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1. INTRODUCTION

N the field of angular correlation of radiations
. „ following inelastic scattering, there have recently
been both theoretical and experimental develop-
ments which the present paper sets out to review. It
thereby supplements the various other published
surveys' ' and deals, in particular, with calculations
of absolute double-differential cross sections for
arbitrarily high orbital angular momenta of incident
and outgoing radiation, incorporating consideration
of the effects of spin-orbit coupling interaction. Since
its scope would otherwise become unmanageably

extensive, the survey has been limited to neutron
and proton inelastic scattering from medium-heavy
nuclei. It thereby aims in the erst place to shed light
on nuclear reaction mechanism studies and con-
centrates in the main upon low incident energies for
which the compound-nucleus (CN) mechanism may
be considered to predominate. Some rather pre-
liminary analysis on the basis of distorted-wave
direct-interaction (DWDI) theory for scattering at
higher energies is also presented. In the underlying
choice of optical-model parameters for scattering
analysis, the recent developments due to Percy and
Buck' have been incorporated in the present, work.
In particular, the neutron nonlocal potential of
Percy and Buck has the merit of containing no ex-
plicit energy dependence and is inherently more
satisfactory than any of the various local potentials' '
hitherto employed, or the nonlocal potential of
Wyatt, Wills, and Green' since the latter, involving
as it does the effective mass approximation, is for-
mally valid only for rather low energies. For analysis
of proton scattering, the local potential of Percy'
was used unless otherwise stated. The strong-
coupling approach of Buck" for deformed nuclei has
also been tried for correlation analysis: The results
proved to be practically identical with those obtained
from conventional DWDI theory. An outline of the
above potentials is presented in Sec. 5A. In Sec. 2
formulation of scattering theory generalized to take
account of spin-orbit interaction is described. This

4 F. Percy and B. Buck, Nucl. Phys. 32, 353 (1962).
~ J. R. Beyster, R. B. Schrandt, M. Walt, and E. W. Salmi,

Los Alamos Report LA-2099, 1957 (unpublished).
6 W. S. Emmerich, Westinghouse Research Report 6-

94511-R 19, 1956 (unpublished); P. A. Moldauer, Argonne
Report ANL-6323, 1961 (unpublished).

& F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1295
(1958).

8 P. J. Wyatt, J. G. Wills, and A. E. S. Green, Phys. Rev.
119, 1031(1960).

9 F. Percy, in Proceedings of the International Symposium
on Direct Interactions and Nuclear Reaction Mechanisms,
Padua, 1962 (to be published).

'c B. Buck, Phys. Rev. 130, 712 (1963).
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is utilized in Secs. 3 and 4 for generating the absolute
magnitudes of the double-differential cross sections
d'o/dQ&dQ& for CN and DWDI mechanisms with
spin-orbit interaction. The only remaining adjustable
parameter in the DWDI calculations is the relative
magnitude of the spin-Hip contribution, which is,
at present, unknown.

It is understandable that the complexity of CN
correlation theory has throughout previous formula-
tions" " led to the perpetration of both basic and
calculational errors. "The present analysis has aimed
to detect and correct these; such emendations are
described in detail in the text. In Sec. 3A, the in-
huence upon the correlation function of higher
momenta than t = 2 for even —even nuclei having
0+ ground states and 2+ first excited states is
studied for the first time, as is also the azimuthal
dependence of the CN correlation function. Plans
are now under way to extend the computer codes to
consideration of arbitrary target spins and p multi-
poles, as well as to calculate the actual tensor
parameters for direct comparison with the corre-
sponding quantities furnished by the DWDI code
of Bassel, Drisko, and Satchler. " These latter were
used in the present work to determine the absolute
magnitudes (for a, given spin-fhp intensity) of the
quantities P, Q, 8, 8' and 8" which enter into the
DWDI correlation expression

W(8, ,8,,p = z.) = P + Q sin 2(8, —8')

+ P sin (8s —8"), (I)
where OI and 02, respectively, represent the c.m.
angles of emission of scattered nucleons and y radia-
tion referred to the incident direction and q is the
azimuthal angle of the latter (illustrated for proton
scattering in Fig. 1). In the present work, the follow-

ing coordinate convention is used: The z axis of a
right-handed system is taken to lie along the incident
direction and the y axis along the normal to the
scattering plane (the x axis, hence, in the scattering
plane). Such computed magnitudes represent a
theoretical advance over those which had in the past
been selected rather arbitrarily to fit experimental
results. The fact that the present DWDI code does
not take spin-orbit interaction into account may
possibly be responsible for the markedly poor agree-
ment between the theoretical results so obtained and

~ G. R. Satchler, Phys. Rev. 94, 1304 (1954).
G. R. Satchler, Phys. Rev. 104, 1198(1956).

'3 E. Sheldon, Helv. Phys. Acta 34, 808 (1961).
'4 G. R. Satchler and E. Sheldon, in Proceedings of the

International Symposium on Direct Interactions and Nuclear
Reaction Mechanisms, Padua, 1962 (to be published).

I~ R. H. Bassel, R. Drisko, and G. R. Satchler, Oak Ridge
Report ORNL-3240, 1962 (unpublished).

the experimental correlation results at intermediate
energies. A more fundamental source of discrepancy
is, however, suggested by the fact that results of
strong-coupling theory agree very closely with the
DWDI theoretical values, even though the former
take spin-orbit interaction into account. Use of
absolutely computed DWDI correlation parameters
in place of the semiempirical approach employed
hitherto has, in certain instances, indicated that, the

Incident
p direction

Scattering
plane

Emergent
' direction

Emergent

g direction

Fro. 1. Angular convention for the correlated radiations,
illustrated for inelastic proton scattering.

~6 H. E. Gove, in Proceedings of the Rutherford tubilee
International Conference, edited by S. E. Birks (Heywood and
Company I td. , Manchester, England, 1962), p. 437.

'7 E. Sheldon, Phys. Letters 2, 178(1962).

interpretation of the predominant reaction mecha-
nism has been erroneous. It was found that results
could be fitted reasonably well with computed CN
correlation curves, whereas the absolute DWDI fit
was poor. The present analysis, thus, to some extent
complements that of Gove" in examination of experi-
mental evidence for DI processes.

To improve further the sensitiveness of angular
correlation as an aid to investigation of reaction
mechanism, it would be desirable to have access to
measurements of the absolute double-differential
cross section in order to obviate the present arbitrary
normalization of experiment;al results. Some pre-
liminary work in this direction is analyzed in Sec. 7.
Also therein are theoretical predictions of the azi-
muthal dependence of the CN correlation function
for given pairs of values of 8j and 82. The angular
variation was found to be rather weak. As a diag-
nostic criterion of reaction mechanism, correlation
measurements are particularly valuable when com-
bined with measurements of the angular distribution
of the emitted radiations and when undertaken over
a wide range of angles with particular emphasis upon
the inherent symmetry relations"" predicted theo-
retically.
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Throughout the text which follows, distinction is
made between angular distribution, which displays
the angular dependence of the differential cross
section, and the angular correlation, which displays
the angular dependence of the double-differential
cross section. Since the latter is concerned with the
directional correlation of three radiations (incident
and emergent nucleons and de-excitation y radia-
tion), it has often been termed a "triple correlation, "
a designation which could be misleading (especially
as it led to angular distributions being labeled as
"double correlation" or, more loosely, simply "cor-
relation" ) since angular correlation essentially in-
volves the study of two angles of emission at a given
azimuth. The present nomenclature is clear and self-
consistent.

As a preliminary before proceeding to outline
correlation theory, it is necessary to examine the
inHuence of spin-orbit coupling upon scattering
matrix elements and nuclear cross sections, since
thereby a definition is introduced of generalized
transmission coeKcients which play a role in CN
correlation theory incorporating spin-orbit inter-
action.

For brevity and convenience, throughout this paper
we shall employ the notation

b —= (2k+ 1)'; h~ —= 2h+ 1. (2)

Vector addition (Clebsch —Gordan) coefficients will
be written in the form (jm~ j,j,m&ms) when momenta

j& and j2 having projections m1 and m2 are vectorially
coupled to yield a resultant total momentum j having
projection m.
Thus,

tudes the respective transmission coefficients and,
hence, cross sections are elucidated.

The treatment which follows in generalizing the
Hauser —Feshbach approach bears some resemblance
to the calculations of Yoshida" as applied to neutron
scattering by deformed nuclei in the paper of Chase,
Wilets, and Edmonds, " though the latter authors,
in their calculations, reverted to the use of ordinary
transmission coeKcients excluding spin-orbit inter-
action. In fact, the treatment below is based upon
unpublished theoretical work by Satehler generaliz-
ing the statistical model of nuclear reactions, which
the author was kindly permitted to use in the analysis
which follows.

We consider the process

A + a~(;*—&8+ b,

wherein a particle c of total angular momentum
j& ——1& + d& impinges with relative momentum tc

(in the center-of-mass system) upon a target nucleus
A of spin Jp to excite a level having spin J& in the
compound nucleus (;. For the present, we leave the
direction of the quantization axis arbitrary and,
respectively, write the magnetic quantum numbers
corresponding to the momenta jI ly 0'y Jp, JI as mI,
p&, 81, 3', 3f&. It should be mentioned at this stage
that special nomenclature has been introduced for
this section alone; in subsequent portions of this
paper a modified and simpler system of nomenclature
is employed.

We start with the channel spin representation,
analogously to Hauser and Feshbach, whereby the
spins of the incident particle and the target nucleus
are coupled to yield an incident channel spin

(jm~j&jsmgm2) =—(;",'", = ( —)" "'"j
m]. m2 m

2. SCATTERING THEORY WITH SPIN-ORBIT
INTERACTION

In the Hauser —Feshbach treatment" of inelastic
nucleon scattering proceeding by way of CN forma-
tion, no explicit incorporation of spin-orbit inter-
action was undertaken, with the result that trans-
mission coefficients were considered to be determined
only by the energy and orbital angular momentum
of the incident or emergent particles, but not by
their total angular momentum j = 1 + s. In the pres-
ence of spin-orbit interaction, the theory has to be
generalized to yield scattering amplitudes that are
dependent both on / and j, since from these ampli-

's W. Heuser and H. Feshbach, Phys. Rev. 87, 366 (1952).

which has projection 5K along the z axis. The total
angular momentum transfer is then the vector sum
of the channel spin and the orbital momentum of the
incident particle, viz. ,

In the absence of scattering, the wave function for
the initial system A. + a can, for incident plane
waves, be written as

ik r+J M iu, s, ik fJ Mfa e )

where r is the c.m.s. coordinate of the incident
particle. Carrying out the vector coupling in channel-

r9 S. Yoshida, Proc. Phys. Soc. (London) A69, 668 (1956).
20 D. M. Chase, L. filets, and A. R. Edmonds, Phys. Rev.

110, 1080 (1958).
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spin representation, we can write this wave function
in the form

Q (HR I Jpo ~MpS, )pz„, ;Spile
' '

(7)
gBK

with
e" ' = 4~+ i 'Yi",' (k) Y~,'(r)j~, (Icr) (8)

l'I PI

a,s the usual expa, nsion of a plane wave in terms of
spherical harmonics having as argument the direc-
tions of the incident momentum k and particle co-
ordinate r, together with a spherical Bessel function
j,, (kr) of order t, .

We next proceed to relate the description of the
process in channel-spin representation to that in
spin-orbit representation, noting that in the former
Eq. (7) can equivalently be written as

(WK I JpoiMps, )(J,M,
l
SL,ORp, )

X 4~ Y~; (k)jt, (Icr)@8~,;, , (9)

on vectorially coupling channel spin S to orbital
momentum /& in formation of the compound nucleus
of spin J&, wherein

C'Si, :~,~, —= Q„(AMilS4)Mi —IIi, I i)

X 4'... :SpIIi 'Yi(r) (1O)

Q (JiMilS/, ,M, —1I„P,)
II, Mos,

X (MRl Jpo13Ipsy)pg, M.Q.„,I 'Y",,'(r) . (11)
The corresponding expression in spin-orbit repre-
sentation can be derived on coupling the momenta as

the more convenient form

't4i = Sm exp (2ipp, ), (18)
wherein co2 denotes the Coulomb phase and the 'll, 's
have the property

Z& l~(sj)l' =- Z„ l~(sj)l' = 1

We now progress to consideration of scattering by a
central field of force and introduce generalized
matrix elements in place of the 8- (or the 'tt-) matrix
elements which take account of the spin-orbit inter-
action and which are defined as the a,verage of
"generalized" S-matrix elements for elastic scatter-
ing. Symbolically,

p( -)~ (2o)

where the scattering amplitude g p need not be uni-
tary. This latter condition corresponds to a descrip-
tion of the field of force by a complex (optical)
potential and leads to nonconservation of Aux in the
scattering process. Physically, one interprets the
Aux reduction as associated with formation of a
compound nucleus, so that one can equate the Aux
loss with the cross section for formation of a com-
pound nucleus whose decay is independent (except
for the operation of selection rules) of its formation.

For scattering, we replace the spherical Bessel
function j& (Icr) by a term representing incoming
[g& ~r 'exp (—ik r)] and outgoing [t)& ~ r ' exp
(+zk r)] radial waves,

j,N') ('/»)(a, —~„,~, ) . (»)

whence

j, =1, +6, and J&
——Jp+ji,

m, = p, +s, and Mg =Mp+mi,

PJ M i ik — g (j&m&llioipisi)(JIM&l Jpj&Mpml)
JINX PI

X 4~ Y(,' (k)j&, (ter)C „(,;g, pI, ,

C '
l iJ M =- Q (J 3I&l Jpj&Mpml)(jlmgll 01+lsl)

0 sl p1

X pz, ~.&„., I 'Yi, (r)

Comparing Eqs. (11) and (15) OIle flllds

C'&, I, ;z, pI, = QS Ic(Sji)C'S&, ;z, pI, ,

(12)

(»)

(14)

Thus, explicitly, in terms of the scattering amplitude
generalized to take account of spin-orbit interaction,
the scattering function becomes

e,, pI. ;.„,p, = (2mi/A:) Q (j,m, ll, o,p, s,)
X (Ji3Iil JpjiMpm, )Y", *(k)

X [gi, —I)~„,&i,]c'&„,;z, m, , (22)

with the summation extended over l~, j&, J&, p&, JtI1.
The cross section for CN formation can now be
determined by calculating the total flux loss (due to
absorption of incident particles a) over a, sphere of
large radius rb ~ ~. For definite target and projec-
tile spin orientation given by Jo, 3fo,' j1, m1, this cross
section for an entrance channel 0. and exit channel
p assumes the form

where

u(Sj, ) —= ( —)" * "SjgW(o&JpJglg, 'Sj&) (17)
js the Lang —Thomas S-matrix element" written in

» A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1968);E. Vogt, ibid 34, 728 (1962).. (23)

ao(n, JpMp, o,s, ;k) = (2~/k)' Q (R~il Jpo, Moss)

X (Rm, l
Jpo, Moss)(JiMi latish, I i)(J,W lS(lI91t', p, )

X Yi,' (k) Yr,
* (k)[bi, i,&~, i, '&g,s,bs, s, '4p

JIg
1pS.&. aSi&. ''gpS. &s''aS. 4 ] r
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where the partial cross section O-~, J M is

pa, z, M, (u ',Jodo, o'ys&,'k) = (27r/1c) g (S&3R&
l
JocriMosi)

X (si&hl Joa'i3IIosi)(A31ilsiliORipi)(A31ilsiliORipi)

X Yi; (k) Y~; (k)Pi, , , &s,g,

Q r)ss„z, :~g, z, r)ss, z, ;~3, 'z, 'j, (25)
p~, g,

with the initial sum over l&, l'„S1, S', . The final square
bracket above represents a generalized transmission
coeKcient

(26)

On invoking the principle of reciprocity, one can
write the total absorption cross section as

aa = g (Jo ai) .~a(rr; Jo3IIo,aisle;k) (27)
Mes~

= (2~/Ip)' g (i:.s;)-'T,„,lY",;( )l'

X l(j~m~lhaip~s~)(J~3II~l J,j,3IIom~)l' ) (28)

with summation over j1 &I, p1 J1, ~1 ~p 8].. On

carrying out the summation over 3' 3fp 81 and
p, & in steps, viz. ,

l(J,3f,
l
Joj8Iom, )l' = J',/j,', (29)

M~ Mo(p~, s~ const)

s, (p,, const)
l(jimll~l&1 glsl)l' = ji/~7, (30)

Q„, lY",;(k)l' = i,'/4~,

Eq. (28) reduces to

aa ——7rk Q i~(io a.~) 'T(„, .
Ji 4zx

Finally, noting that Ji = Jp + ji it follows that

(32)

whence
2 ~ "2 2

~a = ~)I. Z (ji/u, )Tr„, . (34)

This reduces, of course, to the usual form

(35)

when spin-orbit coupling is neglected, for then T& j
—+ T& and since j& ——1& + 6& the sum over j& in Eq.
(34) can be carried out to yield the result (35), on

A A

noting that pprj,' = 1,,' a.,'.

with the summation over li, 1'„p&, J&, P, the incident
channel spins S~, S,' (written with a suffix "1" for
clarity), outgoing channel spin Sp, and outgoing
orbital momentum /2.

Following Hauser and Feshbach, this can equiva-
lently be written as

a'a(rr, Jp3I'p, opsy, 'k') = g pa, z, jr, (rr,' Jo3Io,a isi,'k), (24)

These preliminary considerations enable us now
to embark upon formulation of angular correlation
theory taking cognizance of spin-orbit interaction.

3. THEORETICAL CROSS SECTIONS FOR
CN MECHANISM

A. Angular Correlation Theory for CN Mechanism
(with spin-orbit interaction)

%e generalize the current formulation of CN
correlation theory as due to Hatchler"" following
upon the basic approach of Biedenharn and Rose' by
replacing standard transmission coefFicients T& by
the generalized penetrabilities T&j. The treatment
applies generally to (X,01,'y) reactions for spin--',

particles X,01 (not necessarily identical) and incor-
porates an important correction to preceding formu-
lations in that certain interference terms that had
previously been erroneously included in the summa-
tion are here excluded. This error, which has but re-
cently been detected, invalidates previous calcula-
tions of angular correlation" """ for inelastic
scattering with the exception of those in Ref. 14,
of which more detailed mention will be made
at a later stage. It should be mentioned that the
alternative approach of combining (p,yy) correlation
parameters as tabulated by Ferguson and Hutledgeoo

with suitable particle parameters to obtain values
for (p,p'y) correlation remains valid when inter-
ferences are omitted.

In the generalized model of the preceding section,
the scattering matrix elements r~&j were taken to
correspond to the average of the actual 8-matrix
elements,

wherein the latter are nonzero only if the j's are
numerically the same, e.g. , formally

(8' i'..~~)
= 0 if j W j' or l ~ 1'. (37)

The evaluation of the correlation function thus
involves incoherent summation over partial waves
having not only the saIne value of / but the same total
angular momentum j also, viz. , it excludes "mixed-j"
values 1 + —',, l —-,'. It is typographically convenient
and less liable to induce confusion in the calculations
if one changes the notation at this stage and writes
Tf as either Tf, OI' Tf according as j

~2S. Pretre, H. R. Brugger, and M. P. Steiger, Helv. Phys.
Acta 33, 583 {1960).

PP F. I&. Seward, Phys. Rev. 114, 514 {1959).
24 H. Taketani and W. P. Alford, Nucl. Phys. 32, 430 (1962).

A. J. Ferguson and A. R. Rutledge, Chalk River Report
CRP-615, 1957 {unpublished), revised 1962 {CRP-615,
AECL-420, revised) {unpublished).
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On neglecting spin-orbit interaction, one obtains
the usual transmission coeScients T& from the above
by weighted averaging,

T&
——(t,') 'f (t + 1)Ti" + tT& '], (38)

whence for s waves, T,'+' = T,' ' = To. This weight-
ing can be seen to follow from the definition of
operators 0&'+' and Ql ' which select the states j'+'
= l+ -', and j' ' = t ——',, respectively, a,nd which
may be written

flI" = (V) '(l+1y d 1); n,' ' = (1, ) (t —d 1),
(39)

where d is the Pauli spin operator of the incident
nucleon. Thus, 6 1 = / if spin and orbital momentum
are parallel and d. l = —/ —1 if antiparallel. Hence,
for j'+' one finds QI+' = 1, 0& ' = 0, and for j' ' the
converse.

At this stage it Dlay be remarked that the ex-
clusion of "mixed-j" interference terms invalidates
not only past calculations of the correlation function,
but also influences certain expressions derived there-
from, for example, the derivation of the angular
distribution of inelastically scattered nucleons by
integrating the correlation function over the unob-
served y radiation angle (see Sec. 3B). Calculation
of the p distribution is, of course, unaffected thereby,
as will explicitly be shown later.

To derive the double-differential cross section, we

now follow Satchler's treatment" in considering a
reaction sequence of the form J, (j,'" = t& + —',) Ji
(j,'+' = to ~ —,') Jo (L,L') Jo ——Jo for the inelastic
scattering process. This new notation will henceforth
be employed throughout: The J are nuclear spins,

j,'+', j,'+' are, respectively, total angular momenta of
incident and emergent nucleons associated with
population of a CN level of spin-parity J1&y under
conditions such that the statistical assumption can
be deemed t,o be satisfied. The emergent y radiation
may be of mixed multipolarity I and I ' in general,
with mixing ratio 6 and it is assumed that there are
no intermediate unobserved radiations, whose pres-
ence would otherwise introduce additional nor-
malized Racah functions into the correlation func-
tion of the type

U„(L,J,J„i) = ( —) " "+' " J, J,+i

)& W(J,J,J,~&J,„i,aL,), (40)

wherein the phase factor has been corrected from
that quoted by Satchler. Each step of the over-all
process furnishes a "linking term" with summation

index p, , v, and P, respectively, in building up the
absolute double-differential cross section,

g = Ji(s'. Jo)
' = —,

' Ji/Jo, (42)

since for nucleons the spin s = -', .
(ii) The term dependent on the spins of the first

transition is

A„(J.J,) = Q iB(ji"')f'q„(ji"'j,"'JoJi)&i,i (43)

—ZiB('")i( )
,, (~)

X (p0fgi gi —,
' —s)W(Ji Jinni" gi;pJo),

(44)

where B(j,"') is a reduced matrix element, which is
real. The symbol 6(~) confines the summation to
terms where the pairs of j values are numerically
equal, e.g. , an incoherent sum of terms with j,'+'

throughout added to terms with j1 ' throughout,
with omission of mixed terms of the type j,'+' j,' '.

~6 M. Ferentz and N. Rosenzweig, Argonne Report ANL-
5324, 1955 (unpublished).

G. R. Satchler, Proc. Phys. Soc. (London) A66, 1081
(1953).

28 M. E. Rose, Oak Ridge Report ORNL-2516, 1958 (un-
published).

29 A. J. MacFarlane, Nucl. Phys. 38, 504 (1962).

8o
W (A, eo,y) = const P gA„(J,J, )

1 2

X R„,&(J,J,)A, (J,J.)8„„(S„e.,&) (41)

with the summation extended over p, v, X and the
various angular momenta involved [of which one is
finally left with summation over the momenta J1 and
j,'+']. Biedenharn' has given a simple account of the
derivation of such linking terms in function of
tabulated parameters (e.g. , the I'„ functions of
Biedenharn and Rose' or Ferentz and Rosenzweig"
for y-ray transitions and the analogous g„ functions
of Satchler" for nucleon transitions). The correlation
function thus consists of a sum of the product of
such terms weighted by the respective t7 factor (the
statistical spin factor) as the numerical coefFicient,
of the "Legendre hyperpolynomial" 8„„& (0„8o, &p),

which contains the entire angular dependence of the
correlation function. ""

The explicit form of each term in Eq. (41) is as
follows:

(i) The g factor, which takes account of the multi-
plicity of spin values entering into the process, figures
implicitly in the Hauser —Feshbach treatment of
inelastic scattering and has the value
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(iii) Analogously for the y transition, assumed to be
of mixed multipolarity L,L with mixing ratio de-
Gned by

(J.liL'll J.)'
(J IILII J )'

the spin-dependent term is

Ag(J, J,) = [F),,(LLJ,J2) + 2DFi, (LL'J3J2)

+ a F (L'L'J J )]/[1 + S ],

(45)

(46)

wherein it may be emphasized firstly that the F& are
always so written that the spin of the intermediate
(decaying) state appears last, and secondly that the
above F~ are generalized to take account of mixed
multipolarity, with the normalization Fo(LL'J&J2)
= 1. Explicitly, the F& have the form'

~,'(J J) = Z IB(j'")I'(—)'
j, (+)

X (vol j'"j'" k
—2)JiJmi""&(.)

X X(JiJip,j'~+j'2 'v; J2J2X) (48)

in which the final member is a Fano X coeScient,
identical with a signer 9-j symbol but written in the
above manner for typographical convenience. The
B(~& operator now restricts the permissible (in-
coherent) combination of values of j,'+': The absence
of "mixed-j" interference terms renders the ex-
pression slightly more simple than that quoted by
Satchler.

In Eqs. (44) and (48), the reduced matrix elements

B(j) represent scattering amplitudes which can be
treated by continuum theory on the basis of two
underlying assumptions. One first makes the statisti-
cal assumption that interferences between CN states,
as a,iso between incoming and outgoing partial waves,
effectively average to zero; in passing, it should be
mentioned that Satchler's expression at, the top right
of p. 1199 in Ref. 12 should be emended to exclude
"mixed-j" interferences, so that in his notation it
should read

(8(J, ;j,t, ;j,t, )8*(J,';j2l2;goal,'))..=8(J„j,l, ;j,l, )

X 8*(J~';j2~2;jill)~(J~Jl)~(j2j2)~(i~ll) ~(l2l2) (49)

One secondly assumes that the average transition
amplitudes depend only on the transmission co-

Fi,(LL'J,J2) = (—)' ' 'LI'J, ( l(olLL'1 —1)

X W(J2J2LL';&J3) . (47)

(iv) The coupling term connecting initial and final

steps is

eKcients TP' (E) at the nucleon energy E in the c.m.
system, whence

lB(j(")l'lB(j(")l'- -=~I."«.»I."(E.)/
g...r,'"(E) (50)

with the summation g' extended over all open chan-
nels (including that for elastic scattering) by which
the particular compound state JIm.I can decay. For
typographical convenience, the symbol 7- will hence-
forth be employed to denote the oft-recurring ex-
pression (50). It is stressed that a,s used in the above
context, the energy E refers to the energy of the
particle in the c.m. system, for example,

El EI 1 b [il-IA/(ilIA + ~ )]
and not to the totct energy in the c.m. system

(51)

E. = Ei &.b Mg/(3XIg + 3II.) (52)

though the difference is usually but slight.
(v) The angular-dependent term 8„„q is discussed

in fuller detail in the Appendix; as shown there, it
can be reduced to

8„,g(%,02,p) = 4n. (p/l(. ) Q (—) (l(mlpvom)

X I', "(&i,o) I7(&2,q) (53)

with m a summation index running over negative
and positive integer values up to the lesser of v, X.
This term determines the symmetries of the CN
correlation function" and on integration over 0& or
02 reduces to a simple Legendre polynomial which
determines the angular dependence of the angular
distribution (see Sec. 38). Explicit values of 8„„~for
various combinations of p, v, P ~& 4 are given in the
Appendix. The indices p, , v, X take on positive even
values in CN correlation theory (when no polariza-
tion measurements are simultaneously effected).

The expressions of subsections (i)—(v) can now be
substituted into the over-all correlation function
(41), which after simplification assumes the form

W(0,0..) = - t'Z l:(-)'-' "'""'

x ( olj("j("-:——:)]l:w(JJ.j'"j'";.J.)]
X [L'(l(0lLL1 —1)W(Jg J2LL;XJ'3)

+ 2~LJ'(~OILL'1 —1)W(J2J2LL';XJ,)

+ a'(L')'(l OlL'L'1 —1)W(J.J.I'L';XJ.)]
X (1+ 6') X X(JiJii(, ,j2"j2'v,J2J2X) X r'
X 8„,), (~i,02,((), (54)

wherein the factor (J,)'/2 (J,)' has been absorbed into
the constant (hence the prime on the new constant)
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(55)

If, however, one expresses the correlation as an
absolute double-differential cross section, the con-
stant takes on the numerical value

(J )' X' (J;)' 1 X' (J,)'const' =—,.const = —.
2(Js) (~.) ~ ' (J.)

(56)
where X is the reduced wavelength of the incident
nucleon (in the c.m. system).

Since all the correlation studies analyzed in Sec. 7
have been confined to even —even target nuclei having
a 0+ ground state and 2+ erst excited state it is of
interest to deduce the double-differential cross
section for this special case. This follows directly
from (54) and (56) on substituting Jo Js 0,
j& ——J1, J2 ——I = 2, 6 = 0, and remembering p, v,

) tobeeven,
CN

~(0~ es, ( )
0+ 2+

CNdo
dQyd02 P+—2+

—2Q 5(~)XCXr8„„),mb sr

10.3150
Q 5(+)NCXv" 8„„),mb sr ', (58)

with E1 the c.m. energy of the incident nucleon in
MeV, the summation extended over p, v, 3, J1, j,'+',

and the following abbreviations:

& —= (—)'"' (~))'(i )' (59)

and the summation extends over all permitted values
of p, v, X, J&, j,'+', j,'~'. The values are restricted by
triangle relations which must be obeyed by the
following triads:

(j~"~~l) (j'"~.l), (LL'l), (j'"J~~.),(J~j'"J.),
(JsLo's) (JsL'Js) (j~"j~"'~) (J~~») (j'"j'"v)
(J,J,l(), (LI l(), [(LL'l()], (L'I 'X), (yves),

wherein the relation in square brackets above applies
only if P / 0.

If the multipolarity of the p transition is pure,
then L = I', 3, = 0, and the correlation (54) re-
duces considerably. The value of the constant is
arbitrary for a correlation function, which merely
expresses the relative probability of emission in direc-
tions 0&, 02 at an azimuth p, and can accordingly be
taken either as unity or, as in the convention em-
ployed in construction of correlation surfaces (see
Sec. 6), such as to normalize the correlation function
to

C =—(u0~ J&J&-,' —-', )(v0~ js+'js"-,' —-', )(&0~221 —1),
(60)

X —= X(J~J~p, js+'js 'v,'22K), (61)

r —= &),"(K)&),
"(Es)/ g,')s &)"(E) . (62)

For each combination of summation parameters per-
mitted by the triangle relations above, the coeKcient
of the, in itself, quite complicated 8„,~ term involves
basically the product of three Clebsch —Gordan co-
efFicients and one 9-j symbol, which have been
tabulated in published reports only for fairly low
angular momenta. ""It is understandable, therefore,
that in the past numerical evaluation of the correla-
tion function by hand has been restricted to s-, p-,
and d- incoming and outgoing waves (for /i, ls ~& 2,
there are 59 such permissible combinations; previ-
ously when mixed-j terms were still erroneously in-
cluded the number of combinations was 109).
Because of the rapid increase in the number of
combinations with rising orbital momentum, as
illustrated in Table I, the correlation function for

Tash, z I. The number of product terms to be summed over
in the correlation function in terms of the highest orbital
momentum considered, for nucleons undergoing compound
inelastic scattering to the first excited state (2+) of e—e

target nuclei.

lip E2 & lmax
No. of J„~,(+~

groups
No. of product

terms

0 1 2 8 4 5 6 7 8 9

0 3 11 21 31 41 51 61 71 81

0 10 59 178 383 677 1063 1538 2103 2758

ss A. Simon, Oak Ridge Report ORNL-1718, 1954 (unpub-
lished).

3~ K. Smith and J. W. Stevenson, Argonne Report ANL-
5776, 1957 {unpublished).

ss K. Smith, Argonne Report ANL-5860, 1958(unpublished),
Parts I and II.

33 M. Rotenberg, R. Bivins, N. Metropolis, and J. K.
Wooten, Jr., The 3-j and 5-j Symbols (Technology Press,
Cambridge, Massachusetts, 1959).

34 J. M. Kennedy, B.J. Sears, and W. T. Sharp, Chalk River
Report CRT-569, 1954 (unpublished).

higher partial waves has to be computed electroni-
cally, with the program coded to evaluate all the
requisite H,acah functions and the 8„„~automatically
over a predetermined range of momenta and angles.

It appears opportune at this stage to quote the
results of hand calculations of the double-differential
cross section for e—e target nuclei and momenta l&, l&

~& 2 in terms of "meaned" transmission coeKcients
T& which do not take spin-orbit interaction into ac-
count. With the notation



INELASTIC NUCLEON SCATTERING 803

() T.(E) T (E.)
T, (E,) + 2T, (E,) '

(2) Ti(Ei) Ti(E2)
Ti(Ei) + Ti(E2) '

(8) T, (E») T, (E2)
T&(Eg) + 2V; (E2) '

() T (E) T.(E.)
T2(EI) + TO(E2) + 2T2(E2) '

,() T (E).T (E')
Ts(E&) + To(E2) + 2T2(E2) '

for the r terms (exit channels being confined to those
leading to the ground and first excited states of the
target nucleus only) and

x = cos Oy ) g = cos 02 )

z =—sin t), cos 0& sin tt, cos 02 = xy[(1 —x') (1 —y')] ' ',
(64)

cv—:COS (kg, k2) = COS 8» Cos 82 + Sill 8» Sill eg Cos y
= xy + (z/xy) cos q, (65)

for the angular terms employed for brevity, one ob-
tains the following expressions which yield numerical
values in perfect accord with those obtained by
electronic computation:

CNCN

CN

W (8&,92,0)

(E,)
' Ix'y'[ —82.5204 r"' —25.0503 r'"]

+ x y [+82.5204 r + 53.7847 r ]

do
an, an. . ..

(Ei) tr"'[8.2520 + 4.4207 P2((»))

—2.3577 P» (co)] + r"'[4.1260 + 2.0630 P2 ((o)]

+ r [16.5041 —4.9512 P2(x) + 4.1260 P2(y)
—0.8821 Sg22 1.5781 S22»]

+ r"'[20.6301 + 11.1992 P2 (y) —7.0732 P» (y)]

+ r'" [41.2602 —5.2628 P2 (~) + 0 8421 P» (~)
—5.8944 P, (x) —5.3049 P» (x) —2.9472 P2 (y)

+ 3.5366 P»(y) —4.4495 S222 1.8403 S22»

+ 1.3803 S2»g + 0.0402 S2»» + 1.6822 S»22

+ 0.6032 S»2» 0 4524 S»»2 1.3840 S»»»] } .

(66)
The exclusion of "mixed-j" interference terms causes
this to differ both in normalization and in numerical
magnitude from the corresponding expression quoted
by Seward (p. 524 of Ref. 23). On substituting ana-
lytical values for the S„„&as given in the Appendix
with y = 0, this reduces further to

+ x y [+82.5204 r ' —49.5122 r
—56.7121 r ] + x [—10.3151r '

—42.3651 r ' ] + y [—10.3151r '

+ 24.7561 r —30.9451 r + 40.5233 r ]
+ x y [—72.2053r + 6.1890r + 49.5122r

+ 40.5233 r ] + x [+5.1575 r ' —3.0945 r
—12.3781 r + 25.0503r ] + y [+5.1575r '

—3.0945 r —18.5671 r + 43.3232 r
—34.6289 r"'] + [+10.3151r"' 1 6.1890r"'

+ 18.5671 r"' + 12.3781 r' ' + 35.7342 r' ]
+ x y z[—82.5204 r " —25.0503 r "]
+ x z[+41.2602r"'+ 41.2602 r' j
+ y z[+41.2602 r' ' —49.5122 r"'
—69.2581 r ] + z[—10.3151r ' + 6.1890 r

+ 24.7561 r"' + 16.2095 r"'] } mb sr . (67)
This equation is a renormalized form of the ex-
pression cited in the Appendix to Ref. 14, wherein
the latter took cognizance of exclusion of "mixed-j"
interference terms and tacitly corrected an error in a
tabulation by Rose" which had previously" led to a
wrong value of S»»». The formula, thus, replaces that
previously published by Sheldon. "When p = m, as
is the case when the de-excitation y radiation emerges
in the scattering plane on the opposite side of the
incident axis to the inelastically scattered nucleons,
the correlation is given numerically from Eq. (67)
on replacing either 0& or 8& (but not both) by the
supplementary angle, i.e., z —+ —z. The correspond-
ing expression for an arbitrary azimuth q is too in-
volved to be reproduced here, but is directly calcula-
ble in any given case from the values of 8„,), listed
in the Appendix.

For the special case when y = —,
'

m, the double-
differential cross section is

CN d2 CN

an, an, . ..
= (E,) f x'y [ 10.3151—r —142.9374 r"']

+ x'y'[+179.0399 r"'] + x'y'[+90. 6259 r"']
+ x'[—49.7333."'] + y'[ —24.7561,("
—30.9451 r' + 11.0516 r ]
+ x y [+15.4726 r' + 3.0945 r' '

+ 24.7561 7 —92.8362 r' ]
+ x [—12.3781 r + 11.0519 r ]
+ y [+6.1890 r + 43.3232 r —26.5242 r ]
+ [+5.1575 r + 3.0945 r + 18.5671 r
+ 12.3781 r"' + 57.1011r"']}mb sr '. (68)
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1 2 0 —2

follows on setting y = 0.

It should be mentioned that the expressions so
derived replace the numerically incorrect formulas
(3) and (4) on p. 810 of Ref. 13 (but do not infiuence
the conclusions drawn there).

B. Angular Distribution for CN Mechanism (with
spin-orbit interaction)

It is interesting to follow the somewhat circuitous
method of integrating the angular correlation over
the unobserved radiation directions to obtain the
angular distribution and total cross section for in-
elastic nucleon scattering. Agreement of the results
with the corresponding expressions provided by
straightforward Hauser —Feshbach theory" provides
some check of the correctness of the correlation ex-
pressions from which one starts.

To derive the nucleon distribution, one integrates
the general correlation formula (41) over the y radia-
tion angle 02, noting in the first place that

8v $(81 Op p)dop bv {&/pe Q41{vP„(eos 0,)

since

(69)

8 Q(01 |)2,{p) = vP, (COS 01) (70)
The inhuence of the Kronecker 8's on the remaining
terms of Eq. (41) is as follows:

A, (J.J1) ~ Q, ( & IB(jI")I'&(.)n (j1"'j1"'JoJ1) (»)
~.,& (J1JQ) ~ Q, , (+) ~B(jp")~'&{+)(v) 'n, (j'"jp"'JQJ1),

(72)

A&, (JQJQ) —&Fp = 1. (73)
Hence, on substitution, one obtains

2
.(+) (+)

Gr02 —eOnSt g g))„(j1 j1 JpJ1)
1 2

X 1),(j' 'jp"' JQ J1)41r{&(,)rP, (eOS 0,), (74)
wherein the 5(~) acts to prevent mixed-j1 and mixed-j2

From this, the expressions for the correlation when
one of the counters detecting the outgoing radiation
is arranged to be perpendicular to the incident beam
can directly be obtained, viz. , the n'- or p'-perpendic-
ular correlation

CN
d 0

W(-', m, ep, —,'1r)
d d

(81 ——
{{&

= —,'n. )
dQ1dQ2 0+-2+

follows on setting x = 0;
and the y-perpendicular correlation

interferences. Thus, combining the above with Eqs.
(42) and (56), one finally obtains the nucleon angular
distribution in the Hauser —Feshbach form, general-
ized to include spin-orbit interaction,

8v g(81A p)d01 = 8vy8„Q5 p47l l(Py(cos Op) (76)

so that

A (J'p J1) ~ p ', (+) ~B(j ) ~
))g(jI+ jI+ Jp J1)8{y) (77)

~.'(J J ) ~ Z.(') IB(j") I ~(~) (—)"
X (JIJ2/l&)W(J1J1JQJQ;&j2 ), (78)

A&, (JQJQ) & Fg(JQJQ) =—[F&,(LLJQJQ)

+ 2aF (LL'J J ) + a'F (L'L'J J )](1+a') ',
(79)

whence finally
2 2

dO d O' X g (
)1&(k) J& J&

dQ, dQ, dQ,
'"'

8

X (J1)'(Jp)/(Jp)'~(. )~~(j1"j1"'JQJ1)F~(J.JQ)W

X (J1J1Jp JQ,1&jp+')rP&, (y), (80)

with the summation over all permitted values of
X, J1, and j,' '. The inelastic scattering transition
(J, —+ J',) thus acts as a "gate" for information
pertaining to the y distribution even though the
scattered nucleons are not observed. %hen the re-
duced wavelength X is expressed in cm, the angular
distributions have the dimension cm' sr '.

For the special ease of e—e ta, rget nuclei with a 0+
ground state and 2+ excited state, and when orbital
angular momenta are restricted to l1, l2 ~& 2, the
expressions can be simplified considerably. For the
nucleon distribution, one obtains

CN

W(8, ) ~ = (E1) 'Ix'[ —291.497 r'"]
dQ1 0+-2+

+ x [—M.279 r' + 138.808 r"']
+ [+103.644 r"' + 51.822 r"' + 238.381 r' '

+ 259.110r + 530.2497 ]I mb sr (81)

d„= (~ /8) 2 [(J )'/(J. )'Jn. (j"'j"'J.J )

X 1),(j'"j'"JQJ1){&(+)rP,(x), (75)
with the summation extended over all permitted
values of v, J„and j,{~& (and thus inherently also over
j,' ', t1, and tp), with exclusion of "mixed-j" terms as
ali additional physical requirement.

In the derivation of the p angular distribution, the
latter condition automatically follows from the
Racah algebra, as one would expect. The integration
procedure is analogous to the above, and one has
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and for the y distribution

CN

~(t)s) ~ = (Ei) 'Iy'[ —388.664 r"'
dQ2 0+F2+

+ 194.332 r"'j + y [+77.733 r"' + 544.130 r"'
—222.095 r j + [+103.644 r ' + 51.822 r

+ 181.377 r" + 155.466 r"'

+ 553.384 r'"]
I mb sr

' . (82)

It may be mentioned that the relatively tedious
derivation of these expressions can be obviated by
employing the following "short-cut prescription"
once the angular correlation has been evaluated in
the form (66). The differential cross section can then
straightway be written down:

da/dQ, follows on multiplying (66) by 4ir and setting
P„(to) = P„(y) = S„„i,= 0 therein, with (tt, t W 0,
) = 0),

do/dies follows on multiplying (66) by 47r and setting
Pi, (oo) = Pi, (x) = S„„q = 0 with (ti, X W 0, t = 0).

Theoretical substantiation of this procedure is
provided by the fact that

as can directly be verified by carrying out the
requisite Racah algebra. The factor of 4x as "norm"
arises from integration over the angles of the unob-
served radiation.

It is of interest to remark that the angular distri-
butions are not identical with the corresponding
perpendicular correlations, even when normalized to
unity at 90', although they display very similar
angular dependence. This point, already considered, "
is illustrated graphically in Fig. 34 of the present
paper (see Sec. 7E).

C. Total Inelastic Scattering Cross Section for CN
Mechanism (with spin-orbit interaction)

The integration procedure can be carried one step
further as a means of obtaining the total inelastic
cross section from the distribution function,

whence

'(6) '(4) ~(+) ~ (+)
rt~(gi gi &oA)rtr(gs Js AA)&i~) ~ gogo = 1,
so that

(86)

0. = d02. (89)

4. ANGULAR CORRELATION THEORY FOR
DI MECHANISM

Since the DWDI treatment of scattering (albeit
without the inclusion of spin-orbit couphng) leading
to evaluation of the absolute double-differential
cross section for nucleon inelastic scattering has re-
cently been published together with computational
details in a report by Bassel, Drisko, and Satchler, "
the present section will be con6ned to a bare outline
of the DWDI approach followed by the requisite
details for determination of the double-differential
cross section. Apart from the above excellent report,
detailed accounts of the application of distorted-wave
DI theory have been given by Tobocman"" and
by Levinson and Banerjee" ":the above formula-
tion, however, has the additional merit of yielding
an absolute quantitative result in the sense that it
permits absolute evaluation of the coefIicients in the
well-known, hitherto arbitrarily normalized correla-
tion expression

W'(0, A, ir)l P+ Q sin'2(0, —0')

y 8 sin' (t)s —0"), (90)

wherein the 0& dependence is contained within the
entities P, Q, 8, t)', 0". The formula has here been
referred to the y = x plane; with the angles 0' and 0"
taken as positive; it could equally well have been
referred analytically unchanged to the y = 0 plane

a = -,'ir&' Q~, [(& )'/(J. )'] r . (87)

For momenta Ip'&, l2 ~& 2 and e—e nuclei, this reduces to

c = (Ei) 'I646.82r '+ 646.82r"'+ 1293.64r'

+ 3234.107"' + 3234.10 r'"I mb . (88)

One can readily show that the same results ensue
from integration over the y radiation angle,

do
dQI .

One notes that

P„(cos 0,)dQ, = 5,o4ir,

so E. Sheldon, Nucl. Phys. 3'7, 302 (1962).

(85)

so W. Tobocman, Theory of Direct Nuclear Reactions (Ox-
ford University Press, Oxford, England, 1961).

37 G. R. Satchler and W. Tobocman, Phys. Rev. 118, 1566
(1960).

38 C. A. Levinson and M. E. Banerjee, Ann. Phys. 2, 471
(1957); 3, 67 (1958).

39 M. K. Banerjee and C. A. Levinson, Ann. Phys. 2, 499
(1957).

0 C. A. Levinson, in Nuclear Spectroscopy, edited by F.
Ajzenberg-Selove (Academic Press Inc. , New York, 1960),
Part B, p. 670.
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with 8' and 8" taken a,s negative (as in Ref. 17), or
alternatively written in the form

W(0&,02,0) ~' ' P + Q sin' 2(8, + 8')

+ 8 sin' (02 + 0"), (91)
where now 0' and 0" are taken as positive. It is, of
course, clear that

W(0i, 02,0)i
"= W(0i, z- —02,z-) i'" '

W W(0&,02)z.) ~""". (92)

Further DWDI symmetries will be discussed later;
it suKces for the present to mention that it is per-
missible to add ~ -', x to 0' and & m. to 0" without
influencing the correlation.

The result analogous to Eq. (90) as deduced by
Satchler et al. for inelastic scattering of nucleons on
e—e target nuclei with orbital momentum transfer
l =2is

d2 DWDI

dQId02 P+ 2+

X sin' 2(0, —0') + y& sin' (02 8 )],

-W(0„0„~)- [(n + yP) + (1 ——;y)

(93)

where y, the ratio of spin4ip to non-spin-Hip in-
tensity, represents the only indeterminate parameter
at the present stage of DWDI theory. For scattering
of spinless particles, such as n particles, one would
have y = 0 and the simple expression

y2 DWDI DWDIao ~ W (0&,02,z.)

= N[n + sin'2(02 —0')] . (94)

The terms n, p, y can be computed numerically from
DWDI codes which evaluate statistical tensors and
their phases 0', 0" from transition amplitudes which
lie at the basis of DWDI theory. For the present
analysis, the IBM 7090 code "sxLLY" compiled at
the Oak Ridge National Laboratory was employed
to evaluate these quantities in function of the scat-
tering angle 8, and these in turn were fed into the
DWDI correlation program MARILYN, coded to
calculate the double-differential cross section nu-
merically. The only drawback of the code "sxLI,v, "
which itself evaluates the differential cross section
do/dQ, in function of 0~, lies in the fact that it does
not incorporate spin-orbit coupling. A program to
obviate this is, at present, in the process of compila-
tion.

Omitting any assumptions as to the reaction
mechanism, one can write the angular correlation in
terms of normalized spherical harmonics CI„(02,q)
= (4z):(k) ' Y,'(0, ,q) such that Coo = 1 as

wherein since W is real, the ak, have the symmetry
a~, ——(—)' aA, ' and vanish for odd values of k when
the p transition is between states of definite parity.
In the coordinate system employed here, with r axis
along kp 'JL axis along kp &( k1, and x axis in the scat-
tering plane (where ko and ky represent propagation
vectors of the incident and scattered particle, re-
spectively), the a&, are real in order that the azi-
muthal symmetry W(0„0,,y) = W(0&,02, —rp) be pre-
served. For a DWDI scattering mechanism, the co-
eKcients ak, can be separated further into three
factors,

a~, (0i) = 4 Fa(J3J2) 'dk (01), (96)

where 6& is a coefficient which depends on the
momentum transfer j = 1+ s to the target nucleus,
with s = 0 for nucleon scattering,

n = [0.17430(1 —c720)/~Z44~] ——', ) (99)

p = [0.34867(1 + 0.81652~1 ~)/(Z, ~] + —', (100)

~ = —0.56932)Z,.)/[Z..l
. (101)

At 01 ——0' or 180', these revert to their plane-wave
DI values,

(»2)
The angles 0' and 0" (in our system) were expressed
as phase angles,

d22
~
Zgg

~
exp (—2i0")

Z„= ~Z„~ exp (—4i8'),

(1o3)

(104)

and computed in terms of the scattering angle 01.
The double-differential cross section can now be

evaluated absolutely; for simplicity we assume the
spin-Rip intensity to be zero, so that the correlation
is of the form (94). The value of X follows on noting

b~ = ( )
' l J2(kollloo)W(llAJ2 kJo) (97)

The p-transition link Fl.(J,J2) has been defined by
Eqs. (46), (47), and (79). The term d,,(0,) is a nor-
malized statistical tensor described in detail else-
where, """viz. ,

d"(0) = I(—)'i&koliloo)]
' .(V,V)/ -(V,V), (98)

such that, dpp = 1. One then normalizes to app = 1.
Satchler et at." used a different coordinate system
(characterized here by a "tilde" ) and expressed the
correlation parameters n, P, y, 0', 0" in terms of the
values of the statistical tensors Z&, in that system,
wherein kp was chosen as x axis and kp &( kI as 2 axis:

W(0~ 02,v) = Z a"(0~)C"(02,v) (95) 4' B. Buck and P. K. Hodgson, Phil. Mag. 6, 1371 (1961).
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DWDI
Gg= c W(8&,8p, pr)

I

DWDI

(108)

where the constant c is given from

4o 4 0. 4o

dLd~2
W dn,

GO' GO= c ~ apqCpq(8»vp) = 47l capp,
1 QQI

(109)

c = (4pr) ', (llo)
since a« ——1.
Et only remains to note that the code "sALi,v"
evaluates a quantity p(8, ) which is related to the
nucleon scattering differential cross section,

——(VPDrpA')'(5093a') '
p (8, ) mb sr '. (111)

1

Here, V is the real optical potential in MeV, PD

is the nuclear deformation parameter, rod' the
nuclear radius, and a the diffuseness of the real
optical potential well. Substituting Eqs. (93), (94),
(107), (110), and (ill) in (108), we finally arrive at
the relation

DWDI

„„„(&= ) = 5.6025 X 10 'IZ., I

X (VParpA'/a)'o(8&)l(n+ yP) + (1 ——',y)

)& sin' 2(8p —8') + yy sin' (8, —8")] mb sr ',
(112)

expressing the double-differential cross section in
terms of nuclear constants and computed parameters.
The latter then represent the input for the code
"Mxa,nvx, " which for a given 8& and for selected
values of the relative spin-Hip intensity y numerically
evaluates the double-differential cross section for a
range of values of 8~.

that the actual expression for 8' is, as can be shown,

EV(8~,8p, ~) I:="p" = I:(5/8) (1 —&-) —(45/14) 'l&«lf

+ (90/7) *IZ44I sin' 2(8p —8'), (105)
that is,

EVa8& 8»pr)I p
' = (90/7)*l&«l

1 (35) * (1 —Zpp)

u&p g..
~

' """ ")
(106)

which determines the value of N as

X = (90/7)*IS„I = 3.5858IZ
I

. (107)

The double-differential cross section is related to the
correlation as follows:

The quantitative evaluation of the double-differ-
ential cross section for the DWDI as well as for the
CN mechanism offers a means of attempting to
combine the respective predictions of these two
theories in order to investigate correlation behaviour
in the intermediate energy region. One thereby en-
counters the problem of the possibility of interference
between CN and DI mechanisms, the extent of
which is basically governed by the sharpness of the
beam energy, a factor which cannot a priori be
incorporated in the theoretical treatment. In the
paper of Chase, Wilets, and Edmonds, "an excitation
function was constructed by simple addition of CN
and DI cross sections, thereby assuming interference
to be absent; this simplifying assumption was also
made by Satchler and Sheldon" in analyzing the
NiPP(p, p'y) correlation measurements of Taketani
and Alford" at E, = 5.73 MeV. (see Fig. 54). An
alternative method of combination is to introduce a
phase factor p (which varies with experimental
conditions) a,nd to define the net cross section as

1 ie —' 2
0 = 0CN e 0DI

Austern4' has summarized the present status of these
theoretical approaches; in the approach of Sano et
Ot. ,

" choice of a suitable potential matrix obviates
interferences between CN and DI in the formalism.

The DWDI angular distribution of y radiation
can be elucidated from Eq. (95) on averaging over
the nucleon angular distribution,

W(8p) = g (app)Pp(cos 82)
Ip even

5pFk (Jp Jp) (dpp)Pp(cos 8p), (114)
k even

where (dpp), the value of the tensor d» averaged over
the nucleon distribution, cannot easily be derived
from the present theory, though Satchler and Toboc-
man'" have indicated how it may be estimated. On
averaging in azimuth around the incident beam, the
d„with nonzero q vanish, of course. Equation (114)
indicates that the y distribution for the DWDI
mechanism is, as for the CN mechanism, symmetrical
about 8p ——-', pr, since the Legendre polynomials run
over even values of k.

It may also be remarked that for nucleon inelastic
scattering, as for other direct interactions, the re-

42 N. Austern, in Selected Topic@in Nuclear Theory, edited by
F. Janouch (International Atomic Energy Agency, Vienna,
1963). See also S. Yoshida, in Proceedings of the International
Conference on Nuclear Structure, Kingston, edited by D. A.
Bromley and E. W. Vogt (University of Toronto Press,
Toronto, Canada, 1960), p. 336.

43 M. Sano, S. Yoshida, and T. Terasawa, Nucl. Phys. 6,
20 (1958).



808 ERIC SHELDON

mark of Ferguson et ajt. ,
44 suggesting that nucleon

distribution measurements could, in certain cases, be
facilitated by detecting the desired nucleon group in
coincidence with de-excitation y rays emitted per-
pendicular to the reaction plane, since the distribu-
tion when only one l-value contributes is identical
to the perpendicular correlation, has to be restricted.

1.5
I

P '
LAB

1.0

81= 304, /=180

DWDI y=0.4
DWDI (c) y=O
DWDI (c) y=O

0.5

CV

0

8&
= 90 $ =180

0.5

0
0 60 90

8& (c.fn.), deg

120 150 180

FIG. 2. Distorted-wave direct interaction correlation func-
tions for the reaction Mg (p,p'y)Q —$.333 Mev at an incident
proton energy of 10.7 MeV. Comparison between theoretical
results with and without consideration of spin-flip and those
for strong-coupling theory.

The same reasons as those which prompted the com-
ment of Satchler and Tobocman'" in the case of
deuteron stripping apply to DWDI nucleon scatter-
ing, with the result that the above statement holds
only for / = 0 or 1 but not for / )~ 2. In the "tilde"
coordinate system the correlation can be written as

W(8„8,,j) = Q„bp F3(J3J3) Z„g„(.8„(p), (115)

which, for the perpendicular correlation where
0~ = 0, reduces to

W(81)82 0, 'tp) = Q3 bg F3(J3J3)Z3p (116)
44A. J. Ferguson, H. E. Oove, A. E. Litherland, and R.

Batchelor, Bull. Am. Phys. Soc. 5, 45 (1960).

str. coupl.do
dQ&dQ3 3+ 3+

= c W(8i,8.,vr) (117)
do

1

= 0.2854iZ44i (do/dpi) I (n + yP) + (1 —-', y)

)& sin' 2(8, —8') + yy sin' (83 —8")] mb sr '.
(118)

Although the coupled equations approach yielded
correlation results in excellent agreement with the
normal DWDI treatment, the fit to experimental
results was found to be poor: only in one instance

on expanding the spherical harmonic (;3,(83,p) in
terms of I egendre functions, of which the q = 0
term becomes unity on setting 82 ——0 and the re-
mainder vanish. Now, only for l = 0 or l = 1 are
the Z3. independent of scattering angle (the tensors
assume their plane-wave values Zc&& ——1, Z33 ————,').
The values of Z3. for t = 2 transfers of orbital
momentum are given explicitly in the report of
Satchler et at.";inserting them into Eq. (116) renders
it 8&-dependent. In the latter case, the perpendicular
correlation is given by the noncoincidence distribu-
tion modulated by the 8&-dependent expression (116).
This offers a means of measuring the Z&Q in function
of 01 for comparison with theory, though no such
measurements have so far been carried out at energies
where the DI mechanism would be expected to
prevail.

It should also be mentioned that as a check on the
correlation parameters furnished by the code "SAI,Lv"
(omitting consideration of spin-orbit interaction) a
set of computations was undertaken to evaluate
these for inelastic proton scattering on Mg" at
energies between 5 and 17 MeV using a strong-
coupling computer program by Buck which in-
ctudes spin-orbit coupling for deformed nuclei. Re-
sults for 10.7 MeV, as shown in Figs. 2 and 19, were
found to be practically identical with those from
"sax,Lv."The distinction between this approach and
the normal DWDI treatment lies in the fact that the
former does not treat the residual interaction of the
incident particle with the target nucleus as a pertur-
bation; in consequence, the inelastic scattering can,
as it is in fact often found to do, appreciably inQuence
the elastic cross sections. Buck has given" details
of the theoretical treatment and set up a code which
strongly couples a 0+ ground state to a 2+ erst
excited state to furnish tensor parameters which can
be used as input for "MAanrx. " Since his code
evaluates the inelastic differential cross section
do./dQ, directly, the normalization of the double-
differential cross section is simplified, namely,
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was there even fair agreement between experiment
and theory. This is depicted in Fig. 8 for a relative
spin-Hip intensity of y = 0.45. The measurements
are those of Braid, Yntema, and Zeidman, 4' who also
studied correlations with the proton counter fixed at
8& ——30' and 60' (additional measurements at e&

= 120' and 150' have been mentioned" but not
illustrated). At these angles the theoretical fit is
poor—far worse than the "semiempirical" 6t ob-
tained with arbitrarily selected parameters intro-
duced into the DWDI correlation expression, as
depicted in Fig. 4.

2.0

1.0

0.5

8 i=30' /=180
p

-----1+2.2 sin 2(8 -74') +. 2

. 2 y
1.1 sin (8 —69')

y2———1+2.5 sin 2(8y —76 )

--.- 1+9.1 sin 2 (8y —55')+2

2 sin (8y—54' )——1+5.8 sin 2(8y —56 )

24 I

Mg (p p y) E 10'7MeVLAB

owoi 8, =60, /=180

1.5

1.0 Is

Nig (p p'y) Ep 10 7 Mev

90, ~=180
DWDI; y=0.45

~ ~

-y = 0-4
y=0

y= 0.4
y=0

0 30 60 90 120 150 180 -30 0 30 60 90 120 150 180

8y (c.rn, ), deg

Frc. 4. Comparison between semiempirical and absolute
theoretical DWDI 6ts to the results of Braid, Yntema, and
Zeidman (Ref. 45) at s& = 30' and 60'. In both cases curves
with and without spin-flip terms are shown.

0.5

0
0 40 80

82 (c.m. ), deg

120 160

Fzt . 3. Comparison of the experimental results. of Braid,
Yntema, and Zeidman (Ref. 45) for Mgs4(p, p'y) at 10.7 MeV
with the theoretical correlation function including spin-lip
for 8I ——90'.

provides an illustration of the inhuence of relative
spin-flip intensity upon the DWDI correlation. Had
the DWDI correlation graphs had phases in accord
with the measured correlation, one would have had
the means at hand to determine the magnitude y
empirically by elucidating the values which furnish
closest agreement with experiment. It should also be
possible to determine this experimentally from the
scattering of polarised nucleon beams from aligned
targets. However, in the absence of such results, y

The positions of maxima and minima in the DWDI
correlation are, of course, determined by fI' and 8";
the poor fitting of experimental results arises essen-
tially from disagreement between the computed
angles and those arbitrarily selected to give an
empirical Gt. In Figs. 2 and 4, for instance, the
theoretical values of 0' and 8" are for 0&

——30',
respectively, 14' and 12'; for ej. ——60', respectively,
29' and 29'; and for 8& = 90', respectively, 45' and
43'. The relative amplitude of the peaks, on the other
hand, can be varied by altering the (at present)
unknown magnitude y of spin-flip intensity; Fig. 5

1.5

Cl

O

1.0
cs

0.5

DWDI WITH SPIN —FLIP

Mg ( p, p y); Ep=10.™VLAB
8, =90o y = &So

5 T. H. Braid, J. L. Yntema, and B. Zeidman, Bull. Am.
Phys. Soc. 6, 37 (1961).

46 T. H. Braid, J.L. Yntema, and B.Zeidman, in Proceeding8
of the Rutherford Jubilee International Conference, edited byJ. E. Birko (Heywood and Company, Ltd. , Manchester,
England, 1962), p. 519.

0
0 90

82 (c.m. ), deg

180

FIG. 5. Influence of the relative magnitude of spin-flip upon
the DWDI correlation function at 8~ = 90' for the reaction
Mg'4(p, p'y) at 10.7 MeV.
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was arbitrarily taken as zero and 0.4 throughout the
present analysis. There are indications of the manner
in which it may vary with scattering angle. Satchler
et at.4' have considered the possibility of spin-inde-

pendent excitations showing some collective enhance-
ment, while this is generally negligible for spin-Hip

transitions, and in consequence having a diferent
effective interaction matrix element between initial
and Gnal nuclear states. On constructing the ratio
R (i)&) of differential cross sections for "single-
particle" transitions (those in which the angular
momentum transfer is due to single-particle transi-
tions between nuclear orbits induced by a zero-range
two-body force; the matrix element then peaks within
the nucleus) to that for "collective" transitions (sur-
face coupling described by an optical potential), one
obtains an indication of the possible differences
between spin-Hip and spin-independent distributions
in function of the scattering angle. This ratio could
then be interpreted as the variation of y with 0&. It
ha, s been evaluated" for the Mg'4(p, p'y) reaction at
16.6 MeV for / = 2 momentum transfer and is repro-
duced as Fig. 6.

which has also been included in Fig. 6. Employing
a basically different approach to derive an estimate
of the magnitude of y, these authors obtained values
ranging from 0.28 to 0.58, fluctuating about a mean
of 0.4. Noting that for the above reaction, emission
of de-excitation y radiation in the direction 02 ——q
= -', x can occur only if prot, on spin-Hip takes place, "
they measured y-perpendicular correlations for 0&

varying from 20' to 160' and interpreted these when
appropriately normalized as spin-Qip magnitudes in
function of e&, with a possible error of +7%%uz. This
interpretation rests, of course, on the assumption of
pure DWDI mechanism and absence of interference
terms in the correlation function for the perpendicu-
lar correlation; it should therefore be treated with
caution. The results, however, furnish some substan-
tiation that the value of y = 0.4 adopted for the
present analysis is not unreasonable.

As a preliminary to presentation of the remaining
correlation analysis, some details underlying the
calculations are given next.

5. EVALUATION OF THE CORRELATION FUNCTION

0.7

06 W 81, 2, &
FOR C p, p'y ATE&=10.5Mev

EXP -4.43 Mev

0.5

0.4

/
/

/
/

/
/

/
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O. t

R 81 THEOR
fOR Mg p ply -137 M V

ATEP=~6. 6MeV

0
0 20 40 60 80 )00 120 140 160 180

81 (c.m.), deg

Fze. 6. Estimated relative magnitude of the spin-flip magni-
tude for inelastic proton scattering on C~s (Q = —4.48 MeV)
at 10.5 MeV and on Mg24 (Q = —1.868 MeV) at 16.6 MeV.

47 G. R. Satchler, R. M. Drisko, and R. H. Bassel, Bull.
Am. Phys. Soc. 6, 66 (1961).

48 F. H. Schmidt, J.B. Gerhart, and %.A. Eolasinski, Bull.
Am. Phys. Soc. 'F, 60 (1962).

Satchler's spin-Rip ratio Quctuates about a rough
mean of 0.3, in reasonably good agreement with the
experimental results of Schmidt, Gerhart, and
Kolasinski" for the spin-Aip magnitude in the
C"(p,p'y)o = -4.4s M.v reaction at E„= 10.5 MeVf b,

A. Choice of Optical Model

As a basis for the numerical evaluation of the
correlation function, the nonlocal optical model of
Percy and Buck4 was employed for neutron scattering
and the local optical model of Percy' for proton
scattering unless otherwise stated. The parameters
represent results of the most recent analysis of scat-
tering cross sections; the neutron nonlocal potential,
in particular, represents a marked fundamental ad-
vance upon the various local potentials hitherto pro-
posed, ' ' and also upon the nonlocal "effective mass
approximation" treatment of Wyatt, Wills, and
Green, ' since this approximation can be justified
only at low neutron energies. Using an IBM 7090
computer for numerical integration and iteration,
Percy and Buck were able to bypass the need for
such approximations and, thus, to derive an exact
solution to the nonlocal Schrodinger equation for
neutron scattering, a spin-orbit term of the Thomas
form being included:

exp — 1 exp

)& t/'. .L.d r = t/' r,r' r' dr'. 119

4s A. Bohr, Nucl. Phys. 10, 486 (1959).
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By choosing the denominator of the first coefIicient
in the Thomas term as 2 3II„c in place of the usual
3II.c, the authors obtained a value of 1300 MeV for
the real spin-orbit potential V„, which corresponds
to about 7 MeV in the usual normalization. The
imaginary spin-orbit potential was, in conformity
with current normal practice, taken as zero. The
other symbols in Eq. (119) carry their usual signifi-
cance, with r as coordinate vector of the incident and
r' as coordinate vector of the scattering particle re-
ferred to the center of mass of the system. The scat-
tering force is thus treated as a finite-range two-body
interaction. For numerical convenience, the sym-
metrical kernel V(r, r') was split into the product of
two functions, the first of which corresponds to the
usual optical potential wherein the local coordinate r
is replaced by a "no@local mean" coordinate "
gr+ r'~, and the second a modifying factor to take
account of the nonlocality,

V(r, r') = U(-,'[r + r'[)H(~r —r')/p) . (120)

The function II involves the range p of the non-
locality and has been taken to be of Gaussian form
with the normalization f H dr' = 1,

II =, , exp — — . 121

The complex optical potential was taken as combi-
nation of a real Woods —Saxon potential with an
imaginary Saxon derivative potential corresponding
to surface absorption,

U = VI1+ exp [(-,'~r+ r'~ —8)/a]}
+ 4tlV'I expl:(llr + r'I)/a'l }

X }1+exp [(Pr + r'))/a') }-'.(122)

On expanding the wave functions lf (r), p(r') and the
kernel V(r, r') in partial waves, the authors obtained
a radial wave equation which could be solved exactly
to obtain scattering phase shifts and, thence, trans-
mission coefFicients or theoretical nuclear cross
sections. The set of nonlocal optical parameters
determined from analysis of experimental angular
distributions for the elastic scattering of 7 MeV and
14.5 MeV neutrons on lead"" was found to give
universally good agreement between theoretical and
experimental cross section, polarization, and strength
function results for other target nuclei ranging from

sc Percy and Buck actually used the form -', ~r~+ —', ~r'~,
which is a fairly good approximation to the above.

5 R. J. Howerton, University of California Report UCRL-
5578, 1961 (unpublished).

52 D. J. Hughes and' R. B. Schwartz, Neutron Cross Sections,
Brookhaven Report BNL-325 (2nd ed. ) (1958).

3f.p'
VL exp, (E —VL) = VNL ~

—2A
(123)

Although a set of local parameters, based in the main
upon those due to Bjorklund and Fernbach, " could
always be found to give good fits to any given set of
experimental data (the "prescription" for the equiva-
lent local neutron optical parameters being
V=48—0.29E'"'v' Wl. = 10 MeV, ro = ro = 1.25F,
a = 0.65 F, a' = 0.47 F), the fits obtained with
the Percy —Buck nonlocal parameters were found
throughout to be at least as good as those for a local
potential (or for the nonlocal potential of Wyatt,
Wills, and Green) and the underlying theoretical
approach is fundamentally more satisfying.

At this stage it may be mentioned that insertion
of the optical-model parameters of Beyster et al.' as
input in computation of transmission coeKcients
yielded values of T ~ which did not agree with those
tabulated. Since others"" using independent pro-
grams corroborate this result (for example, it was
found that for Ti and Fe at E & 2 MeV the main
effect was to render computed values of Tc larger by
10—30% and Ts larger by 20—50% than the listed
values), Beyster penetrabilities cannot be regarded
as internally consistent and have, therefore, not
been used in this paper.

Up to the present, analysis of proton -distributions
has not advanced sufficiently to yield a set of non-
local potential parameters for protons, but the fol-

53 D. M. Van Patter, N. Nath, S. M. Schafroth, S. S. Malik,
and M. A. Rothman, Phys. Rev. 128, 1246 (1962).

s4 E. H. Auerbach (private communication).

&1 to Pb and for other incident energies in the range
0.4—24 MeV when a correction was made for com-
pound-elastic scattering below about 4 MeV. These
parameters come out as

V = 71 MeV, ro ——1.22 F, a = 0.65 F, W = 15

MeV, ro ——1.22 F, c' = 0.47 F, and V,. = 1300

MeV, p = 0.85 F.

The value of p is in good agreement with current
concepts of the range of the two-body force in nuclear
matter. It was determined from two simultaneous
equations (for the two neutron energies 7 and 14.5
MeV) relating the value of the nonlocal potential
depth VNL to that of the real "equivalent local"
potential VL, viz. , that local potential determined by
optical-model search codes empirically to yield the
same elastic angular distribution as the nonlocal
potential. For an energy E, the following approximate
relation holds,
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lowing local potential as proposed by Percy' has
mainly been used in the present calculations: VL,
= 46.7 —0.32E™'+ ZA 'MeV, W'I, = 11 MeV,
fo = To = 1.25F, a = 0.65F, a' = 0.47F.
These parameters were selected on the basis of an
analysis of 35 elastic scattering distributions in the
energy range 9 to 22 MeV for target nuclei ranging
from Al to Au (Z/A' = 4 to 14) and were found also
to give good agreement with experimental polariza-
tion data.

In order to provide comparison with previously
published. correlation analysis which employed a
Preskitt —Alford optical potentiaP' for protons, a few
of the present calculations also based themselves
upon this choice of parameters. The results were
found to be practically identical with those for a
Percy potential. The Preskitt —Alford potential in-
volves volume absorption and is characterized by the
following parameters:

V = 50MeV, 8'= 51VleV, ro = 1.33F, a = 0.4F.
It has been found to give good fits to 43 experimental
elastic distributions for protons ranging from 3.5 to
6.5 MeV incident upon the nuclei V, Cr, Fe, Co, and
has accordingly been used in past correlation analysis
by Seward" for Co and Sheldon" ""for Cr and Fe.

3. Transmission Coefficients

Transmission coefficients, which were required for
evaluation of the r terms in the CN correlation ex-
pression, were obtained for neutron scattering from
tables by Percy and Buck and for proton scattering
from computed scattering amplitudes. A. subroutine
of the code "sAzI Y" which calculates the real and
imaginary parts of the partial-wave elastic scattering
amplitudes G~ ——e'~~ sin K~ for the lth partial wave
was adapted to compute and print out "average"
transmission coefficients Tl directly, where

r, = 4(lm G, —~G, ~') . (124)
Alternatively, if the generalized T&'+' were required,
they were calculated by hand from corresponding
generalized amplitudes G~'+' and G,' ' obtained a,s
output from codes (such as the strong-coupling code)
which took account of spin-orbit interaction.

C. CN Correlation Functions

As preliminary to more extensive coding, a fairly
simple computer program termed ETHEL,"for evalu-
ating the CN correlation function in the scattering
plane (p = 0), was first compiled for l, , l, & 2 and
the normalization W(-', ir, -', z., 0) = 1. Using "aver-

55C. A. Preskitt and W. P. Alford, Phys. Rev. 115, 389
(1959).

age" transmission coe%cients Tl, as input data, it
evaluated the terms ~"' to 7"' with the application
of which it then computed W(-,' z., —,

'
m, 0) using the

expression (67) and stored the latter as norm. It
subsequently computed and printed out for each
value of 8& and 8, from 0' to 180' in 5' steps the
numerical value of W(oi, 02, 0), normalized as a result
of division by the norm. The possibility of checking
systematically each step of the coding and numerical
computation against hand calculations and tabula-
tions rendered this rapid (& —', min) code useful not
only in its own right, but as a standard for checking
others.

In particular, it paved the way for the generalized
CN correlation code "Earcx" which was compiled to
take account of arbitrarily high orbital momenta
when the requisite Tl ' incorporating spin-orbit
interaction had been fed in as output, and permitted
variation of azimuth p as well as of 8& and t4 in arbi-
trary steps. The latter code incorporated the option
of obtaining print-out (or automatic curve plotting)
of either the double-diQ'erential cross section or the
correlation function normalized to unity when 8&

= 82 =-, ~ for given azimuth q. Thereby, use was
made of the basic expression (58); the code not only
determined the permissible sets of parameters and
momenta to be summed over by application of
triangle relations and for each of these evaluated the
requisite r term and 8„„~, etc. , from built-in sub-
routines for calculation of all necessary Racah func-
tions omitting unnecessary repetition, but also made
use of the relations (75) and (80) for computing and
printing out the angular distributions at option either
normalized to unity at 0 = ~ x or absolutely as
differential cross sections. The running time of this
code varied per case according to one's selection of
the maximum orbital momenta and whether or not
one availed oneself of automatic curve plotting facili-
ties. Times ranged from about -', min to over 30 min
per case.

Finally, mention should be made of the code
PENNY which for orbital momenta l&, l& & 2 evalu-

ated CN angular correlations for 8, , 8, = 0' (5') 180'
in the p = i z plane [thus, in particular, the "per-
pendicular correlations" W(0&, -', z., -', n) and W(~~ ir,
0&, -', ir)] from the expression (68), using "average" T &

as input. It also printed out the angular distributions,
calculated from Eqs. (81) and (82), and the total in-
elastic cross section o evaluated from Eq. (88). At
option, the above could be expressed either in
absolute or normalized form. Running time averaged
g min pel' case.

It is important to note that all the above codes
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refer to inelastic scattering to the first level (2+) of
even-even nuclei (g:s. 0+) and that whereas the
internally consistent codes ETHEL and PENNY"

could throughout rigorously be checked against hand
calculations, checking of "Earcx" could be under-
taken only for conclusive results with l1, l2 & 2. For
higher momenta, only tabulation and subroutines
could be tested by fairly thorough spot checks in the
reasonable hope that no extraneous errors enter on
extension of established computer procedures.

6. ANGULAR CORRELATION SURFACES

A concise method of representing information on
the angular variation of the theoretical correlation
function over the entire range of angles at a given
azimuth is in the form of a correlation surface, ""
this being a contour map of equivalued 8" in terms
of the emission angles 8~ and 8p at a given p, nor-
malized for convenience of comparison to W = 1 at
8& ——8, = s z.. Correlation curves for given counter
settings can directly be obtained from the requisite
sections in the surface, even such curves as corre-
spond to simultaneous displacement of nucleon and
y-counter settings. For example, one might select,
from such surfaces, sequences of counter settings
corresponding to loci of steepest variation or alterna-
tively follow a contour line to test constancy in the
correlation function.

The correlation surfaces which are here depicted
provide for the even —even nuclei Mg" and Fe" an
over-all picture of correlation behavior in the scat-
tering plane (q = 0) for

(a) CN mechanism as one incorporates higher
partial waves. (See Figs. 7 to 9.)

(b) DI mechanism as one progresses from the
plane-wave approximation to distorted-wave
calculations, without and with spin-Qip con-
siderations. (See Figs. 10 to 12.)

The first example of CN surfaces concerns the
Mg'4(n, n'y) Q = —1.868 MeV reaction at E„=3.35
MeVl.b. The radical alteration in the contours on
going from the l ..= 1 correlation to higher partial
waves is a feature common to all investigated CN
correlations, whereas thereafter the change in over-
all appearance is less drastic, so that one might infer
that the l ..= 3 surface represents essentially the
ultimate corre1ation behavior. The angular depend-
ence of sections in this surface for the three fixed
y-counter settings 8& = 25', 35', 45 have been drawn
in Fig. 18 for comparison with the measurements of
Brugger, Niewodniczanski, and Steiger. " It is per-

~6 H. R. Brugger, T. Niewodniczanski, and M. P. Steiger,
Helv. Phys. Acta 35, 3 (1962).

haps of interest to compare the t & 2 surface with
those (the first of such contour representations)
published for the slightly higher incident energy
E„=3.45 MeV, by Pretre, Brugger, and Steiger
(Fig. 2 of Ref. 22), wherein the difference from the
present results is in the main due to the present
exclusion of mixed-j interference terms, which leads
to a "smoothing-out" of the correlation function (see
Fig. 1 of Ref. 14). The present peak-to-valley ratio
is 2.2, whereas that for the surface of Pretre et al.
exceeds 2.4.

In view of the evidence which is presented in Secs.
7 and 8, the nucleus Mg" would seem to be too light
for analysis on the basis of the statistical model (ihe
continuum assumption of random phase is unlikely
to be fulfilled), whereas good agreement between
theory and experiment obtains for the heavier nuclei
in the iron region. It is, therefore, probably more
meaningful to present correlation results for the
reaction Fe"(nn p)q —p, s4p M v as shown in Fig. 8
for neutron scattering at 2.05 MeVI.b. In this case,
the appearance of the surface does not tend to
"stabilize" as one progresses to higher l values, and
again the unique form of the l & 1 surface stands out.
The present l & 2 surface may be compared with
that previously published by Sheldon (Fig. 3 of
Ref. 13) to illustrate the effect of exclusion of mixed-j
interferences and selection of a diff'erent optical
model. The former involves generalized transmission
coefficients TI+' for a Percy —Buck surface-absorption
potential, whereas the latter used Beyster T& corre-
sponding to volume absorption.

To illustrate over-all CN correlation behavior for
proton scattering, the group of surfaces shown in
Fig. 9 involve the Fe"(p,p'p)q = —p. s4p I v reaction at
E„=4.22 MeV, . .. A.gain the marked transition
from l & 1 to higher orbital momenta stands out,
and again the surfaces do not tend to "stabilize" in
appearance as the limiting momenta are increased,
but rather to "oscillate" between forms character-
istic of even-/ .„and odd-l ..cutoff momenta. Sec-
tions in these surfaces for 8, = 90' and 130' are shown
in Fig. 49.

The manner in which the resultant correlation
surface for momenta l & 2 ensues from composition
of the resonance correlation surfaces for various levels
J&, x& of the compound nucleus has been depicted in
Ref. 35; unfortunately, the over-all surface depicted
therein had been erroneously taken over from an
earlier publication" in which exclusion of mixed-j
interference terms from the correlation calculation
had not been recognized and, therefore, divers in
appearance from the l & 2 surface shown here. In
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the present analysis, as before, a Preskitt —Alford
volume-absorption optical potential yielding "mean"
T~ independent of spin-orbit interaction is em-
ployed. Computations based upon a Percy potential
for protons were found to yield almost identical re-
sults, which have, therefore, not been reproduced
here.

with

k = (1 —E*p 'E ') (127)

where E* is the energy of the erst excited level of the
target nucleus, E the c.m. energy of the incident
nucleon, and p the reduced mass of the system. Thus,
for e, = —,'~,

180 8."= tan '(—1/k)

and from Eq. (125),

(128)

W(-,'m, —',m, ~) = Q sin 28a"' ——1, (129)

whence the desired normalization ensues on setting

Q = (k + 1) /4k'. (180)
E
—90

CU
Further, since 8~ ——0 when 8&

——0 the correlation
function for the latter special case takes the form

0 90 180
8, (c.m. ), deg

Fro. 10. Plane-wave DI correlation surface for the Ni58

(y,p'y) reaction (Q = —1.45 MeV) at, 5.73 MeV, in the
q = 0'plane.

tan 8a = (eos 8, —k)
' sin 8, (126)

Correlation surfaces for the DI mechanism display
markedly diferent appearance; the three surfaces
shown here refer to the Ni (p,p'y) o = &.4».v reaction
at E„=5.78 MeV. and contrast the correlation
characteristics of the simple plane-wave DI theory
with those for DWDI theories, in each instance re-
ferred to the y = 0 plane and based upon a modified
Percy potential (V = 44 MeV, W' = ll MeV, rc
= 1.85 F, a = 0.65 I», ro = 1.25 F, a' = 0.47 F) due
to Satchler. The plane-wave surface, Fig. 10, consists
essentially of suitably displaced curves of the classi-
cal laboratory recoil angle 8~ in function of the scat-
tering angle 8& (the basic curve is that for W = 0),
based upon the following reasoning: The PWDI
correlation function is of the form

W (81 82»r) = Q sin' 2 (82 —8&) . (125)

Hence, in the y = ~ plane, W vanishes when
82 = 9~. Accordingly, the plot of 82 = 8& against 8&

represents the 8' = 0 contour in this plane. To
normalize the surface to unity at the center, it
suKces to note that

W(0,82' ) = Q sin' 28, . (181)

From this relation with Q given by Eq. (180), the
values of 82 for given values of W can be determined.
These then give the intercepts on the ordinate for
contours of W in steps of AW = 0.1.The pattern for
the lower half-plane, 8~ ——0 to -', m is identical with
that for the upper, 8s = —,

'
n to m in accordance with

the symmetry

W(8&,82, m ) = W(8&, —,'m + 82,m) . (182)

From the PEDI surface in the q = x plane, that
for the y = 0 plane then follows on inversion since

W(8,8,~) = W(8, m —8,0) . (188)

W(8„82,~) = P + Q sin' 2(8, —8')

+ 8 sin (82 —8 ) (184)

It should be pointed out that by omitting this final
step, Pretre et cl."inadvertently referred their PWDI
surface for the Fe"(n,n'y) reaction at E. = 8.80
MeV, to the y = m plane.

The DI surface in Fig. 11 has been constructed
from computation with codes 8ALLY and MABI-
Lvx" assuming spin-flip to be zero for the reaction
Ni"(p, p'y) at E, = 5.78 MeV. . There is an ap-
preciable increase in the peak-to-valley ratio and a
radically different dependence upon 8&, especially in
the neighborhood of 8i = —', ~. The identical appear-
ance of the upper half-plane to the lower half-plane
illustrates a characteristic DI symmetry which could
furnish information on the presence of spin-flip in a
given scattering process.

The general expression
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FIG. 11.DWDI surface without spin-flip for the Niss(p, p'y)
reaction at 5.73 MeV, , calculated using a modified Percy
proton potential.

DWDI with spin-flip. The study of such symmetries
as an experimental means of identifying the presence
of spin-Rip is, however, made diS.cult by the small
magnitude of the asymmetry, which can be seen
either from the DWDI correlation curves in Sec. 7
or the correlation surface for DWDI with a constant
relative spin-Rip intensity, Fig. 12. The normaliza-
tion in Figs. 11 and 12 has been effected upon the
respective DWDI correlation functions and not upon
the absolute double-differential cross section since
the latter peaks strongly in the forward scattering
direction under the inhuence of the angular distri-
bution factor. As already discussed, the assumption
that y does not change with 0& is possibly unrealistic,
but for illustration the reasonable constant magni-
tude (J = 0.4 has been chosen for the Niss(p, p'y) re-
action at E„=5.73 MeV. to show the over-all
in8uence of spin-Rip upon the correlation function.
Not only do the left and right half-planes differ [as
is the case with all DI surfaces, since W(8„8,, 0)
W W(-', s + 8i, 8s, 0) W W((r —8i, 8s, 0)j, but also

is numerically different from that with 8& replaced by
s K + 8s, viz. )

W(8„8.+ -', ~,~) = (P + 8) + Q sin' 2(8, —8')

—8 sin' (8, —8") . (135)

Invariance for 8s ~-,'(r + 8s obtains only when 8
= 0 (i.e., DWDI toithout spin-fhp) or when P = 8
= 0 (plane-wave DI), but not in the general case of

the upper and lower half-planes [W(8, , 8, , 0) & W(8„
—', s. + 8&, 0) & W(8&, (r —8s, 0)]. The peak-to-valley
ratio is reduced by the inclusion of spin-Hip; compari-
son of Figs. 11 and 12 shows that the presence of
spin-Hip reduces also the amplitude of the 02 de-
pendence of the correlation function. Because of the
steepness of the 0I dependence around 0& ——-', ~ the
contour steps there had to be increased to Ag = 0.2
and are shown dashed; the shape of a further contour
for 8' = 1.2 lying between 0& ——85' and 90' could
not be established precisely from the computer out-
put, and it has, therefore, been omitted.
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Fzo. 12. Inhuence of incluaion of spin-Hip of relative in-
tensity V = 0.4 for the Nim(p, p'y) reaction at 5.73 MeV, in
the p = 0' plane. For representational convenience the
normalization in Figs. 11 and 12 to unity at OI = 82 = 90
has been effected upon the appropriate correlation function
[expression (93)] rather than upon the double-differential
cross section [expressions (108) and (112)], since the latter
peaks strongly at forward scattering angles 8&.

potential nor in the statistical assumption. Indeed,
systematic theoretical analysis indicates that the
latter becomes valid for incident energies around 6
MeV only for target nuclei with A & 40. Of the tar-
get nuclei examined in this section, viz. , Mg", Si",

7. ANGULAR CORRELATION ANALYSIS FOR
INELASTIC NUCLEON SCATTERING

Measurements of the correlation function for in-
elastic neutron and proton scattering have been pub-
lished for the low and medium energy range for nuclei
ranging from Li' to Ni" (preliminary results exist
also for proton scattering on the isotopes Zn" 66"

by the Zurich group). No analysis has here been
attempted for elements lighter than Mg" since one
can neither feel confidence in the choice of optical
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8" Ti" Cr" Fe", Ni~" Zn""",good CNtheoreti-
cal fits to measured correlations could be attained
only for the nuclei Ti" and beyond, the quality of fit
improving with increasing mass number. In many
cases, D%DI correlation curves have also been in-
cluded in the figures for comparison, but in no in-
stance were the latter in satisfactory agreement with
the experimental angular dependence. For the fairly
low incident energies considered here, the absolute
DWDI double-differential cross section proved to
be far smaller in magnitude than that for a CN

- mechanism. Except in rare instances, experimentally
measured coincidences have not been expressed in
publications as absolute double-differential cross
sections; in the present analysis they have, therefore,
been normalized arbitrarily. For comparison with
the theoretical curves, it is, therefore, necessary to
examine relative slopes and amplitudes, and also
positions of maxima and minima to establish the
extent of agreement between theory and experiment.
Even where the double-differential cross section has
been measured absolutely, the error limits are so
much larger than otherwise that direct qualitative
comparison is still somewhat inconclusive.

For each target element in the subsections which
follow is given a list of the experimental work ana-
lyzed, arranged in order of increasing incident energy.
Some purely theoretical curves are also included to
illustrate such behavior as the azimuthal dependence
or the l dependence of the CN correlation function,
and combination of CN + DI characteristics.

With the exception of C", on which some early
coincidence measurements were undertaken" ~"but
which falls outside the purview of the present analy-
sis, the nucleus Mg" represents the target on which
the first correlation investigations were carried out,
both for neutron" and for proton" scattering. The
neutron studies by Brugger et al. of the Zurich group
at 3.35 MeV, (=3.5 MeV|.b) appeared to provide
remarkably good substantiation of the predictions of
statistical CN theory. However, at that time, the
latter was evaluated with inclusion of mixed-j inter-
ference terms and the use of a numerically incorrect
84&4 term. On recalculating the correlation function
for the present analysis using a Percy —Buck potential
in place of the questionable Beyster potential then
employed, the 8& angular dependence was found to
be drastically diferent and to yield no agreement
with the experimental points. The tendency for the
double-differential cross section to increase above
0& ———,

' ~, particularly when higher partial waves are
taken into account, as shown in Fig. 13, contrasts
the trend of Brugger's measurements. On the other
hand, later neutron measurements to examine the
8& dependence of the correlation by Niewodniczanski
and Steiger" at 3.5 MeV, which corresponds with a
valley in the excitation function for this reaction,
yielded results in quite good agreement with CN
theory, as shown in Fig. 14. A particular feature of
these measurements lies in the selection of supple-
mentary angles for study of the CN correlation
symmetry

A. Mg'4, Q = —1.368 MeV

E(MeV)ab st

8.5
8.5

5.41

n 85' and 145'
50' and 180'

p 45',90,120'

6.2 p 70,90',120'
6.66 y 45',75', 105'
7.01 p 45',60',90',

185'

Authors

25,85',45 Brugger et alP6
Niewodniczanski
and Steiger~7
Lackner et cl.58

Seward23
Lackner et al.58

Seward~3
Seward23

7.8

10.7 p 80',60',90
(120 i150 )

p 80',42.5'
70',95', 120'
150'

80',90' Gove and
Hed gran»
Braid et al.45 46

Yoshiki60

» T. Niewodniczanski and M. P. Steiger, in Proceedings of
the International Symposium on Direct Interactions and
Nuclear Reaction Mechanisms, Padua, 1962 (to be published)
and private communication.

» H. A. Lackner, G. F. Dell, and H. J. Hausman, Phys.
Rev. 114, 560 (1959).

'9 H. E. Gove and A. Hedgran, Phys. Rev. 86, 574 (1952).
sc H. Yoshiki, Phys. Rev. 117, 776 (1960).

W(8i,8s,0) = W(s —8, ,z. —8s,0), (136)

which the results did not quite satisfactorily verify,
probably because of the inapplicability of the sta-
tistical assumption. Whereas each individual set of
results follows the theoretical trend very closely, the
use of a single norm to normalize all four sets causes
the points for forward neutron angles 0& to lie too
high, and those for backward angles too low. The
fact that for a pair of supplementary angles, the
points lying closest to 82 ——-,'~ do not even approxi-
mately agree in numerical magnitude may point to a
systematic experimental error. On the other hand, if
the discrepancy is valid —and it occurs also for Fe"
(n,n'y) correlation measurements at E = 2.05
MeV~, b (see Figs. 44, 45, 46), albeit in smaller measure—a partial breakdown of the pure CN theory is indi-

6& R. B. Theus, A. H. Aitken, and L. A. Beach, Bull. Am.
Phys. Soc. 5, 45 (1960).

62G. Deconninck and A. Martegani, Nucl. Phys. 21, 88
(1960).

63R. Sherr and W. F. Hornyak, Bull. Am. Phys. Soc. 1,
197 (1956).
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cited, a consequence either of invalidity of the ran-
dom-phase hypothesis or of interference between CN
and DI mechanisms. It should also be noted that for
Mg" the diA'erential cross sections (especially for the
DI mechanism) change very markedly with energy
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cal correlation results for the Mgs4(n, n'y) reaction (Q = —1.868
MeV) at 8.5 MeVI, b. The points as measured by Niewodnic-
zanski and Steiger (Ref. 57) have been normalized by a single
factor for all four curves.
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Fro. 13. Comparison of the HI dependence of experimental
results by Brugger et al. (Ref. 56) for inelastic neutron scat-
tering on Mg24 at 3.35 MeV, with predictions of CN theory
for Og = 25', 35', 45'. e =120,$ =180

'I

in this region, suggesting that the make-up of the
compound system changes rather abruptly with
changes in incident energy, the resultant scattering
mechanism being a highly energy-dependent impure
CN process.

Proton correlation studies upon Mg'4 have been
made a,t energies of 5.41 MeV and upwa, rd. At 5.4
MeV, two groups carried out measurements which
have been combined in Pig. 15, and compared with

0
0 30 60 90 120

e~ (c.m. ), deg

150 180

FIG. 15. Analysis of the correlation results of Lackner et al.
(Ref. 58) and of Seward (Ref. 23) for Mg~4(p, p'y) at E„=5.4
MeV&, b. Neither CN nor DI correlation curves yield a satis-
factory fit.
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the predictions of ( N and DWDI theory (without
spin-fhp). It is clear that neither theory offers a good
fit, though the measurements themselves appear to
be quite consistent.

Mg (p, p y) Ep 6 2MeVL4g

The measurements at 7.3 MeV by Gove and Hedg-
ran, as depicted in Fig. 18, are interesting in that they
represent the pioneer (1952) experimental studies in
the correlation field in which the 8& dependence of the
correlation was studied. Results are unfortunately
too sparse and too scattered for any decisive con-
clusions to be drawn.

Attention has already been drawn to the measure-
ments of Braid et al. at 10.7 MeV. As can be seen
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FIG. 16. Analysis of correlation results for Mg24
(p,p'p) at 6.2 MeV&, b by Lackner e( al. (Ref. 58),
wherein the arbitrarily normalized experimental
points appear to show some accord with DWDI
theoretical predictions at 81 = 70 and 90'. )(2

A further set of measurements by Lackner et ct. at
6.2 MeV, illustrated in Fig. 16, appears to show some
aKnity with the DWDI mechanism, as do also meas-
urements at 6.66 MeV by Seward (Fig. 17). Particu-
larly for the scattering angle 01 ——75', the D%DI
curve with spin-Hip intensity y = 0.4 has a structure
closely resembling that of the experimental data,
though at the other angles, 01 = 45' and 105' the
fit is appreciably poorer. This may be compared with
Fig. 19, which contrasts theoretical and experimental
results for an incident energy of 10.7 MeV and where-
in a fair measure of agreement obtains for 0, = 90'
but worsens for lower 0&.

30 60 90 120
8 ~ ( c.m. ), de g

) DWDI
(30x W)

y=o
150 180

Fro. 17. Correlation results for Mgs4(p, p'7) at 6.66 MeV~. b
by Seward (Ref. 28). Again the structure of the observed ss
dependence is rather more in keeping with predominance of a
DI mechanism.

from Fig. 19, the results suggest an impure DWDI
mechanism; the theoretical curves marked "D%DI
(c)" were computed using parameters from the
strong-coupling code, which includes spin-orbit inter-
action.
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Finally, the results of Yoshiki at 16.6 MeV, de-
picted in Fig. 20 suggest a DWDI mechanism, but
again, even at this relatively high incident energy,
display very marked deviation from theoretical
predictions. Yoshiki also took some measurements to
test symmetry characteristics, viz. ,

The lack of agreement between theory and experi-
ment found for Mg" obtains also for Si", a target
nucleus for which to date no neutron scattering cor-
relation results exist and for which no investigations
of the 0& dependence of the correlation function have
been undertaken. Published data is confined to a

W(81)82)0) = W(8&,s. —8s,s.) = W(8„8s —s.,0),
(137)
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Fro. 18. Results for Mg24(p, p'v) at 7.3 MeV&, b by Gove and
Hedgran (Ref. 59) compared with theoretical CN curves
at 8~ = 30' and 90'.

and these are shown in Fig. 21. The measurements
tend to display such symmetry, but they are not in
concord with theoretical correlation curves.

30 60

y=o. 4(sxw)

90
82 (c.m.), deg

120 150 180

B. Si", Q = —1.'78 MeV

Es(MeV) &,b X

5.8 p
5.86 p
6.2 p63 p
6.5 p
6.5(7.0'?) p
6.7 p
694 p
7.0 p

60',90'
45',90', 135'
90'
60',90'
60'
60',90',120,140'
37',60',90', 120'
45',90', 135
37',60',90', 120'

Authors

Bowsher et al.6

Taketani and Alford~4
Bowsher et al.64

Bowsher et al.64

Bowsher et al.64

Hausman et al. '"

Bowsher et al.
Taketani and Alford24
Bowsher et al.6

64 H. F. Bowsher, G. F. Dell, and H. J. Hausman, Phys.
Rev. 121, 1504 (1961).

6~ H. J. Hausman, G. F. Dell, and H. F. Bowsher, Phys.
Rev. 118, 1237 (1960).

Fro. 19.CN, DWDI (with and without spin-flip) and strong-
coupling DI (with and without spin-flip) curves compared with
the experimental results of Braid et al (Ref. 45) at Hq = 3.0',
60' and 90' for the Mg24(p, p'y) reaction at 10.7 MeV»b. The
01 = 30' analysis shows the strong structural similarity of
normal DWDI curves to those employing the strong-coupling
approach.

rather narrow energy region, within which results of
the Rochester group under Alford agree quite closely
with compatible results of the Ohio group under
Hausman. The latter data are fairly extensive and to
some extent confusing. For ease of comparison in the
present analysis, data have been combined in three
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groups, the 6rst of which collates the 5.8 MeVl. b and
5.86 MeV~. b (=5.66 MeV. , ) measurements, the
second the 6.2-, 6.3-, and 6.5-MeV measurements,
and the third the 6.7-, 6.94-MeV&.b (=6.7 MeV, ),
and 7.0-MeV results, .these being compared, respec-
tively, with CN theoretical predictions for 5.86
MeV, 6.5 MeV, and 6.9 MeVl, b including partial
waves up to t & 6. A point of discrepancy exists in
that results published by Hausman et a/. for an energy

1.5
Mg (p, p'y); E =16.6 MeVLAB

8, =42 5' /=0'

The Ohio group employed three different Si2s tar-
gets in form of quartz fibres; the last-mentioned re-
sults were obtained with Target 1. These differ
qualitatively from results using Target 2 at the same
energy of 7.0 MeV, but concur with the single set

1.5

1.0

Mq (p p y); Ep=16o6 Mev~»

/&
= 30', )=18

l (C) y=0.4

0.5

0.5
1.5

8 =120,$=0

Dwol (c) y=o.4 ru

1.0 y=o 4

o.5
Cu

Ch

CD

4J'.
0

8 =7o y=180
1

0.5

2.0

1.0

I I

8 = 95 /=180

1.0

/

"&/

150 /=0'

(y= 0.4

0.5

-160 -120 -80 -40 0 40 80 120 160

82 (C.m.), deg

30 60 90
8& (c.m.), deg

120 150 180

FIG. 20. Strong-coupling DI analysis (with spin-Hip and
spin-orbit interaction) of Yoshiki s results {Ref. 60) for the
Mg24(p, p'y) reaction at 16.6 MeVl b. The solid curves are
correlation functions of the form (118).

for 6.5 MeV have been reproduced by Bowsher et

at. for an energy of 7.0 MeV—from the text of the
latter paper one infers the higher energy to be ap-
propriate and, hence, these data have been incorpo-
rated in the t4rd rather than the second group.

FIG. 21. Symmetry properties of the DI correlation function
for Mg~4(p, p'y) at 16.6 MeV: the points represent the measure-
ments of Yoshiki (Ref. 60) and the curves the (normalized)
correlation function in the p = 0' plane for a Percy potential
(V = 46 MeV, rc = 1.25 F, a = 0.65 F, W' = 10.5 MeV,
ro' ——1.25 F, a' = 0.47 F).

(0, = 60') of measurements for Target 3 at that
energy. Apart from a further set of results at 8~ = 60'
for E„=6.5 MeV with Target 3, all other measure-
ments were taken using Target 2. Data from each
of the various targets have been graphically distin-
guished in the present analysis and normalized
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Si (P,P'y): E, = 5.8MeV„„
I I

~ = TAKETANI and ALFORD
I

I
o= BO'IhtSHER et al (Target 2)

I I

8 =45' y=l80

4
V)

I

8, =60, /=180'

E

b42

arbitrarily in each instance for purpose of com-
parison.

Figure 22 shows the degree of consistency between
measurements of the Rochester and Ohio groups at
5.8 MeV and at the same time the marked disparity
with theoretical predictions. It will further be noted
that data for the supplementary angles 0& ——45' and
135' do not display reHection symmetry.

in the present analysis, and may be contrasted with
the results obtained by the Zurich neutron group for
Mg" and Fe" (Figs. 14 and 44—46) which have in
each instance been multiplied by a single over-all
norm.

In F&ig. 24, the same norm has been employed for
the 6.7-MeV. results of the Rochester group at the
supplementary angles 0&

——45' and 135', of which
those for 135' would appear to be in moderately good
agreement with theory. Those at 45' are, however,
inconsistent with theory and do not display the re-
quisite reHection symmetry, neither the amplitudes
nor the positions of maxima and minima agree upon
reHection. The points for 01 ——90' were multiplied
by a slightly larger factor in order to centralize them
about the theoretical curve; use of the common norm
would have reduced them by four-fifths so that, for
example, the point for 8& ——97' would have lain just
below the theoretical curve. The experimental peak
around 0& = 90' is in complete contradiction to

SI) 0 8, =90,P= I80~I 6

4 sp ~

Sl (p~ p'y) ' Ei) = 6 4 MeVI. As

I I

+= Bowsher, E,= 6.5 MeV„As(Targets
I I

"= Bowsher, E,= 6.5 Mev, »(Target5

40

I
Ie=l35 @=I8O

e

4 ~

80 I20 I60
8, (c.m. ),deg X

~ ~

FxG. 22. Comparison of the experimental results of the
Rochester (Ref. 24) and Ohio (Ref. 64) groups for the Si2s
(p,p'T) reaction (Q = —1.78 MeV) at 5.8 MeV~, b with the
predicted Hg dependence of the CN double-differential cross
section.

8 =60 III)= l80

E e

~ = Bo&sher, E;-6.3 MeV, » e 90+ I80,I

I

Results at the intermediate energies around 6.4
MeV as depicted for Targets 2 and 3 in Fig. 23 are
in gross disaccord with theory, though reasonably
consistent in their over-all trend. The solid points
representing data for 6.3 MeV lie appreciably below
the others for 0& = 60' because of their having been
normalized by the same factor as was used for the
6.8-MeV results at 8~ = 90' rather than having been
adjusted separately. Thereby they illustrate the fact
that over-all agreement between separate sets of
data does not obtain when the batch of data for a
given target and energy is treated as an entity and
multiplied by a common norm; rather, it is necessary
to select a suitable norm separately for each ensemble
of points for any given angle, target, and energy.
This rather unsatisfactory procedure has, according-
ly, had to be applied to the results of the Ohio group

0 o

0o
40

o=Bowsher E = 6.2MeV, „,
I

P LAB

80 I20 I60
8, (c.m. ),deg

Fzc. 23. Analysis of the correlation results of Bowsher et
at. (Ref. 64) around E~ = 6.4 MeV1 b for proton scattering on
Si28.

theory, a feature repeated by the results of Bowsher
et at. for E&„= 6.7 and 7.0 MeV which are depicted
in Iig. 25.

Bowsher et al. claim that the symmetry of the
correlation function about 0& ——90' is evidence of a
CN mechanism, a conclusion which Sheldon ha, s
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shown" to be only roughly valid and which in any
case is inapplicable to their results since the above
symmetry condition requires a min~mum and not a
peak to occur in the correlation function at 0& ——90'.
Indeed, the statement of Bowsher et al. that the
"6.5-MeV" results of Hausman et at. (here included
in the 7-MeV data of Fig. 25) can, for all ei, be fitted
by a function of the form

W(t)1 82,s ) = P + Q sin' 2 (f)2 —90') (138)

is in disaccord with the facts. The symmetry angle
lies at 9' = 47' but not 90'. The postulation of a
CN resonance would not yield correlation functions

8, = 45, y=t80

energies and, therefore, permits the DI mechanism
to supercede there), is thus untenable. A noteworthy,
albeit confusing, feature of their results is the fact
that measurements taken at the same energy but
with a different target (No. 2) failed to display the
"90' symmetry" —the symmetry, in fact, varied

Si" (p,p'y): Ep= 6.9 MeVgAs

8, = 37,P = 180
4

t
'

e 6[~
3 0 o

o

o =7.0MeV, Target2
' =e.7 Mev, r«ges

I I

4 8, =6O y = 18O'1 /~6

2 a =7.0MeV, Target 3

I

I
L
CD

C)
E

Si ( p, p'y ); E&=6.7MeVc ~

ol 3
li

2

bQb~
%g

'b
3

0
0

E

8I,=90', g = 180'
I

p e~ g I I ~ ~ gs
0

I

8)=120, g= 180
~ =70 MeV, Target I (=Housman 6.5MeV)

I

0

8(= 140 p= 180o
I

40 80 12.0
@(c.m.),deg

I60

8 = 90 $=180o
Fre. 25. Experimental results (arbi-

trarily normalized} of the Ohio group
(Refs. 64, 65) around 6.9 MeVIab for
the Siss(p, p'y) reaction contrasted with
the theoretical CN 82 dependence of
the double-differential cross section.

3

8& =135; /=180'

0
0 30 60 90 120

8& (c.m. ), deg

150 180

FrG. 24. Comparison between the results of the Rochester
group (Ref. 24) for 6.7-MeV, , protons scattered on Si2s and
the predictions of CN theory.

having a 02 dependence similar to that of the experi-
mental data. The conclusion of these authors that
one can infer a CN mechanism proceeding by way of
a resonance due to a predominant set of CN levels
which become populated by 7-MeV protons (a
resonance which does not occur at the lower incident

with 0& (the symmetry angle 0' decreased as ()& went
from 37' to 90' and then increased for 8& = 120')—
while the single set of observations with Target 3 for
this energy at 01 = 60' again revealed no "90' sym-
metry. "These differences of behavior were attributed
by the authors to differences in beam energy strag-
gling for targets of apparently different thicknesses,
although no further experimental evidence to vindi-
cate this claim was presented. Their final statement
that the number of coincidences for "90' symmetric"
correlation measurements was approximately double
that for the remaining runs would be in rough quanti-
tative agreement with the ratio of theoretical double-
differential cross sections for the CN and DI mecha-
nisms. The theoretical ratio proves to be appreciably
larger; for example, at 7 MeV and 01 = 60, a maxi-
mum of the D%DI double-differential cross section
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occurs at 8& = 76' and has the value 1.08 mb sr '

sr '. The corresponding theoretical CN double-
differential cross section is 2.84 mb sr ' sr ', and is,
thus, roughly 2.6 times as large as for DWDI. In
general, the theoretical ratio is larger than this, how-

ever, even when taken at the maxima of the DWDI
correlation, as can be seen from Table II. From
comparison of 0' from Table II with the experimental
results in Fig. 25, it is evident that only for 0& = 120'
is there fair agreement between experimental and
theoretical values of 0& at which the correlation peaks;
however. , the amplitude of the experimental correla-
tion (= —4s) is very much less than that predicted
theoretically (=130 for y = 0). One cannot, there-
fore, obtain a fit to any of the results of Bowsher
et Ol. with the present pure DWDI approach, for
which reason the DWDI curves have not been in-
cluded in Fig. 25. Examination of the experimental
results for 6.7 and 7.0 MeV using Target 2, further-
more reveals that the experimental symmetry angle
decreases with increasing 8&, whereas the theoretical
0' increases appreciably; at 01 = 60' there is also a
rather striking discontinuity in the es dependence of
the experimental points between 0&

——70' and 80'
which does not, of course, occur for the theoretical
correlation function. One may, thus, conclude that
neither of the present theoretical CN or DI ap-
proaches can be applied to the measured Si" cor-
relation functions.

2.0

1.0

e =60
I

~ II )c2

0
3.0

2.0

(P, P'yLl; &&= 5.7 MeVLAe

8 =90' /=180'I

~ ~

It
1,0

l~

0

o~

o 0
Pc20

3.0

2.0

1.0

0
3.0

2.0

1.0

4o ~.'

e =120', )=180'
I

~ ~ ~
II

~ = HULUBEI er' t)/
o = TAKETANi AND ALFORD

&6

~g(s

Xo correlation investigations have been under-
taken for 8"with neutrons, nor is any data available
on the 01 dependence of the correlation function.
However the proton scattering studies tabulated
above yield results which begin to show a measure
of agreement with the predictions of CN theory.

C. S", Q = —2.25 MeV
0

0 30 60 90 120

8& (c.m. ), deg

150 'I80

Ep(MeV)( b X Authors

5.7
5.8
6.02
6.2
6.34
6.5

p 60',90', 120'
p 90',135'
p 60',90', 120,150'
p 60')90', 120'
p 60')90',120'
I 60',90', 120'

Hulubei et al.6

Taketani and Alford~4
Hulubei et a(.66

Hulubei et aL66
Hulubei et al.66

Hausman et al.65

66H. Hulubei, N. Martalogu, J. Frantz, M. Ivascu, N.
Scintei, A. Berinde, and I. Neamu, Phys. Rev. 126, 2174
(1962).

Fro. 26. Comparison for the S»(p, p'y) reaction (Q = —2.25
MeV) around 5.7 MeVl b of the arbitrarily normalized experi-
mental correlation results of the Bucharest (Ref. 66) and
Rochester (Ref. 24) groups with the eq dependence of the CN
double-diA'erential cross section.

In view of the proximity of the energies of 5.7 and
5.8 MeV, the results of Hulubei et al. and Taketani
and Alford have been combined in Fig. 26 and com-
pared with the theoretical double-differential cross

TABLE II. Minimum theoretical ratio of CN to DWDI (y = 0) double-differential cross sections for Si s(p, p ~) at Ep = 6.9
MeVl b-

35'
60'
90

120
140'

103m

5.0415
1.1767
1.0525
7.8481
0.0897

200
31'
48'
53'
54'

t4(DWDI = max)=0'+45

65'
76'
88'
98'
99o

Corresponding

DWDI
dQIdQ~ y = 0

(mb sr r sr &)

0.753
1.078
0.909
0.363
0.106

Corresponding
(PE

dQ1dQg CN

(mb sr r sr r)

2.78
2.63
2.68
3.40
3.57

Minimum
Ratio
CN

DWDI

3.69
2.44
2.95
9.37

38.68
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3.0

2.0

8 =60 y=180

1.0

$3 (p, p'y); P =6.02 MeVLae

sections at 5.75 MeV. The results of the two groups
appear to be mutually compatible and, although, in
but imperfect agreement with CN theory, they could
not be fitted with absolutely computed DI curves.
The sets of results for the supplementary angles
0& = 60' and 120 roughly substantiate the sym-
metry property W(8iA z) W(w t)1 z 02 w) ~

However, here this does not furnish a distinguishing
criterion between CN and DI mechanisms since study
of correlation surfaces reveals this symmetry to be
obeyed strictly by CN theory and approximately by
DI theory —suKciently closely to vitiate its use for
diagnosis when experimental results display fairly
random scatter (as is the case here) and when the
latter are expressed as relative (normalized) rather
than absolute magnitudes. The theoretical DWDI

3.0
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2.0 ~/~52

1.0
81 = 60' $ =180'
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32I' I''I

I

~ /&6

1.0

supplementary angles Hi = 60' and 120' which in the
present case show less randomness than at the
previous energy. Measurements at 6.2 and 6.34 MeV
as depicted in Figs. 28 and 29 (wherein they have

0
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0 40

81=120, /=180
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8 (c,m. ), deg

120 160

1.0
I

0
E

3.0
Cu

Cy
Al

2.O
'b

8 = 120, $ =180

2.0

p (6

~ „~
Ii

&~ ~ Ii

Fro. 28. Correlation analysis for Ssz(p, p'p) at 6.2 MeVi. b'.
the normalized points of Hulubei et at. (Ref. 66) show fair
agreement with the CN theoretical curves.
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FIG. 27. Correlation results of the Bucharest group (Ref.
66) for S»(p, p'~) at 6.02 MeV~, b, in fair agreement with the
CN correlation curves for a Percy potential. 2.0

g (s
Jc2

correlation functions approximately display the
above symmetry, whereas of course the double-
differential cross sections do not. Figure 27 again
shows the fit between experiment and CN theory
to be imperfect, but not unreasonable; the aforemen-
tioned symmetry holds for measurements at the

1.0
8 =120', $ = 180'

0 40 80
8~ (c.m. ), deg

120 160

Fro. 29. Correlation analysis for 832(p, p'y) at 6.34 MeVi b.
the normalized points of Hulubei et al. (Ref. 66) show fair
agreement with the CN theoretical curves.
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been normalized by the same norm throughout)
show very similar |I!2 dependence, as would be expect-
ed, and are in tolerable agreement with the predic-
tions of CN theory. The independent correlation
measurements of Hausman et al. at 6.5 MeV, as
shown in Fig. 30, are in slightly poorer agreement
with theory; the results for supplementary angles
OI ——60' and 120' display discrepancies between the
respective symmetry angles, though in their general
form an approximate reBective symmetry is evident.

3.0

2.0

1.0

I
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I

4.0
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3.0
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8& =90', @=180
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! ! I
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0
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8& (c.ffi. ), deg

FIG. 31. Comparison between experimental results of the
Rochester group (Ref. 24) for inelastic proton scattering on
Ti4]] (Q = —0.987 MeV) at 5.72 MeV, .b], and the theoretical
CN curves, which yield a fairly good fit.

40 120 160

particularly for the higher energy, whereas the CN
curves shown yield a not unacceptable fit. This evi-
dence, taken in conjunction with estimates of the
CN level density a,s presented in Sec. 8 (Table III)
supports the warrancy of assuming the continuum
hypothesis to be applicable to nuclei with 1 & 40 for
incident energies such as the above.

0'
0 40 80

82 (c.m. ), deg

120 160 4.0

8, = 90', $ =180o

Fio. 80. Correlation analysis for Se2(p, p'y) at 6.5 MeV]ab'.
the normalized measurements of Hausman ef aL (Ref. 65) are
in fair agreement with the CN theoretical curves. 2.0

~ ~

Eb(MeV)],b X Authors

D. Ti" Q = —0.987 MeV

l~
1.0

I

0

( p, p~y); E = 6.77 MeV,

5.84
6.91

90,135
90',135'

Taketani and Alford24
Taketani and Alford24

~ 4.0

cv

3.0
8) =135, /=180

The sets of correlation measurements taken by
Taketani and Alford at 5.72 MeV, (=5.84
MeV].b) and 6.77 MeV, (=6.91 MeV] b), shown,
respectively, in Figs. 31 and 32, were interpreted by
the authors as furnishing evidence for a DI mecha-
nism since DI curves could empirically be fitted to
them. However, in the course of the present analysis,
it was found that absolutely computed DWDI curves
are in disaccord with the experimental 02 dependence,

2.0

1.0

0
0 40 80

8& (c.m. ), deg

120 160

FIG. 82. Measurements at 6.77 MeV, for the reaction
Ti 8(p,p'p) by the Rochester group (Ref. 24) compared with
CN theoretical predictions; discrepancies in fit at this slightly
higher energy are most likely due to admixture of DI mecha-
nism.
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E. Cre2i Q = —1.433 MeV

Ep(MeV)i~b X Authors

4.1
4.1
5.43
5.8
6.5
7.02

90'(y = 90')
50,90',130'
45',90'
45',90',135'
90'
45',90'

Gobbi and Pixley6&
Gobbi and Pixley67 68

Seward'3
Gobbi and Pixley67
Hausman et at. 6&

Seward~3

0.20

For protons incident upon the target nucleus Cre2,

agreement between CN theoretical and measured
correlations is remarkably good; the only quantita-
tive disagreement occurs in the analysis of measured
double-differential cross sections at 5.8 MeVl b for
0& ——90', wherein the points display the same 02

dependence as the theoretical curve but differ by a
factor of 2 from the predicted absolute magnitude.
Measurements at 8| ——45' and 135', however, almost
attained the theoretical value and will be considered
later. Attention is also drawn to the determination
of the "p'-perpendicular correlation" at 4.1 MeV,
which will be discussed next.

The results of the Ziirich group for the p'-per-
pendicular correlation, shown in Fig. 33 normalized

perpendicular correlation but also for the y distri-
bution and indicated the corresponding theoretical
curves to be similar but not identical. For complete-
ness, this point is illustrated in Fig. 34 for the above
pair of curves and also for the pair corresponding to

2,0
Cr (p, p'y); E&=4.1MeVLAB

COMPARISON BETWEEN NORMALIZED ANGULAR
DISTRIBUTIONS AND PERPENDICULAR CORRELATIONSw(e&)~ g(2

1.5—

W 1.0
w (e, )y

0.5

0
0 20 40 60 80 100 120 140 160 180

8 (c.m. ),deg

FIG. 34. Illustration of the difference between theoretical
CN angular distributions and "perpendicular correlations, "
referred to the Cr (p,p'y) reaction at 4.1 MeVi, b and nor-
malized to unity at 90'.

0.1 5

Cg

CIJ

0.10

0.05
0

i 8 =/=90

40 80
8& (c.m. ), deg

120

Cr (P, P 'y); En 4.1 MeVLAB
II

160

the proton distribution and the y perpendicular cor-
relation, all curves being normalized to unity at, 90
in order to display clearly the marked difference in
structure.

Excellent agreement between theory and experi-
ment is also found when correlation measurements
at 4.1 MeVl. b are taken in the scattering plane, as
can be seen from Fig. 35. Again the points have, as
heretofore, been normalized arbitrarily; those ob-
tained at the supplementary angles 0&

——50' and
130' verify tao symmetry properties of the CN cor-
relation function, viz. ,

Frc. 33. Normalized p' —p coincidence measurements of
the Ziirich group (Ref. 67) with the p'-counter perpendicular
to the p —~ plane for the Cr52(p, p'y) reaction (Q = —1.433
MeV) at 4.1 MeVlab, in excellent agreement with CN theoreti-
cal predictions using Preskitt —Alford transmission coefFicients.

arbitrarily for comparison with the theoretical
double-differential cross section, have already been
published (with different normalization) together
with the &-ray distribution (Fig. 2 of Ref. 35). The
latter figure showed the very good agreement be-
tween theory and experiment not only for the p'-

7 B. Gobbi and R. E. Pixley (private communication).
68 B. Gobbi and R. E. Pixley, Helv. Phys. Acta 34p 80'2

(1961).

W(0„0„n) = W(n. —
0&,n —02, 7r) = W(~ —gi, 9g,0) .

(139)

The results for 01 ——90' are in slightly poorer agree-
ment with the theoretical curve in that their ampli-
tude is a little too large and that the dip which they
display around 0& ——0' is not reproduced theoreti-
cally. It is interesting that the same effect was found
in proton correlation measurements upon Fe"' at the
same energy and at 5.8 MeV (see 1'igs. 49 and 52),
though otherwise the theoretical fit is very satis-
factory. There is no a priori reason to suspect the
validity either of theory or of experiment for forward
emission of y radiation, yet this feature has recur-



830 ERIC SHELDON

0.20

Cr (p, p'y); Ep 4.1 MeVLaa

~ =8=50 $=0'
o = 8, =150' g-6

Cy

b 020
8, =90,y=O I=6

I'xG. 35.Experimental results of the Zurich
group (Ref. 67) in both scattering half-
planes for inelastic proton scattering on Cr&2
at 4.1 MeVl, b illustrate the excellent agre-
ement with CN theory including the sym-
metry predictions of the latter.
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Fro. 36. Experimental results of Seward (Ref. 23) for Crhs

(p,p'y) at 5.43 MeVl b, in very good agreement with CN
theory based upon a Preskitt —Alford optical potential.

rently been observed. It may be that the well-known
occurrence of discrepancy between experimental
results at forward proton angles 0~ and optical-model
calculations have some bearing upon the above
phenomenon.

The correlation measurements at 5.43 MeV by
Seward of the Rochester group, shown in Fig. 36,
were correctly interpreted by him as evidence for the
predominance of CN mechanism, though it should

be noted that his theoretical curves were calculated
with incorporation of mixed-j interference terms and,
therefore, differ a little from those depicted in Fig.
36. The new theoretical curves provide an equally
satisfactory fit to the experimental points.

The results at 5.8 MeV shown in Fig. 37 raise an
interesting issue in that they depict measured
absolute double-diA'erential cross sections which
have not been normalized and, therefore, provide a
very much more stringent test of CN theory than
would otherwise be the case. Not only the qualitative,
but also the quantitative, measure of agreement be-
tween theory and experiment for the 8& ——45' and
135' data is very satisfactory, especially on noting
that the error limits shown represent observed re-
producibilities, whereas the actual over-all accuracy
of the measured points is in the order of ~20%. The
study of the 82 dependence over nearly 360' in the
scattering plane for supplementary values of 8&

furnishes an extensive test of CN correlation sym-
metries, thereby conferring particular interest upon
this batch of results. All the more significant, there-
fore, is the quantitative disagreement between theo-
retical and experimental double-differential cross
sections for 0& ——90', a phenomenon observable also
for Fe" at the same energy (Fig. 53). A diminution
in the cross section might point to onset of DI
mechanism, but computations for the latter yield a
double-differential cross section of very small magni-
tude with a minimum at 02 = 0' —50', rather like
the DYVDI curves shown for Fe" and, therefore, in
marked disagreement with the experimental results.
Multiplication of the measured values by the factor
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2.15 normalizes them to tally very closely with the
CN theoretical curve for l & 4, which suggests that
the operative mechanism is nevertheless CN, but
modified by slight admixture of DI which particu-
larly inQuences the 0& = 90 correlation. Figure 38
shows results of the Ohio group at 6.5 MeV; the
experimental points are fairly isotropic and, within
error limits, are in rough agreement with CN theory.
The authors' statement that CN theory predicts an
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FIG. 38. Normalized experimental points of the Ohio group
(Ref. 65) for proton scattering at 6.6 MeV on Cr», compared
with CX theory.
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Even though Seward empirically fitted curves of
DWDI form to his results at 7.02 MeV, depicted in
Fig. 39, he observed that even at this energy the
CN contribution was probably large and the fit to
the 0~ = 90' data meaningless in view of the lack of
structure in the 0& dependence: The "Cr"correlations
at 7 MeV might be interpreted as having a bit of DI
in them. " The present analysis indicates the CN
mechanism to be predominant and the basic CN
theory to furnish a, satisfactory fit to the data even
though population of target nucleus states higher
than the first excited level doubtless occurs. The
0&

——90' data in particula, r could not be fitted with
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FIG. 37. Experimental absolute measurements of the double-
difjerential cross section for the Cr»(p, p'y) reaction at 6.8
MeV&, b by the Zurich group (Ref. 67) compared with the CN
theoretical 02 dependence. The measurements display the
same structure as the theoretical curves and reproduce the
predicted CN symmetries, but are rather low in magnitude,
a consequence either of DI admixture or of the strong energy
dependence of the CN double-differential cross section (see
Fig. 68).
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isotropic correlation is, however, seen to be unsub-
stantiated by the computed curve, unless interpreted
in the loose sense of a small peak-to-valley ratio (the
theoretical ratio is about 1.25). The points are rather
too few and too scattered to serve as basis for elucida-
tion of mechanism —they are not incompatible with
CN theoretical predictions, whereas DWDI theory
predicts minima near 02 ——0' —40' and 130' which
are not apparent in the experimental data.
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Fro. 39. Normalized experimental results of Seward (Ref.
23) at 7.02 MeVI, b for Cr&2(p, p'y), in good agreement with
CN correlation theory based upon a Preskitt —Alford optical
potential.



ERIC SHELDON

DWDI curves even for large spin-Rip intensity since
it is practically isotropic, unlike DWDI curves with
their strong sin' form, but is well Pitted by the shallow
CN curves shown.

F. Few Q = —0.845 MeV

E(MeV)ag X

2.05

5.8

n 25', 35',50', 35',50',65', Niewodniczanski
65', 115', 115',130', and Steiger57
130',145', 25', 145',
155' 155'
90,130'
90 (& = 90')

p 45', 90', 135'

Gobbi and
Pixley67
Gobbi and
Pixley67

The nucleus Fe" has been subjected to extensive
theoretical and experimental study by the Ziirich
group. In Sec. 6, correlation surfaces for neutron and

proton scattering have been shown (Figs. 8 and 9),
cuts in which constitute some of the correlation
curves depicted in the present section. To illustrate
the effect of considering higher nucleon orbital
momenta and the inHuence of spin-orbit interaction
some theoretical curves are shown which depict the
fls dependence of the correlation in each case. Results
have been plotted both in normalized and unnormal-
ized form, namely, as correlation functions, such that
W(-', 1r, -', 1r,q) = 1, and as double-differential cross
sections in order to indicate the difference in the
relative vertical shifts of the curves for various l
values.

Figures 40 and 41 for scattering of 2.05-MeV
neutrons at 8& ——45' and 90', respectively, show that
the effect of including spin-orbit interaction by use of
T'+' penetrabilities in place of the normal T& is very
slight in comparison with inclusion of higher partial
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Fro. 40. Comparison of the &s dependence of the (normalized) CN correlation
function and the (absolute) double-differential cross section for various maximum
orbital momenta, with and without inclusion of spin-orbit interaction for 8)1 = 45
for the Few(n, n'~) reaction (Q = —0.845 MeV) at 2.05 MeV~, b.
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waves. As already pointed out in Sec. 6, plots of the
(normalized) correlation function indicated that
"odd-t „" and "even-/ ." curves tend to bunch
together; this, however, is no longer the case when
plotted as an absolute double-differential cross sec-
tion. The sequence for curves becomes transposed
for the various t values, the ensuing shift being such
that although the relative amplitudes are, of course,
unchanged, the minima are less localized in position
and the curves are more evenly separated. Since the
curves for all / values at a given 0& are practically
identical, it is not possible in the present analysis
to deduce empirically which t values are, in fact, of
significance for a given reaction.

Another feature of interest is the azimuthal de-
pendence of the CN correlation function for given
01 and 82, which is shown in Fig. 42. This q dependence
proves to be rather too weak to appear potentially

fruitful for experimental investigation. For the pairs
of angles |j& and 82 shown, the peak-to-valley ratio
varies from 1.15 for the pair 60', 60' to 1.01 for the
pair 30, 90', the latter being associated with a
virtually constant correlation function. Furthermore,
exact constancy of the correlation function in terms
of y ensues whenever 0&,02 ——0 or m- for all 02, 01, re-
spectively. This follows from the property of the
Legendre hyperpolynomial as expressed by Eq. (A5)
of the Appendix:

Sp x(t 1 92 'p) Q A P„"(cos e, )PP (cos 82) cos mp

(140)
For A or 02 equal to 0 (or z) the respective associated
Legendre function vanishes unless m = 0,

(141)
and thereby the y dependence simultaneously van-
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FIG. 41. As Fig. 40 but for 81 = 90 . The arbitrary normalization of all the left-
hand curves to unity at 82 = 90 influences their sequence for increasing values ofl,„, the orbital momentum cutoff.
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Fzo. 42. Illustration of the azimuthal dependence of the
CN correlation function for various pairs of values of the
emission angles (()q, ()Q) for the reaction Fe«(n, n'y) at 2.Q5
MeV using Percy —Buck nonlocal transmission coef5cients for
L&2.

ishes. (One notes in passing that the above reasoning
indicates the DWDI correlation function also to be
independent of (Q when 8Q ——0 or s..) As a physical
requirement, too, this is obvious.

energy have throughout been based on the Perey-
Buck optical potential for neutrons. In Fig. 43 are
depicted absolute angular distributions of the in-
elastically scattered neutrons from the Fe«(n, n'y)
reaction at 2.05 MeV. The CX curves show the
effect of incorporating higher partial waves and have
been computed by integration of the double-differen-
tial cross section as described in Sec. 3B.The DWDI
distribution has been computed directly for t = 2
momentum transfer and is not only of higher
absolute magnitude than the corresponding curve
for the CN mechanism, but also of larger amplitude.
It displays strong forward peaking, though, as should
perhaps be emphasized, this in itself is not an essen-
tial requirement for DWDI distributions in inelastic
scattering processes. Extensive analysis of DWDI
angular distributions leads to the realization that
only as a general trend does forward peaking occur,
and then more pronouncedly in the case of eta8t~c
nucleon scattering than in inelastic scattering. Satch-
ler et at."have drawn attention to exceptions from
this tendency, e.g., the DWDI inelastic proton
angular distribution for the Cr"(p,p', p) reaction at
E„=5.54 MeV).b proves to be U shaped (i.e., with
forward and backward peaking) and practically
symmetrical about 0& = 90 .

Thus,

and

Ss g(8) 0 cp) AQ(1vX1)P (cos 81) (142)

4.0

S g (0 8Q p) AQ (pvX)PQ (cos 8Q) (143)
wherein it should be noted that, through the AQ, the
dependence upon the triad (pv)() is retained and the
numerical values, therefore, differ from those for a
simple angular distribution.
Thus,

and

W(8&,0,(v) = W(8i, s, (v) P.(cos 8&) (144)

W(0, 8Q, ((Q) =- W(s.,8„&p) ~ Pq(cos 8Q) . (145)

Additionally, the following symmetries apply:

W(8i, 8Q, (Q) = W(8&,m —8s,s —(Q)

= W(vr —8),8sp. —y) = W (s —8),s —
8Q, (Q) .

(146)
Finally, before going on to analyze experimental

results, it is of interest to furnish examples of theoreti-
cal angular distributions although the latter fall out-
side the purview of the present survey. It should be
mentioned that the theoretical computations at this
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Fro. 43. Illustration for the reaction Fe«(n, n'~) at 2.Q5
MeV, of the change in magnitude of the CN neutron differen-
tial cross section with increasing permitted orbital momenta
and comparison with that for the DI mechanism (omitting
spin-orbit interaction) for t = 2.

The extensive correlation measurements at
E„=2.05 MeVl. b by Niewodniczanski and Steiger, to
be examined next, supply data for analysis not only
of the 02 dependence at supplementary neutron
angles, but also of the 8& dependence at supplemen-
tary p angles, the azimuth p being zero throughout
in consequence of the use of ring geometry. The
experimental points in the present analysis represent
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the latest results and supercede those published
previously; they have been corrected for multiple
scattering and normalized by a single norm through-
out to yield a least-squares fit to the l & 2 curves
(using a subsidiary IBM 709 code to accomplish
this). In Figs. 44 and 45 are shown results for three

= -', x for supplementary angles 8I, as also measure-
ments of the n' angular distribution). As is apparent
from Fig. 46, which not only shows points for a
further pair of supplementary scattering angles com-
pared with CN theoretical curves, but also DWDI
curves with and without spin-Hip for comparison,
the results are incompatible with predominance of
DWDI mechanism in form (no comparison of magni-
tudes is possible). The figure indicates the inequality
of the doubleAifferential DI cross section for supple-
mentary neutron angles at 82 = —,

' m. and also shows
that, in general, this cross section at forward 0& and
backward 0~ tends to be higher than that at backward
fI& and forward II&, as is paralleled by the experimental
results. The very small magnitude of the DWDI
double-differential cross section compared with that
for the CN mechanism, remarkable in view of the

Fza. 44. Theoretical CN fits to the correlation measure-
ments of Niewodniczanski and Steiger (Ref. 57) for inelastio
neutron scattering on Fe56 at 2.05 MeVI, b for the supple-
mentary angles 8& = 25', 155'. The left-hand and right-hand
curves are, respectively, mirror images of one another. All the
points in Figs. 44—48 have been multiplied by a single norm.

pairs of supplementary angles compared with the
predictions of CN theory for momenta t & 2,3,4.
The agreement, though not perfect, is satisfactory;
one feature which stands out, however, is the fact
that points for forward scattering angles ei tend to
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FIG. 45. As Fig. 44, but for the pairs of supplementary
angles Oy = 35', 145' and 50', 130'.

lie higher than those for the supplementary backward
scattering angles. This effect may be caused by ad-
mixture of DWDI (e.g. , interference between CN
and DWDI) or it may lie in the measurement tech-
nique (it would be desirable to have results at os

FxG. 46. As Figs. 44 and 45 but for Oq = 65', 115'.

comparatively large differential cross section, would
tend to rule out any appreciable DI contribution or
interference, as one would expect for so low an
incident energy. The 0& dependence of the correlation
for pairs of supplementary y angles as shown in Figs.
47 and 48 displays interesting structure, in moder-
ately reasonable agreement with CN theory.

Proton correlation studies on Fe" at 4.3 MeV1 b

(=4.22 MeV, ) yield equally satisfactory agree-
ment with CN theoretical predictions; the only
marked discrepancies occur around 02 = 0' as can
be seen from Fig. 49. The l & 2 curves therein com-
puted using a Preskitt —Alford potential may be
compared with those shown in Ref. 68; the latter,
which had been obtained from calculations in-
corporating mixed-j interference terms, are practi-
cally identical.
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Figure 50 shows the measure of agreement be-
tween CN theory and experiment for the p'-per-
pendicular correlation at 4.3 MeV; again, apart from
deviations at low 82, the 6t is remarkably good.
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Fre. 47. As Figs. 44-46, but illustrating the 8~ dependence
of the CN double-differential cross section for the pairs of
supplementary angles 82 = 85', 145' and 50', 180' in the
reaction FeM(n, n'y)q =-2.242 Mev at 2.05 MeVI, b. Left-hand
and right-hand curves are again, respectively, mirror images of
each other and all experimental points have been multiplied
by but a single norm.

To complement the theoretical n'-angular distri-
butions shown in Fig. 43, a single example is given
here (Fig. 51) to illustrate the agreement between
CN theory and experiment for a y-angular distribu-
tion and in particular to show the symmetry of the
latter when measurements are taken on both sides

0.2
-60 -30 0 30 60 90 120 150 180

e2 (c.m. ), deg

Fre. 49. Theoretical CN fits based upon a Preskitt —Alford
optical model to the correlation results at 81 = 90' and 180'
of Gobbi and Pixley (Refs. 67, 68) for inelastic scattering of
4.8-MeV&, b protons on Fe56. The only noteworthy discrepancy
occurs in the neighborhood of 82 = 0'.

of the incident axis. Apart from the characteristic
deviation at low 02, the agreement is excellent.

Correlation results at E, = 5.8 MeVI b have been

collated in Fig. 52, which shows the data from
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Fre. 50. Comparison of the CN theoretical predictions for
the p'-perpendicular correlation with the measurements of
the Zurich group (Ref. 67) for Fepp(p, p'p)q p. s42 M v at
4.8 MeVi b.
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Fre. 48. As Fig. 47 but for 82 = 65', 115 and 155', 25'.

absolute measurements extended over both scatter-

ing half-planes as a test of the predicted CN sym-

metry

~(01 02 0) W(01 02 pr O) ~(01 pr 02 pr)

(147)
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The results for the supplementary angles 0& = 45'
and 135' further support the additional symmetry
prediction

W(8&,82,0) = W(s- —8„82,s-), (148)

in that the solid and open data points both display
an identical dependence upon 8s. Comparison between

6.0
Fe ( p, p'y ); E& = 4, 22 MeV, m

56

SYMMETRY OF g ~ 2 ANGULAR DISTRIBUTION

5.0

in Fig. 54. Although the amplitude of the theoretical
curves is slightly too small to accord perfectly with
the measured points, the over-all agreement, apart
from the characteristic dip in the experimental points
around 82 ——10', is very good, so that one is justi-
fied in concluding that the CN mechanism is pre-
dominant at this energy, even though some ad-
mixture of DI is doubtless present and may be
responsible for causing experimental values to take
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FrG. 51. Theoretical CN fit to the y distribution measured
by the Ziirich group (Ref. 67) in both scattering half-planes
for the reaction Fe5s(p, p'y) at 4.8 MeVlgb The calculation
employed Preskitt —Alford transmission coefficients for orbital
momenta up to l,„=2; the experimental points were arbi-
trarily normalized.
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theory and experiment indicates that although the
absolute magnitudes are appreciably too small, the
experimental results in form have a 8s dependence
which is in good accord with that for a CN mecha-
nism. To illustrate this latter contention, the points
for tt& ——90' are shown twice in the lower part of Fig.
52; first as measured and second as arbitrarily renor-
malized by a factor of 1.86 to coincide with the
theoretical curves. These 0& ——90 results are also
depicted in F'ig. 53, wherein the solid circles represent
the renormalized values. This figure serves princi-
pally to indicate that both in form and in absolute
magnitude these correlation measurements are alto-
gether at variance with DWDI predictions. It may
also be seen that the latter do not display the dip
around 02 ——10' which appears to be a character-
istic of these measurements. To show the extent of
agreement between results at 8& ——135' and the cor-
relation curves, the measured values have been re-
normalized by the same factor of 1.86 to t~lly with
the theoretical curves and are shown as solid circles
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on lower values than would be the case with a pure
CN process. Some preliminary semiempirical esti-
mates of the DI admixture derived from considera-
tion of the presence of reQection symmetries in CN
theory and their absence from DI theory have been

-160 -120 -80 -40 0 40 80 120 160

FIG. 52. Comparison for 81 = 45', 90', 135' of measured
(Ref. 67) absolute double-differential cross sections with the
CN theoretical eq dependence for the reaction Fe5 (p,p'y) at
5.8 MeV~, q. In the upper part, the points for eq = 45' (solid
circles) and those for e~ = 135' (open circles) confirm pre-
dicted CN symmetries. The agreement in shape, though not
in absolute magnitude, of the correlation is illustrated in the
lower part, in which original and renormalized points for
01 = 90' are shown.
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undertaken by the Ziirich group. The experimental
asymmetry

do do'
Og, 02,0

do
(s —e&,82,vr) (149)

1 2

and analogous expressions which would vanish for
zero admixture of DI prove, in fact, to be consistent
with the assumption of as much as 30% DI ad-
mixture when applied to the ensemble of data at 5.8
MeV for Cr, Fe, Zn, a value appreciably higher than
would ensue from the computed respective double-
differential cross sections. Details of this approach
are to be published later.

A further effect which may play a significant role
in causing discrepancy between CN theoretical and
experimental absolute magnitudes arises from the
possibility of populating target nucleus states higher
t,han merely the erst excited level with 5.8-MeV
incident protons. The present theoretical approach
does not take this into account, though calculations
are now in progress which aim to take cognizance of
population of higher excited levels. The ensuing
modification to the correlation function cannot be
estimated, since the problem is too complicated to
be amenable to hand calculation, but it appears very
unlikely that incorporation of higher populated levels

G. N'ps 6o

Target Q(MeV) E~(MeV)lab X Authors

Niss —1.45

Ni» —1.45

Ni« —1.33

Ni« —1.33

5.8

6.9

5.8

p 45', 90', 135' Taketani and
Alford24

p 45',90', 135' Taketani and
Alford24
Taketani and
Alford24

p 50,90', 135' Taketani and
Alford24

p 90', 135'

could lead to a diminution in the double-differentia, l

cross section. On the other hand, since the incident
energy here exceeds the (p,n) threshold, one should
for consistency include neutron decay channels in the
7 terms of the CN correlation function. Preliminary
calculations have shown that incorporation of a
single neutron exit channel lowers the double-
differential cross section by 20 j~ without greatly
affecting the form.

To complement the curves shown in Fig. 50 which
illustrate the l dependence of the p'-perpendicular
correlation at 4.3 MeVl. b in function of 02, Fig. 55
shows the dependence for 5.8 MeVI.b and is depicted
in correlation-function form, normalized to unity at
02 ——90 . It is clear that the fairly weak l dependence
precludes the possibility of establishing the partial-
wave composition of incident and scattered beams
experimentally from study of perpendicular correla-
tions.
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Fzo. 54. As in Fig. 52 for e& = 185' but with the measured values renormalized by a factor of 1.86 (solid
circles) to lie along the CN theoretical curves. Except for characteristic deviation around 82 = 0', the fit
to the 02-dependent correlation curve is satisfactory.

The investigations on Ni" and Ni" by the Roches-
ter group at 5.8 MeV/ b (=5.73 MeV. ) and 6.9
MeV] b (=6.8 MeV, ) have, in part, since their
original theoretical analysis (which comprised CN
calculations including mixed-j interferences and em-

pirical curve fitting with expressions of the DWDI
form) already been reanalyzed" on the basis of the
present CN and DWDI theoretical approach; the
results are reproduced in Fig. 56. Figure 56 shows the
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FIG. 55. Theoretical Og dependence of the (normalized)
p -perpendicular CN correlation for various maximum orbital
momenta for the reaction Fe5 (p,p'y) at 5.8 MeViab.

Fro. 56. Effect of direct superposition of the DWDI double-
differential cross section (with zero spin-flip) for the reaction
Ni~s(p, p'v)q q, 4s M,v at 5.78 Mev, on that for pure CN
mechanism (l ( 2). The points represent normalized experi-
mental results for the q = 180' plane of Taketani and Alford
(Ref. 24).
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effect of direct superposition of the DWDI correla-
tion (with zero spin-fhp) on the CN correlation for
t & 2, calculated using the Preskitt —Alford optical
potential, as discussed in Sec. 4. On comparison of
Fig. 56 with Fig. 57 it is apparent that almost the
same effect as that of incorporating a DWDI con-
tribution can result merely from consideration of
higher partial waves in pure CN theory; in either
case, the fit is good and the preponderance of the
CN mechanism may be considered to be established,
particularly when examined in conjunction with
angular distribution results" at almost the same
energy (5.64 MeV. ) which are in fair accord with
CN predictions. The measured 0& dependence of the
distribution shows rather too much structure and

40
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Ni ( p, p'y); Ep=6.8MeV
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y= 0.4
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FIG. 57. The same experimental results of the Rochester
group as in Fig. 56, contrasted with pure CN correlation
curves for t, = 2 and 4 in the p = 180' half-plane.

0 80 120 160
82 (C.m. ), deg

FIG. 58. Comparison of the correlation as measured at
el = 45' by the Rochester group (Ref. 24) for Niss(p, p'7) at
6.8 MeV, with theoretical pure CN and pure DI curves,
the latter with and without spin-Qip.

40

Numerical computations using the Percy optical
potential indicate, however, that the CN differential
cross section is larger than that for DWDI by a
factor ranging from 2.9 at tt& ——0' to 16.5 at 0& = 90',
and that the CN double-differential cross section
is roughly tenfold that for DWDI as can be seen
from Figs. 58, 59, and 60. These 6.gures indicate the
measured correlations to be in entire disagreement
with absolute DWDI predictions, but to be in fair
agreement with CN calculations. For the supple-
mentary angles 0& = 45' and 135', the points display
the expected CN symmetry (they have throughout
been multiplied by the same norm).

could not quantitatively be fitted with a Preskitt-
Alford potential, but the qualitative CN fit, es-
pecially when a Percy potential is employed with
l ( 5 is fairly good.

Attention is also drawn to other recent theoretical
correlation results for the Niss(p, p'y) reaction at
5.73 MeV. which have been depicted graphically
in Ref 17.The DWDI correlation surfaces, calculated
as illustrative examples using a Percy potential at
this energy, have been included in Sec. 6 (Figs. 10,
11, and 12).

At 6.8 MeV. the Rochester group observed
slight forward peaking in the proton distribution
and, attributing this to appreciable inQuence of DI
mechanism, analyzed their correlation results from
the standpoint of the DWDI correlation theory.

3.0

I

2.0

1.0
b

0
0

Nl (p, p/7): Ep=6.8 Mevc. m.

8& =9O', y=1SO'

~2~

y= 0.4
x10

W. to M
40 80 120 160

82 (c.m. ), deg

Flu. 59. As Fig. 58 but for 81 ——90 .
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I"or Ni" at 5.73 MeV, , results as shown in I&'ig.

61 are in very close agreement with CN theory, but
altogether contrary to absolute DWDI predictions.
Although Taketani and Alford had empirically 6tted
the points with a correlation curve of DI form, they
were careful not to exclude the possibility of a pre-
dominant CN mechanism, as the present analysis
shows, indeed, to be the case. This conclusion is
further substantiated by the relative insignificance
of the DI differential cross section as compared with
that for the CN mechanism. Theoretically the former
ranges from a maximum of 1.30 mb sr ' at 01 = 0' to
a minimum of 0.26 mb sr ' at 0I ——90, whereas the
actual measured cross section fluctuates but little
around 5.5 mb sr '. At the higher energy of 6.8
MeV, the relative inAuence of the DI mechanism

2.0
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I

0.5
I
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b
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Fzo. 61. Analysis of the Rochester group's (Ref. 2&) cor-
relation results for Niss(p, p'y)Q ——f, 33 M v at 5.73 MeV,
for 8I = 90' and 185', showing the CN mechanism to be
dominant.

differential cross section cannot be but slight, it was
considered unnecessary to recalculate the latter for
a Percy potential, which would not appreciably
influence the superposed result. In view of the large
DI differential cross section it is not surprising that
in Figs. 63, 64, and 65 the CN correlation fit becomes
less satisfactory, and the DWDI double-differential

80 120
8& (c.m. ), deg

160 NI (P,P'y): Ep= 6.8 MeVe ~

FxG. 60. As Fig. 58 but at the supplementary angle 8&
= 135'. The CN curves are reflections of those for Hq = 45',
unlike those for the DI mechanism.

can no longer be regarded as small, as is evident from
Fig. 62, which shows the resultant angular distribu™
tion from di~ect superposition of CN and DI differen-
tial cross sections, compared with the experimental
values of Taketani and Alford. An unfortunate, but
trivial, internal inconsistency underlies the respective
theoretical curves in that the CN distribution has
been computed for a Percy potential (V = 51 MeV,
rp = 1.25F a = 0.65F, g ' = ll MeV, ro = 1.25 F,
a' = 0.47 F, V, = 8 MeV), whereas numerical
values for the DI distribution were at hand only
for a Satchler potential, whose parameters differ very
slightly from the above, the discrepant values being
V = 47 MeV, rs ——1.35 F (giving approximately
the same value for Vr'). As the effect upon the DI

l6

l2

g s 2 ANGULAR DISTRIBUTION
I»6.8 MeV,
I

~ =-6.65 MeVc.a.
I

l

. Ql CN+ DI

CN

jest

CN

DI y
DI

90
e, (c.rn), deg

60

FIG. 62. Direct superposition for the reaction Niss(p, p y)
at 6.8 MeV, of the l & 2 angular distribution for a pure
CN mechanism based upon a Percy potential on that for pure
DI mechanism (based upon the almost identical Satchler
optical potential). The resultant fit to the experimental
absolute results of the Rochester group (Ref. 24) is improved.
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8pi = 50, / =180

cross section assumes values which are no longer
negligibly small. Nevertheless, the data are still
consistent with the contention that the CN mecha-
nism is dominant even at this energy though the
actual mechanism involves a mixture of CN and DI
processes. It is apparent from inspection of Figs. 63
and 65 that simple superposition of CN and DI
double-differential cross sections will not lead to an
appreciably better fit to the somewhat scattered
points. These points had to be multiplied by mutu-
ally different norms in order to lie within the region
of theoretical CN curves and, thus, do not reproduce,
even roughly, the symmetry which would be ex-
pected to apply to CN correlations for the approxi-
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y= 0.4
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1601200 80
8& (c.rn. ), deg

Fxo. 63. Analysis of the experimental correlation results of
the Rochester group (Ref. 24) for Ni60(p, p'y) at 6.8 MeV,
for 0& = 50' using a Percy potential(V = 51 MeV, rs = 1.25 F,
a = 0.65 F, S" = 11 MeV, ro' = 1.25 II', a' = 0.47 F,
V, = 8 MeV) throughout.
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FIG. 65. As Fig. 63 but for 8~ = 135'.
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Fro. 64. As Fig. 63 but for IIq = 90'. Also shown (dotted
curve) is the theoretical result of direct superposition of the
DWDI double-diR'erential cross section {with spin-flip) on to
that for pure CN mechanism.

mately supplementary angles 0& = 50' and 135'. For
the proton angle 0& ——90', the comparatively small
magnitude of the DI correlation precludes the can-
cellation of structure in the correlation function
resulting from composition of a CN correlation hav-
ing a dip at 02 = 90 with a DI correlation having
a peak in that region. Taketani and Alford's sug-
gestion that an almost isotropic correlation function
might thereby result which would furnish a reasona-
ble fit to the almost constant experimental values
cannot therefore be realized. By way of example, in
Fig. 64 the dotted curve which represents the super-
position of the y = 0.4 DWDI double-differential
cross section on the t & 5 CN curve has been drawn
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in and can be seen to have a pronounced dip around
82 ——90'. Not only is there likely to be interference
between CN and DI correlations at this energy, but
the assumption inherent in the present CN calcula-
tions that no states of the target nucleus higher than
the first become excited is unlikely to be fulfilled
and, hence, perfect theoretical fits cannot be ex-
pected. l.6

I

Zn (p, p'g) I Ep = 5.8 MeVLAe

that for Cr" under the same conditions (Fig. 37) for
the supplementary angles 81 ——45' and 135'. The
results shown here similarly display the CN symme-
try character

W(01I82IO) W(el Ill t)2I7I ) W(7I 81I82Is ) (150)

Z~64, 66,68

Target Q(MeV) Ep(MeV)I s X Authors
1.2

~ ~

Zn64 —0.99

Zn« —1.04

Zn68 —1.0

5.8

5.8

5.8

p 45',90', 135' Szostak and
Gobbi6

p 45',90', 135' Szostak and
Gobbi69

p 45',90',135' Szostak and
Gobbi6

On account of the desirability of extending correla-
tion investigations to heavier elements, a series of
absolute measurements on isotopes of Zn have been
taken by the Zurich group with 5.8-MeV protons.

Results for Zn'4, shown in Fig. 66, are in very good
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Fro. 66. Comparison of absolutely measured (Ref. 69)
double-differential cross sections for 81 = 45', 90', 135 in
both scattering half-planes for the Zns4(p, p'~) reaction (Q =
—0.99 MeV) at 5.8 MeV1 b with the theoretical CN curves.

R. Szostak and B. Gobbi (private communication).

qualitative agreement with the predictions of CN
theory, albeit of absolute magnitude some 10%
lower than the theoretical double-differential cross
sections for momenta, t & 2 (or 20% lower for mo-
menta t & 6). This behavior is strikingly akin to

a,nd do not display any marked discrepancy from
theory around es ——O'. The Zn" results are also
analogous to those for Cr" in that values for 8I
= 135' are consistently lower than those for the
forward scattering angle of |t& = 45', though one
cannot attach significance to this effect in view of the
relatively large absolute experimental error of about
&20%. The present results for t)I = 90' differ from
the corresponding values for Cr" in their absolute
magnitude, which is approximately the same as that
for t)I = 45' and 135' (the points shown in Fig. 66
have not been normalized).

The fact that the quantitative agreement is not
markedly different for any of the three scattering
angles in the case of Zn'4 and Zn" (see Fig. 67)
renders the present unpublished results particularly
interesting. The measured values for Zn," shown in
Fig. 67, are three-quarters of the magnitude of the
theoretical double-differential cross section through-
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out, but are qualitatively in excellent agreement
with CN theory. It is clear that the rather stringent
requirement of quantitative agreement between abso-
lute magnitude has not yet been met by correlation
studies, even for fairly heavy nuclei with high level
densities in the compound nuclei, but qualitative
agreement with CN theory, even when such condi-
tions as inelastic decay to only the first excited level
of the target nucleus are unlikely to be satisfled, is
remarkably good. The degree of fitting is obviously
not fortuitous, in which connection it may be men-
tioned that in order to avoid influencing the measure-
ments of the Ziirich group, the matching of the
theoretical curves to experimental results has been
undertaken only upon completion of the latter. Until
definitive experimental values had been accumulated,
the theoretical quantitative predictions have been
withheld, the union of theory with experiment being
deferred to the conclusion of the investigation.

One is, thus, in a position to survey the absolute
measurements for protons incident at 5.8 MeV on
the nuclei Cr", Fe", Zn'4, Zn", arriving at the follow-

ing conclusions:
(i) For all nuclei, measurements at the scattering

angles 0& = 45', 90', 135' are in very good
qualitative agreement with CN theory and dis-
play the expected CN symmetries.

(ii) For Cr", the absolute magnitude tallies fairly
well with theory for 8& ——45' and 135', but is
lower by a factor of 2.2 for 8& ——90'.

(iii) For Fe", discrepancy in the absolute magnitudes
for 8& ——90 and 135 exists, the measured values
being about one-half of the theoretical through-
out.

(iv) For Zn", magnitudes for all three scattering
angles 8j = 45', 90', 135' are consistently four-
flfths of the predicted values.

(v) For Zn", magnitudes for all three scattering
angles 0& = 45', 90', 135' are consistently
three-quarters of the predicted values (they are
about 20'Po lower than corresponding experi-
mental points for Zn'4).

Three factors may combine to vitiate quantitative
agreement: underestimation of the experimental
error, inHuence of DI admixture upon the pure CN
theoretical predictions, and the rather strong energy
dependence of the CN double-differential cross
section, as illustrated for Zn" in Fig. 68. Though for
different energies the shape of the correlation remains
practically unaltered, there is a progressively rapid
increase in the absolute magnitude of the cross
section with increasing incident proton energy, so
that even a small discrepancy between the experi-

mental and theoretical values of the energy could
lead to an appreciable difference in the absolute
magnitude of correlation results. The retention of
shape but change in magnitude of the correlation
upon changing the incident energy prompts the com-
ment that the correlation surface representation as
employed at present has the drawback of suppressing
the energy dependence by employing arbitrary nor-
malization to unity at the center for clarity of
structural comparison with other surfaces. This point
will be discussed in more detail in the next section.

A portent of the striking difference observed in the
experimental correlation behavior for 5.8-MeV pro-
tons on the above Zn isotopes and that for the
heavier isotope Zn" at the same energy is provided

2.0
zn"(p, p'r): CN li6

Energy-Dependence of Correlation

6.0 MeV

1.5
5.85 MeV„„

E
1.0

5.0 MeVLAs

05

4.0 MeVLA,

0 40 80 120
8, (c.rn. )deg

160

FzG. 68. Illustration of the energy dependence of the CN
double-differential cross section (L & 6) for the Znss(p, p'~)
reaction (Q = —1.04 MeV) at 5.8 MeV for eq = 45'.

by the realization that, for the latter, both the
Coulomb barrier and the (p,n) threshold fall ap-
preciably below the incident energy (see Table III
in the following section). Whereas for the nuclei
Zn"" the scattering mechanism clearly proceeds
predominantly by way of CN formation, measure-
ments by Szostak and Gobbi, which because of their
preliminary nature have not been illustrated here,
indicate DI to be the dominant mechanism for Zn".
The low (p,n) threshold points to the likelihood that
in the presence of competing CN decay modes, the
inelastic scattering process via a CN would con-
siderably be inhibited, with the result that the DI
process could gain the ascendancy. The results
thereby furnish a most interesting instance of an
apparent switch in mechanism among a family of
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isotopes having otherwise very similar nuclear
properties (e.g. , deformation, etc.) at the same
comparatively low energy associated with the pres-
ence of alternative reaction modes of which the
present CN correlation theory does not take cogni-
zance (it is limited to two exit channels, the elastic
and the inelastic channel to the first level only).
Explicit quantitative calculations taking possible
neutron exit channels into consideration are pre-
cluded by the number of such channels which go to
levels of unknown spin and parity in the residual
nucleus Ga". The noteworthy feature in the present
results is not only their distinctive DI angular de-
pendence but their small absolute magnitude; all
three sets of results are of roughly sevenfold smaller
magnitude than the corresponding values for Zn" ".
Such a diminution in magnitude is incommensurate
with theoretical calculations; the CN double-diA'eren-

tial cross section for Zn" is very similar to that for
Zn"" and is about 1.2 mb sr ', whereas the DWDI
cross section, both for y = Oand y = 0.4, hasreason-
ably large amplitude around 0.8 and 0.5 mb sr ' for
8&

——45' and 135', respectively, and smaller ampli-
tude around 0.15 mb sr ' for 01 = 90'. In no instance
do the minima in the computed DI correlations agree
with those in the experimental results. The minima
of the latter coincide with the classical recoil angle
quite closely in the case of the 81 = 45' and 135'
results, but differ markedly for the 0& = 90' results.
The mean experimental magnitudes lie around one-
quarter of the theoretical DWDI (y = 0.4) values
for the former two scattering angles and around
one-half for the 01 = 90' case. Detailed theoretical
analysis of this striking behavior will be deferred
pending ratification of the experimental findings.

8. CONCLUDING REMARKS

The systematic improvement in agreement be-
tween CN theory and experiment with increasing
mass number A of the target nucleus is directly
related to the progressively improved justification
for the statistical assumption in consequence of the
increase in the CX level density. Even more funda-
mental a requirement than the random-phase hy-
pothesis is the "availability" in practice of all the
levels in the CN which would theoretically fulfill the
various selection rules and which, thus, figure in the
theoretical calculations. To obtain some quantitative
impression of the extent to which this is likely, the
mean separation of levels having zero spin was
evaluated from Lang —LeCouteur theory" for all

7' J. M. B. Lang and E. J. LeCouteur, Proc. Phys. Soc.
(London) A67, 586 (1954).

De ——0.0184804 A (E* + T)

&( exp [—2(AE*l ll)' —0.09375(11E*)'] . (152)

The spacing of levels having spin J is then given by
the relation

(8~) *~'
DJ Do 2J g I exP

J(J + 1)
2

20

with the spin cutoff parameter of magnitude 0 = 3.
The resulting spin-0 level spacings as listed in

Table III can then be compared with typical values
of the experimental energy spread in an incident
nucleon beam, viz. , roughly 100 keV for a neutron
beam and 50 keV for a proton beam, to arrive at
quantitative con6rmation of the fact that only for
nuclei with A 40 is there sufhcient likelihood of
the CN, in fact, having those levels which are
theoretically assumed to become populated. Table
III also lists Coulomb barrier heights and threshold
energies (calculated from theoretical Q values" )
since these play a role in the operative scattering
mechanism; a point frequently mentioned in the
past and strikingly borne out by results for 5.8-MeV
protons incident upon the isotopes Zn'4" ".It would
be complicated, though straightforward, to extend
CN theory to consideration of competing exit chan-
nels (a preliminary calculation to this end has been
mentioned in Sec. 7F) and population of states higher
than the first level in the target nucleus (wherein the
0+ ~ 2+ spin sequence can readily be generalized
to arbitrary spins). However, there are as yet no
indications as to how the principal point of weakness
inherent in CN theory, the statistical assumption of
random phase, may be sidetracked. Though justified
by expediency, its physical validity, particularly for
light compound nuclei at low excitation, is questiona-
ble in spite of its partial vindication by the Porter-
Thomas" and Blumberg —Porter" statistical approach

~I V. J. Ashby and H. C. Catron, UCRL Report UCRL-
5419, 1959 (unpublished).

7~ C. E. Porter and R. G. Thomas, Phys. Re+. 104, 483
(1956).

rs S. Blumberg and C. E. Porter, Phys. Rev. 110, 786 (1958).

compound nuclei which are encompassed by the
present correlation analysis (at such excitation
energies as would correspond with 3-MeV neutron
or 5-MeV proton bombardment, e.g. , with hypotheti-
cal medium incident energies). The above treatment
predicts the CN temperature at an excitation energy
E~ to be

T = (4/A)jl + (1+ -', AE*)j' MeV (151)
and the spin-0 level spacing, assuming surface oscilla-
tions, to be
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TABLE III. Mean level spacing in CN formed from 3-MeV neutrons or 5-MeV protons, calculated from Lang —LeCouteur
theory, together with the Coulomb barrier height and respective (n, p) or {p,n) threshold.

Target 5L

Mg24
Mg24
Si28
S32
Ti48
Cr52
Fe56
Fe56
Ni58
Ni6P
Zn64
Zn'6
Zn68

CN

Mg»
Al25
P29
Cl33
V49
Mn53
Fe57
Co'7
Cu59
Cu6~
Ga65
Ga67
Ga69

Binding
energy
(MeV)

7.331
2.287
2.74
2.29
6.752
6.563
7.643
6.29
3.42
4.809
3.96
5.28
6.528

Excitation
energy
(MeV)

10.33
7.29
7.74
7.29

11.75
11.56
10.64
11.29
8.42
9.81
8.96

10.28
11.53

CN
Temp
(MeV)

1.984
1.696
1.605
1.922
1.469
1.399
1.294
1.331
1.139
1.202
1.114
1.169
1.216

Mean spacmg
Dp(A, E*)

(keV)

12.0
47.6
26.4
26.0
0.37
0.27
0.33
0.21
1.26
0.39
0.51
0.16
0.05

Coulomb
barrier
(MeV)

2.93
3.33
3.68
4.55
4.87

5.17
5.51
5.47
5.76
5.71
5.67

(n, p) or (p,n)
threshold

(MeV)

4.93
15.46
15.11
14.39
4.90
5.62
2.98
5.50
2.44
7.17
8.13
6.04
3.75

to the CN model. A very cogent resume of the theory
and evidence underlying the randomness hypothesis
has been given by Feshbach74 and recent aspects have
been treated by Dyson. "The independence of CN
decay from the mode of formation is itself funda-
mentally connected with the random-phase hy-
pothesis. As outlined by Satchler, 7s the crucial re-
quirement of the faetorization of a, reaction (absorp-
tion) cross section into the product of a CN formation
cross section with a branching ra, tio for particle
emission in the appropriate exit channel is automati-
cally met by the Breit—Wigner single-level formula
for isolated resonances (level width I' «average
level spacing D, as is the case at low excitation), but
breaks down at higher excitation as level overlapping
begins to occur (I' = D) since the phases of the two
or more quantum states populated at a given energy
will depend upon the mode of formation. Thereafter,
as overlapping becomes more pronounced, the Breit-
Wigner many-level resona, nce formula can be used
and nondependence of decay upon formation again
thereby achieved, but with increasing excitation
energy this becomes increasingly unwieldy with the
result that only upon entering the region where very
many levels are populated, e.g. , the continuum
region, can a suitable formalism be evolved on as-
suming that so many states are involved that, even
though their relative phases depend upon the manner
of formation, they may be treated as random for the
decay process (by averaging over a small energy
region). In this formalism, " upon assuming the

74 H. Feshbach, in nuclear Spectroscopy, edited by F.
Ajzenherg-Selove (Academic Press Inc. , New York, 1960),
Part B, p. 625.

75F. J. Dyson, S. Math. Phys. 3, 140, 157, 166 (1962).
76 G. R. Satchler, Oak Ridge Report ORNL-2606, 1958

(unpublished); Proceedings of the Gatlinburg Conference
(1958}.

reduced widths (i.e., wave amplitudes at the various
decay channels) to be uncorrelated in sign, the above
random-phase approximation permits reduction of
the S matrix to a form which resembles the many-
level resonance formula and, thus, again permits
"independence factorization. " Complete independ-
ence of the cross section obtains only when one aver-
ages over residual nuclear states in a small energy
region (AE &( I'), making two inherent assumptions
in effecting the requisite summation over channel
spins and final nuclear spins,
(i) that the spin dependence of the level density

display a, (2J + I) form;
(ii) that the transmission coefficients be spin-

independent (viz. , T, and not T~'+').

At very high CN excitation, when F ))D, it would
be unreasonable to expect a statistical CN formalism
to be a,pplica, ble, since the lifetime of the intermediate
state would be too short in rela, tion to the relaxation
time to permit attainment of statistical equilibrium.
Indications that this may indeed be the case have
been furnished by investigations of Ericson Auctua-
tions" " in cross section with energy, from which
one might infer a lifetime of about 10 " sec for a
nucleus of medium mass number at an excitation
energy of 18 MeV. It remains to be seen whether
nuclea, r lifetime mea, surement in function of excita-
tion energy may prove directly feasible in the near
future; two suggestions to this effect have recently
been made, viz. , the study of interference effects in

77 T. Ericson, Advan. Phys. 9, 425 (1960).
78 F. E. Durham, M. L. Halbert, C. D. Moak, and A.

Zucker, Phys. Rev. Letters (to be published).
79 L. Colli, U. Facchini, T. Iori, G. M. Marcazzan, M.

Milazzo, and F. Tonolini, Phys. Letters 1, 120 (1962).
8P U. Facchini, E. Saetta Menichella, and F. Tonolini, Phys.

Letters 1, 209 (1962).
s' T. Ericson, Phys. Rev. Letters 5, 430 (1960).
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the bremsstrahlung produced by charged particles
entering and leaving nuclei in a target" and the esti-
mation of very short lifetimes (=10 " sec) for a
residual nucleus from observation of the angular
correlations between particles emergent from a
nuclear reaction. "

The application of the random-phase hypothesis
to evaluation of differential cross sections cuts out
interference between terms of different parity and,
hence, produces symmetry of the angular distribution
about 90 . Asymmetry in the distributions of the
particles from decay of the CN can, thus, be ascribed
to
(1) nonrandomicity of phase in the CN states;
(2) influence of levels in the residual nucleus which

lie outside the energy range over which one
averages.

If this averaging over residual nuclear states to
obtain the differential cross section invokes assump-
tions (i) and (ii), the random-phase hypothesis leads
not merely to symmetry but, indeed, to isotropy of
the angular distribution. But this latter presupposes
a simple (2J + 1) form for the spin dependence of
the levels in the residual nucleus which appears""
to be untenable. Mounting evidence, in fact, suggests
a relationship of the form (153) which leads to non-
isotropic but symmetrical angular distributions. It
should again, however, be emphasized firstly that,
particularly in the case of inelastic nucleon scatter-
ing, approximate symmetry of the nucleon distribu-
tion about 90' is not a prerogative of the CN mecha-
nism; secondly, that symmetry of the p-radiation
distribution is to be expected generally and can shed
no light upon the reaction mechanism; and thirdly
that the random-phase approximation as applied to
CN correlation theory does noir lead to exact sym-
metry about 01 = 90' or 02 ——90' of the correlation
function except in the special cases 01, 02 ——0, -,'w, m.

The symmetries of angular correlation for inelastic
nucleon scattering have been examined by Sheldon"
and illustrated by correlation surfaces. Though the
latter are in consequence of the arbitrary normaliza-
tion employed, fairly insensitive to variations in
incident energy, the (unnormalized) double-differen-
tion cross section can, as wa, s shown in Sec. 7G, be
strongly energy-dependent. Though this cross section
is not markedly dependent upon the number of
higher partial waves incorporated in the calculation,

82 R. M. Eisberg, D. R. Yennie, and D. H. Wilkinson, Nucl.
Phys. 18, 888 (1960); H. Feshbach and D. R. Yennie, ibid.
37, 150 (1962).

ss R. Fox, Phys. Rev. 125, 811 (1962).
s4 T. Ericson and V. Strutinski, Nucl. Phys. 8, 284 (1958);

9, 689 (1959).

it is in magnitude, if not in form, influenced by the
optical potential chosen to describe the scattering.
As an example to illustrate this point, theoretical CN
and DWDI double-dift'erential cross sections for the
reaction Ni"(p, p'7) at 5.73 MeV, are shown in
Fig. 69 for 0, = 40' ((p = 0') to contrast the absolute

Ni™(p,p'y): E, =5.75 Mev, „
Model-Dependence of Correlation

1.5 ' ' 4 SATCHLER

SATCHLE

r/DWDI 'll,

/(y= 0.4)
/ PEREY

CN )~6

ESKITT-
LFORD

O.S

0
0 40 80 l20

e,(c.m.),deg
I60

Fro. 69. Illustration of the infiuence upon the respective
double-diff'erential cross sections for the Niss(p, p'y)o i 4s
M,v reaction at 5.73 MeV for 81 = 40' of selecting diA'erent
optical potentials for the correlation analysis.

8~T. Wakatsuki, Y. Hirao, and I. Miura, Nucl. Phys. 39,
885 (1962).

results for different potentials. The two CN curves,
both for l & 6, the upper computed using a modified
Satchler potential having parameters t/' = 44 MeV,
8 = 0 MeV, r. = 1.35 F, a = 0.65 F, W = 11
MeV, r0 ——1.25 F, a' = 0.47 F, and the lower com-
puted from a Preskitt —Alford potential (see Sec.
5A) differ by a factor 1.4; the two DWDI curves
with spin-flip (y = 0.4), both for t = 2 and enlarged
tenfold, dier less markedly but nevertheless ap-
preciably in spite of the parameter similarity (the
Percy potential differed from Satchler's in having
V = 55 MeV, r, = 1.25 F, and W' = 10.5 MeV).
Again, this potential dependence is masked in corre-
lation surfaces by the normalization procedure.

It is clear that future experimental investigations
of correlation should aim at securing accurate abso-
lute results for the double-differential cross section
over a wide range of angles to test symmetry charac-
teristics in addition to providing data for stringent
comparison with theory. In particular, further studies
are desirable for neutron and proton scattering at low
energies from nuclei around A = 40. The only such
work to date was reported in a recent publication by
Wakatsuki et a/. ,

"for 5.6-MeV protons incident upon
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A" in which coincidences were measured between
protons going to the second exited level of A" and

radiation decaying from the second to the first
level. The observed correlation in the scattering plane
was isotropic in 02 which, together with the results
of y —y correlation measurements, is commensurate
with a 0+ assignment to the second state of A", i.e.,

to a 0 —& 2 —+ 0 spin sequence. In this connection,
one might stress the desirability of extending cor-
relation studies to absolute measurement of correla-
tion between nucleon and y radiation associated with
the nucleon exit channel populating the first level
and that for channels inducing population of the
second or higher excited states of the target nucleus.
For a nucleus such as Ae', the spin sequence 0+/
2+/0+ results in the CN correlation associated
with population of the second level being dependent
only upon g„and not upon 0, (this latter isotropy
ensues from the fact that for such a transition
scheme, p = v and P = 0; alternative conditions
leading to correlation isotropy have been collated in
Ref. 17).Explicitly, on going from a 0+ ground state
to CN states of spin and parity J&, ~&, followed by
nucleon decay to a 0+ state and y-decay to a 2+
level, the double-differential cross section (essentially
a distribution) can be calculated from Eqs. (54) and
(56) to be simply

(ei To(K) ' To(Ee) (7)

Te(E~) + Te(Ee)

T.(Eg) Te (Ee)
Ts (E&) + Te (E,')

(8)
7

Ti(K) .Ti(Ee)
T (E ) + T (El)

'

(157)

In Eq. (157), the energy E& is that of the nucleon
inelastically scattered to the second level (0+) and,
hence, has been labeled with a prime to distinguish

do 1 do

X [(p0~J J —,
' —-', )] .r P„(cos 0 ) (154)

and this, in turn, for orbital momenta restricted to
2 apd spin-independent transmission coeKcients

T ~, can be reduced to

2 2

1
—Ix'[11.25 r'"] + x P r'" — .5 r"']

+ [r + 2r + 3.25r ]I (155)

= [I/Ei '
] Ix [46.4177 r' '] + x [12.3781 r"'

—6.1890 r ] + [4.1260 r + 8.2520 r

+ 13.4096 r'"] } mb sr ', (156)

with x = cos 01 and

it from that in Eq. (63). Other nuclei than A" which
also possess the 0+/2+/0+ spin sequence would
appear to be more advantageous for such measure-
ments, in particular S"or Ge", which it is hoped to
inves tiga te in the near future.

For studies upon the heavier nuclei (A + 70), the
use of neutrons rather than protons would appear
preferable, since not only would the latter be re-
quired to penetrate a very considerable Coulomb
barrier but, in addition, the Coulomb excitation cross
section would also assume non-negligible magnitudes.
Since Sr or Mo targets would seem to be likely
choices for extension of present investigations, they
have been included in Table IV, which compares the

TABLE IV. Comparison of computed total cross sections for
Coulomb excitation with those for DI or CN inelastic proton

scattering

Target Incident energy
(MeV)

~CE
(mb)

DI
(mb)

CN

(mb)

Ni»
Ni»
Ni»
Zn66
Sr88
Mo96

4.5
5.8
6.9
4.8
6.0
6.0

0.409
0.836
0.971
0.154
0.160
0.747

5.9
13.9
0.08

120
193
67
33
36

total cross sections for Coulomb excitation (calcu-
lated using the ORNI, code "sar.z.v") with those for
pure CN and DI mechanism in inelastic proton
scattering to the first excited level for fairly low
incident energies. Measurements upon families of
isotopes for a given target element such as Mo at a
given energy might be expected to substantiate the
mechanism switch displayed by the Zn isotopes.

On insertion of appropriate transmission coef-
ficients, the CN correlation theory described here for
inelastic scattering processes would apply as it stands
also to (n, py) and (p,ny) reactions, for which con-
firmatory correlation measurements would urgently
be desirable. Cohen" has made the interesting
observation that at energies where the DI mecha-
nism might be expected to prevail, significant
differences arise between commensurate (p,p') and
(p,n) reaction cross sections, e.g. , the former are an
order of magnitude larger than the latter and display
an altogether different dependence upon the incident
energy and target mass number, which he considered
compatible with the Blair diffraction scattering
model but not with the nucleon —nucleon collision
model. Angular correlation studies might well shed
further light upon this eA'ect.

se B.L. Cohen, Phys. Rev. 116, 426 (1959).



The absence of interferences in the statistical
model with the random-phase hypothesis precludes
polarization of scattered particles when the CN
mechanism alone operates, for which reason low-

energy polarization studies'" in conjunction with
correlation measurements could provide very valua-
ble information.

Perpendicular-correlation studies also offer a sensi-
tive means of establishing reaction mechanism, and
are not only of value in their own right but can yield
data for determination of ratios of anisotropy param-
eters in the successive emission of particles from a
compound system (see the note of Halpern" and the
recent review article on compound nuclear reactions
by Bodanskyss).

A basis for future experimental and theoretical
work is the study of correlations when, upon in-
elastic scattering, levels of the target nucleus higher
than the first excited state become populated under
conditions when the CN mechanism prevails. For
comparison of CN and DI predictions, it would be
desirable to determine CN tensor parameters ex-
plicitly, coding for which is now under way; alterna-
tively, the reformulation of DI theory to yield an
explicit analytical 8& dependence for the correlation
might also be undertaken. Indeed, combination of
CN with DI scattering theory on the basis of dis-
persion relations, e.g. , Feshbach's "Unified Reaction
Theory, ""appears to offer considerable promise for
the near future. Apart from the approach of Rod-
berg, " the only such attempt based on dispersion
formalism has been undertaken by Sano et al.4' and
discussed by Austern, 4' but the treatment has, of
necessity, been con6ned to a synthesis of a DI process
coupled to an isolated CN resonance, whereas it is
for the intermediate region of many CN resonances
and their progressive fusion into a continuum that
the most, pronounced theoretical developments are
to be awaited.

9. APPENDIX: LEGENDRE HYPERPOLYNOMIALS

%hen a nuclear reaction proceeds by way of for-
mation of a compound nucleus, the reaction products
are, in general, not emitted isotropically. The angular
distribution can be expressed in terms of a sum of
Legendre polynomials Pq (cos t)). Since the angular
dependence of the correlation function is essentially

8 L. J. B. Goldfarb and D. A. Bromley, Nucl. Phys. 39
408 {1962).

ss I. Halpern, Bull. Arn. Phys. Soc. 5, 510 (1960).
s9 D. Bodansky, Ann. Rev. Nucl. Sci. 12, 79 (1962).
se H. Feshhach, Ann. Phys. 5, 857 (1958); 19, 287 (1962).
9 L. Rodberg, Phys. H,ev. 1241 210 (1961).

contained in terms involving products of two spheri-
cal harmonics, i.e., two Legendre functions basically,
Rose" has designated such terms "Legendre hyper-
polynomials. " An alternative designation" is "bi-
polar harmonics. " The properties and numerical
evaluation of these entities form the subject of this
Appendix. (See also Ref. 29.)

Explicitly, for the inelastic scattering processes
considered in the present analysis, the Legendre
hyperpolynomial has the form

8„g,(k.,k, ,k, ) = (4~)'(2)~+ I) '

X Q „,(Pms~yvm), ms —mi)Y„"' (ke)

&& Y„' '*(kg) Yg'(ks), (Al)

when expressed in terms of the incident and emergent
nucleon propagation vectors ko, k& and the y radiation
vector k2. It is more convenient to express this
directly in terms of angles referred to the incident
direction k0, in this form the Legendre hyperpoly-
nomial reduces to

8„,), (ei,02,q) = 4s(P, )) Q (—) (Xm~pvOm)

X Y„--(e„O)Y,-(e„q ), (A2)

which displays the bipolar harmonic dependence.
The Y„and Y& are Condon —Shortley spherical

harmonics and it may be noted in passing that the
S„„q are identical with those of Satchler, " as also
with the 0„,„,„, of Rose" and the O.b, of Seward. "
They are related to the A. function of Biedenharn and
Rose, '

8„„—= (4~) (2) + I) A

and to the 8(yves) —functions,

8„,g = P v(XO~pv00)8(@vs) .

(A3)

(A4)

For evaluation of the 8„.~, Eq. (A2) can be ex-
pressed in terms of associated Legendre functions,

(v —m)! (X —m)! *

A,.—= p, v
( )!( )l (Xm~pvOm), (A6)

and since it has the symmetry property

(yves) = A (pv)), (A.7)
&s D. Brink and G. R. Satchler, Angular Momentum (Oxford

University Press, Oxford, 1962).

8 „g(f)1 f)2 ig) —g A P„(cos f)1)P7 (cos 82) cos mp

(A5)

where the summation runs over all negative and
positive integer values of m up to the lesser of the
values (v, X). The expansion coefficient is
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Eq. (A.5) can be written

S„„i,(8„8&,p) = Ap(fiv)i)P, (cos 8i)P&(cos 8.)

+ 2 g A (pv)t)P, (cos 8i)Pi", (cos 8s) cos mq . (A.S)

This expression has previously been given in a
report" by Rose, together with a useful recursion
relation for the A,
A i + [p (p + 1) —v (v + 1) —)i ()i + 1) + 2m ]A

+ [(v —m) (v +m+ 1) ()i —m) ()i +m j1)]A,i ——0,
(AO)

which follows from a recursion relation for the
magnetic quantum numbers of Clebsch —Gordan co-
eKcients, 33

[p(p + 1) —v(v + 1) —)i()i + 1) + 2m ]
X ()im~p, v0m) + [)I, (X + 1) —m(m + 1)]'
X [v(v+ 1) —m(m+ 1)]*(X,m+ 1~1iv0,m+ 1)

+ [)i()i+ 1) —m(m —1)]'[v(v+ 1) —m(m —1)]'
X ()t,m —l~pvO, m —1) = 0. (Alo)

The report neglected to point out, however, that
Eq. (AO) is inapplicable when m = 0; in this ca,se the
relation giving Al from a known value of Ap is

[2vti(v + 1) ()i + 1)]Ai

+ [p(fi + 1) —v(v + 1) —)I ()i + 1)]A, = 0 .

Hence, for a, given combination (1ivX) it suKces to
compute Ap from the expression

A, ( )i) = (—)'"'""'
j,
' f' X' (—1i + v + )i)!(p, —v + )i)!(p + v —X) 1

(p+ v+ )i+ 1)!
[s(~+ v+ )~)]!

[s(—~+ ~ +) )]![s(~—~ +) )]![2(~+v —) )]!
(412)

and then to derive the other A„ from Eqs. (A12) and
(A9). In this connection a further useful symmetry
property of the A is

A,.(pv)i) = A (fi)iv) .

TABLE V. Numerical values of the coefficients A (yves) from which the Legendre Hyperpolynomials 8„„&(ei,ez, y) for v, v ( 18
and P & 4 can be calculated. Figures in raised brackets denote powers of 10.

0
2

6
8

10
12
14
16
18
0
2
2
2
4

6
6
6
8
8
8

10
10
10
12
12
12
14
14
14
16
16

18
18

0
2
4
6
8

10
12
14
16
18
2
0
2

2

6
4
6
8
6
8

10
8

10
12
10
12
14
12
14
16
14
16
18
16
18

Ap

1.000000
2.236068
3.000000
3.605551
4.123106
4.582577
5.000000
5.385165
5.744561
6.082761
2.286068
2.236068
2.672612
3.585686
3.585686
3.418817
4.522669
4.522669
4.067609
5.291501
5.291501
4.633968
5.960896
5.960396
5.141029
6.560753
6.560753
5.603649
7.110236
7.«10236
6.031566
7.619997
7.619997
6.431460
8.097615
8.097615
6.808183

3.726780( »

2.988072(-»
-3.984095(-»
-8.547042&-»

2.5«259«-»—3.0«5««3(-»
—4.84239«&-»

2.2O4792&-»
-2.519763(-»-3'.2«8034(-»

«:986799&-»
—2.207554' »
-2.336S3«&-»

«.82243«&-»
—«.988«07&-»
—«.79604«( 2)

«.692913( »

—1.436OS7 &- )

1.5S7499(-»—«.693333&-»
—«.«82254(-»

«.499558~ i)
—1:5s7767(-~)
—9.9534S4(-»

A2

9.3«6949&-»

«.««3589(-»
2.490060( »
2.490060&-»
4.27352«&-»
1.256297(-»
1.256297( »
2.421«96&-»
7.S7425S&-»
7.S7425S&-»
1.6O9O«7&-»
5.5«8885&-»
5.5«8885(-»
1.«684«6( 2)

4.«4«889( »
4.«41889( »
S.9SO2O7(-»
S.2556OS(-»
3.25560'&-»
7.«80435&-»
2.645832&-»
2.645832&-»
5.9««268(»
2.2OM33&-»
2.205233
4.976742&-»
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TABLE V. (CORaB'tl88)

851

0
2
2
2

4
4
6
6
6
6
6
8
8
8
8
8

10
10
10
10
10
12
12
12
12
12
14
14
14
14
14
16
16
16
16
18
18
18

4
2
2
6
0
2
4
6
8
2

6
8

10

6
8

10
12
6
8

10
12
14
8

10
12
14
16
10
12
14
16
1g
12
14
16
18
14
16
18

4
4
4

4
4

4
4
4
4
4
4

4
4

4

4
4
4
4

4

4
4
4
4

Ap

3.000000
3.585686—3.418817
4.522669
3.000000—3.418817
3.620620—4.045198
5.553301
4.522669—4.045198
4.185537—4.658685
6.399979
5.553801—4.658685
4.722241—5.213957
7.139502
6.399979—5.213956
5.215491—5.720416
7.805788
7.139502—5.720416
5.670887—6.187802
8.417625
7.805788—6.187802
6.094829—6.623507
8.986789
8.417625—6.623511
6.492637—7.032988
8.986794—7.032984
6.S6S323(-»

1.500000( ~~

2.98SO72(-»
—1.452997(-»

1.507556( ~)

-S.547O42(-»
9.O51549(-»

—1.011300(-»
1.3SS325(-»

—3.015113( &)

1.O113OO(-»
4 982782(-»

-S.OS7994(-»
1.279996(-»

—2.221321( &)

2.773O27(-»
3.279334(-»

—6.S72943(-»
1.189917( &)

—1.828565(-»
3.25S722(-»
2.37O67S(-»

—6.O5O439(-»
1.115113( ~)

—1.586556(-»
3.3SO246(-»
1.817592( 2)

-5.451159(-»
1,O522O3(-»

—1.41923«- )

3.371559(-»
1.451150(-»
4 99]982(—2)

9.9S532O(-»-1.295O19(-»
8.811756( 2)

1.1935OO(-»
-4.626966(-»
—1,198239( &)

3.232o7o(-»
1.OO4147(-»

S.883883(-»
2.49OO6O(-»

-3.79S6S5(-»
5.O251SS(-»

—6.146114(-»
0.000000
3.8O5536(-»
1.256297( 2)

1.236O33(-»
—4.56755O(-»

6.162282(
2.37O362(-»
6.17O334(-»
6.OOS224(-»

—3.279334(-»
7.022164( 4)

1.SO29O4(-»
3.SO9511(-»
3.620802( 3)

-2.463359(-»
6.667151(-4)
1.429632(-»
2.64426O(-»
2.455784(-»

—1.927749 -»
6.O44251(-4)
1.169114( 3)

1.971159(-»
1.794887(-»

—1.558126( ~)

5.411362(-4)
9.7S953O(-4)
1.541689(-»
1.379s9s(-»

—1.29173O(-»
4.S3S657(-4)
1.24S166(-»
1.101298( 3)

—6.880223( 5)

5.9523S1(-4)

2.874178(-4)
1.794710(-4)

—8.381064(-4)
2.OO6547(-4)
7.S7O325(-»

—6.S22259(-4)
—2.076159( 4)

1.15542S(-4)
4.23279o(-»

—1.259251( 4)

-2.69599S(-4)
-7.807939( 5)

7.131SS5(-»
2.575577(-»

-6.O46S41(-»
—1.371516(-4)
—3.65S453(-»

4.722565(-»
1.701942( 5)

—3.434103-S.O56141(-»
—1.967O91(-»

8,3O545O(-»
1.192974(-»

-2.166108( 5)

-5.19427S(-»
—1.162780( ~)

2.4157S7(-»
S.74O65O(-6)

—1.468275( ~)

—8.575366(-»
—7.367281(-6

1.S27O97(-»
—1.O4SS79(-»
-2.5S8136(-»
—3.889812( 7)

A4

7.440475( ~

1.187089(
7.477955( 6)

6.9S422O(-»
2.OO6547(-»
1.9675s1(-6)

2.006546( ~)

1.73O133(-»
6.419O43(-6)
7.55S549(-»
1.967512
6.419043(-6
6.5O6616(- )

2.743O33(-6)
3.577190( 7)

7.55S4S9(-»
2.743O32(-6)
8.o4s711(-6)
1.3SS99O(-6)
1.934O24(-»
3.5771S2(-»
1.3SS99O(-6)
1.639242(-6)
7'.S7O11S(-»
1.147090
1.934018(-»
7.S7O11S(-»
9.689S36(-»
4.S31573(-»
7.2S3S7O(-»
1.147087( 7)

4.S31576(-»
6.139401
3.15o167(-»
7.283871( 8)

3.15O166(-»
2 576677(-8)

This circumstance induces a symmetry relation in
the 8„„)„

8„,,(S„A,~) = 8„,,(e.,g„~) . (A14)

The recursion relations appropriate to change in
one of the parameters (pA) prove to be inconven-
iently cumbersome and have not therefore been
reproduced. This arises from the fact that the start-
ing relations for Clebsch —Gordan coefFicients are
themselves fairly involved and that, furthermore, the
parameters (pv'A) change in steps of 2 rather tha, n in
integer steps.

The extension of angular correlation calculations
to include orbital momenta higher than t = 2 has in
the past been restricted by their relative complexity
and, in particular, by the difFiculty of calculating the
Legendre hyperpolynomials 8„„&. These have now
been computed numerically but since they are func-
tions of (Oi, 02,q) as well as of (pvX), their values are
too numerous to be tabulated here. They can, how-

8oop = 1

8, 0 = h„, vP, (cos 8, )

8~ay = 8~), .pP~(cos 82)

8og, = b„),XPg(cos &),

(A15)

(A16)

(A17)

(A18)

where the angle g between the outgoing radiations,

ever, be evaluated directly if the numerical values
of the coefficients A (Ij.vt) are known: these quanti-
ties have been listed in Table V for p, v = 0 to 18
i.e., t & 9) and X = 0, 2, 4. This augments Rose's
table" of A (yves) for t & 2 and corrects an erroneous
value of A4(444) in that compilation. The values of
A„were computed directly from Eq. (A6) and as a
countercheck by the recursion relations (A12) and

(A9); the only disagreement occurred in the final
decimal place and then only in isolated instances.

For a zero value of one or more of the parameters
(pA), the 8„.~(e&,0„p) take on simple forms,
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Svyg8v p $.8Q 87ISvv Spy Bgg ) (A20)

where dQ = sin OI sin 8~ do& de~ dq.
Rose" has shown, furthermore, that

II II fl

~vA~vvk~v v x ~O ( ) X 87I ppvvXQ

X (y"0
i
py'00)(v"0 ivv'00)(V'0

i
M, '00)

X X(pA;p'v'X';p, 'V'X"),

and that the S„„~are invariant under rotation.
The explicit forms for the 8„„~(0&,8&,&p) associated

with orbital angular momenta l & 2 are given below
for arbitrary (8&,0&,y), with the notation x —= cos e&,

y —= cos 8&, z —= xy [(1—x')(1—y')]'*:

8,~, ——[—8.017837 x'y' + 4.008919(x' + y')
—2.672612] —[4.008919 z] cos p

+ [4.008919(x'y' —x' —y' + 1)]cos' p;
(A22)

8,g, ——[15.687374 x'y' —11.205266 x'y' + 0.896421 x'

—2.241055 y' + 0.448211] + [31.374751 y'z

—13.446322 z] cos p + [15.687378 x'y'

—15.687378 y4 —17.928432 x'y'

+ 2.241054 x' + 17.928432 y'

—2.241054] cos' &p, (A23)

g„, = [15.687374 x'y' —11.205266 x'y' —2.241055x'

+ 0.896421 y' + 0.448211] + [31.374751 x'z

—13.446322 z] cos p + [15.687378 x'y'

—15.687378 x4 —17.928432 x'y'

+ 17.928432 x' + 2.241054 y' —2.241054]

Q cos (A24)

Sg44
——[—41.880466 x'y' + 26.923113(x'y' + x'y')

—10.256328 x'y' —3.846220(x' + y')

+ 2.564137] + [—104.701417 x'y'z

+ 53.846512(x' + y')z —32.051553 z] cos p

+ [—62.821001 x'y' + 89.744381(x'y' + x'y')
—26.923381(x' + y') —138.462913 x'y'

is given by

cv =—cosP = cose~ cose~+ sin8i sin8~cosy. (A19)

The set of S„„~are complete and orthogonal; it
can be shown from Eq. (A8) that

+ 48.718530(x' + y') —21.795149] cos' p

+ [20.940444(x'y'z —x'z —y'z + z)] cos' y

+ [20.940444 x'y' —41.880888(x'y' + x'y')

+ 20.940444(x' + y') + 83 7617'78 x~y~

—41.880888(x' + y') + 20.940444] cos' q;
(A25)

84gg [7.619582 x'y' —2.241054(x' + y')

+ 0.448211] + [—7.171372 z] cos p

+ [0.896422(x'y' —x' —y' + 1)] cos' p,'

(A26)

8«~ = [—35.897583 x'y' + 20.940257 x'

+ 34.615526 x'y' —21.794962 x'

—3.846170 y' + 2.564113] + [—8.974395 x'z

+ 3.846169 z] cos y + [26.923189 x4y'

—26.923189 x' —30.769358 x'y'

+ 30.769358 x' + 3.846170 y' —3.846170]

)( cos (A27)

8,g4
——[—35.897583 x'y' + 20.940257 y4

+ 34.615526 x'y' —3.846170 x'

—21.794962 y' + 2.564113] + [—8.974395 y'z

+ 3.846169 z] cos p + [26.923189 x'y'

—26.923189 y' —30.769358 x'y'

+ 3.846170 x' + 30.769358 y' —3.846170]

g cos (A28)

84« = [104.721380 x'y' —101.201324(x'y' + x'y')

+ 12.320158(x' + y') + 101.327027 x'y'

—13.703028(x' + y') + 2.740603]

+ [110.881726 x'y'z —79.201298(x' + y') z

+ 65.623971 z] cos p + [—80.080992 x'y4

+ 102.081244(x'y' + x'y') —22.000252

X (x' + y') —137.784499 x'y'

+ 35.703256(x' + y') —13.703004] cos'y

+ [73.921302(—x'y'z + x'z + y'z —z)] cos' y

+ [12.320129 x'y' —24.640258(x4y' + x'y')

+ 12.320129(x' + y') + 49.280515x'y'
—24.640258(x' + y') + 12.320129]cos' y.

(A29)
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I. INTRODUCTION

&HE large accumulation of data on the low-en-

ergy spectra of many nuclei has made it possible
to study systematically and in detail the variation
from nucleus to nucleus of various nuclear properties,
such as level energies, moments, transition rates, and
reaction rates. In many cases it has been possible to
identify, in the low-energy spectrum, states which
seem to correspond to the motion of a single pa, rticle


