methods, but at this point one is
very uncertain about the accuracy of the wave func-
tions for these levels.

There is also evidence for the need of a neutron—
proton interaction in addition to the quadrupole in-
teraction. In the even isotopes this is suggested by
the fact that the phonon energies for the single-
closed-shell isotopes cannot be fitted with the same
quadrupole parameters as apply for the cases with
both neutrons and protons. The clearest evidence in
the odd-mass isotopes is found in the cases with one
and three particle away from the single closed shells,
and in general tendencies for motion of certain effec-
tive single-particle levels with changes in the mass
number. In addition, for the isotopes between Ni and
Sr, the inclusion of a neutron—proton short-range
force seems to be even more important because of
the tendency for neutrons and protons to be in the
same j levels.

Although there is a large body of accurate data on
the magnetic dipole moments, one does not seem to
be able to gain from this much systematic informa-
tion about the details of the wave functions for
spherical nuclei. One can see the effects of the
seniority three admixtures, introduced by the short-
range force, moving the values of the quasi-particle
moments away from the single-particle values; but
the results are rather insensitive to rather large ad-
mixtures of phonons. However, one interesting re-
sult is that the phonon admixtures can account for
the deviation of the p,/; nuclei from the single-par-
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ticle values, which is not possible with a é-function
interaction.

There are fewer systematic accurate data for the
quadrupole moments and much more uncertainty in
the calculation due to the large effects of the quad-
rupole force and the strong dependence upon the
parameters. Using the no-phonon and one-phonon
parts of the wave functions, the general systematic
experimental trends of these moments are followed
by the theoretical calculations, indicating that the
most important physical effects seem to be accounted
for. As more data accumulate, more nearly accurate
calculations with further studies of the dependence
upon the parameters would be useful.

The transition rates for the one-phonon E2 transi-
tions are generally consistent with an effective charge
of 2e for the proton and 1le for the neutron, but tend
to become too large as the vibrations become softer.
The crossover transitions from the two-phonon 24
states are much more sensitive to the parameters, de-
pending upon the microscopic makeup of the collec-
tive states in terms of the shell-model particles. How-
ever, further studies are needed in order to calculate
accurately these as well as other effects such as the
MI1-E2 admixtures in terms of the microscopic
structure.

The other electromagnetic transitions for which
there are good systematic data, and which apparently
can be easily interpreted, are the M4 transitions in
odd-mass nuclei. For these the effects of the pairing
correlations in mixing particle and hole transitions
tend to maintain the single-particle transition rates
and are in agreement with the systematic trends. One
can also see the influence of the phonon interactions
which can account for the further systematic reduc-
tions in the transition rates which are found as one
leaves the single closed shells. In addition, there is a
large body of systematic data on the 8 transitions in-
volving only the ¢ operator, and the effects of the
pairing correlations are in agreement with the sys-
tematic trends. By further calculations of transition
rates with the states composed of quasi-particles and
bosons, one will know in greater detail the accuracy
of the coupling scheme which has been used in this
work.
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APPENDIX I

In this appendix we give the expressions for quasi-
particles vector-coupled to form tensor operators with
the usual (Condon—Shortley) phases. The double
quasi-particle creation operator of rank L is defined
as
AR = 3 (1) e

my >0
m,>0

jimy T \J
+ Zo(ﬁl)] " QjymoBi—m,
my <!
m,>0

L+l tigtm, o T
+ 20 (=) m,
my; >0

m,<0

+ 3 (=D ) Cll

m; <0
m,<0

(A1)

The quasi-particle “scattering’ operator of rank L is
defined as

LM ;, T

mn = { 2 (= 1) "aj,mBim
my>0
My>0

+ 3 (=10 s,

my <0
m;>0

+ 3 (=D)L B,

my >0
m,<0

Uy +iy+igtmy—m, o1 juir L
+ 3 (— 1 O
my <0
m,<0

(A2)

The commutation rules which are satisfied by these

operators are

[AlléM,AaL;M(T] = 5LL’5MM’(513524 - (—1)ll+lz+jl+jz514523)
+ termsinn, (A3)

and

45" = 3 LEL+ DES + )i

S
X [Beadis ™ W ()i LjisS")
+ (_1)ll+j,+l,+ja+1—L524A183'M+M'TW(SJ.ILj3;jZS,):| )
(A4)
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It is also possible to work directly with quasi-par-
ticles defined in terms of Condon—Shortley phases.®

APPENDIX II

In this appendix tables are given for the solution
of the pairing equations, Eq. (4), and for the lowest
few wave functions resulting from matrix diagonali-
zation of the odd 4, odd nucleon interacting with the
phonon Eq. (47). A table is presented for the odd
particles being in each of the major shells 28 < N
< 50,50 < N < 82, and 82 < N < 126. (Tables
VIII-XVI).

Within each shell the single-particle energies are
given a smooth A dependence of the following form:

&(A) = €(40) (Ao/4)} + a;(Ao/ A1 — (4/40)]
+ A8;(Z,N).  (Bl)
The first term gives the general A~% compression

while the second term applies to spin orbit pairs. If
in the shell both j = [ &= % states are present,

oy = — (6-3(Ao) — 3 (A))l/ (21 + 1), (B2)
oy = +(€-3(Ao) — ey(Ao))(I 4+ 1)/(2L+ 1) .
(B3)
If only one of the levels is present in the shell,
s = —T45%, (B4)
or
ary = +7453(1 + 1) . (B5)

In addition in some regions, a special N- or Z- de-
pendent shift was given to a level. This is indicated
by the term Ag;(Z, N). In order that the single-par-
ticle levels may easily be reconstructed by means of
these formulas, or roughly by interpolation, the val-
ues of ¢;(A) are given for the beginning and end of
each region. Furthermore, the special shifts A§; will
be explicitly indicated for each region. The value of
G = const X A7 is also listed for each region.

In the tables, the first column lists the isotope
species with its Z and N values and the next column
the mass number. Columns 3 and 4 list the A and A
from which E;, U;, V;, etc., may be computed. The
remaining columns list the no-phonon and one-
phonon amplitudes [see Eq. (54)] of the wave func-
tion of the lowest state or states of spin j listed in
column 5.

36 Ben Bayman (unpublished notes).
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TasLE VIII. 28 < Z < 40,31 < N < 49, @ = 24/A. The single-particle neutron levels are (¢; in MeV):

f1/2 P3/2 fs/2 P1/2 ga/2
—4.00 0.00 0.00 3.00 4.00 Ao = 58
—3.27 0.11 —0.26 2.37 3.68 A =289
Isotope A An Ay J Coo C7/2 12 C3/2 12 C3/2 12 Ci/z2 12 Cd/z2 12
28 Ni 31 59 —0.69 1.33 3/2 0.77 a —0.20 0.36 0.37
5/2 0.76 a 0.39 0.18 —-0.35
28 Ni 33 61 —0.14 1.51 3/2 0.88 a —0.06 0.20 0.37
5/2 0.89 a 0.10 0.05 —0.35
28 Ni 35 63 0.45 1.48 3/2 0.90 8 0.17 —0.30 0.24
5/2 0.89 a —0.35 —-0.14 —-0.20
30 Zn 35 65 0.52 1.64 3/2 0.79 0.34 0.14 —0.35 0.19
5/2 0.81 0.14 —0.42 —-0.25 —0.18
30 Zn 37 67 1.27 1.38 3/2 0.73 0.31 0.19 —0.49 0.04
5/2 0.73 0.12 —0.53 —0.32 —0.03
32 Ge 39 71 2.17 1.30 9/2 0.61 0.68
172 0.68 0.36 0.50
32 Ge 41 73 2.95 1.28 9/2 0.62 0.68
1/2 0.67 0.39 0.48
32 Ge 43 75 3.48 1.29 1/2 0.68 0.39 0.47
32 Ge 45 77 3.90 1.19 1/2 0.69 0.39 0.45
34 Se 41 75 2.94 1.22 5/2 0.38 0.07 —0.32 —0.22 0.67
34 Se 43 77 3.46 1.24 1/2 0.70 0.38 0.46
34 Se 45 79 3.88 1.16 1/2 0.75 0.37 0.42
34 Se 47 81 4.23 0.95 1/2 0.81 0.34 0.38
36 Kr 43 79 3.43 1.21 1/2 0.68 0.39 0.47
36 Kr 45 81 3.85 1.13 1/2 0.79 0.35 0.40
36 Kr 47 83 4.20 0.92 9/2 0.83 —0.52
36 Kr 49 85 3.71 0.00 9/2 0.66 —0.70
38 Sr 49 87 3.69 0.00 9/2 0.94 —-0.33
40 Zr 49 89 3.67 0.00 9/2 0.99 —0.10

s For Ni the f7/a level was not included and G was increased to 26/4.

TaBLe IX. 36 < Z < 50,51 < N <75, @ = 23/A. The single-particle neutron levels are (¢; in MeV):

ds/2 g7/2 S1/2 hi1/2 ds/2
—0.14 2.75 1.44 2.60 3.32 A =87(Z =37)
0.00 0.80 1.30 2.50 2.80 Ao =120

Compared to the Ao values the g7/2 level is given a special shift A&7/ = 0.14 (50 — Z) MeV.

Isotope A An A 7 Cloo C%/2 12 Cljs 12 C3/2 12 Ci/2 12 Ci1/2 12
36 Kr 51 87 —0.14 0.00 5/2 0.83 —0.05 0.42 0.08 —0.28
38 Sr 51 89 —0.13 0.00 5/2 0.99 —0.02 0.11 0.03 —0.07
40 Zr 51 91 —0.12 0.00 5/2 0.98 —0.03 0.16 0.04 —-0.12
40 Zr 53 93 —0.26 0.81 5/2 0.95 —0.05 0.15 0.08 —-0.24
42 Mo 53 95 —0.26 0.81 5/2 0.93 —0.06 0.19 0.08 —-0.27
42 Mo 55 97 0.16 1.01 5/2 0.93 —0.06 —0.24 0.08 —0.23
44 Ru 53 97 —-0.27 0.81 5/2 0.92 —-0.07 0.21 0.08 —0.28
44 Ru 55 99 0.16 1.01 5/2 0.89 —-0.09 —-0.23 0.11 —-0.33
44 Ru 57 101 0.57 1.13 5/2 0.78 —-0.05 —-0.57 0.10 —-0.09
44 Ru 59 103 0.96 1.25 5/2 0.59 0.09 —0.56 0.01 0.42
46 Pd 57 103 0.44 1.13 5/2 0.85 —0.05 —0.47 0.08 —0.14
46 Pd 59 105 0.83 1.26 5/2 0.76 0.06 —0.56 0.05 0.21
46 Pd 61 107 1.14 1.31 5/2 0.61 0.12 —-0.51 0.02 0.47
46 Pd 63 109 1.44 1.32 5/2 0.53 0.11 —0.47 0.01 0.56
46 Pd 65 111 1.69 1.32 5/2 0.49 0.10 —0.46 —0.01 0.57
48 Cd 59 107 0.70 1.27 5/2 0.84 0.05 —0.51 0.06 0.06
7/2 0.82 0.38 —0.03 —-0.32
48 Cd 61 109 1.01 1.30 5/2 0.76 0.12 —0.50 0.04 0.32
7/2 0.91 0.15 —0.08 —0.30
1/2 0.85 0.24 —0.39
3/2 —0.57 0.48 0.06 —-0.33 —0.48
48 Cd 63 111 1.31 1.31 5/2 0.66 0.14 —0.45 0.01 0.49
11/2 0.71 0.63
1/2 0.85 0.36 —0.32
3/2 —0.61 0.38 0.05 —0.34 —0.53
48 Cd 65 113 1.59 1.32 5/2 0.56 0.13 —0.42 —0.01 0.58
11/2 0.72 0.62

1/2 0.83 0.45 —-0.24
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TasLE IX. (Continued)

3/2 0.62 —0.25 —0.04 0.37 0.56
48 Cd 67 115 1.86 1.30 1/2 0.81 0.51 —0.12
11/2 0.75
50 Sn 59 109 0.58 1.21 1/2 0.93 —0.04 —0.34
50 Sn 61 111 0.88 1.24 1/2 0.93 0.12 —0.32
7/2 098 —0.01 —0.06 —0.18
50 Sn 63 113 1.18 1.25 1/2 0.93 024 —0.27
7/2 097 —0.18 —0.08 —0.13
50 Sn 65 115 1.49 1.23 1/2 0.91 0.33 —0.20
3/2 0.8 —0.15 —0.01 0.36 0.32
11/2 0.87
50 Sn 67 117 1.79 1.22 1/2 0.91 0.38 —0.10
3/2 0.92 —0.01 0.03 0.36 0.16
11/2 0.91
50 Sn 69 119 2.07 1.20 1/2 0.92 0.38  —0.01
3/2 0.95 0.08 0.06 0.29 —0.01
11/2 0.96
50 Sn 71 121 2.34 1.17 1/2 0.91 0.37 0.14
3/2 0.96 0.13 0.08 0.20 —0.09
1172 0.99
50 Sn 73 123 2.57 1.11 1/2 0.87 0.35 0.31
3/2 0.97 0.16 0.08 0.09 —0.15
11/2 0.99
50 Sn 75 125 2.79 1.03 1/2 0.84 0.30 0.43
3/2 0.97 0.16 007 —0.03 —0.15
11/2 0.98

0.60

0.47

0.40

0.26

APPENDIX III

We list in this appendix the matrix elements which are used in Chap. V for the calculation of the mag-

netic dipole moments.
(1) Matrix elements of the phonon angular momentum R,:

('PoaiIRzla}l/’O =0 ’

1y e
Hules Bl R ) B ey = - O ILL DS TE D

P B EYT gy = MU+ D +5G+ ) =5 G+ D],
ola;’(BB)” 1im|R:|[c;*" (B B')" 1imibo) 5 HEESY 0;'i"05s" .

(2) Matrix elements of the particle part of the magnetic moment operator:

fv o BG4+ =10+ Dlg + 0C+ D G+ 1) — gl
(s apl i) = wop(lj) = jgs = .7{ 50+ 1) It

('Po[ai’B]i'nlﬂqp[[aE'BT]im‘l"’) = m[J(J + 1)2.7-(‘.}7"8 1;_ 1) - 6} 9i'

Wole11.3B]im| [at,;%BT],.,,,gb.,)

A+ EDC—i DA+ DG -1+ DT
=m SHESCTES) Wil + ViV (0= 9,

, 37 toptpthiy oy o W+ +5G+1D) = JJ 4+ 1)]
<'l’0[ai (BB) ]JMlﬂqu[aJ (BB) ]m‘/’o) =m 2](] T 1) i

Woladhi23 (BB) im| | [thivs (B'B) L)

= m(Uz+%Ut—§ + Vz+%Vz— (2l + 1)](] ‘I" 1)

It DU AL+ DG =T+ HT i =1+ DI

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(€7

—gs).

(C8)
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TasLE X. 52 < Z < 60,69 < N < 81, G = 23/A. The single-particle neutron levels are (¢; in MeV):
ds/2 g1/2 S1/2 hi1/2 ds/2
0.00 0.80 1.30 2.50 2.80 Ao =120
0.06 0.69 1.23 2.44 2.57 A =141
Isotope A4 An Ay i Cjoo Ci/2 12 Cé/2 12 C3/2 12 Cifz1iz Cii/z12
52 Te 69 121 2.06 1.17 1/2 0.77 0.56 0.03
3/2 .80 0.18 0.13 0.48 —-0.19
11/2 0.81 0.55
52 Te 71 123 2.32 1.15 1/2 0.77 0.52 0.23
3/2 0.81 0.24 0.13 0.33 —0.33
11/2 0.96 0.27
52 Te 73 125 2.56 1.09 1/2 0.74 0.44 0.43
3/2 0.87 0.26 0.12 0.12 —0.33
11/2 0.99 —0.11
52 Te 75 127 2.77 1.01 1/2 0.68 0.35 0.58
3/2 0.90 0.25 0.11 —0.09 —0.28
11/2 0.94 —0.34
54 Xe 73 127 2.54 1.07 1/2 0.66 0.49 0.43
3/2 0.68 0.30 0.15 0.06 —0.51
11/2 0.98 —0.17
54 Xe 75 129 2.75 0.99 1/2 0.61 0.39 0.59
3/2 0.76 0.30 0.13 —0.16 —0.41
11/2 0.85 —0.49
54 Xe 77 131 2.95 0.87 1/2 0.57 0.30 0.68
3/2 0.80 0.26 0.11 —0.31 —-0.31
11/2 0.80 —0.55
54 Xe 79 133 3.13 0.70 1/2 0.54 0.23 0.74
3/2 0.85 0.22 0.09 —0.36 —0.23
11/2 0.82 —0.53
54 Xe 81 135 2.63 0.00 1/2 0.64 0.00 0.77
3/2 0.99 0.00 0.00 0.00 0.00
11/2 0.99 0.00
56 Ba 75 131 2.74 0.97 1/2 0.60 0.42 0.58
3/2 0.68 0.31 0.14 —0.19 —0.46
11/2 0.80 —0.56
56 Ba 77 133 2.93 0.86 1/2 0.56 0.32 0.68
3/2 0.76 0.28 0.12 —0.34 —0.34
11/2 0.76 —0.59
56 Ba 79 135 3.11 0.69 1/2 0.56 0.22 0.74
3/2 0.87 0.21 0.09 —-0.33 —-0.22
11/2 0.85 —0.50
56 Ba 81 137 2.61 0.00 1/2 0.79 0.05 0.61
3/2 0.99 0.03 0.01 —0.04 —0.03
11/2 0.99 —0.09
58 Ce 81 139 2.59 0.00 3/2 0.99 0.04 0.02 —0.04 —0.04
11/2 0.99 —0.10
60 Nd 81 141 2.57 0.00 3/2 0.99 0.03 0.01 —-0.03 —0.03
11/2 0.99 —0.08
TaBLE XI. 58 < Z < 62,8 < N < 87, G = 22/A. The single-particle neutron levels are (¢; in MeV):
ho/2 frr2 113/2 P3/2 fs/2 P1/2
—0.84 —0.12 0.63 1.60 2.18 2.76 A =141
—0.90 0.00 0.72 1.45 1.78 2.35 Ao = 207
(the figure used a calculation with en9/2 one MeV higher).
Isotope A An Ap J 700 Ca/2 12 Ci/2 12 Ciiz 12 Ci/2 12 Cisz 12
58 Ce 83 141 —0.84 0.00 7/2 0.99 0.00 0.00 0.00 0.00
60 Nd 83 143 —0.84 0.00 7/2 0.99 0.00 0.00 0.00 0.00
60 Nd 85 145 —-1.39 0.72 7/2 0.66 —-0.15 0.56 0.07 —0.29
5/2 —0.32 0.74 0.18 —-0.20 —0.13 0.12
3/2 —0.44 0.66 0.12 —0.30 —0.16
60 Nd 87 147 —-1.19 0.89 7/2 0.58 —0.10 0.55 0.08 —0.37
5/2 —0.37 0.57 0.25 —0.28 —0.25 0.21
3/2 —0.44 0.60 0.13 —0.35 —0.20
62 Sm 85 147 —1.38 0.71 7/2 0.70 —0.16 0.55 —0.07 —0.27
5/2 —0.32 0.77 0.17 —0.19 —0.12 0.11
3/2 —0.46 0.68 0.12 —0.28 —0.15
62 Sm 87 149 —1.18 0.87 7/2 0.61 —0.10 0.56 0.08 —0.35
5/2 —0.37 0.62 0.25 —0.26 —0.23 0.19
3/2 —0.45 0.62 0.13 —0.33 —0.19
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TasLE XII. 76 < Z < 82,111 < N < 125, G = 22/A. The single-particle neutron levels are the same as in Table XI.

Isotope A An An J Cloo C%/2 12 42 12 Ci/2 12 Ci/z 12 Cis/2 12
76 Os 113 189 1.28 0.87 3/2 0.45 0.22 —0.18 0.18 0.57
76 Os 115 191 1.46 0.80 9/2 0.11 —-0.01 0.80
78 Pt 115 193 1.46 0.80 1/2 —0.58 0.60 0.46
3/2 0.81 0.28 —-0.13 0.00 0.37
5/2 0.72 0.05 0.42 0.11 —-0.40
13/2 0.65 —0.66
78 Pt 117 195 2.64 0.72 1/2 0.62 —0.61 —0.43
3/2 0.85 0.30 0.00 —-0.29 0.22
5/2 0.85 0.06 0.29 0.01 —0.35
13/2 0.66 —0.66
78 Pt 119 197 2.81 0.63 1/2 0.73 —-0.59 —0.29
3/2 0.85 0.26 0.11 —0.40 0.07
5/2 0.95 0.06 —0.01 —-0.13 —-0.21
13/2 0.70 —0.64
80 Hg 115 195 1.46 0.80 1/2 —0.65 0.57 0.46
3/2 0.95 0.19 —0.09 0.01 0.20
., 5/2 0.89 0.03 0.32 0.09 —0.25
13/2 0.82 —0.53
80 Hg 117 197 1.64 0.71 1/2 0.70 —0.58 —0.37
3/2 0.94 0.22 0.00 —-0.19 0.14
5/2 0.94 0.04 0.20 0.00 —-0.23
13/2 0.78 —-0.57
80 Hg 119 199 1.81 0.63 1/2 0.77 —0.57 —0.23
3/2 0.88 0.23 0.11 —0.36 0.07
5/2 0.97 0.05 0.00 —0.10 —-0.19
13/2 0.74 —0.60
80 Hg 121 201 1.98 0.53 1/2 0.95 —0.28 0.06
3/2 0.85 0.20 0.22 —0.39 —-0.03
5/2 0.95 0.05 —0.23 —-0.15 —0.07
13/2 0.76 —0.59
80 Hg 123 203 2.17 0.38 1/2 0.97 0.14 0.16
3/2 0.82 0.16 0.31 —-0.35 —0.24
5/2 0.91 0.05 —0.36 —0.13 0.08
13/2 0.81 —0.54
82 Pb 115 197 1.46 0.79 3/2 0.99 0.12 —-0.04 0.01 0.10
5/2 0.98 0.02 0.14 0.04 —-0.13
13/2 0.97 —0.26
82 Pb 117 199 1.64 0.71 3/2 0.99 0.11 0.00 —0.06 0.05
5/2 0.99 0.02 0.07 0.00 —0.09
13/2 0.97 —0.24
82 Pb 119 201 1.81 0.62 3/2 0.99 0.09 0.03 —0.09 0.02
5/2 0.99 0.02 0.00 —0.02 —0.05
13/2 0.98 —0.20
82 Pb 121 203 1.98 0.52 3/2 0.99 0.08 0.06 —0.10 —-0.01
5/2 0.99 0.02 —0.05 —0.03 —0.02
13/2 0.98 —-0.17
82 Pb 123 205 2.17 0.38 1/2 0.99 0.02 0.03
3/2 0.99 0.05 0.07 —0.09 —0.05
5/2 0.99 0.01 —0.08 —0.03 0.01
7/2 —0.03 0.00 0.99 —0.01
9/2 0.04 0.0 0.99
13/2 0.99 —-0.13
82 Pb 125 207 2.35 0.00 1/2 0.99 0.00 0.00
TaBLE XIII. 29 < Z < 39,34 < N < 50, G = 24/A. The single-particle proton levels are (¢; in MeV):
frr2 fs/2 D3/2 P1/2 go/2
—4.15 0.87 —0.08 2.18 295 Z =30 N =34
—4.60 —0.60 0.00 1.80 2.80 Z =40 N =50 Ao=90.

A special shift AG7/; = A85/ = —0.11 (N — 40) is included so that &/5(40) = —3.50 and &3/2(40) = +0.50.
Isotope A P Ap J Cloo Ci/z2 12 C3/2 12 Ci/z 12 Ci/z 12
29 Cu 34 63 —0.08 0.00 3/2 0.85 a —0.20 0.33 0.28
29 Cu 36 65 —0.08 0.00 3/2 0.84 a —0.21 0.32 0.30
31 Ga 36 67 —0.40 1.47 3/2 0.79 0.21 —0.18 0.19 0.40
31 Ga 38 69 —0.38 1.42 3/2 0.74 0.21 —0.18 0.20 0.44
33 As 40 73 0.20 1.52 3/2 0.71 0.35 —0.05 —0.27 0.37
33 As 42 75 0.09 1.45 3/2 0.67 0.32 —0.04 —0.19 0.44
33 As 44 77 —0.02 1.38 3/2 0.74 0.27 —0.04 —-0.07 0.44
35 Br 42 77 0.59 1.48 3/2 0.66 0.35 0.10 —0.51 0.15
35 Br 44 79 0.46 1.29 3/2 0.77 0.28 0.13 —0.44 0.19
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TaBLE XIII. (Continued)

35 Br 46 81 0.33 1.30 3/2 0.85 0.23 0.14 —-0.33 0.20
35 Br 48 83 0.20 1.20 3/2 0.92 0.19 0.12 -0.19 0.19
37 Rb 48 85 0.77 1.04 3/2 0.88 0.17 0.17 —0.38 0.05
5/2 0.85 0.06 —0.45 —0.22 —-0.01
37 Rb 50 87 0.68 0.93 3/2 0.92 0.16 0.14 —0.30 0.06
5/2 0.89 0.06 —0.40 —-0.19 —0.01
39Y 50 89 1.47 0.95 1/2 0.99 0.11 0.12

s For Cu the f7/a level was not included and @ increased to 26/4.

TasLe XIV.37 < Z < 49,50 < N <70, G = 26/A. The single-particle proton levels are (¢; in MeV):

fs/2 P3/2 Pis2 go/2
0.00 0.60 1.80 3.40 Ao = 90
—0.10 0.58 1.60 2.30 A =115

A special shift A&/

—0.055 (N — 50) is included.

Isotope A o 4 J Cioo Ci/2 12 C3/2 12 Ci/z 12 Ci/2 12
37 Rb 50 87 1.35 0.96 3/2 0.97 0.12 —0.21 0.03
39 Y 50 89 1.84 0.86 1/2 0.99 0.09 0.09
41 Nb 50 91 2.54 0.88 1/2 0.98 0.13 0.15
9/2 0.98 0.17
41 Nb 52 93 2.46 0.88 1/2 0.88 0.29 0.34
9/2 0.84- 0.50
41 Nb 54 95 2.37 0.88 1/2 0.85 0.32 0.37
9/2 0.81 0.55
43 Tec 52 95 2.94 0.98 9/2 0.96 0.28
43 Te 54 97 2.83 0.97 9/2 0.93 0.37
43 Te 56 99 2.71 0.97 9/2 0.90 0.42
43 Tec 58 101 2.60 0.96 9/2 0.81 0.55
45 Rh 56 101 3.05 0.91 1/2 0.76 0.37 0.43
9/2 0.99 —-0.17
45 Rh 58 103 2.93 0.90 1/2 0.73 0.38 0.45
9/2 0.98 —-0.21
45 Rh 60 105 2.82 0.89 1/2 0.69 0.40 0.46
9/2 0.95 —0.29
47 Ag 58 105 3.23 0.75 1/2 0.77 0.36 0.43
47 Ag 60 107 3.11 0.75 1/2 0.76 0.36 0.44
47 Ag 62 109 2.99 0.74 1/2 0.75 0.37 0.44
47 Ag 64 111 2.87 0.73 1/2 0.73 0.38 0.45
47 Ag 66 113 2.75 0.73 1/2 0.70 0.39 0.46
49 In 62 111 2.60 0.00 1/2 0.87 0.29 0.35
9/2 0.85 —0.49
49 In 64 113 2.48 0.00 1/2 0.88 0.29 0.35
9/2 0.86 —0.48
49 In 66 115 2.36 0.00 1/2 0.87 0.29 0.35
9/2 0.86 —0.49
49 In 68 117 2.24 0.00 1/2 0.87 0.29 0.35
9/2 0.86 —0.48
49 In 70 119 2.12 0.00 1/2 0.89 0.27 0.33
9/2 0.87 —0.47
TaBLE XV.51 < Z <£61,64 < N < 88, G = 231A. The single-particle proton levels are (e; in MeV):
g7/2 ds/2 hi1/2 da/z S1/2
0.26 0.78 2.29 3.45 3.59 A =115
0.00 0.80 2.10 2.60 2.95 Ao = 207
Isotope A Ap Ap ) Coo Cr2 12 Ci/2 12 Ci/z 12 Ci/z 12
51 Sb 64 115 0.26 0.00 7/2 0.87 0.43 0.12 —-0.15
5/2 0.81 —0.18 0.47 0.10 —-0.19
51 Sb 66 117 0.25 0.00 7/2 0.86 0.43 0.12 —0.16
5/2 0.80 —0.19 0.48 0.10 —0.19
51 Sb 68 119 0.24 0.00 7/2 0.87 0.43 0.11 —-0.15
5/2 0.80 —0.19 0.47 0.10 —0.19
51 Sb 70 121 0.23 0.00 7/2 0.88 0.41 0.11 —-0.14
5/2 0.82 —-0.19 0.46 0.09 —0.17
51 Sb 72 123 0.23 0.00 7/2 0.89 0.40 0.10 —-0.13
5/2 0.83 —0.20 0.45 0.09 —0.16
51 Sb 74 125 0.22 0.00 7/2 0.90 0.38 0.10 —-0.12
5/2 0.84 —0.20 0.44 0.08 —0.15
53172 125 —0.15 0.69 7/2 0.73 0.52 0.20 —0.22
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TasLE XV. (Continued)

5/2 0.64 —0.18 0.57 0.11 —-0.25

1/2 -0.37 0.71 0.29
53 174 127 —0.15 0.68 7/2 0.79 0.49 0.18 —0.20

5/2 0.69 —0.18 0.56 0.10 —0.22

1/2 —0.37 0.74 0.27
53176 129 —0.14 0.67 7/2 0.85 0.44 0.14 —0.17

5/2 0.73 —0.18 0.54 0.10 —0.19
53178 131 —0.14 0.65 7/2 0.91 0.36 0.11 —0.14

5/2 0.80 —0.18 0.49 0.09 —0.17
55 Cs 74 129 0.10 0.81 7/2 0.74 0.27 0.37 —0.28

5/2 0.64 —-0.11 0.56 0.12 —0.29

1/2 —0.39 0.71 0.31
55 Cs 76 131 0.10 0.79 7/2 0.88 0.22 0.25 —0.23

5/2 0.71 -0.11 0.55 0.11 —0.25

1/2 —0.38 0.74 0.28
55 Cs 78 133 0.10 0.77 7/2 0.96 0.14 0.13 —0.16

5/2 0.79 —-0.11 0.50 0.10 —0.20

1/2 —0.38 0.78 0.24
55 Cs 80 135 0.10 0.76 7/2 0.99 0.06 0.05 —0.09

5/2 0.93 —0.08 0.32 0.07 —0.12
55 Cs 82 137 0.10 0.74 7/2 0.99 0.01 0.01 —0.01

5/2 0.99 —0.01 0.05 0.01 —0.02
57 La 80 137 0.35 0.82 7/2 0.99 —0.13 —0.02 —0.08

5/2 0.94 —0.03 0.27 0.08 —-0.14

1/2 —0.40 0.85 0.18
57 La 82 139 0.35 0.80 7/2 0.99 —0.02 0.00 —0.02

5/2 0.99 —0.01 0.04 0.01 —0.03
59 Pr 82 141 0.60 0.82 7/2 0.99 —0.04 0.00 —-0.01

5/2 0.99 0.00 0.02 0.01 —0.02
59 Pr 84 143 0.60 0.80 5/2 0.90 0.03 0.27 0.13 —0.25

7/2 0.86 —0.47 —0.04 —0.10
61 Pm 84 145 0.88 0.77 5/2 0.96 —0.09 —0.08 0.11 —0.19

7/2 0.82 —0.52 —0.09 —0.07
61 Pm 86 147 0.88 0.75 5/2 0.90 0.12 —0.10 0.15 —-0.30

7/2 0.71 —0.63 —0.08 —0.08
61 Pm 88 149 0.88 0.74 5/2 0.64 0.08 —-0.01 0.21 —0.50

7/2 0.58 —0.68 —0.06 —0.09

TaBLE XVI. 77 < Z < 81,114 < N < 126, G = 23/A. The single-particle proton levels are the same as in Table XV.

Isotope A o Ap 7 Coo Cy/2 12 Ci/2 12 C3/2 12 Ci/z 12 Cl/z 12
77 Ir 114 191 2.72 0.49 1/2 0.72 0.17 —0.63

3/2 0.87 0.22 0.12 —0.08 0.35
77 Ir 116 193 2.71 0.48 1/2 0.75 0.16 —0.61

3/2 0.89 0.20 0.11 —0.08 0.33
79 Au 116 195 2.89 0.38 1/2 0.95 0.18 0.22

3/2 0.87 0.14 0.09 —0.42 —0.11

5/2 —0.15 0.00 0.04 0.86 —0.29

11/2 0.68 —0.65
79 Au 118 197 2.88 0.37 1/2 0.96 0.16 0.19

3/2 0.89 0.13 0.09 —0.40 —-0.10

5/2 —-0.14 0.00 0.03 0.86 —0.29

11/2 0.70 —0.64
79 Au 120 199 2.86 0.37 1/2 0.97 0.15 0.16

3/2 0.90 0.12 0.08 —0.38 —0.09

5/2 —0.13 0.00 0.03 0.87 —0.30

11/2 0.72 —0.62
81 T1118 199 2.99 0.00 1/2 0.99 0.07 0.12

3/2 0.97 0.06 0.04 —-0.16 —0.16

5/2 0.11 0.00 —0.02 —0.06 0.98

11/2 0.98 —-0.22
81 Tl 120 201 2.98 0.00 1/2 0.99 0.06 0.12

3/2 0.97 0.05 0.04 —0.16 —0.16

5/2 0.09 0.00 —0.01 —0.05 0.98

11/2 0.98 -0.21
81 T1 122 203 2.97 0.00 1/2 0.99 0.05 0.09

3/2 0.98 0.04 0.03 —0.13 —0.14

5/2 0.06 0.00 —-0.01 —-0.03 0.99

11/2 0.99 —0.17
81 T1 124 205 2.96 0.00 1/2 0.99 0.02 0.05

3/2 0.99 0.02 0.01 —0.07 —0.09

5/2 0.03 0.00 0.00 0.01 0.99

11/2 0.99 —-0.09
81 Tl 126 207 2.95 0.00




