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prefer a somewhat diferent definition and set:

r = W+ u(G) = W+ IK,G]. (5.1)

In the scope of a perturbation theory, one can look at
T as the "solution" of the problem. If one knows T,
one can get easily the level-shift operator W and the
generator G of the level-shift transformation,

W = (7'), G = —(T) .1

k
(5.2)

This T-operator is an ideal tool to get a solution of a
complicated problem in terms of the solutions of
simpler subproblems. Suppose one can split the per-
turbation V such that

e' (K + V )e
'" = K + W,

and, therefore, the operator

T =W +[KG]. (5.5)
Now it is possible to expand the perturbation V in
terms of the operators 7.' . By standard technique one

v = g. v" (5.3)
and that E + V" is a soluble subproblem. That is,
we suppose we know explicitly the level-shift trans-
formation

gets:

W = Q W + —Q Q([G, IK,G jj)

+ higher-order terms, (5.6)

G = gG +-- g g [G,r'+ W']

+ higher-order terms . (5.7)
Therefore, in first-order approximation, both the
level-shift operator W and the generator 6 of the
level-shift transformation of the complicated prob-
lem are adChtively composed from those of the simpler
subproblems. Up to the second order in energy there
are no energy denominators, so that the calculation
of the second-order level-shift operator is quite
trivial. Attention should be paid to the summation
restrictions o. W P which says that the solution of each
subproblem alone is already exactly contained in the
first-order term. In this formalism, many of the re-
sults of infinite-order perturbation series are im-
plicitely contained, but the use of any diagram tech-
nique or summation method is completely avoided.
Furthermore, we have the advantage that, if we stop
the development of the series at any order, the re-
sulting approximative level-shift transformation is
always exactly unitary.
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1. INTRODUCTION

W E consider the estimation of expectation values
for stationary states of Schrodinger's equation,

particularly for those states having the lowest en-
ergies. The paper contains no new mathematics, but
discusses the significance of known facts in a physical
setting. We denote the Hamiltonian by H, energies
by E, and wave functions by P; and suppose that the
Hamiltonian is bounded below, self-adjoint, and that
the lowest energy levels are point eigenvalues of
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finite degeneracy. ' Thus, we have

II)„—E„P„=0, v = 1,2,

E1 ( E2 ( ~ ~ ~

Our considerations are formulated within the frame-

r T. Eato, Trans. Am. Math. Soc. 'FO, 195 (1951),has shown
that the first two properties are enjoyed by the usual Hamil-
tonians for atomic and molecular systems. The third has been
demonstrated by T. Eato, Trans. Am. Math. Soc. /0, 212
(1951) for the helium atom and by G. M. Zhilin, Mosk. Mat.
Obshch. Tr. 9, 81 (1960), for many other atomic and molecular
systems. Degenerate eigenvalues are to be counted repeatedly.
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work of a Hilbert space' @in which the inner product
is designated by (y,P) and the resulting norm by

~ ~ y~ ~
.

The expectation values have the form (BP„,P„), in
which B is a symmetric (Hermitian) operator. Since,
in general, the true wave functions are not known,
the best that can be done is to calculate approxima-
tions to them, compute the expectation values from
the approximate wave functions, and then to es-
timate bounds on the errors. Thus, what is needed
are bounds on the quantities

l(BV.,V.) —(Blf.A") I,
in which &p, and q„are approximations to lf „and P„,
respectively. Wave functions and approximations to
them are assumed to be normalized. The ingredients
from which such estimates can be constructed are
these: the Hamiltonian H, the operator 8, the sense
in which q approximates f, and the relationships that
may exist between 8 and H. In our discussion we re-
strict attention to approximate wave functions that
result from a variational calculation (Rayleigh —Ritz)
using the Hamiltonian H and a family of trial func-
tions, and show how error bounds can be obtained
for expectation values when the operator 8 is
bounded retatke to a norm generated by H. The error
bounds contain only upper and lower bounds for the
energies and the constant involved in the bound of
8 relative to H.

2. EXAMPLES

Some typical examples of expectation operators
and brief comments on each of these are given below.
The order of listing them is, roughly speaking, that
of increasing complexity as is clear from the following
section.

A. B Is the Hamiltonian H

Since for a wave function P„and the corresponding
Rayleigh —Ritz vector y„we have'

(IIv. v.) = E„" & E. = (&4.A"),
the problem of estimating the error,

(&v.,v.) —(&0.A")

is exactly the problem of determining a lower bound
EL for E„.

B. B Is the Projection on a Given Wave Function

Since Brp = (y,P„)P„ for any y in @, we observe
2 We have in mind the Hilbert space of square integrable

functions over the particle coordinate space.
3 Here and later we continue to write (IIv, y) even for q's

on which II may not be defined; we understand by this the
value of the closure of the form generated by II as is usual in
the Rayleigh —Ritz procedure.

that

and

(Bv., v.) & &, (B4.A") = &

so that in this case the problem is that of finding posi-
tive lower bounds for ~(q„,P„)~'. This, in turn, is
equivalent to estimating error bounds for

~ ~

&p„—f„~~',

for we may assume that q „has been adjusted by the
introduction of a complex multiplier of magnitude
one so that

and, hence,

C. Bounded Operators

These are the operators that are defined for all ele-
ments y of g&. For each such B there is a nonnegative
real constant c such that

l(Bv»v) I «(v»v)

holds for every q of O. In particular, these operators
include multiplication by real functions f(g) that sat-
isfy f ~ f(q) ~'dr & cc, and hence they include such
expectation values as the mean value of ~f~' over a
fixed neighborhood of a given point.

D. Unbounded Operators

For such operators, no constant c as in (1) can
exist. We assume that these operators are defined on
at least those functions of @ for which II is defined.
In particular, such operators as momenta (B
= i(cj/Bg)), kinetic energies (B = —-', V'), and dipole
moments (B = z) are examples of unbounded op-
erators of frequent occurrence.

4 To avoid complication we will assume that the wave func-
tions for which the expectation values are wanted are non-
degenerate.

s N. W. Bazley, Phys. Rev. 120, 144 (1960); J. Math.
Mech. 10, 289 (1961);N. W. Bazley and D. W. Fox, J. Res.
Natl. Bur. Std. 65B, 105 (1961);Phys. Rev. 124, 488 (1961);
J. Math. Phys. 3, 469 (1962); Arch. Rat. Mech. Anal. 10, 852
(1962); J. Math. Phys. , (to be published). T. Kato, J. Phys.
Soc. Japan 4, 884 (1949); Math. Ann. 126, 258 (1958). H. F.
Weinberger, Tech. Note BN—188, Institute for Fluid Dynam-
ics and Applied Mathematics, University of Maryland (1959)
(unpublished).

3. DISCUSSION4

In recent years effective methods for systematic
calculation of lower bounds for energies of quantum
mechanical Hamiltonians have been developed. '

Consequently, whenever B is the Hamiltonian II
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itself, these may be used to give the needed estimates:

0 & (Hy„,p„) —(HP„,P„) & E, —E, .

We observe that always (Hq„,q„) = (HP„P„) = 0,
whenever v & y.

When B is the projection on a wave function f„
that is known to be nondegenerate, then estimates
can be made in terms of upper and lower bounds to
the energies alone. To know that P„ is nondegenerate,
it is essential to have suFiciently exact upper and
lower bounds so that

E„ & E„ & E, & E, i;
further, this information. is sufFicient to insure that
(Biv„,q„) is strictly positive, that is, that

(Bv.,v.) = l(~. lt")I' & o

For bounded operators, the condition of bounded-
ness,

l(Bp v')I & c(p, y)

is equivalent to

for every yr and ps of g. From the identity,

(B(v + 0) v
—4) = (Bv,v) —(B4,4)

+ 2i Im (Bg,y),

which leads to the inequality,

l(Bv,v) —(B4,4) I
& l(B(~+ 4),v

—4) I

& clio' + 4'll ' ll& 0'l
I

we obtain

The simplest estimate is the well-known Eckart
criterion for the ground-state trial function, I(B~,~) —(B4.A")I «lie + ~i fl ll~ —+ II

(5)
U L

I && I(&' 0') I
&w I z, i.

E2
(2) When we wish an error bound for

I (By„,&p„)
—(BP„,P„)I, we start, from

(Bv.,v.) —(B4"A") = (B(~. —0.),v.)

+ (B4",v, —4"),

(Bv .,v .) —(Bit.4.) I

& c[llv. ll ll~ —+ II + ll~t II ll~. —lt. llI

Generalizations of inequalities of this type have been
given by Lowdin and ShulP and Weinberger. ' Here
we give two special cases of the Weinberger result,
which seems to be little known outside of mathemat-
ical circles. In the first, we assume that the upper and and obtain
lower bounds to the energies are suKciently good to
show that the first m states (m & v) are nondegen-
erate, that is,

E,' & E,U & E,' & E,U «E.U & E.„. = c[llp, —4, II + lip„—1I', ll I (6)

Then the Weinberger result gives

U L

I &~ l(v. ,4.)l &~
en+1 V

p=l
p+v

E„ —E„
EU EU EL EL

If we use only the information

E, &E„,&EV&EV &E„,,

then for v ) 1, the Weinberger result gives

Z„" —E,"I & l4"A")I' & )I—
Ev+1 Ev

The right side of the inequality (5) coincides with
that of (6) when we put v = p. Thus, for bounded
expectation values what is needed is a good estimate
for the constant c that appears and estimates for

I I q —Pl I, which, as indicated above, can be given in
terms of the upper and lower bounds for the energies.

When the operator 8 that gives rise to the expec-
tation values is not bounded, then it is still possible
to make systematic error estimates for expectation
values of approximation vectors calculated variation-
ally from the Hamiltonian provided that 8 is
bounded relative to a norm generated by H. To explain
what this means we introduce an auxiliary bilinear
form [p, ,&p2] defined by

E ~ E —Eq

See H. F. Weinberger, J. Res. Natl. Bur. Std. 64B, 217
(1960).

7P.-O. Lowdin, Advances in Chemical Physics, edited by
I. Prigogine (Interscience Publishers, Inc. , 1959),Vol. 2, p. 207.

[pi, A] = (Hqi, qs) + (l —&",)(pi, v.), N & 0,
for all vectors yI, q» for which H is defined. This form
has all of the properties of an inner product, and we
may extend it by closure so that it is defined for
those vectors q which can be taken as Rayleigh —Ritz
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h" —4.] & {(E." —E') + 2(~ + E" —E )

x [& —I4 A")I1]*
[vl' = h, v]

The condition that 8 is to satisfy is that there
exists a constant k such that in which the first term goes to zero as E„and E„ap-

proach and the second as well by virtue of estimates
of the type (2), (3), or (4).' It is not dificult to show

that the erst two examples of unbounded operators
that we have given earlier are bounded relative to [ ]
and that the third is not.

For those operators that are not bounded relative
to [ ] there is no reason to hope that trial functions
calculated from the usual variational procedure will

lead to good approximations for the expectation
values. " In fact, if 8 is not bounded relative to [ ],
then for each P there exist sequences 1 q" ] of normal-
ized Rayleigh —Ritz approximations for P such that

for all permissible trial vectors qr. As for the bounded
case, this is equivalent to

l(&P~ A) I
& &[V'~]b'2]

for all pairs of trial vectors. Following the same lines
of argument as before we obtain the inequalities

l(~v. ,~.) —(~0.,4.) I

& ~~4 ~ + 4.1.[t. —4.]
and

l(~v",~.) —(&4.A.)l & &[le.l t~. —0 ]

+ 8"] h. —4.1} (8)
that is,

All of the quantities on the right can be successfully
estimated in terms of upper and lower bounds for the
energies. In fact, we find the bounds

l~" —4] ~o

(+~n ~n) gUn ~ @

and at the same time

trial vectors for H.' We denote the norm induced by small as the upper and lower bounds for the energies
this inner product, called a norm generated by H, by are improved, for we can make the estimate,
[y] so that

[v.l = (~+ E". —E')',
[4.] & (~+ E" —E')'

and by use of the triangle inequality

[~. + 4.] & 2(~ + E. —E )
' .

With these estimates, (7) coincides with (8) when

v = p. Further, the terms involving [y —P] become

8 In fact, the domain P[] of this new inner product is itself
a Hilbert space contained in Q. It is precisely the space in
which an infinite family of trial vectors must be complete in
order to assure convergence of the Rayleigh —Ritz variational
procedure.

l(&v",v")
I
~ " .

Thus, apparently very good variational approxima-
tions for f may lead to outrageous errors in supposed
approximations for such expectation values.

9%e do not consider here the questions of how the con-
stants k and b which appear may be optimized.

It may be possible, nonetheless, to show that in special
cases the wave functions to be approximated share some par-
ticular properties, for example, uniform asymptotic behavior
at inGnity, and that on suitably chosen classes of trial func-
tions that share the same properties, the boundedness of B
relative to [ 3 holds.

Discussion on Upper and Lower Bounds for Expectation Values

A. WEINSTKIN, Chairman

I owDiN: Fox's contribution deals certainly with one of the most crucial problems in modern

quantum theory of matter, namely the reliability of the calculations we can carry out by limiting

procedures. So far, we have often had many equivalent formulas to consider, but it, seems now as

if we could use with confidence only those where the operators involved are bounded with respect
to the Hamiltonian.

Our group has been very interested in the same problems, and there is a rather close analogy
between the ideas you have presented so nicely here and my remarks in connection with the dis-

cussion of spin densities. Perhaps I may also refer to the papers quoted there for the identities

we have used to estimate the errors in the expectation values of physical quantities other than
the energy.

T. C. CHER: The unboundedness of the expectation error cm. perhaps be removed by evaluating


