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1. INTRODUCTION AND NOTATION

&HE purpose of this article is to give an account
of the application of single variable dispersion

relations to calculate the main parameters of low-

energy pion —nucleon scattering and the low-energy

Copyright 1963 by The American Physical Society.
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phase shifts. The input data consist of fairly com-
pete information about the total cross sections and
the dominant resonances of the m —X system. Our
aim is to give precise numerical values of the parame-
ters and low-energy phase shifts, since these quanti-
ties are required for a variety of purposes in other
investigations. We do not attempt here to give any
physical discussion of low-energy pion —nucleon scat-
tering. ' Also, it should be emphasized that this
article only discusses those topics with which one or
both of the authors have been directly involved. We
do not claim any completeness for the topics dis-
cussed or for the references.

(i) Summary of the Topics Discussed

In Sec. 1(ii) we give the relativistic notation for
the pion —nucleon scattering amplitudes which was
used by Chew, Goldberger, Low, and Nambu (to be
referred to as CGLN) .' This notation is used through-
out. In the same section we give the charge notation,
the appropriate partial wave analysis, and the basic
dispersion relations themselves.

In applying dispersion relations, the questions of
high-energy behavior and the subtractions are of
considerable importance. In See. 2 we discuss their
mathematical and physical features for both forward
and fixed momentum-transfer pion —nucleon scat-
tering. This involves some account of Pomeranchuk's
theorem and the Regge pole method.

Physical measurements of pion —nucleon scattering
are conveniently expressed in terms of partial wave
amplitudes and phase shifts, but the dispersion
relations which are useful for our purposes refer to
scattering amplitudes. The relation between these
quantities is given by the Legendre series for the
expansion of scattering amplitudes. The rate of con-
vergence of this series and of its inverse is a matter
of basic importance in any attempt to predict low-

energy pion —nucleon phase shifts by dispersion rela-
tions. In Sec. 3 these convergence problems are ex-
amined. We use both the domains of convergence
given by Lehmann's theorems, and the larger
domains of convergence which follow from the
Mandelstam representation. (In this article the
Mandelstam representation has only been used to
give these domains of convergence of the Legendre
series and of its inverse. Moreover the results of the

i For a physical discussion of the dominant (3/2, 6/2) state,
see G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
For the remaining p-wave states and the s-wave states, see,
for example, J. Hamilton, P. Menotti, G. C. Oades, and L. L.
J. Vick, Phys. Rev. 128, 1881 (1962).

2 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

calculations of partial wave amplitudes appear to
give strong support to the validity of the larger
domains of convergence which are obtained from
the Mandelstam representation. )

In Sec. 4 we give an account of Woolcock's calcula-
tions, ' and other determinations, of the paramet rs
of low-energy pion —nucleon physics. Various im-
provements are made in the original calculations.
The parameters are the coupling constant f', the
s-wave scattering lengths aI, a3, the p-wave scattering
lengths a2+,2J and the curvature constants in the
parametric form for the low-energy 8-wave phase
shifts. The calculations are based mainly on the use
of forward and fixed momentum-transfer dispersion
relations for various pion —nucleon scattering ampli-
tudes (these are really sum rules). The dispersion
relations are evaluated by using the considerable
amount of accurate experimental data which is
available on the total m~ —p cross sections, and the
reliable information which we have about the reso-
nances of the x—X system. An effort has been made
to give a careful assessment of the errors in 'these
determinations of the parameters.

In Sec. 5 the fixed momentum-transfer dispersion
relations are used to predict the s-wave and p-wave
pion —nucleon phase shifts at low energies. The
method is an improved form of the CGLN calcula-
tions'; all recoil and relativistic effects are included;
and only the f waves (and higher) are ignored. Again
the original calculations' are improved in various
ways and a careful assessment of the errors is in-
cluded. The input data is the same information about
the total cross sections and resonances that is used in
Sec. 4.

The main limitation on the method is the con-
vergence of the inverse of the Legendre series which,
as was mentioned above, is needed to deduce the
partial wave amplitudes from the calculated scat-
tering amplitudes and their derivatives with respect
to momentum transfer. As the energy increases, the
domain of convergence becomes smaller, and the rate
of convergence of the inverse series deteriorates
rapidly. In practice this means that the corrections
due to f-wave, g-wave, . . . terms, which we ignore,
become large, and further, errors in the results due
to inaccuracies in the d-wave subtraction term (in
one of the A&+' relations) ean be troublesome. A
complete and (we believe) accurate prediction of the
8-wave and p-wave phase shifts is possible up to
about 120 MeV (lab) energy, and the results are in
good agreement with the accurate experimental

3 W. S. Woolcock, Ph. D. thesis, Cambridge University
(1961) (unpublished).
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values which are available. Above 120 MeV we can
only predict certain special combinations of the
scattering amplitudes. It is expected that the rate of
convergence of the inverse series in the (—) charge
combination is good up to around 800 MeV, and the
corresponding partial wave amplitudes turn out to
agree well with experiment in the p-wave case. For
the s waves the results in the (—) case up to 800
MeV should be reasonably reliable. Another special
case is the f,'+' amplitude which again avoids the
difficulties just discussed, up to around 220 MeV.
The relation between these two special cases and our
knowledge of the pion —pion interactions is discussed
fully.

(ii) Kinematic Invariants and Invariant Amplitudes

We shall use the notation of CGLN. ' The S-matrix
elements for elastic m —N scattering can be written

where +L, is the total energy of the incident pion in
the lab system, q' is the square of the momentum of
either particle in the c.m. system, and 8 is the scat-
tering angle in the c.m. system.

It is sometimes convenient to use the pair of
kinematic invariants

8 = —(pi + qi)', t = —
(qg —(i2) .

Evaluating s in the lab system we find

s = M'+ p'+ 23II(ui

= M + p + 23IIv —i t. (1.5)

The variables 8 and t are used in the Mandelstam
representation, ' and it is often convenient to use
also a third invariant u defined by

8+ t + u —23II'+ 2p

so that
s = p; —(2n.)'ib"'(p, + ((, —p, —g, )

&C (M'/4EiE2(v((o2) * u, Fu, , (1.1)
u = M'+ p' —2Mv —-', t . (1.0a)

where 5&, = 0 unless there is no scattering (then5„=1). E&, E, are the initial and final nucleon
energies, and pI, p2 are the corresponding 4-vector
energy momenta. (0&, ~ and q„((,are the same quanti-
ties for the initial and final pions. u1 and u2 are the
initial and final spinors for the nucleon, normalized
so that (for nucleons) u& u&

——u& n2 = 1. M is the
nucleon mass, and p is the pion mass.

The 4 )& 4 matrix T is a Lorentz invariant. ' It can
be expressed as a function of the kinematic in-
variants, which in turn are formed from the three
independent 4 vectors associated with the scattering.
These are

P. = l(»+s). , Q. = l(v+e). ,

~. = l (m —v). .

Two independent invariants (apart from the masses)
can be formed, and it is convenient to take

(iii) Charge Properties

It is customary, but not necessary, to assume
charge independence in analyzing the amplitudes.
A and B are then 8 )& 8 matrices (A p ), (Bp ), where
n, P = 1, 2, 8 are the pion-charge indices. By charge
independence we can write

A p
= A'+'()

p + A' '
—,
' [7.p,7 ),

Bp. =B")~p.+B' ' ', [ p;.)--
where r (n = 1, 2, 8) are the 2 X 2 isotopic spin
matrices for the nucleons. Clearly A(+), B'+' refer
to the parts of (A p ), (Bp ) which are symmetric in
the charge indices (o., p), and A(-), B(-) to the anti-
symmetric part. No transfer of charge between pion
and nucleon occurs in the A(+', B(+) parts, so they
do not require any r matrices.

The amplitudes A&», 8(» for m.—iV scattering in
isotopic spin eigenstates T = —,', -,'are related to

v = PQ/M t =——4h'. (1 2)

We can write 7 in the form

t = —2(( (1 —cos e)

v = cui, + t/4M,
4 Strictly it is u2Tu1 which is invariant.

(1.4)

T = —A + iy. QB, (1 8)
where 7 Q = y"Q„and A, B are scalar functions of
the kinematic invariants v, t. The quantities v and t
between them specify the energy and the scattering
angle. It is easy to deduce from (1.2) that

A(+) i A(k) + 2 A(-'*) . A(k) A(+) y 2A( )

A' ' = -,'(A" —A"); A'*' = A —A' (l.8)

Identical relations hold for the 8 amplitudes.
We can a,void relying on charge independence [cf.

Sec. 4(iv)] if we define A(+), B'"' in terms of the
amplitudes A+, B+ and A, 8 which describe the
elastic scattering processes ~+ + p ~ n. + + p and
7(.-+ p —+ m- + p, respectively.

5 S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741,
1752 (1959).
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It is easy to deduce from (1.9) that Thus, by (14)

A'+' = —,
' (A++ A ), A' ' = —,

' (A —A„), T"'(—v, t) = T' '(v, t), T' '( —v, t) = —T' '(v, t) .
B'+' = & (B +. B ), B' ' = r, (B —B ) (l 9) Now using (1.3) we obtain (1.13).

If we do not wish to assume charge independence
we take (1.9) as the dePnitt'on of A&+', B'+&. This
indeed corresponds to what happens mostly in

practice, since for elastic ~—X scattering in general
we only use experimental results on 7r+ + p —+ s.+

+ p and s —+ p —+ s.-+ p scattering.

(iv) Crossing Symmetry

Let the scattering amplitude for the process in

Eq. (1.1) be written

(p,v,

PITIED,

v, )

Then Low's expression for this quantity in terms of
Heisenberg operators and real state vectors shows

the symmetry property'

( s,e,PITIED~, m, ~) = &ps,
—a,~ITIC~, —vs, P) (1.10)

(v) The Dispersion Relations for A and B
We are here only interested in dispersion relations

for fixed momentum transfer t,. The positions of the
singularities are easiest expressed in terms of the
invariants s and u [Eqs. (1.5) and (1.6)].There is the
single nucleon pole at s = 3I' (the Born term), and
the corresponding crossed pole at u = 3P. There is
the physical cut s &~ (M + p)' and the crossed cut
& &~ (1if + p)'. By (1.5) and (1.6a) we express the
positions of these singularities in terms of- v. Using
Cauchy's theorem and Eq. (1.13) in the way indi-
cated in Sec. 2(i) below and Fig. 1, and ignoring
for the moment any questions about convergence,
we get the dispersion relations for fixed momentum
transfer t.

These equations, which were first written down by
CGLN' are

This replacement q& ~ —g„n~P leaves P„and
A„unaltered and reverses Q„(Q„~—Q„).Thus, it
gives

Re A'"(v, t) = —P
jr

dv' Im A"'(v', t)
p+ tl4M

v~ —v, t —+t, ,

and by (1.5) and (1.6a)

(1.11) (1.16)

8 ~ B, , t ~ t, 'll ~ 8 . (1.12)

Remembering that A&+' is the symmetric part of

(Ap ) we get [from (1.10) and (1.3) and pQ —+ —pQ]

T'+' = -,'(T~+ T ), T' ' = —', (T —T~), (1.14)

where T+ and T are the amplitudes for ~++ p
—+ w+ + p and ~- + p -+ m- + p, respectively. The
crossing property follows directly from Low's rela-
tion. It relates physical m+ + p scattering to un-

physical m- + p scattering and vice versa. We have,

+lp»+) = (ps &~lT lp»-
G.,v. IT-lp, e) = (p., —elT.I7, —v). (1.15)

6 See for example, J. Hamilton, Theory of Elementary Parti-
cles (Oxford University Press, New York, 1959), Chap. VI,
paragraph 5.

A'+'( —v, t) = A' '(v, t), B'+'( —v, t) = —B'+'(v, t),
A' '(—.,t) = -A' '(.,t), B' '(-.,t) = B' '(.,t) .

(1.13)

Again, we can, if we wish, derive the crossing relations
(1.13) without using charge independence. From Eq.
(1.3) and definition (1.9) we have

2

p+t/4 I v v v v

(1.17)

Here, vs —— p'/211I + t/4—M is the position of the
nucleon pole, and 6,' is the rationalized renormalized
(Watson —Lepore) pseudoscalar coupling constant.

Fze. 1. The con-
tour t. and the con-
tours around the cuts
of f(s) used in deriv-
ing Eqs. (1.16),
(1.17), and (2.1).

S

s — plane

The Born terms in (1.7) are calculated by second-
order perturbation theory. The reason why they
appear in the 8&+' equations but not in the A&+'

equations is that at low energies the pseudoscalar
m—N' interaction is equivalent to a pseudovector
w—X interaction. This latter type of interaction must
involve the nucleon spin d, so it can contribute to the
y Q term in (1.3) (i.e., to B), but not to A.
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the above enumerated singularities are the only
singularities of Ai+i(v, t), Bi+i(v, t). To establish the
dispersion relations (1.16) and (1.17) (or subtracted
versions of them) for these values of t, it is only
necessary to examine their convergence properties;
this will be done in Sec. 2.

l f) = exp (—ia.,q/2) exp (ia-„8/2) exp (io,p/2) li)
gives

(f li~) = —e
'

sin (8/2),

(f~ l
i ) = e' sin (8/2) . (1.23b)

From (1.18) and (1.20) we relate 3I to T in the c.m.
system by the convention

(vi) Partial Wave Analysis

We now set down the relations between the in-
variant A and B amplitudes and the usual partial
wave amplitudes. From (1.1) it follows that the
differential cross section in the c.m. system is

(1.24)(fl3IIli) = —(M/4lrw)u, Tu, .
Using the representation in which

It has been proved' (assuming microscopic causal- scripts + or —,we have
ity and the usual asymptotic axioms of field theory) ~ (f l )(f +f ) ~ (f l )that for Axed t, such that ete, (1.23a)

0~& —t~& —
p, ~12',32 23II + p

where the subscripts & denote the helicity, and3 23II —p,
li~), l f~) are the spin-state vectors. Using

d~/d& = (1II/4~W) ZlusTuil', (1.18)

where Z denotes the sum over final spin states and
the average over the initial spin states. Also,

W = (3I'+ e)'+ (~'+ C)' (119)
is the total energy in the c.m. system. Clearly 8"'
= s.

We can also write the differential cross section in
the c.m. system in the form

d~/« = &l(fl3Ili)l' (120)
where li) and

l f) are the Pauli spinors for the initial
and final nucleon states 3I is .commonly written in
the form

4

0,p= —iPe= 0) '

the Dirac (4-component) spinors u&, us ean be ex-
pressed in terms of the Pauli (2-component) spinors
li), If) by

(3II —imp, ) li) &

(2M (E| + 3II) )
* 0 I '

(3I —imp. )"' = ((fl' )' (m(E. + u))-:
Substituting (1.25) in (1.24) we relate M [Eq. (1.22)]
to T [Eq. (1.3)]. A little elementary manipulation
gives

M = f(g) + (8 n)g(g), (1.21)
f, = [A + (W —M)B],

where 8 is the c.m. scattering angle and n =
qs x q|/lq, x q, l

is the normal to the plane of scat-
tering. f(8) and g(8) are the no-flip and spin-flip
amplitudes, respectively. A more convenient form is

f (g) + (& q.) (& q ) f (g)
g1g2

The relation between (1.21) and (1.22) is

(1.22)

f(8) = f, (8) + cosgf, (8),
ig(8) = sin 8f~(8) . (1.23)

The form (1.22) connects directly with the helicity
amplitudes. ' Denoting the nucleon's helicity by sub-

fs ——
8 W [—A + (W+ 3I)B]. (1.26)

E —3I

Here, E = (3I2 + g') l is the energy of the nucleon
in the c.m. system. In connection with (1.26) it is
useful to notice that

E & 3I = [(W & 3I)' —p']/2W. (1.27)

Substituting (1.27) in (1.26) and using (1.5) (and
W' = s) we can express f, and f& in terms of the in-
variants s and t, or v and t.

The conventional partial wave expansions are

~ H. J. Bremermann, R. Oehme, and J. O. Taylor, Phys.
I1ev. 109, 2178 (1958); H. Lchmann, Nnovo Cimento 10, 579
(&95s).

s M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959). (1.28)
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where p = cos e and P~(p), PI'~(p) are ordinary
and associated Legendre polynomials. ft, are the
partial wave amplitudes, ' and in the elastic region

fi~ = exp (i8~~) sin(5~~)/q. Using the relations

P,"'(p) = sin OP&(IJ,) and

(l + 1)P~(~) = Pl+ ( ) —~Pl (I )

~P~(P) = IJP[(P) —P[ ~(&)

Eqs. (1.28) and (1.23) give

(1.29)

(1.30)

The orthogonality relations associated with (1.30)

&I Pl(I )[P~+ (~) —P~ (~)] =-~ ~.

They give

f~~ = 2

(vii) Laboratory System Relations

We use q and ql, for the c.m. and incident lab pion
momenta. We always use E and W to denote the
nucleon energy and the total energy in the c.m.
system. The (total) lab energy of the incident pion
1S Col, .

Then we have

q~yq = W/3II (1.31)

D(col, ) = Re fg(ql, ,o),
D.(~) = Ref(q, O) . (1.36)

fl~ and bl~ are the partial wave amplitudes and phase
shifts for the states with orbital angular momentum and total
angular momentum j = t + 1/2, respectively.

(ol, ——(EW/3II) —M . (1.32)

The forward-scattering amplitudes fI.(qI. ,O), f(q,o)
in the lab and c.m. system are related by

f~(q, o)/q = f(qo)/q (1 33)

The forward amplitude in the c.m. system is de-
duced from (1.23), (1.26), and (1.32). It is

f(q,o) = (M/4Ãw) (A + (dr,B) . (1.34)

By (1.31) and (1.33)

fi(qg, o) = (1/4~) (A + a)IB) . (1.35)

For the real part of the forward-scattering ampli-
tude we shall use the notation

As a special case of (1.33), the threshold values of the
scattering amplitudes D~(&ol) for 7r+ —p scattering
are given by

D+(g) = (1+p/M)aa,
D (y) = (1 + p/M) —', (2ag + aa), (1.37)

where e& and a& are the s-wave scattering lengths in
the isotopic states T = -,'and —,'. Finally, the optical
theorem can be written in two forms

Im f~(ql. ,o) = (ql./4~)«. . .' Im f(q, o) = (q/4~)0. ..
(1.38)

2. SUBTRACTIONS, HIGH-ENERGY BEHAVIOR
AND THE SUM RULE

From our knowledge of the positions of the
singularities of a scattering amplitude as a function
of the energy we can, as in Eqs. (1.16) and (1.17),
set up a dispersion relation merely by using Cauchy's
theorem. However, this relation will not be valid
unless certain high-energy convergence conditions
are obeyed. If these conditions are not satisfied, one
or more subtractions must be made in order to obtain
a valid dispersion relation. Since it is particularly
necessary in making numerical applications that we
are sure that we are using valid dispersion relations,
we shall examine carefully the problem of the number
of subtractions which is required.

In order to apply these general ideas in any par-
ticular case it is necessary to know the high-energy
behavior of the various terms in the dispersion
relation. This presents us with two somewhat diK-
cult problems: (a) the mathematical question of
determining the limiting behavior of principal value
integrals, and (b) the physical question of conjectur-
ing the asymptotic behavior of scattering amplitudes.

In the first half of this chapter [Secs. 2(i)—2(v)] we
discuss these problems with particular reference to
forward m+-'p scattering. It is convenient to do this
because of the considerable amount of information
which is available about forward x~p scattering.
We include some discussion of two interesting features
which are associated with the high-energy behavior:
Pomeranchuk's theorem, and the sum rule. In the
second half of the chapter [Secs. 2(vi) —2(ix)] we ex-
amine the high-energy behavior of the amplitudes
A (s, t), B(8,t) and the question of what subtractions
are needed in the dispersion relations (1.16) and
(1.17).

The reader who Ands these discussions of sub-
tractions and high-energy behavior to be tedious can
ignore this chapter [except for Sec. 2(iv) on the sum
rule]. All the dispersion relations used in Secs. 4 and
5 have the correct number of subtractionsI



PION —NUCLEON PARAMETERS 743

(i) Additive Polynomials and Subtractions

When the integral in a dispersion relation [like
(1.16) or (1.17)j does not converge, the usual pro-
cedure is to subtract, i.e., extra factors are inserted
in the denominator of the integral until convergence
is achieved. This automatically produces an extra
polynomial —the additive polynomial —on the right-
hand side of ~the dispersion relation, as can be seen
from Eq. (2.3) below. Strictly speaking there are
two distinct features here. In a dispersion relation
of the usual type like (1.16) or (1.17) the number of
subtractions is determined by the behavior of the
imaginary, or absorptive, part of the scattering
amplitude at high energy, whereas the degree of the
additive polynomial can also depend on the behavior
of the real, or dispersive, part of the scattering ampli-
tude at high energy.

Let f(s) be a scattering amplitude, where s is the
energy or a function of the energy: f(s) can be the
forward scattering amplitude, or it can be any linear
combination of the amplitudes Ai+&(s, t), Bi+&(s,&)

(for fixed-momentum transfer t) defined in Sec. 1.
We know that f(s) as a function of s has cuts along
—ao &s&so s, &s& ~, and we derive adis-
persion relation for f(s) by writing

f( )
f( ) d i

2m2 g 8 —8
(2 1)

where C is the small circle about 8 shown in Fig. 1.
Next we blow up the contour C until it is replaced

by contours around the cuts as shown in Fig. 1 plus
C„,the circle at infinity in the complex 8 plane. The
integral around the infinite circle

f(s') d,
~ I d8

27/2 g~ 8 —8

may not converge, and if this is so, we have to replace
it by an additive polynomial.

Suppose" that for

If(s)l & lsl

where X is a positive integer and e is a small positive
number. Define the function g(s) by

N—1

g() =f() II ( — ),
j'=0

where s, (j = 0,1, N —1) are real constants.
Starting from the Cauchy integral

we get the dispersion relation

N—j

f(s) = AD+Ass+ . + A~ is" '+ . II (s —s, )2' 2

~f(s')

(s —s) II (s —s )
s=D

(2.3)

where Af(s ) is the discontinuity in f(s') across the
cut at 8', and Ao, 2& A~ are arbitrary constants
(they will in general be functions of the momentum
transfer t). If N = 1 the polynomial on the right of
(2.3) reduces to the constant f(so).

We assumed above that the complete amplitude
f(s) obeys the inequality

If(s)l & lsl

for real or complex 8. It may happen that on the real
axis Df(s) (which is in general the imaginary part of
f(s)) obeys the stronger inequality

lhf(s)l & s ' as" s~ ~ ~,
where e ) 0, and N is zero or a positive integer, with
N' & N. In that case we get a different djspersjon
relation. By successive use of the relations

1 S —8

8 —8 S —8I I 8 —8 8 —SI.
I I )

Eq. (2.3) can be written in the form

N —1

f(s) = A,'+A,'s+ +A', s '+ . II (s —s, )2mi, =o

g(s) = —. ,
'(') d" + g ', (2.2)

(cuts) 8 —S,-=p 8 —S,
'

where Ag(s') is the discontinuity in g(s') across the
cut at s'. The terms n, /(s —s, ) arise from the poles
at 8 = 8; which we introduced in the definition of
g(s). There is no contribution to (2.2) from the
infinite circle C„,since lg(s) I

goes to zero faster than
lsl-' (where e ) 0) as lsl —+ ~. The numbers n;
(j = 0, 1 N —1) (which are independent of s)
are not determined by the dispersion relation itself;
they represent physical information (scattering
lengths, etc.) which we must insert before we can
evaluate the dispersion relation.

From (2.2) we get the dispersion relation

g(s) = ds'
2m2 e 8

~f(s')
X 618' N —1

("— ) II ("—;)
(2.4)

A similar argument was used by J. Hamilton, T. D.
Spearman, and W. S. Woolcock, Ann. Phys. 17, 1 (1962) [see
Sec. V(B)].

1~ The notation 8 ~ + ~ always implies that s goes to
infinity along the real axis.
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where Ao, A& AN 1 are arbitrary constants. If X'
= 0, we must replace

N —1 N —1

g (s —s, ) and Q (s' —s, )
j=O j=O

by unity. Letting 8 tend to the upper side of the
physical cut" gives the dispersion relation.

Re f(s) = Ac + A,'s + + A~ )s" '

N —1

+2 . g (s —s, )P d8'
cuts)

Af(s )
N —1

(s' —s) Il (s' —s;)
j=O

(2.5)

(ii) Theorems Relating to Forward
m~ —p Scattering

We first show how the problem of subtractions and
high-energy behavior can be treated for forward
scattering. Let D~(&us) be the real part of the lab
system forward scattering amplitude for s.+ + p at
lab (kinetic) energy (&u& —p). From Eqs. (1.35),
(1.16), and (1.17) we can write down the once sub-
tracted dispersion relations

The number N' of subtractions which are required
in the integral in (2.5) is determined by the experi-
mentally known behavior of Af(s) (i.e., of Im f(s)) as
s ~ ~ ~. The number X is given by the behavior of

~f(s)~ as ~s~ ~ ~. However, N can be found in
practice as follows. We And the asymptotic behavior
of the integral in (2.5) as s —+ + ~. Using Eq. (2.5)
and the known experimental behavior of Re f(s) as
8 —+ ~ ~ now determines the integer X. There
appears in general to be no a priori reason to assume
that Ã = X'.

We shall show in the following sections how this
method is applied in various practical cases. A some-
what awkward feature is the determination of the
asymptotic form of the dispersion integral as 8~
~ ~, and we shall quote several theorems which
are of value for this purpose.

dx x " p&0

exists. Then we have"
Theorem A. If f(x) belongs to L"( ~, ~), w—here

p & 1, then the formula

g(x) = —P dy

"
f(v)

almost everywhere defines a function g(x), and g(x)
also belongs to L"( ~, ~). Fur—ther, g(x) and f(x)
are Hilbert transforms of each other.

We apply this theorem to the integrals

(2.7)

( )
1 P kd 0'(Ql )

p g CO ~ GOL

where c(~') represents either of c-~(&o'). So in the g~
case we take

(2.8)

f(~') = -~(-~')/g' ~' & -u '

0]GQ+pp

Here, c ~(~') are the total cross sections for s+ + p at
lab (kinetic) energy (~' —p), and g' = (a" —p')'*

is the corresponding lab momentum. Also qs ——(oPs—y')l, and f = Gy/23' is the equivalent pseudo-
vector coupling constant. Up to Sec. 2(v) we fre-
quently use or&, co, ~', and in these sections they
always denote the lab pion energy.

We shall now show that the single subtraction and
the first-degree polynomial in Eq. (2.6) are sufIicient.
I&'or this we must know the high-energy behavior of
c-~(~) and D~(~)/co and the asymptotic behavior of
the integral in (2.6) as &u ~ ~. The mathematical
techniques which are required are neither trivial,
nor are they particularly well known, and we shall
state the most useful general theorems. The same
methods are necessary for discussing the A(+~ and
B'+& dispersion relations in Sec. 2(vi) and (vii).

We can obtain a rough idea of how the principal
value integrals in Eq. (2.6) behave as &u& ~ ~ by
using a basic theorem on Hilbert transforms. Let
L"(—~, ~) denote the class of real functions f(x)
such that

GO M
( ) ~ 1 + ~& D ( ) +,

~ 1
M D ( )

and in the g case

&2 2
071.

2

P
4x

W p'/2M 1 —y,'/43II'

da)' c.,(cv') cv((o')

g M (ds M + &os

(2 6)

f(„) ~(~')/g',
0) 03 Q p.

Restrictions on the Cross Sections o~(~). The cross
sections a~(&u) are continuous functions of &o, and we
shall also assume that they have bounded derivatives
with respect to co. This means that the words "almost

's The physical value of an amplitude is always defined by is E~. C. Titchmarsh, Theory of Fourier Integrats (Oxford
its value as s moves in to the upper side of the physical cut. University Press, New York, 1948), theorem 101.
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everywhere" can be dropped from theorem A, i.e.,
g~(ter) are everywhere finite. We also make the very
plausible assumption that o~(to) are bounded as
~~ aO.

With these assumptions, f(to) is in L"(—co, ~)
with" 1 & p & 2. Now, theorem A shows that
g~(ter) is in L"( ~, ~—). The consequences are
important. First, it is necessary that g~(&el) ~ 0 as
d'or. ~ ~. Next, suppose that Ig(&or)I behaves like
d'or.-"(in ter)" as ter. -+ co, where n is some integer.
Because g(ter. ) is in L" we must have X & 1/p. Also

p can takeany valuein1 & p &2. Thus, Ig(air. )Ioir.' "
—+ 0 as coL, —& ~ where g is any small positive number.
The functions 1/eel. , (In ter)/tel. , (ln teL)'/tel. , etc. ,
are therefore possible examples of the behavior of
g(to~).

The restriction that o~(te) should have bounded
derivatives is convenient but is not necessary. We
could include the case of cusps in o~(te) by using
Theorem 106 of Titchmarsh. "This states that g(x),
given by Eq. (2.7), exists for all x and belongs to
L"(—cc, cc), provided f(x) belongs to L"(—~, oc)

(p & 1) and obeys a Lipschitz condition.

uniformly in x as h ~ ~ 0. K is some constant. Also
g(x) obeys a Lipschitz condition with the same tr.
Taking n = -', we can include any cusps" and we see
that in this case g~(ter) are continuous.

Asymptotic Behavior of Principal Value Integrals

We wish to be able to make more definite state-
ments about the behavior of g~(ter, ) [Eq. (2.8)] as
ter, ~ ~. This can only be done by imposing further
restrictions on the behavior of ~(o)afar large te.

First consider g(x) given by Eq. (2.7). It might be
thought that, provided

I f(y) Id@ and
I f(y) Idv converge,

(ii) given e & 0, there exists a V such that

vf(v) —xf(*)
&

~

y —x x (xV)'

for all y &~ x ) V.

These conditions are satisfied by simple forms of
f(y), such as f(y) V

' " as y —+ ~ where rt & 0, but
they are not satisfied by certain oscillatory forms of
f(v)

In fact Eq. (2.9) is not particularly useful here,
and we use several other theorems to find the be-
havior of g(x) as x —+ ac. Now we quote a standard
theorem on the limiting form of a principal value
integral with a finite range of integration. [We also
need this theorem in another connection below. Cf.
Sec. 4(iii).]

Theorem B."Let

g(*) = — —„dv,'
f(v)

where f(y) is in L "( l, l) (p &—1), and suppose that,
near y = 1

f(v) = A(1 —v) + &(v),
where A is a constant. Also P(V = 1) = 0, and near
y = 1, f(y) obeys uniformly the Lipschitz (or
Holdel ) condlt1on

lf(v) —0 (v.) I «Iv —v I'

where K and s are positive constants. Then as x -+ 1,

g(x) -+ —A cos (sn)(1 —x) 1 0(1),
if 0&~&1;

converges, then

g(x) —+ —— f(y)dy, as x —+ ~ . (2.9)
1

This is not true. To ensure (2.9) further conditions
must be imposed on f(v). Sufhcient conditions are":

i4 For ar' - p, f(ca') —o I2y(ca' —p)I i~s, so p ) 2 is not
possible. If necessary the restriction p & 2 can be removed by
writing f(cv') = [e(cu') —o(p)] /+qo(p)/ qThe second term
can be evaluated explicitly, and for the first, 1 & p & ~.

I5 We assume that all cusps in 0-+ are of the square root type,
hence the choice cx = 1/2.

I6 We are indebted to D. Atkinson, P. Menotti, G. C. Oades,
and L. L. S. Vick (private communication) for this statement
of sufhcient conditions.

g(x) —+ (1/s. )A ln (1 —x) + 0(1), if n = 0.
Transforming one end point to infinity we have a

theorem on the asymptotic behavior of Eq. (2.7).

Theorem C. Suppose that as v —+ cc

f(y) -+ Ay
'+ + F(y), 0 ~& n & 1,

where A is a constant and VF(y) -+0 as v ~ ~.
Also we require" that for any large y and yo

i7 F. G. Tricomi, Integral Equations (Interscience Publishers,
Inc. , New York, 1957), Chapter 4. See also N. I. Muskhelisk-
vili, 8ingular Integral Equations (P. Noordhott' Ltd. , Gronin-
gen, the Netherlands, 1953), Chapter 4.

I8 This is an adaptation of the Holder condition which is
in general required in some form to set bounds on a principal
value integral.



J. HAMILTON AND W. S. WOOL COCK

lyF(y) y F(yo)l & & 1 1,
g gp

where K and e are positive constants. Then as
x~ ~

see that (2.10) requires that o.~(oi) should approach
the limit o ~ at least as fast as some (fractional) power
law, that is (writing a for c+ or o ), o(ei) —o(ac)

Kc~-" (X ) 0), as oi —+ ~."However, this is not
su%.cient. We actually require that

g(x) —+ —Acot(iru)x'" +B(x)/x, ifo&o. &1,
( ) ( ) [~ ( )]/

i,
( )

and

( )
A Inx B(x)

x x

where B(x) is a bounded function. "
The special case of 0. = —', should be emphasized; it
gives g(x) ~ B(x)/x as x —+ 0o (where B(x) is bound-
ed). Also note that in this case (as for ail rr )~ 0),
I"f(y)dy does not exist.

where y(o~) —+0 as c~ —+ ~, and p(~) itself obeys
(2.10) for some s ) 0.

The estimates of high-energy behavior which are
derived from the analogy with Regge poles are re-
ferred to in Sec. 2(iii) below. They suggest that"

K~ K~ Kp
0 Q) Q QQ ~ ~ ~

la, (cu) —o-, (o~c)l & K ——1
(2.10)

where K and e are some positive constants, and ~,
ac take all large values. [We shall return shortly to
discuss these limitations on o~(~).] Now Eq. (2.6) is
seen to have the asymptotic form"

D~(o~r) W (1/4ir') (o+ —o. )oir. In o~r, ,
as oir, ~ ~, (2.11)

provided o+ —o W 0. This result will be used in
the derivation of Pomeranchuk's theorem in Sec.
2(iii) below.

Several comments should be made here. First,
suppose that we are not allowed to assume that
o~(~r) tend to limits as c&r, ~ ~, but merely assume
that o+(o&L) are bounded as cur, —+ ~. Then theorem
A applied to Eq. (2.8) enables us to infer that g~(o»)
—+ 0 as ~L, —+ ~. It follows that the last term on the
right of Eq. (2.6) cannot increase" as fast as oPr, when
Q)L, ~ 00,

Next, we look at the condition (2.10) which was
required in applying theorem C. Letting cop —+ ~ we

fee also H. Lehmann, Hamburg University (1961)(to be
published) on the asymptotic behavior of dispersion relations.

20 It is easy to show by standard methods that

des' a~(cu') (incur, )
0 as Gol, ~

g co + col, orl,
2I The same result is true under the much weaker condition

that tT+(cvL, )coL, I+'i ~ 0 as ~L, ~ ~, where q & 0. This follows
from theorem A and the method indicated in footnote 14.

Application to the D, (~ )rDispersion Relations

We apply theorem (. to the integral in Eq. (2.6)
[or Eq. (2.8)]. We assume that o+(~) and o (o~) tend
to limiting values 0-+ and 0- as co —+ ~. Further, the
Holder condition requires that these limits are ap-
proached in such a way that

where K&, K„are constants, and pI, p,„are
positive constants which are less than unity. This
high-energy behavior satisfied condition (2.10). In
what follows we shall in general assume that a~(c~)
do obey Eq. (2.10).

Behavior of D~(air) as oir, ~ ao

If the m.—X interaction has a Gnite range 8, then
assuming that little scattering occurs for angular
momentum values l ) g. 8 it follows [as in Sec.
2(vi) below] that D~(cur)/~L, are bounded asorr, ~ ~.
This is the G.nal step which establishes the validity
of the dispersion relations (2.6). The additive
polynomial cannot contain a term in co'I, , because,
as we have just seen, provided o~(c~) are bounded as
o& ~ ~, no other term in (2.6) can increase as fast
as Q)1,.2

In fact there is good evidence for the much stronger
statement D~(~r.)//a&r, ~o, as ~r, ~ ~. Cool, Pic-
cioni, and Clark" found that the forward c.m. scat-
tering amplitude f (o~r. ,o) for ir=p scattering obeyed
the relation lRe f (cir,,o)l « lIm f (cir„o)l in the
range 1 to 1.5 BeV. The result comes from comparing
the differential cross section extrapolated to the
forward direction,

with the total cross section o (o~r) by using the
optical theorem (1.37).

An experiment by Thomas" on m- —p scattering

ss Thus (2.10) is not satis6ed if a(cu) approaches 0( ~) as
slowly as (ln o&) '.

23 See for example B. M. Udgaonkar, Phys. Rev. Letters 8,
142 (1962).

R. Cool, O. Piccioni, and D. Clarke, Phys. Rev. 103, 1082
(1956).

s5 R. G. Thomas. Phys. Rev. 120, 1015 (1960).
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at 5.17 BeV gives (dc/dQ) 0 = 0) = 29.8 rnb/sr.
If we assume that Re f (~r, ,0) = 0 this gives c. (5.17
BeV) = (29.1 & 3) mb, which is in good agreement
with the direct measurements of c. (&ol,) (cf. Fig. 2).
There is also experimental evidence at higher ener-
gies that Re f (&u1, ,0) is small. "

sumptions" about the high-energy behavior of
c~(~), and from now on we take them to be true.
Inserting the known values of the scattering lengths
and the cross sections o~(co) in (2.6), the amplitudes
D~(&os) have been evaluated" up to about col, ——2.5
BeV. The results indicate that D~(cvI.) are almost
constant above 1.8 BeV.

Cl

E

c 30

g
25-

0

Values of 6'
20-

Values of 6+

(iii) High-Energy Consequences of the
Forward Disyersion Relations

PomeranchuA, "s Theorem. We have seen that the
dispersion relations (2.6) give the asymptotic form
(2.11) for D~(~) provided c~(&o) have limiting values
c~ as &u ~ ~, and provided o.~(~) approach these
limiting values so that condition (2.10) is satisfied.
Now comparing (2.11) with (2.15) and (2.16) we
must have

2 4 6 8 10 12 14 16 18 20

0'+ = 0 (2.17)

Pion Momentum in BdV/ c

FIG. 2. Experimental values of the total m.+ + p and ~—+ p
cross sections o+ and 0 at high energies. The broken lines
are possible smooth fits to the data. The values used are based
on the results of M. J. Longo, J. Helland, W. N. Hess, B.J.
Moyer, and V. Perez-Mendez, Phys. Rev. Letters 3, 568
(1959); G. von Dardel, R. Mermod, P. A. Piroue, M. Vivar-
gent, G. Weber, and E. Winter, ibid. 7, 127 (1961); S. J.
Lindenbaum, W. A. Love, J. A. Niederer, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, ibid. 7, 852 (1961).

We shall assume that

lRef (coL,,O)/Imf (coL,,O)l ~0, ass&s~ ~ . (2.14)

Assuming also that o (~1.) is bounded as ~1.~ co,

the optical theorem (1.38) now gives

D ((vI.)/aL, ~0, ascvl. —+ ~, (2.15)

where D = Re fs (cur„0) The-data . on s.+ —p
differential cross sections is not at present so good,
and we cannot directly deduce from experiment the
relation analogous to (2.15)."However, it is shown
in Sec. 2(iv) [Eq. (2.6)] that, from (2.15) and some
general properties of the dispersion relations (2.6),
we can deduce

D+(~1.)/~, ~ 0, as ~L, ~ ~ . (2.16)

Further evidence in favor of (2.15) and (2.16)
comes from evaluating the dispersion relations (2.6)
at high energies. Our discussion above showed that
the relations (2.6) are valid under very wide as-

26 For details see Proceedings of the International Conference
on High-Energy Nuclear Physics, Geneva, 1968 (CERN Sci-
entific Information Service, Geneva, Switzerland, 1962),
edited by J. Prentk and A. Taylor.

27 See however reference 26.

This important result is Pomeranchuk's theorem. "
Towards the end of this section we shall derive it
under less restrictive assumptions about o~(~).

In Fig. 2 we show the experimental data on c.+(cv)

and o (~) in the range 2 BeV to 20 BeV. Two facts
appear to be established: (a) the cross sections
c+(a&) and a (cc) have not reached their limiting
values at the highest energies yet attained; and (b)
the difference o (&o) —c+(~) is decreasing very slowly
with increasing ~ in the energy range considered, and
it is not zero at the highest energy attained.

The Rate of Decrease of c. (&u) —o+(co)

We can try to use physical arguments to determine
how fast c (&v)

—o+(ra) goes to zero. First, there are
the early arguments of Pomeranchuk" based on
charge exchange processes. These state that above
some energy ~c (which is of the order of a few BeV)
the phase space for the charge exchange process
s + p ~ s' + n is much smaller than the phase
space for all other inelastic processes originating
from s-- + p. Therefore, for ~ ) ~c, the total cross
section for s--+ p~ sc+ n within the forward
diffraction cone, is a rapidly decreasing fraction of
the total cross section o (co). Also the cross section
for elastic scattering s.-+ p —+ s.-+ p within the
forward diffraction cone is an appreciable fraction

2s Namely that 0 ~(co) do not increase faster than ca~ " where
v ) 0, and that

~
D~(cu)/co

~

do not increase as fast as cu.
2 See, for example, J. W. Cronin, Phys. Rev. 118, 824

(1960).
3 I.Ia Pomeranchuk, Soviet Phys. —JETP '7, 499 (1958).
» I. Ia. Pomeranchuk, Soviet Phys. —JETP 3, 306, 307

(1956); also S. Z. Belenki, Soviet Phys. —JETP 6, 960 (1958).
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of c. (co). Thus [in the notation of (1.14) and (1.28)j
we expect

If' '(v, e = 0)I'/If"'(v, ff = 0)I'~0
(2.18)

In particular by (2.15), (2.16), and the optical
theorem, we expect Io (a&) —a+(o~)

I
to fall to zero

rapidly for ~ & coo.

The Begge Pole Estimates

As we have seen, the rate of decrease of Io (oi)
—o+(oi)

I
appears to be slower than this crude model

would indicate. It has been suggested" that this is
due to a considerable amount of coherence in the
exchange processes involved in high-energy forward
scattering, and that the difference a (oi) —lr+(oi) is
due to such eA'ects associated with the p-meson
isobar (F = 1, J = 1, 2w isobar) If, . further, the
Regge pole method is used, the rate of decrease of
Io (or) —c+(&a)I can be estimated. From Eqs. (85)
and (86) of reference 88 we can find the effect of the
exchange of a mesonic isobar of angular momentum J
upon the amplitudes A(v, t), B(v,t) for small values
of t and large v. We have IA(v, t) I

v', IB(i,t)I v'-&.

If the mesonic isobar is to be treated as a Regge pole,
we replace its spin J in these relations by o.(t) where
0 & o.(t) & J.Thus, using Eq. (2.42), the diA'erential
cross section for m. + + p —+ 7r+ + p small-angle scat-
tering at high energy obeys

do/dQ~v '" ' asv~ co, (2.19)

where t(~&0) is small, and cz(t) is a slowly varying
function of t Note that. v = oiz + t/4M and dQ is
the c.m. solid angle. By the optical theorem this
gives the total cross sections

o~~ oiz '" ', ascii —+ ~ . (2.20)

It is proposed" that the high-energy behavior of
the cross sections is given by the vacuum pole which
has n(0) = 1, plus other poles each having 0 & o.(0)
& 1, so that the cross sections are of the form shown
in Eq. (2.18) (say, at energies above 2 BeV). The
difference c. (oi) —c.+(cv) is given primarily by the p
isobar pole, so that

o (az) —o+(oiz) ~oiz " """. (2.21)

The experimental results (cf. Fig. 2) suggest" that
n, (o) 0.5.

sz G. F. Chew and S. C. Frautschi, Phys. Rev. '7, 394 (1961)
and 8, 41 (1962); B. M. Udgaonkar Phys. Rev. Letters 8, 142
(1962). %e are indebted to Dr. Udgaonkar for information
about his results before they were published.

33 J. Hamilton and T. D. Spearman, Ann. Phys. 12, 172
(1961).

Evidence on o (co) —c+(c~) from the Forivard
Dispersion Relations

Since the Regge pole considerations are as yet not
firmly established, " while taking their consequences
as valuable indications, we shall examine what
information can be obtained about c. (~) —o+(ci)
from the forward dispersion relations, making as few
assumptions as possible.

Following Amati et at.s4 we write one of Eqs. (2.6)
in the form"

2f oiz fz /oiz

(1 — '/4M') — '/2M

(2.22)

If o+(cc) approaches the limiting value o+ as oi ~ ~
in such a way that theorem C is applicable" to the
first integral on the right of (2.22), then this integral
behaves like ~1,' as col, —+ ~. Therefore, using Eq.
(2.16),

(2.28)

where K is a constant. By a standard theorem" it
follows from (2.28) that

(2.24)

The importance of this result is that the integral in
(2.24) must converge, and this provides some infor-
mation about how fast ho (~) —= o (oi) —c+(oi) must
go to zero. For example, if Ao(a&) decreases mono-

38 Note added in proof. If, as it now appears, the Regge
pole ideas do not apply in any simple way to high-energy
z-+—p scattering, Eq. (2.21) can still give a useful parameteriza-
tion of o(a&z) —a+(coz) as cuz ~ w.

84 D. Amati, M. Fiertz, and V. Glaser, Phys. Rev. Letters
4, 59 (1960).

» This is done in order to make use of Tauberian theorems
for Stieltjes integrals. We could equally well replace 0+(ca') by
r (u') in the first integral and in the subsequent arguments.

36 Change variables by x = ~'2, and get the case a = —,
' of

theorem C. Here, the condition on 0+(cu) is much more re-
strictive than Eq. (2.10).

37 G. H. Hardy and D. E. Littlewood, Proc. Math. Soc.
(London) 30, 23 (1930), theorem 5; we must assume that
either 0. (cv) —0+(co) & —K'/co, or that f7+(co) —0. (co) &—E'/co, for all sufFiciently large co. E' is some positive con-
stant.
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tonically, then Ao(ci) must go to zero faster" than
(ln ci)-'. Unfortunately the above derivation is open
to some criticism. In particular theorem C is only
applicable to the first integral on the right of (2.22)
if 0+(oi) approaches o+ faster than ai ' " (rf ) 0). We
now outline a method which avoids this difFiculty.

Consider the first integral on the right of (2.22).
We apply to it the following useful theorem.

Theorem D."Let

h(y) =P =;, dxf(*)
i x'(x —y)

and suppose that:

x
dx exists,

g

(ii) f(x) In z —+ 0 as z ~ ac,

(iii)
~
f'(x)

~
~& 3f (where M is a constant);

we still have y'h(y) —+ 0 as y —+ ac, and Eqs. (2.17)
and (2.24) again follow. In all of this we have as-
sumed that the cross sections o~(oi) have limiting
values o~ (which may be zero) as ai —+ ~. Various
pathological types of behavior of o.~(ai) as ai —+ ~
have been discussed in the literature. For example,
if e+(ci) ~ oc + e& sin (oP) as oi —+ ~, where o, and
oi are constants (and o, & oo), then Eq. (2.23) is not
true, and the integral (2.24) need not exist. 4'

The theorems we have just proved and quoted
cover a wide variety of physically reasonable be-
havior of o ~(or). We shall in what follows assume that
Pomeranchuk's theorem (17) is true, and that the
integral (2.24) exists.

(iv) The Sum Rule

Dividing Eqs. (2.6) by air, and adding, we get for
or I. large,

then
yah(y) —+0 as y —& ac .

1—I:D ( )+D-( .)j
orl, 3forI, 43f')

Now put x = oi", y = oi'r. , and f(x) = o+(oi') —0+
in the first integral on the right of (2.22). The
conditions for theorem D become:

0.~ or' —a+
dor exists,

or

(n) (o+(ai) —o+) ln oi ~ 0 as oi —+ ~,
(iii) ~o+(ee)( & Moi.

Then4'

dec
&

0'+ (oi )or~P, or' „2~0asorL, ~ ~ .
g or

In particular we note that the conditions (i) and (ii)
are satisfied if o+(ai) ~ o+ as fast as, or faster than
(ln o&)-'. It follows as before that the integral (2.24)
exists and [provided o (ai) + o as ci —+ ~ j we have
Pomeranchuk's theorem (17). This proof of (2.17)
avoids the rather restrictive condition (2.10).

We can do even better if we assume that o+(oi)
—o+ decreases (or increases) steadily to zero. I&'or

example" with f(z) = (ln x)-' or f(x) = (ln ln z)-'

ss If (2.24) is true, then

Ao—,60(or ') ~ 0 as o) —+ ~ .
g

Therefore, Acr(ca). ln &a -+ 0 as u -+ oo.
~ The proof is given in Appendix A. Note that f(x) can be

positive, negative, or oscillatory.
40 By explicit calculation or by theorem C,

co',
2 2

—+0aS col, ~ ~.
y g co —coL,

4I See Appendix A for details.

or g de or+ 2
~ P (~+(~') + ~-(~'))

2m „g or —co I,

(2.25)
Substituting x = o&", y = aPr, we can apply theorem
D to the integral on the right under the conditions
on o.+(oi) and o (ar) just discussed in the previous
section. Then the last term on the right tends to
zero as air, —+ ~, so we have

[D~(air, ) + D (cii,)j/eez —& 0 as cia ~ ~ . (2.26)
Therefore Eq. (2.15) implies Eq. (2.16) and vice
versa.

Now if we divide either of Eqs. (2.6) by oir„and
let orl, —& ~ we get the sum rule4'

2
1

;(1—,(4111 )
+ 4. 'D'"' - D-(")j =

1 dor
0+ or 0—or (2.27)Sm' „q'

The existence of this sum rule depends on (2.15)
and (2.16) and the convergence of the integral (2.24).
It gives a useful relation between the coupling con-
stant f', the s-wave scattering lengths a&, as, and the
total cross sections 0~(ee). Unfortunately, the slow
convergence of the integral means that in practice

4& S. Weinberg, Phys. Rev. 124, 2049 (1961)has proved that
the integral (2.24) exists if D~(cg)/co and e ~(a&) are bounded as
u ~ oo, provided that 0 (co) —0~(cu) does not change sign an
infinite number of times. Our theorem D catches many of the
cases of oscillatory behavior of e (cu) —o+(cu), which Wein-
berg's result misses.

3 M. L. Goldberger, H. Miyazawa, and R. Oehme, Phys.
Rev. 99, 986 (1955).
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this relation will not give results of high precision.
Using the values" 61 = 0.178 68 = 0.087 and the
dat, a on 0~(~) available in 1960, Spearman's calcula-
tion4' gives f' = 0.082 &0.008. Later information"
on 0~(&u), and in particular the values of a (~)
—0+(&u) above 2 BeV, will reduce the mean value of
f' by around" 0.008. The good agreement, within the
errors, of this value of f' with the values obtained by
other methods in Sec. 4 below provides reasonably
strong experimental evidence in favor of the sum
rule.

(v) An Unsubtracted Dispersion Relation

The analysis of Secs. 1 and 2(i) shows that, if it
existed, an unsubtracted dispersion relation for
fr, (eiL„O) —fr,+(a&L,,O) would have the form4'

1 4f—(D (a)r, ) —D~((or, )) = C+ s 4,4MsZL —P y'43XI

00 f f+,P „.Is. (e~') —0+(~')], (2.28)
271 p GO L

where C is an arbitrary additive constant (no other
term of the additive polynomial can appear). The
existence of the integral (2.24) ensures that the
integral in (2.28) converges. We shall show that
C = 0. For this purpose we use"

Theorem E.
Let

we must put C = 0, and the unsubtracted dispersion
relation is established.

Substituting ~& = p in (2.28) we now get the sum
rule (2.27). Thus (2.28) with (C = 0) and (2.27) are
consistent with each other. Equation (2.28) and
similar relations are of value in various calculations
given below.

If~. l ~& 1/g (2.29)
where q is the c.m. momentum. With a finite range
of interaction 8, we expect scattering quickly to
become negligible as the angular momentum L in-
creases above the value L = Bg. Thus, the forward
c.m. amplitude obeys

L

lg(ao) I
& g (2t + 1) (1/g) = gR'. (2.80)

Thus, we expect If(g, 0)l/g and Ifl, (gl, ,0)I/gr. to be
bounded as q —+ ~.

Finn" and Singh and Udgaonkar" have extended
this argument to obtain bounds for A(v, t), B(v, t) as
v ~ ~. From (1.26) we get

1~ W+M W M
4s E+M ' E —M

(vi) Subtractions for the A&+i and
B(+) Disyersion Relations

The partial wave amplitudes f&~ of Eq. (1.28) obey
the inequality

g(y) = P
X —g

1 1 1= E+M~'+E —M~' (2.81)

and suppose that:

dx exists,
S

(ii) f(x) ln x —+ 0 as x ~ ~,
(iii) If'(x)

I
~& M (a constant);

then g(y) —&0 as y ~ ~.
Substituting x = (u", y = (oj, f(x) = 0 (ei')

—o+(cv') we see that under a wide variety of types
of behavior of 0 (co') —o+(co') the integral in (2.28)
vanishes as ~& —+ ~. Therefore by (2.15) and (2.10)

44 J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291
(1960).

4s T. D. Spearman, Nnel. Phys. 15, 402 (1960).
46 G. von Dardel, D. Dekkers, R. Mermod, M. Vivargent,

G. Weber, and K. Winter, Phys. Rev. Letters 8, 173 (1962).
4" J. Hamilton, Proceedings of the International Conference

on Very High-Energy Physics, Geneva, 1961 (CERN Scientific
Information Service, Geneva, Switzerland, 1961), p. 151.

8 fL+ and fL are the laboratory forward scattering ampli-
tudes for 7f.+ + p and ~ + p, respectively.

4 We are indebted to Professor E. C. Titchmarsh for supply-
ing this theorem.

Using (1.80) to express f, and f& in partial wave
amplitudes, and letting q ~ ~ (q is always the c.m.
momentum) we find that for fixed t(t ~& 0)

~ ~ Z I:f~+(g) f~+~, (g)]Pl+~(u)-+ Pl(w)]8x L 0

1 1—&~—Z [f~+(g) + f~+;(g)]V'l+ (~) —
Pl( )i].

8m 2q ) 0

(2.82)
Now IPl(p)l & -', l(l + 1) if —1 & ii & 1, and the
equality holds at ii = & 1. A.iso,

R+i(~) —R( ) = (1+ 1)P~+1(i) + (1 v)Pl+~(i)
(2.88)

The summations in (2.82) are terminated at L
= Bg, and using (2.29) we get, for —1 & y & 1

——I& I
~&

—g (1 + 1)' ——L,
' = —; a'g'.q, =o 3g

M A. C. Finn, Phys. Rev. 119, 1786 (1960).» V. Singh and B. M. Udgaonkar, Phys. Rev. 123, 1487
(1961).
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Thus for fixed t ( 0

iA(v, t)i/v (K asv —+ ~,
where K is a constant. Here, we have used

2q'/3l as v —+ ~ (t fixed),

(2.84)

(vii) Subtractions for the Ai-& and B&-&

Dispersion Relations"

Next consider the A &-& relation. Our considerations
above show that ~Ai-'(v, t) ~/v is bounded as v —+ ao.
Therefore, one subtraction may be necessary in
(1.16). This gives

which follows from (1.4), (1.5), and (1.19).
We find limits for ~B(v, t)

~

for fixed t & 0 by using
(2.88). As v —+ ~, p —+ 1 because (—t) = 2q'(1 —p).
Also

(1 —p)P(+i(p) -+ 2 —,'l(l+1) ~& 2 L(L+ 1)(—t), (—t)
2g 4g

Hence, as v —+ ~ the term (l + 1)P,+, (p) predom-
inates on the right of (2.88), and by (2.82)

Re A'+'(v, t) = Re A'+'(v„t)

+ —(v' —v', )P
v+t/4M (V V ) (V VO)

(2.80)

where vp is a real constant. The dispersion integral
now converges, and the second term on the right of
(2.86) cannot increase as fast as v' when v ~ ~. We
examine whether an additive polynomial is required.
Because A i+'(v, t) is an even function of v [by (1.18)],
such a polynomial would contain even powers of v

only. Since Re Ai"'(v, t)/v'~ 0 as v ~ ~, the con-
stant Re A i+'(vo, t) on the right of (2.80) is the only
term required. We notice that the value of Re
A'+&(v, , t) must be known before we can make use
of the A(+' dispersion relation.

The 8(+' relation is satisfactory as it stands in
(1.17). Because Bi+'(v, t) is bounded as v —+ ~, the
last term on the right of (1.17) converges; also by
theorem A of Sec. 2(ii) it cannot increase as fast as
v when v ~ ~. Any additive polynomial here has
to be an odd function of v, so even the lowest term
bpv cannot occur.

iB(v, t)i & ——g (l+ 1) ——2L = —8
8X' 2g Q l p 2g

Thus, for Axed t & 0

iB(v, t)i & K' a,sv —& ~, (2.85)

where K' is a constant.
Now we examine the consequences for the dis-

persion relations (1.10) and (1.17). First consider
A'+'. If Im A'+'(v, t) v as v~ ~, the dispersion
integral does not converge, and we require one sub-
traction giving

—Re A' '(v, t) = —Re A' '(v, ,t) + —(v' —„',)p
v vp 7r

Im A '(v', t)
„+,/4 ng (v" —v') (v" —vo)

(2.87)

where vo is the subtraction position and t is fixed.
The integral in (2.87) converges, and by theorem A
of Sec. 2(ii) the last term on the right of (2.87)
certainly cannot increase as fast as v' when v-+ ~.
Since the additive polynomial in (2.87) must be an
even function of v, only the constant term can occur.
This is in fact Re A' '(» t)/»

Having established the dispersion relation (2.87),
we now examine some of its consequences. By (2.84)
Ai-'(v, t)/v is bounded as v —+ ~. Suppose that
Im A '-'(v, t)/v tends to a limit A '-'(t) as v —+ ~, and
suppose further that, as v —+ ~ Im A '-i(v, t)/v obeys
a condition like Eq. (2.10) so that theorem C of Sec.
2(ii) applies to the integral in (2.87). Substituting
x = v', y = v", f(y) = Im A i-&(v', t)/v", we see that
the last term on the right of (2.87) behaves like
(2/m) A&-'(t) ln v as v -+ ~. Since Re A & '(v, t)/v is
bounded, this is impossible, and we must have
A&-'(t) = 0. Now, under the same conditions, the
integral J"dv' Im A '-'(v', t)/v" converges, and we can
write down an unsubtracted dispersion relation
[«. (1 10)l

1
Re A' '(,t) =, , () ~ 2

"
d, Im A' '( ', f)

(2.88)

where ai-&(t) is an arbitrary constant to be deter-
mined. [We shall see below in Sec. 2(ix) that ai-'(t)
= 0.]

The difficulty about this argument is that although
Im A'-'(v', t)/v' is bounded as v' ~ ~, it need not
tend to a limit (or if it does, it need not do so suf-
ficiently quickly). We therefore look for alternative
justification for the relation (2.88). This comes either
from Pomeranchuk's argument" on charge-exchange
scattering, or the Regge pole argument, both of
which were discussed in Sec. 2(iii) above. Pomeran-
chuk's argument implies that ~A &-'(v, t) ~/~A'"(v, t)

~

I This was first discussed by A. C. Finn (cf. reference 50).
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and ~Bt-&(v, t)~/(Bt»(v, t)~ tend to zero steadily as
e&r. increases beyond tds (which is a few BeV), for
small t & 0. The Regge pole argument suggests
that these ratios fall off like v- "- ~ t'& &, where 0 & u, (t)( 1, and for small t(t ~& 0), a, (t) is not much different
from 0.5. In either case we have reasonably strong
support for the convergence of the integral in (2.88) .
We therefore assume that the unsubtracted relation
(2.88) is valid, and we shall use it below for numerical
calculations.

The situation for B'-'(v, t) is much the same as the
A t-&(v, t) case. We infer by the same general argu-
ments that Im B'-'(v, t) —+ 0 as v ~ ~, and that we
can use the unsubtracted dispersion relation

Consider the no-fhp amplitude f(t)) [cf. (1.28)] near
the forward direction. By (1.28) and (1.26), provided
E)) (—t)/4M we have

fi + cos Hfa ~ A(v, t) + B(v,t) (2.40)
3/I Eg

where E = (q'+ 3P)l, W = E+ (q'+ tt'):, and q
is the c.m. momentum. The helicity reversal ampli-
tude [cf. Eq. (1.28a)] is given by

f&
—fs = — A (v, t) +—1 — B(v,t) . (2.41)= E 3II E

I~'or v large we have E q, W 2q, v~2q'/M,
and

2

Im B' '
(v, t) = 5' ' (t) + M vs —v

V /2 2
7l v+~/4M v v

(2.89)

Here l& t-&(t) is an arbitrary constant to be determined
[we shall show in Sec. 2(ix) that 5'-'(t) = 0].

It should be emphasized that in view of the im-
portance of the dispersion relations (2.88) and (2.89)
(and for other general reasons) it would be valuable
to check the assumptions which we have made about
the rate of decrease of A t &(v, t) and Bt &(v, t) as v ~
~. It is very desirable to have an experimental in-
vestigation of the charge-exchange cross section
s.—+ p ~ s' + n over the diffraction peak region of
angles at energies up to 20 BeV.

(viii) High-Energy Behavior of At+&(v, t)
and Bt+&(v, t)

In order to evaluate dispersion integrals for these
functions it is necessary to know more about the
high-energy behavior of Im A '+'(v, t) and Im B'+'(v, t)
than is given by the bounds in (2.84) and (2.85).

First, we see from (2.82) and (2.88) that for large
v and fixed t (t ~( 0), each term in the series for
Im B'+'(v, t) is nonnegative. " We would therefore
expect Im Bt+&(v, t) to approach the bound (2.85),
and we would not expect Im Bt+&(v, t) to fall to zero
as v ~ ae. The individual terms in the series (2.82)
for Im A t+&(v, t) can be positive or negative, and we
can make no simple statement a,bout Im At+&(v, t)
except to note that it can be strongly affected by any
appreciable difference between the amplitudes f,+
and the amplitudes f~, i.e., Im At+&(v, t) will be
strongly infl.uenced by any force of spin-orbital type.

I This is because Im f&+„(q)) 0.

f(8) = f~ + cos Hfs —+ —— [A (v, t) + vB(v, t)]
I M

Sv

fi —fs ~—[A (v, t) + MB(v, t)] . (2.42)
1

Now there appear to be two distinct types of high-
energy behavior according to whether Im At+&(v, t)
does or does not reach the unitary limit given by (84) .

The Ambiguity'y in Im 2 (+' a8 v —+ ~

Let Im A'+'(v, t) (.v and Im Bt+&(v, t) —+ (," as
v —+ ~, where (; and (.' are constants, and —t()~0)
is small. Then the helicity amplitudes M++(v, t) and
M +(v, t) given by (1.28a) have the asymptotic be-
havior

3f
Im M~+. (v, t) —(C + C') —v'

~asv~ ~
C . 0 C~ —t

~

Im M +(v, t)
~

—v sin —=—
I

v'
8x 2 8m &43f

(2.48)

[by the optical theorem we require ((. + (,") ) 0].
On the other hand if Im A t+& (v, t) ~0 and Im Bt+& (v, t)
—+ |.' as v —+ ~, we have"

(," M',,Im M~+(v, t) ~ ——v*

~
Im M + (v, t) ~/Im M++ (v, t) —+ 0,

asv —+ ~ . (2.44)

54 The polarization of the recoil proton in the lab system for
high-energy small-angle scattering is
(vps/M) Im (A~+ (v, t) B(v,t)I/~A(v, t) + vB(v, t) ~', where t&s is
the momentum of the recoiling proton. Because of Eqs. (2.48)
this is expected to be undetectable even in the case Im A + (v, t,)

Cv.

The behavior given by Eq. (2.44) is possible be-
cause there could be cancellations between the various
partial wave amplitudes in Im A '+'(v, t) [Eq. (2.82)].
The Regge pole method does not resolve this ambi-
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guity. " In his discussion" of high-energy elastic
scattering Lovelace assumes that Im A&+&(v, t) is
dominant for large v, but it is clear that his analysis
of the experimental differential cross sections could
be carried out equally well by assuming that Im
Bt"(v, t) is dominant.

Woolcock' in using the dispersion relations (1.17)
and (2.86) assumed that the high-energy behavior of
A'+'(v, t) and B'+'(v, t) is given by the partially
opaque optical disk model. This model assumes
fs(0) = 0. [i.e., the spin-flip amplitude g(0) is zero].
By (1.26) this gives

—B'+'(v, t) =
E ~ f(8), (2.45)

where f(8) is the no-flip amplitude as calculated from
the optical model. This should give a reasonably
good approximation for Im B'+'(v, t) in the forward
direction and very close to it, for ~ in the range
2 BeV—20 BeV. This is because Im B'+'(v, t) is the
sum of partial wave absorptive parts, and the finer
details, such as the differences between Im f&+ and
Im f& should not matter much provided ( —t) is
small. Also, the optical model gives a reasonably good
fit to the experimental data very close to the forward
direction. There are some corrections due to the
narrowing of the diffraction peak with increasing v

which is expected on the Regge pole hypothesis. "In
our account of the calculations, which is given in
Secs. 4 and 5 below, these corrections are included
where it is necessary. They are not large. (Note added
in proof If the narr. owing does not occur, they can
be ignored without appreciable error. ) [Cf. Sec. 4(v)
for an account of how the effect of the narrowing
on the (r)/r)t) A'-'(v, t) and (r)/r)t) B&-&(v,t) dispersion
relations is estimated. ]

Clearly Eq. (2.45) may only give s, rough estimate
of Im A &+&(v, t) even at 2 BeV. On the other hand the
integral in the subtracted dispersion relation (2.36)

5 This method gives ~A + (v, t) ~
v ' ~B + (v, t)~

v ~ ' as v -+ ~ for t ) 0 and small. H—ere n(0) = 1 and
a (t) is positive and small. However, cancellations in A + (v, t)
are not excluded without further assumptions, and

~
A + (v, t) ~

may not reach the unitary limit given by u(0) = 1. In the
notation of S. C. Frautschi, M. Gell-Mann, and F. Zachariasen
[Phys. Rev. 126, 2204 (1962)] A~+)(v, t) does not reach the
unitary limit if b ' pvQ (0) = b phTA(0), where b '"vNv(0)
(i = 1,2) are the constants coupling the vacuum pole to the
~-N system. In this case the spin-fiip amplitude does not reach
the unitary limit.

M C. I,ovelace, Nuovo Cimento 25, 730 (1962).
57 This narrowing has been observed in X—X scattering in

the region 2—20 BeV. See the report of G. Cocconi in Proceed-
ings of the International Conference on High-Energy Physics,
Geneva, 1968 (CERN Scientific Information Service, Geneva,
Switzerland, 1962)'.

converges well at high energies and the effect of
errors in Im A &+&(v, t) at, and above, 2 BeV is much
reduced. There are other factors, such as the errors
in the subtraction term [cf. Sec. 5(iii)(b)], and the
Legendre series convergence problem [cf. Secs. 8(v),
5(iii), 5(iv)] which make the dispersion relations for
A t+&(v, t) and its derivatives of much less value than
the dispersion relations for the other scattering
amplitudes.

(1/v) Re A'+'(v, 0) ~ 0

Re B' '(v, 0) ~ 0
(2.47)

The same result is given by the Regge pole treat-
ment in the asymptotic high energy region. " The
same result should also be true when t is small, as
the variation is going from A. '+'(v, 0) to A'+'(v, t),
(t ( 0), should be smooth, and we are moving further
away from the important strip of the double spectral
region. Thus, we have

(1/v) Re A'+'(v, t) —+0 for small
as p ~ tx)

Re B'+'(v, t) —+ 0 negative t

The arguments given in Sec. 2(vii) above show that
as v ~ ao the A'-'(v, t) and B&-&(v,t) amplitudes tend
to zero faster than the A &+&(v, t) and B&+&(v,t) ampli-
tudes. This will also be true for the real parts of these
amplitudes. Thus, (2.48) hold also for the (—)
amplitudes. [If we accept the Regge pole arguments
(1/v) Re A t-&(v, t) and Re B&-&(v,t) are directly seen"
to obey (2.48).] It follows that the additive constants
a'-&(t) and l&t-&(t) in the unsubtracted dispersion
relations (2.38) and (2.38) are to be equated to zero.

3. CONVERGENCE OF LEGENDRE
POLYNOMIAL EXPANSIONS

In this chapter we examine the rate of convergence
of the partial wave expansions of x—X scattering

8 See the explicit forms for A + and 8(+) given by S. C.
Frautschi, M. Gell-Mann, and F. Xachariasen, Phys. Rev.
126, 2204 (1962).

M Use footnote 55 and replace n(t) by n~(t) —,
' (for t small)

(ix) Re A"&(v, t) and Re B&'&(v, t)
at High Energies

If, for high-energy forward scattering, we accept
the optical model in the form given by Eq. (2.45)
we get

(1/v) ReA'+'(v, 0) v
' Re f'+'(g, 0) J

Re B' '(v,0) ~ v
' Re f'+'(g 0)

where Re f'+&(q, 0) is the real part of the (c.m. sys-
tem) forward-scattering amplitude. From Eqs. (2.15),
(2.16) and the relation v 2g'/M we get
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amplitudes. This is done by using either Lehmann's
theorems or the Mandelstam representation. These
give domains of convergence of the partial wave ex-
pansions, and enable us to estimate the rate of con-
vergence. The results are applied to assess the errors
in the practical evaluation of the absorptive parts of
scattering amplitudes, and to find the limitations of
the CGLN method for predicting partial wave
amplitudes.

(i) Lehmann's Theorems

The basic theorems on the expansion of a scatter-
ing amplitude in a Legendre series are due to Leh-
mann. "He considers the amplitude T(W, cos 8) for
the scattering of pions on scalar nucleons. Here 8',
q, and 8 are the total energy, pion momentum, and
scattering angle in the c.m. system. The expansion
can be written

T(W, cos 8) = —,—g (2l + 1)Ci(W)Pi (cos 8),
W

9'

(3.1)
where C~(W) are complex functions of W. It is con-
venient to consider the Legendre expansions for Re
T(W, cos 8) and Im T(W, cos 8) which are obtained
from (3.1) on replacing Ci(W) on the right-hand side
by Re C&(W) and Im Ci(W), respectively. Now, we
examine what happens to these Legendre expansions
for Re T(W, cos 9) and Im T(W, cos 0) when W is
kept in the physical range W &~ (M + p), but cos 0

takes unphysical values such as cos 0 ) 1, or cos
0 & —1, or becomes complex. From general field
theoretic considerations plus microcausality" Leh-
mann proves the following two theor'ems:

Theorem 1. For physical values of W, Re T(W, cos
0) is an analytic function of cos 8, which is regular in-
side an ellipse in the complex cos 0 plane centered on
the origin with semi-axes along the real and imagi-
nary axes having lengths xe and (xe —1) l, respec-
tively. Here,

8p, (ii + 2M)
xo(W) = 1 + 2(W2 (~ 2 )2)

. (3.2)

The Legendre expansion of Re T(W, cos 0) converges
uniformly inside this ellipse, and

»m lRe C, (W)l" ~& [Xe + (Xe 1)'] . (3.3)
l-+ oo

(In Appendix B we give an analysis of the con-
vergence of Legendre series which shows how rela-
tions of these forms can arise. )

6 H. Lehmann, Nuovo Cimento 10, 579 ( 1958).
Microcausality is the assumption that boson (fermion)

field operates commute (anticommute) for space —time points
whose separation is spacelike.

Theorem 2. For physical values of W, Im T(W,
cos 8) is an analytic function of cos 8 which is regular
inside a larger ellipse centered at the origin with
semi-axes along the real and imaginary axes having
lengths (2x,' —1) and 2x, (x,' —1) '*, respectively. The
Legendre expansion of Im T(W, cos 0) converges uni-
formly inside this ellipse, and

lim lIm C&(W)l ~& [xe + (xe —1)*] . (3 4)
l~ ao

An indication of the meaning of (3.3) and (3.4) can
be seen as follows. Suppose that as l —+ ~ (for fixed
W) Im C&(W) EP', where K and P depend only on

By (3.4)" P ~& [xo + (xe —1)'] ', and since
xe & 1 we must have P & 1. Putting P = 1 —q
where 2i & 0, it is easy to see that p' tends to zero
faster than exp (—lg) as l —+ ~.

Comparison with c Simp/e 3IIodel

It is interesting to compare (3.3) and (3.4) with
the results of a simple model ~ Regard the nucleon as
in distribution of matter in the form of a disk centered
at the origin whose axis is along the pion beam. Let
the density of matter at distance r from the axis be
p(r). The scattering amplitude for a pion of momen-
tum q can be written in the form [cf. Eqs. (1.18) and
(1»)]—T = f(e) = Z (2& + 1)f (V)P (cos ~) .3II

4m W i=p

By the optical theorem

(2l + 1) Im f~

———o ~,4~

where o-& is the cross section for the lth partial wave.
The impact parameter is r = l/q, and the 2th partial
component of the incident wave sweeps through an
amount of matter approximately given by 2m.r d,r p(r)
where Ar = 1/q. I~or fixed q, large values of / give
large values of r. It is reasonable to suppose that the
outer part of the nucleon consists of one kind of mat-
ter (namely the pion cloud). We assume that the
partial cross section ~~ cannot be greater than a fixed
multiple of the amount of matter which the /th

partial wave sweeps through. Therefore o-
~ ~& K' 2mr

Dr p(r), where K' is a constant. That is

oi ~& K'2m (//q )p(l/q) .

It is reasonable to assume that the density of
matter in the outer parts of the nucleon is given by
p(r) = p, exp ( r/8) where 8 is of the —order of the

22 Note that lim~ )K)'" = l.
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Yukawa wavelength and pp is a constant. Thus

(o &)»f (q) & (&"/q) exp (—l/P)
where E"is a constant. Now for large l

(Imf~(q))' ' & exp (—1/qB), (8 5)

so

(Re f~(q))' + (Im f~(q))' ~( 1/q Im f&(q)

lRef~(q) I
& q '(lmf (q))',

Equation (8.5) is of the same general form as Eq.
(8.4). Further they have in common that the right-
hand sides increase monotonically towards unity as
q increases. The actual dependence on g in the two
cases is different, as might be expected from the very
approximate nature of the model. From (8.5) we can
also obtain a relation analogous to (8.8). By unitarity

cal amplitude we have, from (1),

Im T(W, cos 8)

Q (2l+ 1) Im C((W)P& (cos8) . (8.7)
7l Q )=p

Assuming that we know the phase shifts, the C~(W)
are determined in the range 0 ~& q' ~& t/4.—Now
substitute cos 8 = 1 + t/2q' in (8.7). Theorem 2 tells
us that the series on the right of (8.7) converges pro-
vided

il + t/2q i ~( 2xo —1 . (8 8)
It also tells us that, subject to (8.8), Eq. (8.7) gives
the analytic continuation of Im T(W, cos 8) from the
physical region ~cos 0~ & 1, for any fixed q' in the
range 0 ~( q' ~( —t/4. This continuation gives the
correct values of Im A'+'(v, t) and Im B'+'(v, t) for
0 ~& q' ~& —t/4. From condition (8.8) it is easy to
see that this continuation is possible for

and by (8.5)

~Re fi(q) ~'
' & exp (—1/2qB) . (8.6)

82 2M+ p
3 2M —p,

The similarity to (8.8) is obvious. It should be noted
that the right-hand side of (8.6) is the square root of
the right-hand side of (8.5). The same relation holds
between (8.8) and (8.4).

(ii) Applications of Lehmann's Theorems

Lehmann's method can be applied to the scattering
of pions by real (spin —,') nucleons, and the real and
imaginary parts of the scattering amplitudes are
again found to be regular inside the ellipses of
theorems 1 and 2 respectively. Further, the partial
wave amplitudes f&+ and f~ which were introduced in
Eq. (1.28) obey the inequalities (8.8) and (8.4).

The erst application" of theorem 2 is to the dis-
persion relations (1.16) and (1.17) for Ai"'(v, t) and
B'+'(r, t). In these relations the integration is over v

from p + t/4M to ~, and the invariant momentum
transfer t = —2q'(1 —cos 0) is kept fixed. When
t ( 0 the bottom end of the range of integration lies
outside the physical region. This can be seen as
follows. For q' ~ ~, cos 8 ~ 1, and we have forward
scattering. As q' decreases from ~, cos 8 decreases,
i.e., the scattering angle 8 increases. When q' = —t/4
wehave coso = —1. Valuesof q2intherange0 ~& q'
~& —t/4 correspond to —~ ~& cos 8 ~( —1, and are
therefore outside the physical range [q' = 0 .gives
v = ii + t/4M by (1.4).j

Continuation of Im A &~&(v,t) and Im Bi+&(v,t) into
the unphysical region 0 ~( q' ~& —t/4 can be carried
out by means of the Legendre expansion. For a typi-

We saw in Sec. 1(v) that this is also the range of
values of t for which the validity of the dispension
relations (1.16) and (1.17) has been demonstrated
mathematically.

Thus, theorem 2 completes the justification for
using the dispersion relations (1.16) and (1.17) for
small negative values of t. Below we report results
obtained by using these relations and their deriva-
tives with respect to tat t = 0.

(iii) Expansion of the Absorptive Parts of A(v, t),
B(v, t) in Partial Waves

In evaluating the dispersion relations (1.16), (1.17)
for Re A(v, t = 0), Re B(v, t = 0) and the derivative
relations for

8 8
Re A (v, f)

~
~-0 Re B(v t) ~

&-0

etc. , it is necessary to have good estimates of Im
A(p, o), Im B(p,o), (a/at) Im A(p, t)~ Q, (8/at) Im
B(v,t) ~, 0 to insert in the dispersion integrals.
Using Eqs. (2.81) and (1.80), these imaginary parts
are expressed as infinite series of terms containing
Im f~~ where f,~(l = 0, 1, 2, ) are the partial wave
vr Namplitudes— . In general it is to be expected that
the integrals in these dispersion relations are domi-
nated by one or several of the mell-known x—X
resonances, but we should examine the convergence
of these partial wave expansions for Im A(v, 0) etc. ,

in order to estimate the errors caused by ignoring
partial waves with large I,.
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TABLE f. Values of xp(W) given by Eq. (3.2) for various pion energies. The last column gives p(W) [Eq. (3.9)j.

Lab energy
(~L —P)

&(150 MeV
150 MeV
300 MeV
500 MeV

2 BeV
2 BeV

Pion (c.m. )
momentum

(p = &)

(&l.4
1.4
2. 13
2.9

~M
&&M

s=W2

60-65
74
88
108

5.6M2
&)6M2

1.75/q
1.41
1.19
1,07
1.011

1 + 2M/q4

2g'o —1

6.14/q2
3.0
1.83
1.30
1.02

1+ 8M/q4

i*3+ (*' —&) 'l '

0.29 q
0.41
0.54
0.69
0.90

1 —2M '/q~

(&p + (*' —&)'] '

0.084q2
0.17
0, 29
0.47
0.81

1 —4M '/q2

A rough measure of the rates of convergence is
obtained as follows. We assume that the partial wave
expansions for Im A(v, 0) and Im B(v,0) will have
approximately the same rate of convergence as the
series g)[p(W)]', and the partial wave expansions
for (()/Bt) Im A (v, t)

~

1=p and (()/()t) Im B(v,t) ~1 p will

have approximately the same rate of convergence as
g)l(l + 1) [p(W)]' where

p(W) = [xo+ (x', —1)'] . (8.9)

These estimates are based on using Eqs. (1.80), (2.81)
and the experimental values of the small phase shifts
at 810 MeV which are discussed in Sec. 8(v) below.
Using the remainder of the series p)p' for l ) I, the
fractional error in Im A(v, 0) and Im B(v,0) due to
ignoring partial waves with / ) L is pL+&. Similarly
using the series +1l(l + 1)p' the fractional error in

(8/()t) Im A (31 f)
~

1—p and (8/Bt) Im B()1 f)
~

1=p is esti-
mated to be" p'[1+ —', L(1 —p)(8 —p) + —,

' L'
(1 —p)']

In Sec. 8(iv) it will be seen that the values of p(W)
given by theorem 2 for Im A and Im 8 in the range
250 MeV—1 BeV (Table I) are almost the same as the
values given by the Mandelstam representation
(Table II). We shall therefore take over the argu-
ments of this paragraph without change to the case
of the Mandelstam representation. These estimates
give the error in that part of Im A(v, 0) etc. which is
not due to a dominant resonant amplitude. For ex-

ample, at an energy for which the (8/2, 8/2) ampli-
tude makes a large contribution to Im A(3,0), the
actual fractional error due to ignoring f)~ for l ) L
will be much less than pL+'. This reduction in the error
is easy to estimate in any particular ease.

These formulas can be used with the help of Table
I where xp, p(W) and various related quantities are
given.

In evaluating the dispersion integrals in (1.16) and
(1.17) and their derivative relations, partial waves
with t ) 2 have been ignored, except in the region of

33 Errors in (S /St ) Im A(v, l)
~
1=p etc. can be estimated in

the same way.

the Il-', resonance, where amplitudes with / & 3
have been ignored. The errors in Im A(v, 0) and Im
B(),0) estimated by the above formula with L = 2
are 0.5% at 150 MeV, 8% at 800 MeV, 12% at 500
MeV. Taking L = 8 at 900 MeV gives 25% error.
Similar estimates for (()/()t) Im A(v, t) ~,=p and (()/()t)
Im B(),t) ~,=p give relative errors of 14%, 80%, 60%,
and 75% at 150, 800, 500, and 900 MeV, respectively.

In Fig. 8 following we show the values of (()/()t) Im
A (v, t)

~

1=p and (()/()t) Im B(v, t) ~, p determined from
the known phase shifts and cross sections. Clearly,
below 1 BeV the predominant contributions are due
to the resonances at 180 MeV, 600 MeV, and 900
MeV. The above estimated errors being percentages
of the nonresonant parts, or background turn out to
be unimportant except for energies above 1 BeV. For
these higher energies other methods are used to
estimate Im A(),0), Im B(P,O) ete. [ef. Sees. 4(i) and
4(v) below].

(iv) Application of the Mandelstam Representation

According to the Mandelstam representation the
amplitude B(+)(s,t) is of the form

2 2

B"'(.f) = — " +
s —M' u —M'

P13 (u', t')

43 (u' —u) (t' —f)

P33(t,S )ds
(M+)1) (f' —t) (S —S)

00 I 1

(M+3) (s' —s) (u' —u) '

+, du'1

(M+@)

1+ —,
( M+ v)*

where the variables s, t, u were introduced in Eqs.
(1.4)—(1.6a). G,' is the rationalized 3r—4V coupling
constant and pip p33 p31 are real weight (or spectral)
functions. B(-)(s,t) obeys an equation similar to
(8.10), while A(A)(s, t) obey relations like (8.10),
except that the terms in (", (the Born terms) are
missing.

For fixed energy, s (and q') are fixed, and u and t
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are linear in cos 8. Equation (3.10) can be used to
find the values of cos 8 for which B'+'(s, t) becomes
singular when cos 8 is extended beyond the physical
range —1 ~& cos 0 ~( 1. Suppose that for given
s&~ (M + p)' the smallest value of ~cos 8i for which
(3.10) becomes singular is yc(s). Then B&+'(s,t) is a
regular function of cos 8 inside the circle ~cos 8~

= yc(s) in the complex cos 8 plane. Within this circle
B&+'(s,t) can be expanded in a power series in cos 8,

160-

140-

p (u, t)

nonresonant part of any amplitude due to ignoring
partial waves having l & I, are obtained by the
method of the preceding section if we use for p the
value given by Eq. (3.9) when xc is replaced by the
appropriate value of ye(s). We now determine the
values of y, (s) for the real and the imaginary parts
of the amplitudes.

Values of yc(s) for the Real Parts of the Amptttudes

For physical ~—X scattering the first three terms
on the right of (3.10) contribute only to Re B'+i. The
nearest singularities of Re B'+) come from the Born
pole u = 3P and the cut t )~ 4p'. The nearest
singularities of Im B(+) come from the cuts u &~

(M + p)' and t &~ 4p'.
The Born pole gives a singularity at

80-
(M+2p)

I

(Q+~f 60 I r & ~ a

4 8 12 16 20 24 28 32 36 40 44
t(in units of p )

FIG. 3. The region to the right of the curve shows where the
spectral function pq2(u, t) is nonzero.

cos 8 = 1 + (3II + 2p —s)/2q . (3.11)
For q/p « 1 this gives cos 8 —(3II/2p) —(1IIp/q') .
As q' increases, cos 0 increases, and cos 8 —+ —1 as q'
—+ ~. Values of cos 0 for various energies are given
in column 4 of Table II.

The singularities due to the cuts are not found
quite so easily. This is because the spectral functions

160-

140-

and this series can be rearranged into a series of
Legendre polynomials P&(cos 8). We must find where
the latter series converges.

In Appendix B it is shown that the Legendre series
for B'+i(s, t) converges within an ellipse in the com-
plex cos 8 plane which has focuses at, cos 8 = ~ 1 and
semi-axes of lengths yc(s) {[yc(s)]' —1}l along the
real and imaginary axes, respectively. The asymptotic
behavior of the coeKcients of the Legendre series is
obtained on replacing Eq. (9) by p(W) = {yc(s)
+ ([yc(s)]' —1)'*}-'.It will be seen that there is one
value of yc(s) for Re B'+i(s,t) and a larger value of
yc(s) for Im B'+'(s, t). The real parts of all the ampli-
tudes A '+', B&+' have the same yc(s), and the imagi-
nary parts of all four amplitudes have the same
(larger) value of yc(s). In general, the values of yc(s)
exceed the corresponding quantities xo, 2' —1 given
by theorems 1 and 2, respectively. This can be under-
stood since the validity of the representation (3.10)
is a stronger assumption than the concepts used in
Lehmann's proof.

The fact that yc(s) is in general greater than xc

[or (2zc 1)] is expected to improve the convergence
of the Legendre series. The estimated errors in the

120-

100-

, 80-
(M+2p)

( g+~ f-60=„
60

I

(M+p)'

I

i 80 100 120

(M+2@) ~ u (in units of p')
140 160

Fro. 4. The region to the right of the curve shows where the
spectral function ps~(s, u) is nonzero.

p;; appearing in (3.10) in general vanish over a region
adjacent to the thresholds t' = 4p', s' = (M + p)'
u' = (3l + p)'. The region where p,2(u', t') is nonzero
is shown in Fig. 3. To obtain the region where
p23(t', s') is nonzero we simply replace u' by s'. Figure
4 shows where ps, (s',u') is nonzero. "

6 The boundaries of these regions are given by W. R. Frazer
and J. R. Fulco, Phys. Rev. 11'7, 1063 (1960), Eqs. (4.10a),
(4.10b), and (4.11).
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TABLE II. ColuInns 8—6 give the values of cos 8 for which the real and the imaginary parts of the scattering amplitudes meet
their first singularities in the cos S plane. In each case the p —s term (i.e., the term in t) gives the nearest singularity and

determines yp(s).

Lab energy
(~~ —p)

Pion (c.m. )
momentum

(i =1)
~ —7t- term

[yp(s)]
Crossed

term

Nearest singularities in cos 0 for the
real parts.

~ —7r term
[yp(s)]

Crossed
term

Nearest singularities in cos 8 for the
imaginary parts.

«150 MeV
150 MeV
300 MeV
500 MeV

2 BeV
2 BeV

«1.4
1 ' 4
2. 13
2.9
M

»3f

1+ 2/q'
2, 0
1.45
1.24
1.044
1+ 2/qs

—M/q2—6.25—3 4—3.0—1.48—1 —M2/2'

8/v4
7

1.9
1.31
1.048

1+ 2/q2

8Ms/[q4(2M + 1)]—21,0—8.6—4.3
1.64—1 —(M + 1)'/2q'

Now consider the third term on the right of (3.10).
Both terms in the denominator ean give singularities.
The term in the denominator containing u can only
give singularities for u &~ (M + p)', and these corre-
spond to values of cos 8 more negative than those
given by Eq. (3.11), so they do not affect the value
of yp(s). Using Fig. 3 and letting u —+ pc we see that
the term in t gives a singularity for t = 4p2, that is

i,l 1
" Pps(t', s)

Im B'+'(s, t) = — dt'

dQ
7I iM+p)~ u u

(3.13)

For given 8 the nearest singularity is found by using
Figs. 3 and 4 to determine the smallest values of t'

and u' for which pss(t', s') and psi(s', u'), respectively,
are nonzero. Since these values of t' and u' are greater
than 4p' and (M + p)', respectively, the singularities
in the imaginary parts are further away from the
physical region —1 & cos 8 & 1 than are the singu-
larities in the real parts.

The data in columns 5 and 6 of Table II give the
values of yp(s) for various energies. For g/ii (( 1 the
first term on the right of (3.13) gives a singularity
at cos 8 Sp'/g', and the second term gives a singu-
larity at cos 8 —SM'p'/[q' X (1 + 2M/p)]. For q'

very large the first term gives cos 8 = 1 + 2p'/q',
and the second gives cos 8 = —1 —(M + p)'/2q' for
the nearest singularities.

Comparing column 3 of Table II with the values of
xp ln Table I we see that the convergence of the series

cos8 = 1+ 2la/g (3.12)

Column 3 of Table II gives these values of cos 0 for
various energies. Clearly cos 8 ~ + 1 as q'-+ pc.

Values of yp(s) for the Imaginary Parts
of the Amplitudes

From (3.10) we have for s &~ (M + p)'

for the real parts of the amplitudes is appreciably
better than would be inferred from Lehmann's
theorem. The same is true for the imaginary parts
of the amplitudes except, for the range of energies 250
MeV to 1 BeV. Comparing column 5 of Table II and
Table I, it is seen that y, (s) is very little greater than
(2xpp—1) at these energies. Thus the Mandelstam
representation does not appreciably improve the
convergence of the partial wave expansions for Im
A &+i and Im B'+' in this energy range.

Assuming that the ellipse of convergence of the
Legendre series is given by the Mandelstam repre-
sentation, we can go somewhat further. Since the
m —s- term (i.e., the term in t) gives a singularity much
closer to the physical region than the crossed term
(i.e., the term in u), the rate at which the phase shifts
fall off with increasing angular momentum is gov-
erned primarily by the m —m interactions. Information
about these interactions is known directly from ex-
periments, "and it appears that the F = 1 m —m in-
teraction, which is related to the A&-& and B(-&

amplitudes (but not to A i+' and B&+'), is only ap-
preciable for t & 16'' (and possibly only for t
& 25'').

For example if we ignore the ~—x effects in the
T = 1 case for t ( 15'', the value of y, (s) for Im
A&-& and Im B(-' is appreciably increased in the
energy region 250 MeV to 500 MeV. At 300 MeV
and 500 MeV we get yp(s) = 2.7 and 1.9, respectively,
instead of the values 1.9 and 1.3 given in column 5
of Table II. This reduces the parameter p = [y,
+ (yp —1)i]-' to about 2/3 of the previous values
over this energy range, and appreciably improves the

65 See, for example, A. R. Irwin, R. H. March, W. D.
Walker, and E. West, Proceedings of the International Con-
ference on Elementary Particles, Aix-en-Provence, 1961 (C.E.N.
Saclay, France, 1961), Vol. I, p. 249 for details of the ex-
perimental results. Also the review by O. Puppi, in Proceed-
ings of the International Conference on High-Energy Physics,
Geneva, 186'8, edited by J. Prentke and A. Taylor (CERN
ScientiG. c Information Service, Geneva, Switzerland, 1962).
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rate of convergence of Im A'-' and Im B'-'. No such
improvement is possible in the case of Im A'+' and
Im 8&+'.

It should be emphasized that we aim to use dis-
persion relations like (1.16) and (1.17) in situations
where the dispersion integrals are predominantly due
to the contributions to Im A (v, t) etc. from the known
x—X resonances. The analysis just given is merely a
way of estimating the errors due to neglecting higher
partial waves: it does not include errors in the reso-
nant amplitudes themselves.

6
2 2 2— 2+

q

60
1 4 2+

q
(3.14)

where I( and higher partial waves are ignored and '

denotes differentiation with respect to 6'. Solving
(3.14) gives

fo, = f, (0) + k q'f,'(0) —,'q'f, '(O) + 6 -q'f,"(O) y",
f = f (o) —— l q'f'(o) + l q'f'(o) —h q'fl'(0)

f+ = —
6 qf'(o) —A q'f"(o) +

f.—= --:q'f'{0) + —'. q'f."(o) +
f2+ = 60 q'f("(0) + (3.15)

Here, (0) indicates evaluation in the forward direc-
tion, LV = 0.

It is necessary to assess how well the series in (3.15)
converge. For this purpose, consider a typical partial
wave g((s). It is given by an expression like

g, (s) = dxT(s, x)P)(x), (3.16)

(v) Deducing the Partial Waves; Validity
of the CGLN Method

Having evaluated the dispersion relations for Re
A(v, t) Re B(v,t) etc. we will wish to find the n N—
partial wave amplitudes. This is done as follows. '
Writing 6' = —t/4 = —,

' q'(1 —cos 8), Eqs. (1.30)
give

2A
f =A +3(& —

~ ) —)
q

+ —' 15 1 — 2
—3 f2' +2

q
7

2A
f = (f =f)+3(& —

~ (f =))+
q

6 30 2h'
f( = — ~ fi+ —

2 1 —
2 f2+ +

q q q

where T(s,x) is some scattering amplitude (like A,B)
and x = eos 8. Equations (3.15) are obtained essen-
tially by substituting in (3.16) the expansion

T(s,x) = T(s,x=1) + {x—1)
BT

X,&

2 8 Ty -', (x —1) 8$

= T(s,h =0) + 6
~'-0

1 22 BT+ 2, (~) ~(~2)2, + (3.17)

This Maclaurin series must converge for the range of
values of x used in (3.16), i.e., it must converge for
x —1 = —2. Thus the circle of convergence around
x = 1 must have a radius of at least 2. This requires
that the domain of regularity of T(s,x) should extend
to x —1 = +2, i.e., x = 3 (or y, (s) = 3).

We wish to use (3.16) for the real parts of the
amplitudes, so Reg&(s) and Re T(s,x) appear in (3.16).
Equation (8.12) shows that by the Mandelstam rep-
resentation the radius of the circle of convergence of
the cosine series is yo ——3 for q' = 1, i.e., 80-MeV lab
energy. Lehmann's results (theorem 1) give xo ——3 at
30 MeV. Thus assuming the Mandelstam representa-
tion, the method of extracting the partial wave am-
plitudes given in Eq. (3.15) should be satisfactory at
least up to 80 MeV.

If the radius of convergence p'(p' = y() —1 or
xo —1) of Re T(s,x) aboutthepointx = 1 isatleast
2 then the series for Re g((s) which is obtained by
substituting (3.17) in (3.16) will converge. Similarly
the series in (3.15) will converge if the corresponding
p' exceeds 2. It is also necessary to estimate the rate
of convergence of this series, and for this purpose we
again use (3.16) and {3.17). It is easy to show that if
l is small (and fixed) and n is large then

(1 —x)"P (x)dx —— 2" . (3.18)(—1)' .+i
n

Also by Cauchy's test applied to (3.17) we estimate
(very roughly) that (1/n!)(8" /T8 x)~. &~(p')-"whenn
is large. The rate of (absolute) convergence of the
series obtained by substituting (3.17) in (3.16) is
therefore similar to that of the series P. (2/p')". From
this we expect that the series in (3.15) will only con-
verge well if p' is appreciably greater than 2. This be-
havior can also be seen in another way. At low en-
ergies f(~ ——a&~q2(, where a~ are roughly constant
(1 ) 1).Substituting in (3.14) and putting LV = 0, it
is obvious that the convergence of the series improves
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rapidly as q' decreases. " The same applies to the
series (8.15).

Examp/ee of the Rate of Convergence of
Eqs. (8.1$) and (8.18)

In fact there is reason to believe that we have
somewhat overstated the difficulty of using (8.15).
We shall examine some numerical values at 80 MeV
(q' = 1).We take an unfavorable case provided by a
set of experimental phase shifts which give compara-
tively large D- and F-wave phase shifts at 310 MeV
(q' = 4.7)."At this energy analysis of experiments
suggests that some D-wave phase shifts could be as
large as 12' and some F-wave phase shifts could be 2'.

»om t»s we estim«e
I f"I = 0.00«nd

I f"I—0.0002 at 80 MeV. For comparison me note that
the smallest P wave sc-attering length is of the order
of 0.08. Thus at 80 MeV, or even at 120 MeV
(q' = 1.57), the B-wave terms in the first three series
in (8.14) are at the most no larger than the small P
wave terms. Further, using (1.80) we can find the F
wave contributions to (8.14). These extra terms are
of order 0.002, 0.002, 0.02, 0.012, 0.10 in the Eqs.
(8.14) for f&, fs, f&', f&, f&', respectively. In each case, ex-
cept the equation for f,", these F wave contr-ibutions
are small compared with the small I'-wave or D-wave
terms. In the case of fr", the F wave term g-ives a 80 jz
contribution. Also, the situation is not appreciably
worse at 100 MeV (q' = 1.27) than at 80 MeV.

These numerical values suggest that the series
(8.14) and (8.15) are asymptotic approximations at
energies somewhat above 80 MeV (say up to 120
MeV). This could be due to the fa,ct that the series
for T(e,x) in (8.17) is only likely to be badly wrong
for —1 ~& x ~& 1 —p'. Provided p' is not much less
than 2 this should not be particularly important for
the smaller" values of l. On the other hand the
numerical values indicate that at 150 MeV (q' = 2.0)
the series (8.14) may not even give a useful asymp-
totic approximation.

The &-& Amplitudes

What has been said so far in this section applies to
the A &+& and 8'+) amplitudes. The A (-' and 8(-' am-
plitudes are related to the T = 1 s- + s. —+ X + N
channel. If, as we suggested in Sec. 8(iv) above, the

Notice that by Eq. (8.12) (2/v') = 2/(yc —1) = qs.
67 J. H. Foote, O. Chamberlain, E. H. Rogers, and H. M.

Steiner, Phys. Rev. 122, 959 (1961). We nse here the phase
shift set SPDF—II. The other sets given suggest a more rapid
convergence of Eqs. (14) and (15). In Secs. 4 and 5 below, in
the actual calculations, the phase shift set SPDF-I, which is
considered more likely, is used.

ss For moderate or large l, P&(x) varies rapidly towards
x = —1, and the errors could be appreciable.

7 = 1m —7f effects can be ignoredfor t& 15@,', in-
stead of Eq. (8.12) we have

ys(s) = 1+ 7.5/q'.

This gives a larger radius of convergence, and larger
p' so p' = 3.75 at 150 MeV and p' = 2 at 260 MeV.
Thus we expect that in the case of the (—) charge
combination the partial waves can be deduced ac-
curately by the COLS method up to 250 MeV, and
tolerably accurately up to around 300 MeV. In prac-
tice this can be tested by estimating the D- (or F)-
wave contributions to (14) and examining their
relative importance. It will be seen in Sec. 5(v) below
that the calculations in the (—) case behave well up
to 300 MeV.

(vi) The Subtraction Term in the A&+&

Dispersion Relation

It has been suggested" that a difhculty arises in
using the dispersion relation (2.86) for A&+'(v, tV)
(5' —= t/4) in—the CGLN analysis. A. more detailed
examination shows that this is not so.

We wish to evaluate the subtraction term A(+'

(vs, As) at the threshold q' = 0 (i.e., ve ——P, —/As/3/I).

For Axed 6' & 0 the physical region extends down to
q' = LP [cf.Sec. 8(ii)j and the segment 0 ~( q' ~( A'is
unphysical. As was seen above, Lehmann's theorem 2
showsthat for fixed As ) 0, Im A &+&(v, 6') can be con-
tinued analytically to the whole of the segment
0 ~& q' ~& J provided 6' & 3p'. However, theorem 1
does not allow us to continue Re A &+'(v, A') to the
wholeof0 ~& q'~& 6'forfixed l9) O. on0 ~& q' ~& lV

we have cos 8 = 1 —2LV/q' and Eq. (8.12) shows
that by the Mandelstam representation Re A&+&

(v, LP) can be continued for ~cos e~ ~& 1 + 2p'/q'.
Thus, the Mandelstam representation allows us to
obtain Re A &+&(vs, LP) for all A', such that

~

A'~ ~( p'.
The situation is illustrated in Fig. 5 which shows

the main features in the real ( 6',q') plane for q' ((p'.
The Mandelstam representation allows us to evalu-
ate the subtraction term Re A '+'(vs, 6') anywhere on
the segment —1 ~& lV ~& 1 of the line q' = 0.The ex-
pansion (8.17) can be made, and the radius of con-
vergence p of the power series in (1 —x) is infinite
for q' = 0(p' 2p'/q').

However, we do not need to use the Mandelstam
representation here. Theorem 1 allows us to continue
Re A ' '(v, A') up to ~cos 8~ 1.75(p/q) (of Table I),
so the boundary of the region of continuation is
6' ~ 0.87'. This is shown in Fig. 5. Thus, by
theorem 1, even for the backward direction, we can

ss A. C. Finn, Plays. Rev. 119, 1786 (1960).
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find Re 8 &+'(is, 63). Further, the expansion (3.17) is
quite satisfactory as q3 —+ 0, and the radius of con-
vergence p' becomes infinite as g' —+ 0 (p' 1.75ii/q).
Thus, the series (3.14) and (3.15) converge extremely
well for q' small, and for q' = 0 only the first term
remains in each of the series (3.14). This gives the
very simple result that the appropriate scattering
length gives the contribution of the subtraction term
to the various partial wave amplitudes.

2
Unphysica I cut

for fixed g~ /'

/for fixed 6
limit

/~os e =-1
/

/
Limits of Physical

I/ angles
continuation 0,
by Theorem 1

i'= + 0-87'

cos e= 1

Q2

Fxc. 5. The various
continuation regions for
Re A + (v, n ) in the real
(n' q3) plane.

-1
Mafidelstam~

limit

7o J. Hamilton, T. D. Spearman, and W. 8. Woodcock,
Ann. Phys. 17, 1 (1962); J. Hamilton, P. Menotti, G. C.
Oades, and L. L. J. Vick, Phys. Rev. 128, 1881 (1962).

J. Hamilton and W. 8. Woolcock, Phys. Rev. 118, 291
(1960).

(vii) Conclusions

For the (+) charge combination the Eqs. (3.15),
which are essential in the CGLN method of deriving
the small partial waves etc. are only expected to give
reliable results up to about 100 MeV. This statement
is based on the validity of the Mandelstam represen-
tation. Lehmann's method gives around 30 MeV as
the upper energy limit. Inserting numerical (experi-
mental) values of the higher angular momentum
phase shifts in Eq. (3.14) confirms the deduction
based on the Mandelstam representation.

For the (—) charge combination, if we assume in
addition that the 7.

' = 1 x—x interaction is negligible
for t & 15',', the CGLN method should work well up
to about 250 MeV. The actual results in Sec. 5(v)
below do confirm this.

Finally, we comment on a method which has been
used by Hamilton et aL" to deduce the low-energy
behavior of the T = 0 and T = 1 m —x interactions
from low-energy +—X scattering. This method pri-
marily depends on an accurate knowledge of the
8-wave s=N phase shifts n, and n.3 up to about 120
MeV. The values of n& and e3 which are used come
partly from accurate experimental data, and partly
from a semiphenomenological parameterization of
this data. " This parametrization which is discussed
in Sec. 4(ii) below can be justified by using certain

forward dispersion relations, and it does not depend
on the CGLN method.

Further, it has been shown" that I'-wave m —X
scattering in the region 0—100 MeV is reasonably
consistent with the information on x—x interactions
which is given by the 8-wave x—S data. The P-wave
data are partly based on the few accurate experimen-
tal results in this energy range and partly on the
CGLN analysis as applied below. It has been shown
above that the CGLN method should give accurate
small P-wave x—X phase shif ts up to about 100—120
MeV irrespective of any assumptions concerning the
m

—m interactions. The work on the x—x interactions"
is therefore in no danger of being infiuenced by errors
which are themselves caused by the ~—~ interactions.

4. THE PARAMETERS OF PION-NUCLEON PHYSICS

In this section it is shown that m —X dispersion
relations for fixed momentum transfer can be used to
give accurate information about the x—Ã coupling
constant f', the 8- and P-wave m —N scattering lengths
and other parameters of low-energy pion physics.
We also discuss the parametrization of the low-energy
8-wave scattering. The general idea is to use disper-
sion relations in which the predominant contribution
to the dispersion integrals comes from accurately
known features of m

—N scattering, such as the low- or
moderate-energy resonances. Using the experimental
data for these large contributions, we can get ac-
curate values of the parameters. The errors in the
values of the parameters found in this way depend
partly on the experimental errors in the resonance
data etc., and partly on the size of the small non-
resonant terms which are either roughly estimated or
ignored. We have to assess both of these errors.

It was first pointed out by Woolcock"'. (i) that
the B+ relation [cf. Sec. 4(i)] gives a very good
method of determining the coupling constant f'; (ii)
that the (,"+& relations [cf. Sec. 4(iii)] can yield ac-
curate information about the combinations (2a»
+ a3&) and (2a» + a») of the P-wave 7r—N scattering
lengths a3T,2/ and (iii) that the B(p,0) relations [cf.
Sec. 4(iv) below] can give accurate information about
the combinations (a» —a») and (a» an) Wool-
cock" also used the f~'-&'(i0) corelation [cf. Sec. 4(v)
below] to give information about (a» —ai3). In the
present article we shall allow for a larger error in the
latter relation than that in Woolcock's original work.

72 In the second paper in reference 70, ~ —X data up to 200
MeV were used. However the deductions about the w —w in-
teractions were almost entirely dependent on the data for
0—100 MeV.

73 W. S. Woolcock, Ph.D. thesis, University of Cambridge,
1961 (unpublished).
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(i) Determination of f'
We define the equivalent pseudovector coupling

constant by

f' = (p/23I) 6,/4s. , (4.1)
where | is the rationalized pseudoscalar coupling
constant used in Secs. 1, 2, and 3 above. The most
promising method" for determining f' is to use the
dispersion relations (1.17) for the 8 amplitudes in
the forward direction (t = 0). It, is convenient to use
the amplitudes B~ for the elastic scattering ~' + p
—+ m++ p. By (1.9) 8+ ——8'+' —8&-', 8 = 8'+'
+ 8'-'. In the forward direction v = a&r, where eer,

is the (total) lab pion energy [Eq. (1.4)], and using
Eq. (4.1), the relations (1.17) give the equations

1—P

—Re B~(air, ,0) =1

"
d&e' Im 8+(cu', 0)

4&M co Go I,

4f '/u'—
eer, —p'/23I

Im 8 ((v', 0)
+ e'er,

(4.2a)

1 4f '/~'—
R 8 ( r 0) 2/23I +

1
"

dai' Im 8 (ee',0) Im 8+(ee', 0)
4rr3I Gl cv , Lee + ee L

In the integrands ee' is the (total) lab pion energy.
Equations (4.2) are used by inserting known pha, se

shifts on the left-hand side at low energies (up to

74 W. S. Woolcock, in Proceedings of the Tenth Internationat
Conference on High-Energy Physics, Rochester, edited by E. C.
G. Sndarshan, J. H. Tinlot, and A. C. Melissinos (Interscience
Publishers, Inc. , New York, 1960), p. 302.

In this relation one term involves derivatives with
respect to the momentum transfer and errors due to
the nonresonant terms and other features will be
larger here than in the other relations we have men-
tioned. It is important not to underestimate the size
of these errors.

The numerical calculations reported here are
mostly due to Woolcock."Some improvements have
been made, and we have taken account of more
recent experimental data. Also we have used the
H,egge pole method to give better estimates of the
contributions to the dispersion integrals from very
high energies. For reasons of space we shall not give
the full details, concentrating rather on the salient
points. The calculation of f' and the study of the
parameterization of the 8-wave phase shifts are
given in more detail than the remainder, because of
the considerable importance of these results for
numerous applications. Also, the Regge pole esti-
mates are given in some detail.

200 MeV). The integrals on the right are given by
the absorptive parts of the partial waves, and the
best accuracy is obtained by using the 8+ relation
Eq. (4.2a) so that the major contribution to the
term containing (ee' —eer)-' comes from the (s, s)
resonance which is particularly well known. We find
the difference between Re 8+(cur, ,0)/47r3I and the
integral for values of ~1. between 15 MeV and 185
MeV. This set of differences is fitted by the function
(const)/(ear, —p, '/23I) and the best value of the
constant yields the coupling constant, f' No.w we
examine the evaluation of the various terms in
(4.2a).

The basic formula, obtained from Eqs. (2.31) and
(1.30) is

B(~,,0) fe
4~3I 3I(E + 3I)

—'. (2

2

4
(

3I(E —3I)

+'''
7 (4 3)

where E = (3I'+ q')'. The subscript notation for
the partial wave amplitudes f,, fr;, fr;, is obvious.
The convergence of the series has been discussed in
Secs. 3(iii) and (iv).

(a) Evaluation of Re 8+(ur, ,0)
The dominant contribution to Re 8+(~r, ,0) over

the range 15 MeV to 185 MeV is the p; term which
is given by the n33 phase shift. This contribution
varies from about —0.48 at 15 MeV to below —0.1
at 185 MeV. The remaining terms are small, and we
consider them first.

The s-wave term is very small, due to the large
denominator [3I(E + 3I)]-'. It is of order —0.001
at the lower energies, and is somewhat bigger near
185 MeV. It is quite sufFicient to use the semi-
phenomenological fit for o.3 given by Hamilton and
Woolcock. "The p: term can be evaluated by using
(and interpolating) the accurate results for rr» at
24.8, 31.5, and 41.5 MeV (Rochester), " 97 MeV
(Liverpool)" and 310 MeV (Berkeley) ." Several

75 J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291
(1960). The solid curve for a3 in Fig. 2 of that paper is used.
This curve continues well to the 310 MeV value of n3 given
by J. H. Foote et al. (cf. reference 67).

76 S. W. Barnes, B.Rose, G. Giacomelli, J. Ring, R. Miyake,
and K. Kinsey, Phys. Rev. 11'7, 116 and 238 (1960).

"7 D. N. Edwards and T. Massam (private communica-
tion). We are indebted to Dr. Edwards and Dr. Massam for
these results.

rs J. H. Foote et aL (cf. reference 67).
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other (less accurate) values of n» are used. The
error in the p contribution to Eq. (4.3) is 0.008 at
40 MeV and 0.004 at 200 MeV.

The contribution of the d-wave phase shifts to
Re B+ is not negligible. At 310 MeV Foote et al."
found ass ——3.1' & 2.6', Sss = —4.9' + 2.2' (the
SPDF—I fit). It is reasonable to assume that these
phase shifts vary with energy as q' (this cannot intro-
duce important errors). Errors or ambiguities in the
d-wave phases do not cause as large errors in H,e
8+/47r3I below 200 MeV as might be expected. This
is because changes in 633 and 6» also alter the experi-
mental values of n» and n» which we have used, "
and the two effects act in opposite directions. The
errors given for Re 8+/47r3I in Table V below include
the effect of uncertainties in the d-wave analysis
at 310 MeV, and they allow for the SPD or the
SPDF—I sets" being possible.

As to f waves, even if the phase shifts are of order
0.5' a,t 310 MeV (the SPDF—I fit7s) this only gives a
contribution of around 0.008 to Re B~/4rr3II at 185
MeV, and much less at lower energies. Higher partial
waves can certainly be ignored. In the notation of
Sec. 3(iv) the radius of convergence of the series
(4.3) for Re 8+/4vr3I is y& 2 at 180 MeV, and (4.3)
should still converge well at 180 MeV.

Finally we examine the p; term. There is much
experimental data on 0.» in the range 15—185 MeV.
At the lower end of the energy range these values are
used directly. Woolcockvs found that for other
energies the most accurate values could often be
found by using the formula for the total cross sec-
tion"

o+ = (4s/q') (sin' ns + sin' ns& + 2 sin' n33

+ 2 sin bss+ 3 sin ass+ ) . (4.4)

The phase shifts a3 A3$ 833 835 are not large. Even if
some of them are not known very accurately, Eq.
(4) will give accurate values for n» whenever o+ is
known accurately. The values of n» which were used
are given in Table III. The values of Re 8+(~J.,O)

/4s3I are given in Table V.

(5) Evaluation of Im 8~(cur, ,0) for 0—350 3IeV

In this energy range the dominant contribution to
Im 8 /4 +3I7irs Igiven by n33 The other phase shifts
give much smaller contributions, and the information
on these phase shifts which was discussed in the
preceding paragraphs is quite sufhcient and gives
adequate accuracy for Im B+. The n» data in Table

7 We are indebted to Dr. T. Massam for information on
this point.

8 Inelastic processes are negligible at 185 MeV.

III are smoothed in order to evaluate the integral in
(4.2a). Following Noyes and Edwards, "Woolcock"
uses

q' (cot nss)/(v* = rn(o* + c (4.5)

where co*+ 3f = W is the total energy in the c.m.
system and m and c are constants. These have the
values m = —3.813 ~ 0.071, c = 8.349 ~0.125

Tanz, z III. The values of cr» used in computing Re 8+(col„0)
/4vr3II. The asterisks denote those values obtained by using
Eq. (4.4). The remainder are from direct phase shift analyses.

Lab energy
(MeV)

15
25
85
87
40
41.5
45
58
78
80
97.1
100

CX33

(degrees)

0.8 + 0.2
1.9 + 0.4
2 ' 8 + 0.7
8.1 + 0.8
4.5 + 1.0
4.8 + 0.2*
4, 4 + 1.1
7.5 + 0.5*

18.0 + 2.0
12,4 + 2. 1
20.9 + 0.8
21.7 + 1.2

Lab energy
(MeV)

118
120

185
148
144
150
170
178.5
176
177
188.5

(degrees)

27.5 + 1.0*
81.4 + 2.0
81.8 + 1.6
40.8 + 0.8*
45.7 + 1.1'
48.2 + 0.9'
55.1 +.2, 0
69 ' 5 + 2.4*
70.8 + 1.5'
75.2 + 8.1*
75.1 + 8.1'
76.1 + 2.5*

(units 5 = c = y = 1 as usual). The errors in m and
c have a strong negative correlation, and the actual
errors in cot o.» are very small. Kith these values Kq.
(4.5) is a very good fit to all the n» data up to 190
MeV.

A.bove 190 MeV there is a one-aided deviation of
cot n» from the Noyes —Edwards curve (5). All the
experimental data on n» (from phase-shift analysis
and from o+) in the range 190—350 MeV was col-
lected, and it turned out that a smooth curve could
be drawn through the standard error limits on nearly
all the data. The 310-MeV value" 0.33 = 134.8'
~ 0.6' has a very small error, and this helps con-
siderably to pin down the curve at the high-energy
end. Essentially in this energy range Im 8+ is known
about as accurately as a.+.

For Im 8 we use the formula

SI H. P. Noyes and D. N. Edwards, Phys. Rev. 118, 1409
(1960).

82 V. G. Zinov, S. M. Eorenchenko, N. L. Polumordvinova,
and G. N. Tentyukova, Soviet Phys. —JETP 11, 1016 (1960).

ImB (~r, ,0) = -', Im8" (a&r„0)+ —', Im '8*'(&z,,c)0.

(4 6)

Up to 250 MeV reasonably accurate values of the
T = -', phase shifts are known and it is clear that the
T = -', term in (4.6) is predominant. For 250—350
MeV the Phase shift set aspD of Zinov et al."was used.
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In fact, using the bspD set causes little change as the
main contribution is from o.n, and ~n»i is about the
same in both sets. Near 350 MeV, Im B&:& begins to
increase rapidly because the 613 d=wave phase shift
starts to rise towards the 600-MeV resonance. This
will be discussed below.

(c) Charge Independence

In writing (4.6) we assume charge independence,
and it is relevant to consider the possible effect of
small violations of charge independence in a calcu-
lation which aims to find the value of f' accurate to
a few percent. A good test of charge independence in
the elastic region is given by the relation between
charge exchange scattering ~-+ p —+ vr'+ n and
elastic scattering ~i+ p~7r++ p. At threshold"
and at low energies (up to 225 MeV") the relation
appears to be well satisfied. At higher energies
accurate charge-exchange data are not available, but
up to around 350 MeV the m+ —p scattering data
have been analyzed with considerable accuracy using
charge independence (the point, here is that the
T = —', phase shifts can be assigned real values).

Above 850 MeV the higher resonances (600 MeV,
900 MeV, 1.85 BeV) appear either in the T = —,

' or
T = —,' states. Also the analyses" of charge-exchange
data (7r

—+ p —&s.'+ n) near 600 MeV and 900
MeV are consistent with charge independence. Never-
theless, for all we know there may be some departure
from charge independence at energies above 250
MeV. It can be seen that even if this is so it should
have very little effect on our results.

The dispersion relations (2) relate to elastic or+ + p
scattering, and their derivation does not require
charge independence. "The experimental data which
are inserted in (2) come from the differential cross
sections for elastic sr++ p scattering and the total
cross sections o~ (which are related to ela, stic scatter-
ing through the optical theorem). In analyzing the
or+ + p scattering data the relation

s Ti'-. ) p i T(f)

is used for the 7r +p elastic-s-cattering amplitude
T, and the same combination of isospin amplitudes

83 See J. Hamilton and W. S. Woolcock, Phys. Rev. 118,
291 (1960) for the situation at threshold.

84 J. Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B.
Yodh, Phys. Rev. 124, 1987 (1961).

» J. C. Brisson, R. Omnes, and 6.Valladas, Nuovo Cimento
19, 210 (1961); Proceedings of the International Conference on
Elementary Particles, Air en Provence, 1861 (C.E.N-. -Saclay,
France, 1961), Vol. I, p. 467.

8 See, for example, J. Hamilton, Phys. Rev. 110, 1184
(1958).

is again used to give the values of B which are in-
serted in (4.2). Thus if charge independence is not
exactly valid above 250 MeV, no error is produced
in our calculation (the phase shifts for the T'l'
amplitude need not be reaP' at these energies). Of
course, the amplitude T") is then no longer an
isospin amplitude. FinaUy, we note that at very high
energies (cer, & 2 BeV) we find Im B directly from
the total cross section c. (see below).

(d) Eualuati, on of Im B+(cir„0)for 850 Me V 2Be V—

There is an accurate phase shift analysis of n.+ + p,
scattering at 500 MeV," and o ther analyses"
at relevant energies, so there is no difhculty in ob-
taining Im B+ suKciently accurately up to 500 MeV.
From Sec. 3, Table I or II, we see that the radius of
convergence of the Legendre expansion of Im B is
1.8, so we expect the series in Eq. (4.8) to converge
slowly at 500 MeV and higher energies. Therefore
other methods must be used to And Im B~ at such
energies. The method used is to estimate Im B~(ccc,0)
at 2 BeV from an optical model. Between 350 MeV
and 2 BeV there are resonances in both the m.+ —p
and ~- —p cases, and the contributions to Im B~
from the resonant partial wave amplitudes are
determined by a method given below. The remaining
(nonresonant) parts of Im B~ are obtained by draw-
ing smooth curves to join the calculated values of Im
B~ at 850 or 500 MeV onto the 2-BeV values (mak-
ing any possible use of any phase-shift analyses which
are available between these energies). This procedure
for getting the nonresonant parts of Im B~ in this
energy range is not particularly accurate, but it is
seen from Table IV below that their total contribu-
tion to the integral in (4.2a) is very small, so even
large percentage errors are unimportant. (The values
of Im B~ are shown in Fig. 7.)

Woolcock" estimates the value of Im B+ around
2 BeV by using a partially opaque disk optical
model. "The spin-flip amplitude g(t)) [Eq. (1.28)j is
assumed to be unimportant" and the no-Hip ampli-

s7 ff the charge exchange (~ + y ~ s.'+ n) rate were
much smaller than that given by charge independence, the
real parts of the T(') phase shifts might have to take impossible
values. However reference 85 shows that the charge-exchange
rate is about what we would expect by charge independence.

88 W. J. Willis, Phys. Rev. 116, 753 (1959).
89 M. E. Blevins, M. M. Block, and J. Leitner, Phys. Rev.

112, 1287 (1958); W. D. Walker, Phys. Rev. 118, 1612 (1960).
90 Inside the first diffraction zero, an optical model can be

consistent with the Regge pole results provided the parameters
of the model vary slowly (logarithmically) with energy.

sr As was seen in Sec. 2(viii) above, it is by no means obvious
that the spin-flip amplitude g(9) can be neglected. However,
any error here should not change the estimates of Im 8 by
more than a small factor.
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tude f(8) [Eq. (1.28)] is given by

f(8) = i(1 —a) q JII(qp sin 8)pdp

—Im A~(&vr, ,0) = q-E X 0.116
1 W+M

—Im B~(oir, ,0) = - X 0.116 . (4.8)

The real diS.culty about Im 8+ in the range 350
MeV—2 BeV is the nature of the hump in the o+
cross section at 1.35 BeV (Fig. 6). If this is due to
one or several resonances, then one or several of the
terms on the right of (4.3) will be comparatively large.
Several authors" suggest that there is a (T = —',)
p; resonance at 1.35 BeV. Others" suggest that there
is a dt resonance at 1.2 BeV and a f. resonance at
1.4 BeV.

60

E So
C

c 400

30

U 20
0
0

10 I ~ I I I I ~ I ~ I I I I I I I I

04 06 08 10 12 14 16 18 20
Pion (lob) Energy in (BeV)

FIG. 6. Experimental values of the 7t
+ + p and 7t + p

total cross sections 0.+. and 0. in the range 0.4 BeV to 2.0 BeV.
The curves are possible smooth fits to the experimental values.

The contributions to Im 8 from such resonances
are found as follows. I et 0-l~ be the resonant part
of the total cross section (it is found by estimating
how much of the cross section is merely background,
bearing in mind the limits set by unitarity and the
elasticity parameter). The optical theorem gives

(j + —,') ImfI, ——(q/4s-)aI, (j = l a -', ), (4.9)
92 N. P. Klepikov, Dubna preprint (1960); W. N. Wong and

M. Ross, Phys. Rev. Letters 3, 898 (1959).I R. Blanckenbeckler and M. L. Goldberger, Phys. Rev.
126, 766 (1962), footnote 24; W. M. Layson, CERN preprint
(1961).

= i(l —a)RJ, (qR sin 8)/sin 8, (4.7)

where R is the "radius" of the nucleon and a the
opacity parameter. From experiments in the region
of 2 BeV it is estimated that 8 = 1.04 g 10-" cm
= 0.74 units and c is real with 1 —a = 0.43. Neg-
lecting for the moment any difference between the
~"—p and vr=p amplitudes, for energies near 2 BeV
this gives, using Eq. (2.45),

where fI+ is the resonant amplitude. From the esti-
mated width and height of the resonance we can
now obtain the contribution to the integral in (4.2a).

As an example we shall give a rough estimate of
the contribution from the 1.35-BeV hump in 0-+ From
Fig. 6 we estimate that, if this is a p; resonance, then
the resonant part o-I+ is 15 mb at the maximum, and
the width at half-height is around 400 MeV. Using
Eqs. (4.9) and (4.3) we find that this resonance con-
tributes —1 X 10-' to the integral in (4.2a). Alterna-
tively if the hump consists of d; and f~ resonances at
1.2 BeV and 1.4 BeV, respectively, each being 10 mb
high and 250 MeV wide (at half-height), they will
contribute —1 &( 10-' and —1.7 )& 10-', respectively,
to the integral in (4.2a).

In the values given in Table V below, the hump
was assumed to be a p; resonance. The estimates just
given show that this will lead to a value of f' which
is: (a) too small by 0.0004 if there is no resonance,
and (b) too large by 0.0006 if there are actually d;
and f. resonances. These uncertainties are included
in the final error quoted for f' [Eq. (4.15)].

(e) Evaluation of Im B (oir, ,0) from 350 3IeV 2BeV-
The procedure here is almost the same as in the

case of Im 8+. The only difference is that the dg and
ft resonances at 600 MeV and 900 MeV have to be
treated somewhat more carefully as they give larger
contributions than the s-+—p resonances mentioned
in the previous paragraph. Using a Breit—Wigner
shape Woolcock" estimated that the resonant part
of o at 600 MeV was 27 mb at maximum, and that at
900 MeV the corresponding figure was 26 mb. Then
using Eq. (4.9) the contribution of the resonances to
the integral in (4.2a) was evaluated. The value used
for the resonant part of the cross section a,t 600 MeV
is perhaps a little too large. A recent analysis" sug-
gests 23 mb, and this correction is included in the final
values for the integral given in Tables IV and V.
(The correction is in fact very small as can be seen
from Table IV.)

(f) The Very High Energy Contributi-on

In the original calculation"" of the integral in
(4.2a) Im B+(co',0) a, nd Im B (oI',0) were taken equal
above 2.5 BeV. Recent experimental results" and
the Regge pole methods make it possible to estimate

~4 R. Omnes and G. Valladas (reference 85). These authors
suggest that there are also moderate amounts of amplitudes
other than Ds/2 and I'5/2 at 600 MeV and 900 MeV, respec-
tively. These give corrections which can be ignored here [cf.
Sec. 5(ii) for further discussion].

95 See Fig. 3. -



766 J. HAMILTON AND W. S. WOOLCOCK

more accurately the contribution from above 2 BeV.
By Eq. (1.35)

o (toz) -—o+(toz) = (2.5 mb) (4 BeV/&oz)

This gives"

2 Bev

-'"'-"'"' d. =032
GO

(4.13)

on using n, (0) = 0.5.
Substituting (4.11)and (4.13) the integral in (4.2a)

gives the contribution —1.2 )& 10 ' from energies +'
&~ 2 BeV. From Table IV it is seen that this is not
negligible. However this is an overestimate of the
high-energy contribution. From Eq. (4.8) we see
that" Im A'-' will also contribute to Im f&(toL, ,O)

[Eq. (4.8)] at the lower end of the range 2 BeV & co&

& ~. To correct for this, we estimate" that it is
necessary to multiply the above result by 0.4, so
that the contribution to the integral in (4.2a) from
co' &~ 2 BeV is —5 )& 10-4. Ignoring this term would
change f' by no more than 2 )& 10-'.

~s B. Udgaonkar, Phys. Rev. Letters 8, 142 (1062). Note
added in proof. Even if the Regge pole ideas do not apply in
any simple way to high-energy scattering, we still regard Eq.
(4.12) as a useful parametrization of o —o~ at high energies.

97 The unit of area is 20 mb.
98 To allow for the difference between 0= and g+ the numeri-

cal factors in Eq. (4.8) have to be different by about 8% in
the a cases.

9 This is obtained by comparing the incorrect value Im B~= 0~ given by ignoring A+ with the value predicted by Eq.
(4.8) near 2 BeV. This correction is consistent with the value
of Im A~ given in Eq. (4.8).

fz(top„0) = (1/4s) (A + tozB), (4.10)

where fz(&o&,0) is the forward scattering amplitude
in the lab system. In Sec. 2(viii) we gave reasons for
believing that A (t,t) does not attain its unitary limit
as v —+ ~. Thus, for very high energies Eq. (4.10)
gives

Im 8' '(toy, ,O) (4s-/toy, ) Im f,' '(tow, O)

g ~ 0+ (4.11)

Also 8&-' = —,
' (8 —8+), and (4.11) can be used to

find the high-energy contribution to (4.2a).
Using the Regge pole approximation and the

high-energy data (Fig. 2), Udgaonkar" estimates
that, for large coL,,

(r (toz) —o~(toz) to, " '"", (4.12)

where tr, (0) 0.5. It is clear from the data that o

must equal o+ at some energy near 2 BeV (see Figs.
2 and 6). Also o. —o~ = 2.5 mb at 4 BeV. To be
conservative we shall assume a —0-+ = 2.5 mb over
the range 2—4 BeV. Above 4 BeV we use

(g) Summary and Result

In Table IV we give the contributions to the in-
tegral

1 p "d, Im B~ (to', 0)P dQ)4x'M ~
—

Q7 L,

Im 8 (to', 0)
(o + log,

(4.14)

for toz ——1.286 (40 MeV). This shows how the con-
tribution to I from the (-,', —,') resonance dominates.
Even the next largest contributions, which come
from the d; and f» 7r=p resonances, are very much
smaller.

In Table V we give the values and errors of H,e
8+(toz, 0)/47r3f and the integral I/rr for the 24 values
of to&, for which we have determinations of tr» (Table
III). The last column gives the value of f' deduced
from Eq. (4.2a). The errors quoted for I are standard
errors derived from the errors in the experimental
data and various uncertainties which were discussed
above. [The possible systematic error mentioned in
footnote 100 is not included in Table V but is in-
cluded in the final value of f' in Eq. (4.15).]

The values of f' in the last column of Table V are
remarkably consistent. Incidentally they provide a
good proof of the validity of the 8+ dispersion rela-
tion (4.2a) up to 185 MeV. The errors in the values
of f' cannot be treated as independent for various
reasons. For example, the 135-, 143-, and 144-MeV

Tanrz IV. Contributions to the integral (I/~) X 103 [Eq.
(4.14)j from various energy ranges for co&, = 1.286 (40 MeV).

Energy region
(Mev)

Integral over
Im B+

Integral over
Im B

0- 300
300- 500
500-1200

1200-2000

—203.8—10.9—2.8 (Ioo)—0.1

+14,2—2. 1—14.8—0

2000—Ã) —0 ~ 1

The sum of these terms is to be replaced by approx —1.9
if there is no resonance at 1.35 BeV, and by —4.6 if there are
d5ts and frtz resonances at 1.2 and 1.4 BeV.

data are undoubtedly correlated. There are various
ways of getting uncorrelated values of f' We could.
select the value of f' with the smallest error in each
of the Ave sections of Table V. These relate to well-
separated energies and they will be uncorrelated.
Their weighted average is f' = 0.0825 ~ 0.003. More
data can be used by selecting the value of f' with
least error in each (nonoverlapping) 20-MeV energy
interval. Again, correlation of. errors should be un-
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f = 0.081 + 0.003 . (4.15)

In Sec. 4(vii) below the result of another determi-
nation of f' is given.

Tsar.E V. Values of —Re B4(cuL,O) /47rM and the integral I/»
[Eq. (4.14)] for 24 values of cuL. The last column gives f' de--

termined by Eq. (4.2a).

Lab pion
energy
(MeV) —Re 84.(caL,O)/44r3I

important. The weighted average is f' = 0.081
~ 0.002. Finally we have to allow for the possible
systematic error due to lack of knowledge about the
1.35-BeV hump in x+ —p scattering. We are certain
to include this if we write'"

2

D"'(~L) = D'"(~) + M

qr, p
4m

00 i
(+)

(

40'L —Ia'/4M' 1 —f4'/4M'

1 1
e) G)L 0) + 4lL

suits. Dispersion relations suggested much better
expansions which we applied to the low-energy data
in an earlier paper" and found consistent and
accurate values for a1 and a3.

The best form of these low-energy expansions for
the s-wave phase shifts can be obtained from the
forward-scattering dispersion relations (2.6). We
write as usual DI+) = —,

' (D++ D ), D&-) = -', (D—D+) where D~(&vL) are the real parts of the forward-
scattering amplitude in the lab system for 2r+ + P~ 2r++ P at (lab) energy. Then Eqs. (2.6) give

15
25
35
37
40

41.5
45
58
78
80
97.1
100
113
120
120

135
143
144
150
170
173.5
176
177
183.5

0.482 + 0.103
0.491 + 0.087
0.442 + 0.100
0.446 + 0.099
0.552 + 0.108
0.507 + 0.014
0.458 + 0 ' 098
0.495 + 0.028
0.506 + 0.067
0.468 + 0.068
0.522 + 0.008
0.510 + 0.022
0.485 + 0.013
0,471 + 0.018
0.474 + 0.014
0.420 + 0.008
0.380 + 0.008
0.374 + 0.008
0.327 + 0.018
0.175 + 0.019
0.158 + 0.012
0.170 + 0.024
0.113 + 0.024
0.099 + 0.018

0.183
0.198
0.213
0.216
0.221

0.224
0.230
0.252
0.289
0.293
0.314
0.314
0.306
0.293
0.293
0.253
0.219
0.214
0.179
0.040

0.011—0.008-0.016—0.041

+ 0, 003
+ 0.003
+ 0.003
+ 0.003
+ 0.003
+ 0.003
+ 0.003
+ 0.003
+ 0.004
+ 0.004
+ 0.004
+ 0.004
+ 0.003
+ 0.003
+ 0.003
+ 0.004
+ 0.004
+ 0.004
+ 0.004
+ 0.003
+ 0.003
+ 0.003
+ 0.003
+ 0.003

0.097
0.081
0.067
0.068
0.100

0.086
0.071
0.081
0.081
0.068
0.084
0.080
0.078
0.079
0.081
0.079
0.078
0.079
0.074
0.073
0.080
0.070
0.071
0.080

+ 0.026
+ 0.024
+ 0.029
+ 0.029
+ 0.033
+ 0.005
+ 0.030
+ 0.009
+ 0.025
+ 0.025
+ 0.004
+ 0.009
+ 0.006
+ 0.008
+ 0.006
+ 0.005
+ 0, 005
+ 0.005
+ 0.007
+ 0.010
+ 0.007
+ 0.013
+ 0.013
+ 0.010

and
(4.16)

2f 40LqL 1
(o)L) 44)LD (IL) 2 2 4 g 2 2 I 2

p, col, —p //'4M 1 —p, y'4M
2 00

qL p GGI (—)
( I) 1 1

421 2 q Q) —
44) L Q) +

(4.17)

Where Ir'+) = —,
' (0 + o.+). Here, 0~are thetOtalerOSS

sections for 7r++ P scattering, and qL, q' are lab
momenta and ~1., ~' are the corresponding lab
energies.

We put p = 1 in all that follows. Using (1.33),
(1.31), and the partial wave expansion (1.28) the
left-hand sides of (4.16) and (4.17) can be written
in terms of the phase shifts. Also by (1.37)

(ii) parametrization of Low-Energy
s-Wave Scattering

It was pointed out by Cini et al.'" that the ex-
pansion

n, = a;q+ b,q'+ c;q'+ (i = 1,3)

is not a good way to fit the s-wave x—A' phase shifts
u1 and a3, even for energies up to 50 MeV. The con-
vergence of the series is poor, and, by using it, one
can readily deduce incorrect values of the scattering
lengths a1 and a3 from low-energy experimental re-

~ The reasons for the differences from the value f2 = 0.080
+ 0.002 given in reference 74 are: (a) The present analysis
is more careful about possible correlation of errors in Table V;
(b) a larger error is allo~ed for uncertainties about the 1.35-
BeV hump.

2 M. Cini, R. Gatto, E. L. Goldwasser, and M. Ruderman,
Nuovo Cimento 10, 242 (1958}.

(M + 1) (1 —1/4M ) (cc'L —1/4M )
M

W(1 + 1/M)
Re (p, + 2p„+2p„+4p )

+ (d-wave terms) (4.18)

D'+ (1) = (1+ 1/M) 2 (aI + 2as),
D' '(1) = (1 + 1/M) -,'(aI —as) .

Now rearranging (4.16) and (4.17) we have

sin 2nI + 2 sin 2us W
2q M+1

2 3 JGJ (4-)q' 4~'(1+ 1/M), q'

1 1
(. .. .,..)
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sin 2n& —sin 2a3 W

g
00 I

2 3 dQ)+ & 4. (1+ 1/M)

I Cd CdI, Cd + Cd IJ

6f Cd I

(1 + 1/M) (1 1/4M') (cd I. 1/4M')

3f
W(1 + 1/M)

Re (pl, + 2p„—p„—2p„)

Why C'+' and C' ' Are Almost Constant at Lol
Energies

The fact that C&+' and C&-' are constant at low
energies may appear somewhat surprising, since indi-
vidual terms in the square brackets on the right of
(4.18) and (4.19) vary considerably with energy. We
begin to understand the reason for this result if we
use the rough approximation for the p-wave ampli-
tudes p2+, 2J given by CGLN. ' These equations are

Re p33(cd* ) =
2 + —P dhd*' Im p33(cd*')

4f
7l

+ (d-wave terms)

Here,
3

p2T, 2I —exp (in2T, 2I) sill C32T,2I/g

(4.19) 1 1 1 1„*+M+9 „3+„,
(

3,
)

Sf + 3f' 16
d ~, Im p33(ld*')

where +2~,» are the p-wave m-—lV phase shifts and q
is the momentum in the c.m. system. The d-wave
terms in (4.18) and (4.19) are of the form: (d-wave
scattering length) && q2, and they are very small for
energies below 100 MeV.

It is convenient to write (4.18) and (4.19) in the
form

sin2c3 + 2sin2c33 W
( + 2 ) + &c+& 2

2cc M+ 1

(4.20)

sin 2c31 —sin 2c33 W
2

(4.21)

where C&+& and C&-& are given by the terms inside the
square brackets in (4.18) and (4.19). Woolcock13

roughly evaluated these expressions for C(+& and
C&-' at low energies. The experimental values of 0-~

and u33 (cf. Table III), and the value (4.15) for f'
were used to give accurate values of the integrals,
the Re p33 terms, and the Born terms. Estimates of
the remaining Re p», 2J at.low energies were made
on the basis of the available phase-shift analyses.
The results showed that these expressions for C&+&

and C&-' varied only a little over the energy range
0 ( (cdI, —p) & 45 MeV.

Next the Eqs. (4.20) and (4.21) were used to fit
the experimental values'" of nI and 0,3 up to 45 MeV,
and it was found that, to within the experimental
errors, C&+' and C'-' were constant over this range
of energies.

&03The available accurate data used were 13 values of
sin 2a3, 4 values of (2 sin 2a1 + sin 2n3), and one value of
(sin 2n1 —sin 2n3). For details see reference 73. The appro-
priate inner Coulomb correction [J. Hamilton and W, S.
Woolcock, Phys. Rev. 118, 291(1960)] was used, bearing in
mind that different authors may use different values of the
Coulomb cutofI' radius r0.

Re p13(Cd ) = Re p31 (Cd ) = —, Re pll (Cd*) —3f /4M .

(4.22)

Here, ~* = 8" —3II, where 8' is the total energy in
the c.m. system, and K is a cutoff whose value is
around M.

According to Eqs. (4.22) the chief variation in
Re p33 at low energies is due to the Born term
4f2/3cd*, and the principal value part of the integral.
The chief variation of the remaining H,e @2',2J at low
energies is due to their Born terms. Further, the main
low-energy contribution to the integrals within the
brackets in (4.18) and (4.19) is due to the principal
value integrals. We can approximate them as
follows'":

"did' (CI~+0 ), "did' a+(Cd' )
i =3 I

OP
—

COL, 1 g GO
—

COL,

16IT MP, Im p33(Cd' )
3 W 1 GO

—4) L,

16IT M 3, Im p33(Cd*')

where we have used qI.qq = W/M,
= (W' —M2 —1)/2M ~ cd*W/M, and

CI+(Cd) SITCOM
Im p33(Cd) = SITCfI. (M/W) Im p33(Cd) .

Similarly,

"dcd' (0 —o~)
I I

GO
—4) L,

SIT M
„

Im p, 3(Cd*')

I0" The approximations used are only intended to give a
good account of the variation of the various terms with coL, at
low energies.
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Now if we substitute the expression (4.22) for Re p33

in (4.18) and (4.19) we find that the principal value
integrals cancel each other. Further the Born terms
in (4.22) contribute 6—f'/co* and 0 to Re (prr + 2pr8

p3 2p33) and Re (p» + 2pra + 2p» + 4@33), re-
spectively U. sing s»/(aP& —1/43P) 3I/Wcv*, it is
seen that the first of these cancels the Born term in
(4.19).The Born term in (4.18) is less than 3f'/3' so
it can be ignored here. [We could go further and show
that the terms in (4.22) which are of the form

2rr. f r q' (o' —1 31 (1 —1/43II )
1
2 (a» + 2a» + 2a» + 4a») (4.23)

C( ) 3 "da&' o' '(&o') 6f'
2rr'f', g' or" —1 l (1 —1/43f ')'

ing lengths. These are defined by a», 2& = lim „~
„

p», ,~(co). Letting ~1, —+1 in the terms inside the
square brackets in (4.18) and (4.19), we get

"d, &m p»(~*')
gl

1
(all + 2arrr —a» —2a33) (4.24)

cancel the remaining integrals in (4.18) and (4.19).]
The reason for this cancellation is obvious.

CGLN' obtain the approximations (4.22) for the

p waves from the dispersion relations for A&+&(v, t)
and B'+r(r, t) [Eqs. (1.16) and (1.17)] by assuming
inter alia that p33 is dominant and ignoring the
coupling with other partial waves. Naturally their
relations must ho1.d for the p-wave contributions to
forward scattering, so all the p-wave terms disappear
from the right of (4.18) and (4.19). The correct"'
dispersion relations for the p-wave partial amplitudes
are considerably more elaborate than (4.22). The
unphysical region integral contains coupling with
other partial waves, as well as effects of the 7' = 0
and T = 1 m

—vr interactions. "' However, for values
of a» between p and (rtr, + 45 MeV), the terms given
in (4.22) still provide a rough approximation to the
energy dependence of the p-wave amplitudes. This is
because at such energies the long range Born terms
are large in p-wave scattering, and they have the
strongest energy dependence.

We therefore understand why C&+' and C(-' are.
constant up to 45 MeV. However for the purposes
of this article this constancy is an empirical fact
found by fitting Eqs. (4.20) and (4.21) to the low-

energy experimental data. "'

(iii) Relations for the ~-Wave Scattering Lengths

The C&+' Belation8

The quantities C&+' and C&-' which are determined
from the low-energy s-wave experimental data can
also be used to give relations for the p-wave scatter-

05 See for example J. Hamilton, P. Menotti, G. C. Oades,
and L. L. J. Vick, Phys. Rev. 128, 1881 (1962).

The arguments used in reference 105 and related papers
to And the 7l-—7l- interaction from low-energy 7t-—N scattering are
based on the 8-wave 7f —N phase shifts. The experimental data
are correlated using a more general form of Kqs. (4.20) and
(4.21) in which C(+) are not assumed constant (cf. reference
75).

where t = (1 + 1/3'), 0 &+' = -', (0 + 0+), and cv', q'

are the lab system energy and momentum of the
pion. Applying theorem B of See. 2(ii) it is seen that
there is no divergence at the lower end of the range
of integration in the integrals (this is the case a = —,

of theorem B). From the very extensive data on 0+
and 0 it is easy to evaluate the integrals in (4.23) and
(4.24) to high accuracy. This gives"

—(2".+ ") —l l-(c' ' —c"')

2f
(1 —1/23II ) (1 —1/4M')

(4.25)

—(2a,.+ a„)+ -', l-(2C'-' + C'")

+ 2 2 = 0.066 & 0.004. (4.26)
4f (1 —1/43I)

(iv) The B(yrO) Relations

Letting ~& -+ 1 in Eq. (4.3) gives

lim 2
Re B(1,0)/4rr31 = ', 2~2 fs+ 2 (fp; —fp;)q' o 23f

Thus,

as, —a» —— ~ Re B (1,0)—1 q) a3

a» —arrr = —~ Re B"'(1,0) — '
2, (4.27)

where a1, a3 are the 8-wave scattering lengths and the
superscripts on 8 are the isotopic spin values. It
was seen in Sees. 2(vi) and (vii) that the dispersion
relations (1.17) for B(+)(r,t) converge, and no addi-
tive constant is required [See. 2(ix)). Using

B'*'(1,0) = B+(1,0),
B'- (1,0) = —; B (1,0) ——;B,(1,0),
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(a» —aii) —2f (1 1/3II)/(1 1/4M')
= a,/4M' ——,

' I + —,
' I+, (4.29)

we again relate all quantities to m+ —p elastic scatter- 1
ing. '" By (1.17) and (4.27) we get g~ gg', , q' [(~~ ~~)f~l (~L + ~~)fDl

(ag, —ag, ) —2f'/(1 —1/23II) = a./43f' —-' I, + 2(8". 2"~)fD-: —2(8"I + 2"~)f~:—

(4 28) + 10(2(oL Mc) fJ' ', —-10(2~1, + ug) fg,

+ 10(5(oz, —2(ug) fG*,
—

, 10(Rul, + 2(o~)f„;+ ]
(4.82)

where

1 ", Im B~(cu',0)
/

1

Im Bp ((u', 0)
&o'+ 1

and co' is the pion lab energy.
The coeKcient multiplying the s-wave scattering

lengths in (28) and (29) is so small that these terms
are very accurately known. It is quite sufhcient to
use our earlier values"

a, = 0.178 & 0.005, aa ———0.087 & 0.005

(v) The fi(p,O) Relation

We now examine a relation between 7 = —,
' and

T = —', p-wave scattering lengths which, unlike Eqs.
(25) and (26) above, does not involve the s-wave cur-
vature coeKcients O'+'. This relation is obtained by
differentiating A(i, t), and B(i,t) with respect to t
at t = 0, and it expresses a linear combination of
a33 a» and f' in terms of a dispersion integral. The
disadvantage of this relation is that the dispersion
integral cannot be evaluated quite as accurately as
those we have previously discussed. This is due to
the fact, which is pointed out in Sec. 8(iii), that the
partial wave expansions for BA/Bt and BB/Bt do not
converge so well as the expansions for A and B. As
a result our lack of accurate knowledge of the details
of the higher m—X resonances is a strong limitation
on the accuracy of the derivative dispersion in-
tegrals.

Using Eqs. (2.81) and (1.80) and writing
= —t/4 = —,'q'(1 —cos 0), simple manipulation gives

&07 The subscripts + always refer to 7r+ —p scattering.

here. The integrals I~ are very closely related to the
integral (4.14) used in Sec. 4(i) in the determination
of f' and the method of evaluation is the same. This
gives

(ass —aa&) —2f'/(1 —1/2M) = 0.079 & 0.008

(4.80)

(a„—a,g) —2f'(1 —1/3')/(1 —1/4M')
= —0.066 & 0.008 . (4.81)

4 a~
=

E M ' [(E+M)f.—:

1 BB 6 fp; 6
4m 86&0 E M q q

—2(8M —2E)fD, + 2(2E + 8M) fp;
—10(2M —E)f~, + 10(E 1 2M) fg,
—10(5M —2E) fg„.+ 10(2E + 53/I) f~; —. . ] .

(4.88)

Here, +I, is the total lab pion energy, and we have
written &u, for the c.m. pion energy (1 + q') i.

Further, by Eq. (1.80)

Re f,'(v, t = 0)
= —(2/q') Re (8f,~+ 15f,„—8f, + )

where the prime denotes diA'erentiation with respect
to bP, and f&~ are the partial wave amplitudes.
Therefore,

ass —a,s ——-', Re f,' ' (1,0), (4.84)

where, as usual, we put p = 1. For reasons of con-
vergence, as discussed in Sec. 2(vi), we only consider
the (—) charge combination. By Eq. (1.26)

Re f,' "(1,0) = 1/[4~(1 + 1/3II)]

X [Re A' ' (1,0) + Re B' "(1,0)) .

Differentiating the (—) dispersion relations (1.16)
and (1.17) with respect to 6', and using Eq. (1.84),
we get

(a,~
—a») —2f /[(1 + 1/3I) (1 —1/2M) ] = I,

(4.85)
where

I = 1
m. (1 + 1/M)

"d~' Im [A' "(~',0) + &
'B' "(~',0)]

/24x co' —1

1 "Cku' Im B' '(co', 0)
M & 4' (u'+ 1

I )2
(0' 0'+) (4 86)

Here, ~' and q' are lab values and 0~ are the total
z+—p cross sections. We now examine the accuracy
with which I can be evaluated.
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A(—
&I( P) + Bi—&I( P)

f ~P(P& gF(—
&

= —4i I

—"
(vp 8$ i p

i. I
—") .

For small ~t~ Eq. (4.7) gives

(4.88)

Very High Energies

In the original evaluation of I Woolcock" as-
sumed that A &-' and B&-) were zero above 2.5 BeV.
It is now known that this is not so, and we have to
estimate the contributions to I from energies above
2 BeV. For this purpose we use the high-energy be-
havior suggested by the Regge pole method'" '" [cf.
Sec. 4(i) (f)].For v ) 2 BeV and small ~t~ we assume
that

A' '(v, t) + vB' '(v, t) iF' '(t)(v/vp) "". (4.87)

vo is a constant which is probably of the order of 2
BeV, and a, (t) is the Regge trajectory of the p isobar.
F&-&(t) can be determined from the shape of the
diGraction peak at 2 BeV, which we assume is ap-
proximated by Eq. (4.7) above.

First we consider the derivative terms in (4.86).
By (4.87)

optical theorem and (1.81) this gives

F' '(0) = (q
' ')~ . , (4.41)

where qL, is the lab momentum and o&-& = -', (o—p+). Using o i-&(2 BeV) = 1.8 mb [cf. Sec. 4(i)(f)
and Fig. 2] we get F' '(0) = 1.0. Finally, using
rr, (0) 0.5 in (4.88), we get

1
"

dpp' Im [A' "(p&',0) + p&'B' "(p&',0)]
X 2 BeV4X

~ —0.001 . (4.42)
The errors in this result could be as large as 40%%u~.

The other high-energy contributions to I are easily
examined. By (4.18)

(—&(
d(o' ~ 0.16,

2 Bev

so the last term in (4.86) contributes —0.0006 to I.
In Sec. 2(viii), we saw that it is likely that A (v, t) does
not attain the unitary limit for large v. If that is so,

Im B' '(o&',0) o' '(o&') .
Thus,

4s llf ssvo&'+ 14' M pavo&

Hence,

Bt ~=0

F' '(0) = B /8 —0.07,

Im f(g) = (1 —a) -,'qB'(1 + —', B't) .

(4.89)

Hence, the Im B&-&(p&',0) and a'-&(pp') terms in (4.86)
almost cancel each other. Even if this conjecture
about A &-&(v,t) is not strictly valid, the two integrals
will be of the same order of magnitude and tend to
cancel. We estimate their sum to be 0 ~ 0.0003.

where we use B = 0.74 as in Sec. 4(i) (d). Taking the
usual estimate'"

Bap/r)ti ~=p —1/50' = 0.02

it is clear that the term in Bn,/Bt in (4.88) is only
important for large values of (v/vp). Since the whole
contribution to I from v & 2 BeV is small, we can ig-
nore the r)n, /r)t term in (4.88) without appreciable
error (i.e., the sharpening of the diffraction peak is
not important here).

From (4.87) and (1.84)

Im f' '(p&z, ,p) = (3f/4s. W)F' '(0) (v/vp)""', (4.40)

where f '-& is the (c.m. system) forward scattering
amplitude for the (—) charge combination. By the

I08 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters V,
394(1961)and 8, 41(1962).

08a Note added in proof. If the diKraction peak does not
shrink, then possibly o.~(0) —0, and the argument in the
paragraph containing Eq. (4.38) is even stronger. The re-
mainder of the argument is similar to the use of Eq. (4.12) as
a convenient parametrization.

The Higher pr —X Besonancee

Woolcock" evaluated Im A &-"(pp',0) and Im
B&-&'(p&',0) up to 2 BeV by Eqs. (4.82) and (4.88),
using the methods already discussed in Sec. 4(i). The
predominant contributions come from the x—X res-
onances, and the nonresonant amplitudes or back-
ground, was fitted by a smooth curve in the manner
indicated in Sec. 4(i) . The results are shown in Fig. 8.
From Fig. 7 we see that Im B&-&(o&',0) is much larger
near the (-,', —,') resonance at 180 MeV than it is near
the 7r=p D; and F~ resonances at 600 MeV and 900
MeV, respectively. However Fig. 8 shows that Im
B&-"(o&',0) is much larger near the 600-MeV and 900-
MeV resonances than it is near 180 MeV, while Im
A &-"(pp',0) has roughly the same magnitude near all
three resonances.

This might suggest that the quantity I [Eq. (4.86) ]
can only be evaluated very roughly because of our
somewhat, poor knowledge of the 600-MeV and 900-
MeV resonances. In fact, the situation is not too bad
because: (a) the denominator (p&" —1) in the first
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integral in (4.86) damps down the effect of the higher
resonances; and (b) Eqs. (4.82) and (4.88) show that
in the range 600 MeV—1.5 BeV there is considerable
cancellation between the contribution to Im A&-)'

and Im B~-" from any partial wave. (The 900-MeV
resonance contributes of the order of 0.005 to I,
whereas the value of I is about 0,08.)

50

40

30

20

The It'e8ult

Using the values in Figs. 7 and 8 and the very
high-energy estimates given above, I can be evalu-
ated. Errors, in addition to those mentioned, can also
arise from the uncertainties in the predominant par-
tial wave amplitudes. We get the result

I = +0.078 a 0.006 .
Inserting in (4.85), we get

(a» —a») —2f /[(1 + 1/M) (1 —1/2M) ]
= 0.078 & 0.006 . (4.48)

It should be emphasized that we believe that the
error & 0.006 includes the various uncertainties in
the values of Im A &-" and Im B&-" at moderately
high energies due to the unknown role of higher par-
tial wave amplitudes.

10

0 01 0-2 0-3 0.4 0.6 08 'l 0 12 14
Pion (lab) Energy (BeV)

FIG. 7. The values of Im B~(~r„0)and Im 8 (err„0)up to
1.4 BeV. The vertical scales are in natural units (A = c = p= 1). a» ——0.220 & 0.008 . (4.44)

(vi) Rough Estimate of the p-Wave
Scattering Lengths

We now derive rough estimates of the p-wave
scattering lengths by using Eqs. (4.15), (4.80), (4.81),
and (4.48). First it is necessary to have a value for
a», and for the present purpose we use the value ob-
tained by fitting Eq. (4.5) to the experimental values
of ot33 given in Table V, and extrapolating to thresh-
old. This gives"

There are of course appreciable uncertainties in the
moderately high-energy contributions to I.We must
remember that: (i) the partial wave expansions for Im
A &-" and Im 8&-)' converge very slowly above 500
MeV [cf. Sec. 8(iii) for estimates of the rate of con-
vergence]; and (ii) there is no adequate phase-shift
analysis of the experimental data at 600 MeV or
above. '" Thus it is quite possible that a number of
nonresonant partial waves with high angular mo-
mentum contribute to Im A &-&' and Im B&-) ' in a way
which is noticeably diA'erent from the smooth curve
Woolcock used to fit the nonresonant parts. For ex-
ample, suppose that in an energy range of 100 MeV
around 1.8 BeV, Im frrf' ——0.1/2q. From (4.82) and
(4.88) we see that this contributes 0.0004 to I. Lack
of knowledge of these higher partial waves, together
with the uncertainty about the m+—p system in the
1.2—1.4 BeV range [cf. Sec. 4(ii) (d)] could give rise to
an error in I which we estimate to be &0.003.

rc9 See R. Omnes and G. Valladas (reference 85) for some
discussion of the diKculties and uncertainties in such an
analysis.

18
16
14
12—
10— 36

24

-2—

-6—
-8—

-10—
-'i 2
-14

0.1 0-2

18

00.3 04 06 08 10 12 'l 4
Pion (lab) Energy {BeV)

FIG. 8. The values of Im A( )' and Im B( ' up to 1.4 BeV.
The vertical scales are in natural units.

a31 ———0.034 & 0.011 . (4.45)

The error here allows for some deviation from the
form (4.5) at very low energies (no deviation from
(4.5) is detected between 40 MeV and 190 MeV).

Using f ' = 0.081 & 0.008 [Eq. (4.15)] and Eqs.
(4.80) and (4.44) we get
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Similarly Eq. (4.43) gives

a» = —0.022 ~ 0.012.
Finally, Eqs. (4.31) and (4.43) give

(4.46)

Knapp and Kinsey"' (again assuming g' depend-
ence)'" get

ais = +0.010 & 0.019, aii ———0.169 & 0.037

a&I = —0.095 & 0.016. (4.47)

These results for a», a», and a» depend very little
on the s-wave s.—X data [we have not used Eqs. (4.25)
and (4.26) in deriving them]. They are obtained from
dispersion relations whose predominant contribu-
tions are given by the total cross sections 0~ and the
resonant amplitudes. In all cases the contribution of
the (ss, —,') resonance is much the most important.

The errors quoted in (4.45), (4.46), and (4.47) are
obtained by assuming that the errors in (4.15), (4.30),
(4.31), and (4.43) are independent. This is not
strictly true, but it should be a good approximation.
This is because the largest errors arise from f', a», and
Eq. (4.43). The procedure [Sec. 4(i)] for finding f' is
such that errors in f' are largely independent of errors
in evaluating (4.43), and the same holds for a».

It is worth noting that if we were to change the
value of f' by Af', this would alter the values of a»
and a» by 2''—, and a» by 4hf'—

c» = 0.06 & 0.04 QIy = 0.02 ~ 0.09 .

These mean values disagree with Eq. (4.31) which
gives

a,s —a» = +0.073 W 0.010. (4.48)

I~0 S. W. Barnes et aL. (cf. reference 76).
D. E. Knapp and K. F. Kinsey, Bull. Am. Phys. Soc. 6,

435 (1961).We are indebted to Dr. Barnes and Dr. Kinsey for
further information about these experiments.

II2 It is unlikely that the assumption of q3 dependence intro-
duces any large error at 30 MeV. The deviation from q3 de-
pendence is discussed in Sec. 5(iv) below.

Comparison with Experiment

Little experimental evidence about the small p-
wave phase shifts at low energy is available. Barnes
et al.'" have examined m+—p scattering at 24.8, 31.5,
and 41.5 MeV. Assuming n» ——a»q', their results
give c» ———0.042 & 0.004. In fact the q' dependence
will not be quite correct, and we suggest that these
experiments give a» = —0.042 & 0.008.

Knapp and Kinsey'" have investigated m —X scat-
tering at 30.0 and 31.5 MeV. Again assuming o.»
= asiq' their results give a» ———0.038 & 0.008 (solu-
tions I and II). Clearly these values of a» are in good
agreement with our result (4.45).

Now we look at the experimental results for n» and
n». Barnes et a/. "' results at 35.75 MeV give (as-
suming q' dependence), '"

(solution I),
ais ———0.196 & 0.020, a&r ~ +0.235 & 0.036

(solution II) .
Knapp and Kinsey suggest that solution II is pref-
erable, because it gives the best agreement with their
charge-exchange (s- + p —& s' + n) data'" at 31
MeV. Our result (48) rules out solution II. Also
(4.48) is not in particularly good agreement with so-
lution I, but we note that even for solution I, any is
surprisingly large.

The Liverpool experiments at 97 and 98 MeV
g,ve„4

nsi/q' = —0.029 W 0.002,

ms/q' = —0.007 & 0.004,

rrir/g = —0.024 a 0.002.

These results for n» and n» could be in good agree-
ment with our results (4.45) and (4.46) if we assume
there is a small departure from the q' dependence by
95 MeV. The a» result is only consistent with (4.47)
if there is an appreciable departure from q' depend-
ence. We shall see in Sec. 5(iv) below that the im-
proved CGLN calculations do indeed predict the cor-
rect departures from q' dependence to give good
agreement between these Liverpool results and our
values of asi, a„,and a» [Eqs. (4.45), (4.46), and
(4.47)].

(vii) Woolcock's Evaluation of the Parameters

Woolcock" used further relations and a more
sophisticated method to find the best values of the 9
parameters: f', the s-wave parameters a&, as, (. '+',
C&-', and the p-wave scattering lengths a2~,2~. We
briefly describe the method and give the results
(where necessary the input data have been improved,
and the results in Eq. (4.49) are slightly diferent
from the original results"').

The following input data were used:
(1) The value f' = 0.081 ~ 0.003 determined by

the method of Sec. 4(i) [Eq. (15)].

»3 The charge-exchange data were not used in deriving their
phase shifts. Its only use was in choosing between solutions I
and II.

II4 D. N. Edwards, S. G. F. Frank, and S. R. Holt, Proc.
Phys. Soc. (London) 73, 856 (1959).Also D. N. Edwards and
T. Massam, private communications. We are indebted to
these authors for communicating their results.

II5 W. S. Woolcock, Proceedings of the InternationaL Con-
ference on High-Energy Physics, Aix-en-Provence, 1961 (C.E.N.
Saclay, France, 1961), Vol. I, pp. 459 and 461.
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(2) The value ai —a» ——0.254 & 0.012 from the
Panofsky ratio. '"

(3) The forward dispersion relations (2.6) fitted to
18 accurate experimental values of D+(&u) or D (cv) up
to 220 MeV. These relations involve f', ai and a3 as
parameters to be determined. The dispersion in-
tegrals are evaluated using the known data for 0~.

(4) The sum rule (2.27). This involves f' and
(a& —a&) as parameters. The errors in evaluating the
integral are of course much larger here than in the
forward dispersion relations.

(5) 18 accurate experimental determinations of the
s-wave phase shifts n& or n& (up to 45 MeV) are fitted
to the Eqs. (4.20) and (4.21) of Sec. 4(ii). Here a&, aa,
C&+&, C~-& are the parameters which are determined.

(6) Equations (4.25) and (4.26) which relate a», 2~,
C(+& C(—

& and f2

(7) The B(p,0) relations, Eqs. (4.30) and (4.31)
involving (a2~,3 —a2~, i) and f' (T =. -'„$.)

(8) The f&(I&,,0) relation (4.43) involving (a» —aj3)
and f'

(9) The value a» ——0.220 + 0.008 [Eq. (4.44)] ob-
tained by fitting Eq. (4.5) to the low-energy values
of cx33 given in Table III [Sec. 4(i)]~

(10) The value a~~ ———0.038 & 0.008 from the
analysis of Enapp and Kinsey. '"

Each piece of the data was given the weight

p = 1/0' where o is the appropriate standard error.
Using an error-matrix method the values obtained
for the 9 parameters are

f = 0.081 + 0.002;
c& = 0.171 & 0.005,

C' ' = —0.094 & 0.013,
a3 = —0.088 & 0.004,
C' ' = —0.096 & 0.026;

a3), = 0.038 & 0.005 a33 = 0.215 ~ 0.005,
Qyy = 0.101 & 0.007 Qy3 = 0.029 & 0.005 ~

(4.49)

Comments

The errors quoted for f' and a»,» are smaller than
those given in Secs. 4 (i) and 4 (vi) because of the
extra independent data which have been used here (in
particular the s-wave data and the forward-scatter-
ing data).

There are some small changes in the p-wave scat-
tering lengths a2p 2J compared with the values given
in Eqs. (4.44), (4.45), (4.46), and (4.47). These
changes are however well within the errors given in
Eqs. (4.44)—(4.47) . The main reason for these changes

is Eqs. (4.25) and (4.26) which relate the s-wave
and p-wave parameters. C(+) and C(-) are determined
from the s-wave experimental data, and using these
values given in (4.49) and f' = 0.081, Eq. (4.25)
yields 2a» + a» ——0.392. On the other hand Eqs.
(4.44) and (4.45) yield 2a33 + G3$ 0.405. Thus
(4.25) requires that both a33 and a» are reduced
somewhat from the values given in (4.44) and (4.45).
Similarly, inserting C'+&, C&-& and f' in (4.26) we get
2ai3 + a» = —0.159. On the other hand, Eqs. (4.46)
and (4.47) give 2ai» + cia = —0.140. So (4.26) re-
quires that a» and a» become a little more negative
than the values given by (4.46) a,nd (4.47) .

The error in the experimental value of a33 in Eq.
(4.44) is large (&0.008) and we might start the argu-
ments in Sec. 4(vi) above from a33 0.215. This
would give a31 = —0.039, a13 = —0.027, a11
—0.100 instead of the values in Eqs. (4.45), (4.46),
and (4.47). These values are close to those in (4.49).
It is therefore clear that in Woolcock's method of de-
termining the parameters the experimental value of
a» [item (9)] plays a small role. He is in effect de-
termining a» from the dispersion relation (4.25) and
the experimental low energy s-wave data.

It might be thought better to omit item (10) (i.e.,
the experimental estimate of a»). In fa,ct omitting it
causes hardly any change in the results (4.49).

Woolcock73 points out that the consistency of the
data is strong support for the assumption that there
is no arbitrary additive constant in the sum rule or
in the B~, 2' ", and B' " dispersion relations [cf.
Secs. 2(iv) and 2(ix) above].

The low-energy behavior of the s-wav phase shifts,
obtained by inserting the values for a1, a3, C'+', and
C' ' given by (4.49), in Eqs. (4.20) and (4.21) is in

good agreement with our earlier parametric Gt.'"
Here of course we deal with the phase shifts after the
appropriate inner Coulomb correction'" has been
made. For very low energies (up to 0.15 MeV) the
s-wave phase shifts have the form

(sin 2a~)/2g = 0.171 —0.024'
or a&/q = 0.171 —0.021'

(sin 2a, )/2q = —0.088 —0.051''
or a,/q = —0.088 —0.052'' . (4.50)

These a,re in reasonable agreement with Eqs. (27)
of reference 117, but (4.50) is an improved result
and its derivation included some extra accurate ex-
perimental results.

I~6 This is a refinement of the work in reference 75 using
more recent experimental data on photoproduction and the
Panofsky ratio.

J. Hamilton and W. 8. Woolcock. Phys. Rev. 118, 291
(1960). See especially Eqs. (25) and the broken curves in Fig.
3 of that paper.
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(iii) Another Determination of the
g-Wave Scattering Lengths

Another way of obtaining information about the
p-wave scattering lengths is provided by the analysis
of the x—X partial wave amplitudes based on the
Mandelstam representation. '" The argument runs as
follows. The s-wave x—X amplitudes can be analyzed
using the accurate information we have for the s-
wave x—X scattering up to 120 MeV, together with:
(a) rough information on the s-wave s.—X scattering
at higher energies; (b) information on the T = —,',
J = —,', amplitude [as in Sec. 4(i) (a)]; and (c) rough
information on the small p-wave amplitudes and the
higher z—X resonances.

Inserting these data in the dispersion relations for
the s-wave s.—X amplitudes we can deduce the con-
tribution of the T = 0 and T = 1 s —s- scattering to
a-wave m.—X scattering, and ultimately, obtain con-
siderable information about the T = 0 and T = 1
x—x scattering.

Next it is assumed that the T = 0 x—x scattering
obeys a simple (relativistic) effective-range formula
at low energies. This is merely done to exclude any
strange behavior of the T = 0 x—m phase shift, bp at
low energies (such as les changing sign at a low en-

ergy). Also it is assumed that the T = 1 s.—s. scatter-
ing is dominated by a resonance in the region
24 ~( t ~( 30).

Now the information about the m —x interactions
which was obtained from the s-wave rr Ndispersion-
relations is fed into the dispersion relations for the
p-wave m

—X amplitudes. Then it appears that, in
effect, '"we can predict'" the p-wave ~—N phase shifts
at low energies provided we know their experimental
values accurately at one energy. For the latter pur-
pose the Liverpool results'" at 97—98 MeV are used.

The results of this procedure are

631 ———0.032, a» ——0.219, a11 = —0.090

ass = —0.016 . (4.51)

The errors in each case are of the order of &0.008.
These values are somewhat in disagreement with
those in (4.49) but only in the case of a» is the differ-
ence very marked. It should be emphasized that
these values in Kq. (4.51) are obtained by a more
complicated and less direct method than are the val-
ues in Eq. (4.49).

II8 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J.
Vice, Phys. Rev. 128, 1881 (1962).

i For details see Sec. 8(xi) of reference (118).
'~0 In practice, the low-energy p-wave phase shifts deduced

in Sec. 5(iv) below are used, and the partial wave method sug-
gests corrections to these values at low energies.

(ix) Conclusions

The best values of f' and the s-wave s N—param-
eters are given in Kq. (4.49). Concerning the p-wave
scattering lengths we must provisionally accept the
values given in Eq. (4.49) as being the best given at
present by using the experimental results and simple
direct theoretical techniques. There is, however, a
possibility, as indicated in the preceding section, that
with improved information these values will move in
the direction of those given in Eq. (4.51).

The fact that such consistent results can be ob-
tained by using a variety of dispersion relations de-
rived from (1.16) and (1.17) is very strong evidence
for the validity of the fixed-momentum transfer-dis-
persion relations in m=X scattering. The fact that the
results (4.51) are so close to those in (4.49) is evi-
dence for the validity of the Mandelstam relations as
applied to m —X partial wave amplitudes, at least for
the values of the complex variable 8 [Eq. (1.5)] lying
within about 30 units from the physical threshold
s = 60, or from the crossed threshold 8 = 33.

S. CALCULATION OF THE PARTIAL
WAVE AMPLITUDES

The partial wave x—N amplitudes have been cal-
culated by Woolcock"'" at energies up to a few
hundred MeV. The calculations use the (fixed-
momentum transfer) dispersion relations for A(v, t)
and B(v,t) given by Kqs. (1.16), (1.17), and (2.36).
In the case of A'+'(v, t) a subtraction is neces-
sary [cf. Secs. 2(vi) and 2(viii)]. The pion —nucleon
parameters which have been determined in Sec. 4 are
essential for these calculations. As in Sec. 4 the dis-
persion integrals are approximated by a careful evalu-
ation of the contributions from the various m —X
resonances plus a rough idea of the background, or
nonresonant, parts of the absorptive terms.

Here, we give a brief account of the method and
discuss the results. We also study the accuracy which
can be achieved and we examine the practical limita-
tions of the method.

(i) The Method

In Sec. 3(v) we discussed the expansion of the par-
tial wave amplitudes f~~ in terms of the amplitudes

f, (8 = 0) and fs(8 = 0) and their derivatives with re-
spect to LP = rsq'(1 —cos 8). Using Eqs. (1.26), fi
and fs are expressed in terms of A (v, t) and B(v,t), and
these amplitudes satisfy the dispersion relations
(1.16), (1.17), and (2.36) [in the case of A'+'(v, t)].
This is the CGLN method, ' but with considerable
improvement in execution. CGLN make the ap-
proximations: (a) there is no subtraction in the A &+&
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relation; (b) in calculating 8-wave amplitudes the d-

wave corrections are ignored; (c) the dispersion in-
tegrals are given by the (-'„-',) resonance alone, ex-
cept in the case of the 8-wave amplitudes where Im
fp+ is also included; and (d) kinematical factors are
expanded in powers of (fL/M), and only terms up to
order (p/3II) are retained. [The ( GI,N results for p
waves are given in Eq. (4.22).] Woolcock does not
make the approximations (a), (c), and (d). In all
cases he only ignores f waves and higher. It will be-
come clear that these improvements are essential if
reasonable accuracy is to be achieved.

Woolcock uses Eqs. (1.20), (1.35), and (1.30) to
write

Re fi(oiL, O) =
2W D((vL)

E+M 7

(W M)]
Re B(a)L)0)

4x
E —M

Re f3(oiL,O) =
W

D(~L)—

+ [oiL+ (W+ 3II)]

(5 1)
where D(oiL) is the forward scattering amplitude (in
the lab system). This form ha, s the advantage'" that
D~(+L) obey the dispersion relations (2.0) in which
the absorptive parts are given by the total cross sec-
tions o~(oiL); also the absorptive parts Im B~(coL,O)

in the relations for Re B~(oiL,O) have already been
thoroughly investigated in Sec. 4(i). The first deriva-
tive functions are given by

Re f,'(ML, O) =
2W

—[Re A'(oiL, O)
E+M 1

+ (W 3II) Re B'(&uL,O)]

E —M 1
Re fg (oi O)L= —[—Re A'(oiL, O)

+ (W+ M) Re B'(oiL,O)], (5.2)

where the dash denotes differentiation with respect
to lV at lV = 0. The evaluation of the first derivative
dispersion relations has already been discussed in
Sec. 4(v) above. The A'+&'(o~L, O) relation requires a
subtraction [cf. Secs. 2(vi), 2(viii), and Eqs. (4.7),
(4.8)].The subtraction constant, at threshold is given
by the combination (a» + 2c») of p-wave scattering
lengths together with the value of B&+"(p,0) (which
is given by the Bi+&' dispersion relation). "'

isi A further advantage in using Eq. (5.1}is that the sub-
traction required by the presence of A(+ is made more
accurately in the case of D„than it would be for A + itself.

I22Alternatively it is clear from Eq. (3.14) that the sub-
traction constant for f) + '(&oL,O} is given by (aq3 + 2a33}.

Finally to include d waves, it is necessary to use
the second-derivative functions

1 R, B(+&)) ()
Mf

2oiL p
"doi' Im B'+'"(oi',0)

7I' y 4% (oi G)L)

4
"

doi' Im B'+"(ei', 0)
vrM g 43r (o)' + oiL)'

m.M'
&

4n. (oi'+ oi'L)' (5.4)

—Re A'+'"(oiL, O) = K+4x
2 OQ

P - Im A'+'" (ai', 0)
47r ' g' (oi' —a) L)

4 "d(0' Im A'+"(oi', 0)
7IM ) 47I (Qi + G)L)

dpi' Im A'"'(oi', 0)
7IM 1 47r (6) + oiL)

In the A(+~" relation the subtraction has only been
made in the first integral. K is the subtraction con-
stant, and it can only be evaluated from experi-
mental knowledge of the (+) combination of d-wave
phase shifts. The need for subtraction in the A &+'"

relation means that the system of equations is not
closed. Further, as we shall see, the present experi-
mental data are not good enough to determine K with
accuracy.

The absorptive parts in the 6.rst integrands in
Eqs. like (5.4) and (5.5) are determined from the ex-
perimental data using

60 W + 3II 60
(~L)0) 4 fD 6(e)L —+ oic)

120
X Mft ', + 3 (4Q& —L-3o)c)Mfz3)

120
3 (4oiL + 3a)c)Mfg,

g

420+ 3 (5z L —3coc)Mfo)— (5.0)

Re f)'(coL, O) =
W

—[Re A" (&uL,O)
E+ 3' 1

+ (W —M) Re B"(oiL,O)],
E —3' 1

Re fs"(o)L,O) = —

W 4
—[—Re A" (a)L,O)

+ (W+ 3II) Re B"(oiL,O)] . (5.3)
Typical dispersion relations used here are (with
a=1)
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(ii) Errors Arising From the Evaluation
of the Dispersion Relations

Wherever it is practical Woolcock subtracts the
dispersion relations. For example the dispersion re-
lations (2.6) give"

(+)
D(+)( ) D(+)( )

ql
d i ~ 0' (cd )

7l 1 g CO

ql f
M (1 —1/4M') (&a'I —1/4M')

2~' c q' co' —1 ((o" —(ox) ((u' + 1)
-"'(1) -"'(1)

2
—COt

2q~c, 2q I, 2

"d~' ~'~("(~')
(5 8)13 /2 2

Q GO COL,

where coo is a constant and 1& ~o ( coL,. Also coo

= sec80, and col, ,qL, , co', q'are lab values. The form of
the first integral inside the square bracket ensures
that there is no difFiculty for cu' = 1.

Similarly the B&+) relation can be written in the
form

2
(+) 4f ~~

2(v,
"

des' Im B'"((o',0)
, 4)(.M q"

2(or.qc,
"

d(u' Im B' '(cd', 0)
c 4mM q" (cd" —ra'I, )

' (5.9)

The subtraction terms in Eqs. (5.8) and (5.9) are
written in integral form. They are related to the p-

4
—B"(cur. ,O) =

E M, ' +, (E + M)f);
1 „60fD; 60

120 120
(4M —3E)fg, +, (4M + 3E)fg,

420
(5M —3L&')fg +

g
) (5.7)

where co& is the c.m. pion energy, and g is the c.m.
pion momentum. The absorptive parts Im A" and
Im B"are evaluated using the data on the resonances
and the optical model discussed in Secs. 4(i) (d) and
(c). It is obvious, by comparing Eqs. (5.6) and (5.7)
with (4.3), (4.32), and (4.33), that the errors in Im
A" and Im B"due to ignoring higher partial waves
are more serious than in the case of Im B, Irn A', and
Im B'. At the best the determinations of Re fc'(~1.,0)
and Re f2'(cd 1„0)are only rough, and the information
obtained about the d waves is little more than
qualitative.

wave scattering lengths and 0(+) by Eq. (4.23) and
equations similar to (4.28) and (4.29). The integral
form of the subtraction term in Eq. (5.8) is the most
accurate value of this term and its value deduced
from (4.25) and (4.26) is used. For the subtraction
term in Eq. (5.9) the p-wave scattering lengths given
by (4.49) are used.

The advantage of using subtracted dispersion rela-
tions is that for low energies (up to about 100 MeV)
the errors in the partial-wave amplitudes relative to
the scattering lengths determined in Sec. 4 will be
small. Also, any errors arising from the evaluation of
the principal value integrals are reduced consider-
ably. The disadvantage of this method is that at
higher energies the errors arising from the subtracted
terms themselves can become large.

The effect of subtractions in reducing errors in
evaluating the dispersion integrals is important here
in connection with contributions from the +—g
resonances above 500 MeV. There are further factors
which tend to reduce the errors in these contribu-
tions. For example, Omnes and Valladas" suggest
that at the 900-MeV resonance there may be an ap-
preciable amount of D; amplitude in addition to the
resonant F; amplitude. From Eqs. (4.32) and (4.33)
it is seen that the numerical and kinematic factors in
the expansion of Im A' and Im B' already reduce the
size of the D; contributions relative to the I'g con-
tributions. Equations (5.6) and (5.7) above show that
the same is true for Im A" and Im B",At 600 MeV,
Omnes and Valladas" suggest that in addition to the
resonant D; amplitude there is some P; amplitude
and only a small amount of D; amplitude. Again
Eqs. (4.32), (4.33), (5.6), and (5.7) show that this
situation is favorable for accurate calculations. [For
the amplitudes D and B the absorptive parts are the
total cross sections tT~ and Im B~. The values of 0~
are well known and the accurate evaluation of Im B~
is discussed in Sec. 4(i)]. The result of all this is that
the dominant errors in calculating the dispersion re-
lations, at least up to 350 MeV, will come from the
subtraction terms.

We now make rough estimates of the probable
errors in Woolcock's evaluation of the dispersion re-
lations. First consider Ref(+) (&u&,0) and Re fm(+) (cu&,0)
The subtraction term in Eq. (5.8) for D(+)(col.) is
evaluated from (4.25) and (4.26). This gives
q21,(0.133 & 0.004). This leads to an error &qL, (0.004)
in Re f + c((~)01) [relative to Re f,'+)(1,0)] and a very
small error in Re f,'+) (+ 0)1

The second term on the right of Eq. (5.9) for Re
B(+) is approximately -', &ac, (a» —a» + 2a» —2a»).
By Eq. (4.49) this gives —a»(0.387 & 0.007). [The
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values given by Eq. (4.51), or (4.44)—(4.47), differ
little from this value. ] By (1.31) and (1.82)

a&, —(W —M) = (E —M)W/M qiq/M,
on using E —M q'/2M (qr, and q are the lab and
c.m. pion momenta). Thus, Re B&+& contributes an
error in Re f&+&(a»,0) [relative to Re f,'+'(1,0)] of
~a&rqrq(0. 0035). Similarly, the error in Re f5'+& (a&r, ,0)
is ~a&r,q'(0.0035).

The total errors in Re f&+&(a&5,,0) (relative to Re
f,'+'(1,0)) at 100 MeV and 200 MeV are thus es-
timated to be ~0.015 and ~0.05, respectively. In
each case the error from Re B(+) is dominant. The
errors in Re f&+&(a&5„0)at 100 MeV and 200 MeV are
+q'(0.006) and &q'(0.008), respectively. Between
200 MeV and 350 MeV, D'+ &( a&r) can be calculated
more accurately from Eqs. (2.6) than from Eq. (5.8).
Since the errors in Re B(» are dominant this is little
help. At 300 MeV the errors in Re f,'+&(a&r„0) and
Re f,'+&(a&5„0)are &0.08 and +q'(0.011),respectively.

In the (—) case the subtraction term in the equa-
tion for D & &(a&r) is 40rq'r. (—0.033 & 0.003). The sub-
traction term in the dispersion relation for Re
B& &/4xMis g-iven .by (4.30) and (4.31).It is -', (0.145
~ 0.004). Thus, the error in Re f,'- (&a&,r)0 is &a&rq'5,

X (0.003) and the error in Ref,'- (&a&,r)Ois ~q'(0.002).
At 100 MeV and 200 MeV the errors in Re f,' &(a&5,,0)-
are thus +0.010 and +0.035, respectively. Between
200 MeV and 350 MeV we can calculate D&-&(405)

more accurately from Eqs. (2.6), and we estimate
that the error in Re f,' &(&or,,0)-at 300 MeV is &0.04.

The errors in the first derivative relations are more
difficult to estimate. Using the discussion in Sec. 4(v)
and Eq. (5.2), we estimate that the errors in Re
f,'+ (&a&0r) and Re f,' "( a&50)-(relative to their values
at a&r, = 1) are &0.003q'r, and &0.003(405, —1), re-
spectively. For Re f54

"&'(a&r,,O) the errors are &0.001
g'. The errors in the second-derivative relations are
closely related to the problem of the higher partial
waves, and they will be discussed below.

Errors Produced in Re sl and Re s3

The eKect of these errors on the calculation of the
s-wave amplitudes at 100 MeV and above is serious.
We write s» f5+ (T = -'„-,') and use (3.15). Con-
sider the errors due to Re f4&+& which are dominant.
They give errors of ~0.025 and ~0.018 in Re sl and
Re s3 respectively at 100 MeV. In fact, we shall see
in Sec. 5(iv) below that the difference between the
predicted values of Re sl and Re s3 at 100 MeV and
accurate experimental values is very small [Eqs.
(5.12a) and (5.12b)]. This suggests that the errors
given above for Re f'+&(4dr„O) are too large. This

could be partly due to the crude method used to es-
timate the errors, and the fact that we have switched
back and forth between ~+ —p, (~) and isospin in-
tegrals and amplitudes.

In view of this and the good agreement of the s-
wave predictions at 100 MeV it is realistic to re-
duce'" the errors quoted for Re f,'+& by a factor 3.
Since the B(+' integrals give the largest error in Re
f,'+&, we shall also reduce the errors in Re f,'+& by a
factor 3. Thus the Re f&+& errors at 100 MeV, 200
MeV, and 300 MeV become &0.005, ~0.017, and
&0.04. Corresponding Re f&+& errors are &q'(0.002),
~q'(0.003), and &q'(0.004). For Re f&-& we have at
100 MeV, 200 MeV, and 300 MeV, ~0.003, ~0.012,
~0.02, and the Re f&-& error is ~q'(0.001). The Re

f&+&' and Re f5&+" errors remain as above.

(iii) Errors Arising from Higher Partial Waves

(a) F Wave C-orrections

f- = (q'/6o)f" (o) —7f-,
f5 = —

(-q /6)f'(o) + (q /60)f~" (o) —5f. —2f5+ .—

f + = —(q'/6)f'(o) —(q'/12)f" (o) + f +2of.—,

f4 =f.(0-) —(q'/6)fr'(0) + (q'/2)f'(o)
—(q /12)f4'(0) + 10f5 + llf5+,

fo+ ——f& (0) + (q /2)f'(0) —(q /6)f'(0)

+ (q'/6)f" (o) —5f —3of.+ . —

We shall use the notation

(5.10)

(T) (T) 2 (T) 2» =f5+ ~ p»)4 =f4 lq ~ p»-, 5 =f~+ lq ~

(T) (T)
der, 5 f5 /q, d», 5— f5+ /q

Little is known about f wave phas-e shifts, so only
rough estimates can be given for the corrections they
produce. The analysis by Foote et al.'" of x+ —p
scattering at 310 MeV suggests that the f-wave phase
shifts could well be as large as ~0.5' at 310 MeV
(solution SPDF-I). Such fwaves give corrections 0.15
to Re s2T, 0.025 to Re p2T, 2J 0.002 to Re d2T, 2J at 310
MeV. Assuming that the f wave phase -shifts vary
like q7 below 310 MeV, the corresponding corrections
at 200 MeV are 0.03 (Re s»); 0.008 (Re p5r, 5J); 0.001
(Re d», ») . At 100 MeV they are 0.004 (Re s»); 0.002
(Re pQr, '2j); 0.0006 (Re der;2 J) .

I28 Certain adjustments are made above 200 MeV.
&54 J. H. Foote et aL (cf. reference 67).

Partial waves with / &~ 3 are neglected in this treat-
ment. The corrections due to f waves can be seen by
inserting f waves in Eq. (3.14) and solving to get the
corrections to (3.15). This gives the following ex-
pressions for the partial wave amplitudes,
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It will be seen that this f-wave correction to the
a-wave amplitudes is the same size as the estimated
value of these amplitudes at 810 MeV (see below),
and is about 25% of the s-wave amplitudes at 200
MeV. Also at 810 MeV the f wa-ve correction is
larger than the estimated size of several of the p-wave
amplitudes. Moreover, the f wa-ve phase shifts might
be larger than 0.5' at 310 MeV, '" and it is also far
from certain that g waves cause no trouble [cf. Eq.
(5 10)]

Clearly, unless there are special reasons for be-
lieving that in certain cases they are small, the f
wave corrections make the calculations valueless at
moderate energies and above. This is merely a prac-
tical example of the considerations given in Sec. 8 (v) .
Because of the poor convergence of the series"' in
Eq. (8.15), it is not expected that the improved
CGLN method of calculating partial wave ampli-
tudes will be accurate for energies above 120 MeV,
and it may be useless above 150 MeV. We shall ex-
amine below the exceptions to this rule in the case of
the (—) charge combination and also for the f&+'

amplitude.

(l&) D Waves

The subtraction constant K in the dispersion rela-
tion (5.5) for A +&&( &e,r)0has to be determined from
the experimental information on the d waves at low

energy. By Eq. (5.6), if we ignore f waves,

4
—Re A'+'"(&er, ,0) = 4 ~ Re fD+, (5.11)

4m q E 1II

and

Re fD+,
' ———[sin (2fI&e) + 2 sin (2bee)j .

6q

Foote et al.'" (SPDF-I) find &&I ———4.9' & 2.2' at
310 MeV, and the analysis of Zinov et at. '26 suggests
that b15 = 1.5' & 2.0' at 310 MeV. From these
values, using Eq. (5.11), the subtraction constant Z
in Eq. (5.5) can be determined.

Unfortunately the errors here are considerable.
First, if the f-wave phase shifts at 810 MeV are of
the order of 0.5' as suggested by the analysis of
Foote et al. ,

'" Eq. (5.6) shows that they could cause
corrections in Re A '+'" (810 MeV, 0)/4s which are as
large as the d-wave contribution given by Eq. (5.11).
Further, Eq. (5.6) suggests that the g-wave contribu-
tion may also be important. This is in line with the
discussion of Secs. 8(iii) and (iv) which indicates that
the convergence of the series (5.6) for Re A &+&" is
slow at 310 MeV.

'2 See Sec. 3(v) for further discussion of these points.
'2 V. G. Zinov et al. (cf. reference 82).
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Pro. 9. The solid curve showa the predicted values of Re 81
up to 120 MeV. The experimental point at 98 MeV is the
Liverpool result (reference 114). The broken curve from 120
MeV to 350 MeV is obtained by using the predicted values of
Re(s& —ss) shown in Fig. 12 and the extrapolated values of
Re s3 given by the broken line in Fig. 10.

The other errors in the evaluation of relations (5.4)
and (5.5) are far less important than the errors in K.
In particular the contribution from the integrals
over Im A '+"' and Im B&+&"are small, and moderate
sized fractional errors in the evaluation of these
terms can be tolerated.

It should be noted that by Eq. (5.8) the error in
Re f&+&"(a&r„0)caused by an error in the subtraction
constant K is much smaller than the error produced
in Re f&+&" because of the factor (E —3I)/2W in the
second equation of (5.8). The ratio of the error in
Re f2&+"' to that in Re f,'+'" is q'/41III' = q'/180. Thus
even at 300 MeV, errors in K are unimportant for
Re f&+'", and, therefore, they are unimportant for
Re ( f&+& —f4&+&) and Re ( fs&+& —f,'+&)

(iv) Results Up to 120 MeV

The most serious of the errors we have discussed is
that in Sec. 5(iii)(a). Due to the diKculty with
higher partial waves and the poor convergence or

Next, the errors in the d-wave phase shifts at 810
MeV are large. The values quoted above give Re f,'+'

(810 MeV) = —0.021 & 0.015. Suppose there is an
error & 6 in our estimate of Re f,'++' at 810 MeV. By
Eq. (5.10) this will give rise to an error ~103 (q/2. 17)'
in Re fc&+&(o&r) and an error ~5hq'/(2. 17)4 in Re
f4&+~&(o&r)/q' As.usual q is the c.m. momentum and the
unit is 140 MeV/c. With 6 = 0.015 the errors in Re
f&++& are &0.011, &0.06, and &0.15 at 100 MeV, 200
MeV, and 800 MeV, respectively. For Re f&~+& (c&r,)/q'
the errors are ~0.004, ~0.010, and ~0.016 at 100
MeV, 200 MeV, and 800 MeV, respectively.



780 J. HAMILTON AND W. S. WOOL COCK

lack of convergence of Eqs. (5.10), the improved
CGLN method for predicting atE the m —X s- and p-
wave phase shifts from the dispersion relations can-
not be trusted at energies much above 120 MeV. On
the other hand the errors appear to be reasonably
small up to around 100 MeV, and in that region the
results of the method should be reliable.

020

dict the steady decrease in Re s1 and Re s3 from the
threshold values a1 —— 0.171 & 0.005, and a3
—0.088 ~ 0.004. This decrease is of course already
well-known from the semiphenomenological fits to
the data which were discussed in Sec. 4(ii). The part
of the total errors in these s-wave amplitudes at 100
MeV arising from neglect of the f waves [Sec.
5(iii)(a)] and the uncertainty in K [Sec. 5(iii) (b)] are
~0.012 for Re s1 and Re s3.

0.18—

016—
P Waves

At 100 MeV the calculated values are

014

012

008—

006—
I

100
I

200
Pion (lab) Energy (MeV)

I

300

Re p» = —0.023 % 0.006, Re p» ———0.017 + 0.005,
Re p13

———0.003 & 0.005, Re p33 = 0.250 & 0.005,

(5.13a)

and the experimental results at 97/98 MeV are"'"

Re p» ———0.024 & 0.004, Re p» ———0.027 ~ 0.002,

Re p» = —0.008 & 0.004, Re p» = 0.246 ~ 0.003.

(5.13b)
Fre. 10. The solid curve shows the predicted values of Re 83

up to 120 MeV. The experimental values shown are the Liver-
pool result at 98 MeV (reference114) and the result of Foote
et al. at 310 MeV. The broken curve from 120 MeV up to 350
MeV is a smooth continuation of the predicted values drawn
to pass through the experimental value at 310 MeV.

The calculations were made using the m —N param-
eters given in Eq. (4.49). The results for Re s&, and
Re s3 and the small amplitudes Re p2+ QJ are shown
in Figs. 9, 10, and 11 (only those parts of the plots
up to 120 MeV are relevant here). We shall compare
the predictions with the accurate Liverpool data"&'"
at 97/98 MeV. The errors in the theoretical values
are those we have estimated above in Secs. 5(ii) and
(iii).

8 Waves

For the s waves at 100 MeV, the theoretical values
are

Re s1 = 0.129 ~ 0.015 Re s3 = —0.133 ~ 0.014 .
(5.12a)

The experimental values at 97/98 MeV are

Re s1 = 0.123 % 0.006 Re s3 ———0.135 & 0.003 .

(5.12b)

These are in good agreement, and there is also good
agreement with the accurate experimental values at
lower energies. The curves in Figs. 9 and 10 show
that (up to 100 MeV) the dispersion relations pre-

+002—
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Re p,
„
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FIG. 11. Predicted values of the small p-wave scattering
amplitudes Re p», Re p311 Re p13 are shown up to 120 MeV.
Between 120 MeV and 220 MeV we show conjectured values
which are in agreement with the predicted values of Re {p11

p3$) and Re (p33 p13) shown in Figs. 13 and 14, and with
the experimental data which are discussed in Sec. 5(v) below.

ues, but again there is a suggestion that the calculated
value of Re p» is a little too small. The largest part
of the errors in Re p» and Re p» at 100 MeV is due
to the error in K which was discussed in Sec. 5(ii).
Probably this error actually accounts for the small
discrepancy in Re p» near 100 MeV.

&27 A. Loria et al. , Nuovo Cimento 22, 820 (1961). YVe use
their final values o.31 = —2.60' + 0.69', o.33 —31.67' + 1.01'.

There is good agreement here between the experi-
mental and calculated values, except in the case of
Re p31. A recent experiment at 120 MeV"" gives Re
p3$ = —0.023 ~ 0.006, Re p33 0.228 & 0.006.
From Fig. 11 it is seen that these values are in
reasonably good agreement with the predicted val-
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It should be emphasized that these results reconcile
the experimental values of Re p2g 2J near 100 MeV
with their threshold values a2~, 2~ as given in Sec. 4.
For Re p» in particular the 100 MeV and threshold
values are very different. The results for the p33

amplitude are in good agreement with the experi-
mental values given in Sec. 4(i)(a) above (up to 120
MeV). This is merely a further proof of the validity
of the Axed momentum transfer dispersion relations.

0.30-
HOHLER 5 DIETZ

028—

026 ~~
THIS CALCULATION

024— ~DIET2

' 022—
8~ 020—

iFINN

I I I I I

0 100 200 300
Pion (tab) Ener gy (MeV)

Fra. 12. The predicted values of Re(sq —ss). The broken
lines show other predictions by the CGLN method due to
Finn and Hohler and Dietz. The latter approximated the
dispersion integrals by inserting only the (-,', —',) resonance,
and then made a rough estimate of the necessary corrections.
The curve —.—.—shows the results of Dietz [Karlsrube pre-
print; see also E. Dietz and G. Hohler in International Con-
ference on High Energy Physics, edited by J.Prenthi (CERN,
Geneva, Switzerland, 1962), p. 138], who tried to estimate
these corrections by using a subtracted dispersion relation
and incorporating knowledge of the 7.' = 1, ~ —m interaction.

(—) case than in the (+) case up to these energies.
We saw in Sec. 5(iii) (b) that no subtraction constant
is required in the A (-'" dispersion relation, and there-
fore the large errors arising from uncertain experi-
mental information about d waves are avoided.

The remaining errors in the A(-'" and B'-)" dis-
persion relations should not be very important, and
it is possible to make predictions about the (—) com-
binations of d-wave amplitudes. Unfortunately, the
results do not agree with the few experimental values
which are available, and we do not reproduce them.
Any error in the d-wave results will cause errors in
the other (—) combination partial wave predictions,
and the s-wave (—) amplitudes at the higher en-
ergies are particularly subject to this type of error (it
is readily seen from Sec. 5(iii)(b) how this comes
about).

The results for Re (s, —ss), Re (p» —psi), and Re
(pss j7$s) are shown in Figs. 12, 13, and 14 for en-
ergies up to 350 MeV. Except where otherwise stated
the values of the parameters in Eq. (4.49) are used. '"
We shall briefly discuss the results.

Re (s& —ss)

The predicted values are shown in Fig. 12 to-
gether with the predictions of Hohler and Dietz'"

+002—

D 8'aves

Because of the uncertainties in the subtraction
constant K [Sec. 5(iii)(b) j, no useful and reliable re-
sults can be deduced for the individual d waves. We
shall see below that there are useful predictions for
certain combinations of the d-wave amplitudes.

(v) The (—) Amplitudes

In Sec. 3(v) we showed that the amplitudes for the
(—) charge combination are a special case. Assuming
that there is no appreciable T = 1, w—+ interaction
in the range 4y' & t ( 151s' (and the experimental
investigations of T = 1, x—m interactions appear to
bear this out "), then in the case of the (—) ampli-
tudes the Eqs. (3.15) should converge well up to 250
MeV, and should also give useful results up to some-
what higher energies (say 350 MeV).

This means that for the (—) amplitudes the f wave-
corrections are expected to be small up to around 300
MeV. There is a further reason why the improved
CGLN procedure should work much better in the

-002
CL

e -004
K

100 200
Pion (lab) Energy (MeV)

FIG. 13. The predicted values of Re (@11 —@31).The solid
line shows the values derived using the parameters given in
Eq. (4.49). The broken line shows the values obtained using
a11 —a31 = —0.060. The experimental values at 98 MeV,
224 MeV, and 310 MeV are those discussed in the text.

"nd of Finn. "We compare the predicted values with
the experimental results at 224 MeV and 310 MeV.
These appear to be reasonably accurate experimental

I28 There are some small changes from Woolcock's original
values given in references 73 and 115.These are due to the fact
that in preparing Sec. 4 above the parameters were critically
examined and reassessed, giving the values in Eq. {4.49) above.
The assessment of the errors in the phase shift predictions in
Sec. 5 of the present article is quite new.

'ss G. Hohler and K. Dietz, Z. Physik 160, 453 (1960).
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Re (sl —ss) = 0.27 & 0.07. (5.15b)

The agreement between the experimental and pre-
dicted values is reasonably good, particularly at 224
MeV. In judging the accuracy of the 310-MeV pre-
diction it is worth noting that an error of ~1.0' in
the predicted value of (813 —833) (where 813 and 633

are d-wave phase shifts) would give an additional
error of &0.08 in (5.15b)."' The agreement in Eqs.
(5.14) and Eqs. (5.15) supports the argument we

gave at the beginning of this section for believing
that the f-wave (and d-wave) errors are reasonably
small in the (—) case.

0.25

020

0.15

„0.10
CP

I ln
CLP)

005S
CL

-0 05

Pion (lab) Energy (MeV)
Fza. 14. The predicted values of Re(p33 —p13), using the

parameters given in Eq. (4.49).

133 J. Deahl et al (cf. reference 84)..
I3j That, is we take the error in Re f( )(coL,,Q) to be +col.q1,2

(0.001) up to 200 MeV and +0.013 at 300 MeV; the extra
error due to d waves is discussed in the section on d solutions
following.

&32 We shall show below that +0.08 is the maximum extra
error we would expect in (5.15b) due to errors in the d-wave
calculations.

results. At 224 MeV the experiments give"' cLI

= 14.8' ~ 3.5', a3 = —15.5' ~ 3.5', so

Re (s, —ss) = 0.282 & 0.039. (5.14a)

The predicted result is

Re (sl —s3) = 0.269 + 0.050 . (5.14b)

An estimate of the f-wave and d-wave error is in-
cluded in (5.14b)."'

At 310 MeV, Foote et al.'" give n3 = —17.2'
& 2.6' (SPDFI). From the several results of Zinov
et al.'" we infer that, at 310 MeVp AI 240 ~ 3'
(Solution aspD). These give

Re (sl —ss) = 0.301 & 0.020. (5 15a.)

The predicted value"' is

We now make two further deductions:
(a) The bspn SOlutiOn Of ZinOV et al. '33 giVeS &x, ( 0

between 240 MeV and 333 MeV. Since there is no
doubt that n3 ( —10' in this region, the bspD solu-
tion is ruled out, even if we allow the full error in Re
f~-'(&or, ,0), i.e., &0.12 in Re (s, —s,) at 300 MeV as
in Sec. 5(ii) above.

(b) In Fig. 10 the broken curve from 120 MeV to
350 MeV is a smooth continuation of the predicted
value of Re 83 drawn to pass through the 310-MeV
experimental value. "4 Now using the values of Re
(s, —s3) from Fig. 12, the values of Re sl between
120 MeV and 350 MeV are found. These are shown
in Fig. 9 by the broken curve. Although these values
of Re 81 are necessarily somewhat rough, it would be
valuable to test them by precision experiments in
the 250 MeV—350 MeV region.

(Pl 1 P31)

The predicted values are shown by the solid curve
in Fig. 13 together with a few accurate experimental
values. There is good agreement with the experi-
mental values. Typical results are those at 224 MeV
and 310 MeV. At 224 MeV the experimental results
are'"

0 0 0 0
nIg = 5.9 ~ 4.5 ) n31 = —2.1 ~ 5.5 )

giving

Re (p» —p») = 0.024 & 0.018 . (5.16a)

The predicted value is

Re (pll —p„)= 0.015 & 0.004 . (5.16b)

At 310 MeV Foote et al.'" gave n31 ———2.9' ~ 4.0'
and the results of Zinov et aP33 suggest lx» ——8.0'
~ 4.0' (aspn solution). This gives

Re (p» —p31) = 0.018 & 0.008 . (5.17a)

The predicted value is

Re (pll p31) 0.018 & 0.006 . (5.17b)

In accordance with our general assumption about the
(—) amplitudes, the d-wave and f-wave errors are
taken to be small in (5.16b) and (5.17b).

These calculations use the parameter values in
(4.49). So a» —a31 ———0.063. If instead we used the
value a11 —a31 = —0.060, which is within the errors
given in (4.49), the predicted values would lie on
the broken curve in Fig. 13. The latter curve gives
somewhat better agreement with the 97/98 MeV re-
sult, and gives 0.018 & 0.004 at 224 MeV, and 0.022
~ 0.006 at 310 MeV, instead of the values in Eqs.
(4.16b) and (4.17b).
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Again the assumption that the d-wave and f w-ave

corrections are unimportant for the (—) amplitude,
at least up to 300 MeV, appears to be justified. On
the basis of the predicted va, lues of Re (pii —pai)
further conclusions can be drawn":

(a) The bepo solution of Zinov et at.'" gives Re
(pii —p3i) ( 0 between 240 MeV and 330 MeV.
This is definitely excluded by the predicted values.
(b) The experimental results between 224 MeV and
333 MeV show that 0.» is negative, and it appears to
be between —2' and —4' over that range. Then
Figs. 11 and 13 suggest that a» changes sign below
200 MeV, and attains positive values between 5'
and 8' in the range 220 MeV to 330 MeV.

Re (p» —
p&8)

The predicted values [based on the parameters in
(4.49)] are shown in I"ig. 14. The errors are much the
same as in the case of Re (p&i —p») with one excep-
tion. Just above the resonance (200 MeV —250 MeV)
there is some uncertainty about the value of n33, and
this can have an appreciable effect on the dispersion
integrals.

The experimental value'" of u33 at 224 MeV (n33
= 112.3' & 3.0') combined with the predicted value
of Re (p» —p») suggests that n» is positive and
equals a few degrees. The experimental value"' of
0.» at 224 MeV is 0' & 2.0', so there is a small
discrepancy here. At 310 MeV there is agreement to
within the errors. The experimental value'" of o.33

= 135.0' ~ 0.6 plus the predicted value of H,e
(@33 f13) gives ni3 ——23' & 2.0'. The values of
Zinov et al.'" suggest that n13 = 2.0' ~ 2.0'.

It is clear that again the (—) relation is working
well up to about 300 MeV, and it appears that the
phase shift o.» differs from zero by no more than 2'
from 200 MeV up to around 300 MeV. (Again the
solution bspD of Zinov et at. '" is excluded since it
gives values of o.» between 7' and 15' over the range
240 MeV to 333 MeV).

The d&-~ Solutions

There is not sufFicient reliable experimental infor-
mation to compare with the predicted values for
the (—) combinations of amplitudes. The good agree-
ment of Re (p» —p») and Re (p» —p,3) with the
experimental values in the 300-MeV region indicates
that the extra error in the predicted value of H,e
(s~ —sa) at 310 MeV [Eq. (5.15b)] arising from d-
wave errors cannot exceed &0.08. [This is seen from
Eq. (5.10), remembering that Re (p» —psi) and Re
(p» p]3) are not in error by more than 0.008 at 810
MeV. ] In evaluating (5.15b) we allowed &0.06 for

this extra error and a corresponding value in (5.].4b).

(vi) The f,'+' Amplitudes

An additional piece of information which is fairly
reliable up to about 230 MeV, can be obtained from
the f,'+'(a r0) and f,'+"

(&o1.,0) amplitudes. By Eq.
(5.10)

fl -f1+ = f.(0) + (q /2)f.'(0) + 9(f3 —-f3+) +
f2 —f-2+ = —(r1/6)f2(0) —5(f~ —f-3+) +' '

(5.18)
There is reason to expect that the effects of d-wave
errors and of corrections due to f waves and higher
amplitudes are not so important in the (+) case of
Eqs. (5.18) as they are in the original equations
(5.10). This is seen by considering the equation. [cf.
(1.26)]:

Re f2'+'(~r. ,0) =
2W

—

4
—[—Re A'+'(~r, ,0)

+ (W+ M) Re B'+'(a) ,L0)] (5.18a)

and Eq. (5.2). Estimates show that at most energies
up to 250 MeV (W+ M) Re B'» is much larger
than Re A ~+', and (W + 1II) Re B&+" is much larger
than Re 3'+)'. Thus, up to 250 MeV, the predomi-
nant contributions to Re f,'+' and Re f,'+&' come from
the 8&+' terms.

Now we look at the arguments in Sec. 3(v), con-
cerning the convergence of series like Eqs. (3.15) and
(5.18). The convergence is governed by the value
of yo(s), the radius of convergence in the cos tl

plane for the real parts of the amplitudes (cf.
Table II). To get good convergence we required a
value of ye(s) close to 3, or greater. The value of
yo(s) is determined by the nearest singularity in the
channel m + 7r ~ X + 17.

Since the A&+' terms in Eqs. (5.2) and (5.18a) are
small below 250 MeV, we assume that the higher
partial wave corrections which they produce in Eq.
(5.18) can be ignored. Now the A&+& amplitude is
related to the 7' = 0, J = 0, 2, x —x states, but
the B'+' amplitude is related to the T = 0, J = 2,

~ m —m states. '" It is known'" that the T = 0,
J = 0, m —m interaction is strong for low values of
t (t = 5 or 6p'), but the results of Atkinson"4 sug-
gest that the T = 0, J = 2, x —x phase shift 6',

does pot reach 20 until t 12p,'. If we ignore the
T = 0, J = 2, x —m. interaction when 6& & 20,

&33 See, for example, Eq. (36) of J. Hamilton and T. D.
Spearman, Ann. Phys. 12, 172 (1961).

I34 D. Atkinson, Phys. Rev. 128, 1908 (1962). It should be
pointed out that Atkinson's results do not depend on any data
derived from the f&(+) amplitudes by the method of the present
section.
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then the nearest singularity of Re B&+' is given by
cos 9 = 1 + 6/q' [cf. Eq. (3.12)).

With these approximations the value of ys(s) for
the Re f,'+' amplitude is 4.0 for ~r, ——150 MeV and
2.5 for coL, ——250 MeV. Thus up to about 250 MeV
the f-wave (and higher) corrections to Eqs. (5.18)
for the (+) charge combination should be small.
Further advantages of Eqs. (5.18) are: (a) double
derivative relations do not appear, so the main
source of d-wave error is removed; (b) the factor
(E —3I)/2W tends to suppress the errors in evalu-
ating the dispersion relations for Re f, and Re f,', as
we saw in Sec. 5(ii).

Results for Be f,'+' '

We only give some of the results for the p-wave
case [i.e., the first Eq. in (5.18)]. At 200 MeV the
predicted value is

Re (p» + 2p» —p» —2ps, ) = —0.019 & 0.008.
(5.19)

The error here is only that discussed in Sec. 5(ii) for
the evaluation of the various dispersion integrals.
If it were not for the special arguments given above
we would have to ascribe a much larger error to
allow for f wave e-ffects [this can be seen from the
estimates given in Sec. 5(iii) (a)]. Using experimental
values"' we have Re @31 = —0.010 ~ 0.004. Com-
bining (5.19) with the predicted values Re(p&i
—ps() = 0.012 W 0.003, Re(pss —pcs) = —0.010
& 0.002, we find Re p» ———0.003 ~ 0.004, and
Re p» = 0.007 & 0.006. These give values of n33

and n» which are in good agreement with the experi-
mental data.

At 224 MeV the predicted value is

Re (p&i + 2p» —p» —2p») = 0.025 + 0.008,
(5.20a)

and the experimental value'" is

Re (pn + 2p» —p» —2pss) = 0.028 ~ 0.020 .

(5.20b)

Again the agreement is good. However at 310 MeV
the predicted value is'"

Re (p, g + 2psg —p„—2p„)= 0.063 W 0.012

(5.21a)
&3 There is no accurate experimental value of H,e p31 near

200 MeV. I:n fact there is no precision value between 120 MeV
and 310 MeV. However Re p» varies slowly in this range of
energies, and it is safe to assert that, at 200 MeV, it has the
value —0.010 + 0.004.

&ss Here, f wave errors have b-een ignored.

and the experimental value is '" '"

Re (pn + 2psi —p s —2p ) = 0.103 + 0.015 .

(5.21b)

Comparing (5.2la) and (5.21b), it appears that the
f&+~ method is breaking down at 310 MeV. Our
general arguments at the beginning of the present
section about the approximations involved in the
f~&+& method would lead us to expect the method to
fail above 250 MeV.

Below 250 MeV we can try to use these predictions
to improve our knowledge of the small p-wave
amplitudes. There is no contradiction with the
results discussed in Sec. 5(v) above, but unfortu-
nately the errors on the predicted values are ap-
preciable and they give nothing new.

(vii) Summary of the Results

The main limitation of the improved CGLN
method is the failure of Eqs. (3.15) to converge at
moderate or high energies. A further, and related,
limitation is caused by the (d-wave) subtraction
constant in the A~+)" relation. The convergence
problem becomes serious for the complete set of
amplitudes around lab energy 150 MeV, and it can
be traced to the effects of the strong low-energy
T = 0, J = 0, m —m interaction on the A &+& ampli-
tude. We saw that the complete set of amplitudes
gave good s- and p-wave predictions up to around
120 MeV [Sec. 5(iv)]. At higher energies they do in
fact go wrong.

The B(+' amplitude is not affected by the T = 0,
J = 0, x —m interaction, but here the T = 0,J = 2, m —~ interaction determines the convergence
of Eqs. like (3.15). It is estimated that the break-
down now occurs in the region 250 MeV—300 MeV
lab pion energy. Using this and another approxi-
mation, the COLS method can be applied to the
fs&+& amplitude, and the subtraction problem does
not appear here. The results [Sec. 5(vi)] are good up
to 224 MeV, but by 310 MeV they have gone badly
wrong, as we would expect.

For the ( —) amplitudes the situation is very
favorable. There is no subtraction problem and the
convergence of Eqs. (3.15) is governed by the T = 1,
J = 1, x —m interaction. The latter appears to be
small up to comparatively high m —x energies, and
as a result the improved CGLN method works well
for the (—) amplitudes up to about 300 MeV.

The results of applying these various cases are:
(a) complete and accurate s and p-wave pre-dictions
up to 120 MeV; (b) in the range 120 MeV—220 MeV,
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APPENDIX B

Convergence of Legendre Series and Cosine Series

First we discuss why Legendre series like (3.1)
have elliptic regions of convergence in the complex
cos 0 plane. Then we show how to deduce the ellipse
of convergence for the Legendre series from the
position of the singularities in the Mandelstam repre-
sentation.

We define P„(z),where z may be complex, by

(2n —1)!! n (n —1)
n! 2(2n —1)

n(n —1') (n —2) (n —3) ., 4

2 4 (2n —1) (2n —3)

Let z = x + iy when x and y are real. For z = x
where lxl & 1, we write x = cos 0 where 0 is real,
and we have

P.(x) = 2 —.
)
—-' cos (n0) + ———(2n —1)!! 1 n

1 3 n(n —1)X cos ((n —2)0) + 1 2 (2 1) (2

X cos [(n —4)0] + (82)

z = eos (n+ip)
= cos n cosh p —i sin n sinh p, (83)

where n and P are real and P &~ 0. On the real axis
x & 1 we have n = 0 and x = cosh p, while the
portion x & —1 is given by n = s, x = —cosh p.

If n is large Stirling's theorem shows that Eq.
(82) has the asymptotic form

P.(x); cos (n0) + -', cos [(n —2)0]
7m '

1 3 1+ . , cos [(n —4)0]+,cos [(n —6)0] + . (84)

This is a suitable expression for examining the form
of P„(z)for large n. Vsing (82) and (83) with p & 0
we get

Equation (82) gives P„(z)for unphysical values of
zif wewrite0 = n+ iP and

1 1
Sp 8 gp n=p gp

(810)

This gives the Taylor series in powers of cos 0, and
it has radius of convergence x, (we take xs & ()). We
wish to find the ellipse of convergence of the Le-
gendre series for (xs —z)-'. Take the point x on the
real axis when x ) 1. Then

where

F(np) = 1+—e e + ——,e e +.1 2P 2i 1 -3 1 4P 4;

2 1 2 2'

(86)
The approximation (85) is only valid for np )) 1.

Since p & 0, the series (86) converges, and gives"'

F (n,P) = (1 —e
' e'") ' . (87)

From (85) and (87) we have the asymptotic be-
havior

IP-(z) I
= [I/( n)']

X e" (1 —2e eos2n+ e
'

) '. (88)
The convergence of a Legendre series g„"=sa„P„(z)is
therefore determined by the convergence of the
series P„"=sa„e"zn='*.If

»m la„l'"= e-z. , (89)

then by Cauchy's test, the latter series converges
for p & ps. The points z for which p = po lie on the
ellipse

x g
s + . s ——1.

cosh ps sinh p,
If the length of the real semi-axis is x, = cosh p, , the
other semi-axis has length (x,' —1)*' = sinh ps. Fi-
nally the relation ee = [xs + (xp 1):] expresses
Eq. (89) in terms of x, . These results explain the
general form of Lehmann's theorems in See. 3(i).

When we use the Mandelstam representation to
6.nd the singularities in the cos |I plane, we have pole
terms like (u —3P) 'and cuts inv-olving (u' —u)-',
(f,

' —t)-'. We can regard a cut as a line of poles, and
if we remember that u and t are linear in cos 0 when

is fxed, we see that the singularities in the z = cos
0 plane are all of the form (x, —z)-' where x, is real
and lxel & 1. We need only consider the singularity
which gives the smallest lx, l. The smallest value of
lxsl was called yo(e) in Sec. 3(iv).

Consider the expansion

P.(z) [2/(sn)'] Icos [n(n + iP)]

+ -', cos [(n —2) (n + iP)] +
[1/(s.n)']e" e

'" F(n,p),

x = eos 0 = cosh P = s (t + I/&) where g = es.

&3~ The asymptotic estimate given by Eqs. (B5) and (B7)
is sometimes written in the form

(85) p.~(s) [1/(2s.n sin e) '] exp [—i(n + ', )e + i7r/4], 1m—e& 0 .



PION —NUCLEON PARAMETERS 787

Also

where yl, y2 are the zeros of

—2xp$+ 1.
Now x, ) 1, and we write y~ ——xp + (xp —1)l. Also

yiyz = 1, so ps & 1. Expand (Bll) in a Laurent
series in $,

after a little rearrangement.
Hence,

-n np + g n -ns

XO X Pl P2 n=0 n=1

x + (x —1)* & xp + (xp —1)'

ie., for x ( xo. (816)

It follows from the above analysis that if the nearest
singularity in the Mandelstam representation is
yp(s), the Legendre expansion for the scattering
amplitude converges in an ellipse with foci x = ~ 1,
and semi-axes yp(8), [(yp(s))' —1]l.Further, by (815)

lima„'" = Iyp(8) + [(yp(8)) —it'} '. (817)

A rigorous derivation of the above result comes
from Heine's expansion'"

= g (2n+ l)P„(z)Q„(f)

Comparing with the series of positive powers of es

in (813), we see that for n large,

+n~+ yy (815)
Also (813) converges for e & y&, similarly the
Legendre series (814) converges for

Now let the Legendre expansion be

1 = pa„P„(x).
which is valid if z is in the interior of the ellipse which

(814) has foci +1 and passes through f.

Consider the form of this for x & 1. Putting 0. = 0
in (85) and using (87) gives for P ) 1 and n —+ ~,

P.(x) (s-n) '(1 —e
'

) 'e"

38 See for example Sec. 15.4 of E. T. Whittaker and G. N.
Watson, Modern AnaLysis (Cambridge University Press, New
York, 1952). For further details of the asymptotic expansion
of P„(z)for large n see Sec. 11.3 of E. T. Copson, Theory of
Functions of u Complex Variable (Oxford University Press,
New York, 1952).


