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1. INTRODUCTION

W E propose to formulate any quantum-mechan-
ical perturbation theory in operator form and to

take advantage of the fact that such a theory can be
completely formulated in the domain of a Lie algebra.
Further we generalize the concept of a T-operator
and use this theory to compose a solution of a com-
plicated quantum-mechanical problem out from
simpler subproblems connected therewith. For the
sake of simplicity, we assume that the Hamiltonian
is an operator in a finite dimensional space. Let the
Hamiltonian II be split in an arbitrary way in two
Hermitian operators K and V,

H =K+ V. (1.1)
The operator K should describe a simple, but physi-
cally meaningful system and we consider V as per-
turbation of this system, but it is not assumed that V
should be small" in whatever sense. The unper-
turbed operator K may have any degeneracy of its
eigenvalues, and we will assume that the spectral res-
olution of K is explicitly known,

K = Pa~. withK~„= 5„~K„, gK„= 1

K 4 K for n & m (by definition) (1.2)

tr (K„) = multiplicity of s. .

Any perturbation theory can be formulated in the do-
main of Lie algebra generated by the operators K and
V (i.e., in the domain of all operators K; V; [K,V];
IK,[K,V]}; I V, [K,V]}; I[K,V],[K,V]},etc.) The so-
lution of a perturbation problem is closely connected
with the solution of commutator equations of the
type

[K,X] = Y'. (1.3)
Using the spectral resolution one gets immediately
the identity

X —Q K.XK. = Q Q (s„—r. ) 'K„YK„(1.4)
n num

the result of which can be written more conveniently
with the aid of super-operators.

2. SUPER-OPERATORS&

Let 5 be the operator algebra of all linear operators
A,B,C, . . . over the state space Q of quantum

mechanics (which we assumed to be of finite dimen-
sion). The operator algebra 8 is a vector space over
which we can again define operators that we call
super-operators. So a super-operator is a function
with the operator algebra 5 as its domain and its
range contained in 5. From Eq. (1.4) it can be seen
that two super-operators are of special importance to
perturbation theory. First, the super-operator, which

projects from any operator that part which commutes
with K, we define as

(X) = +K~K for any X Q Q (2.1)

and call the operator (X) the "diagonal part" (rela-
tive to K) of the operator X. If all eigenvalues of K
are different, the matrix representation of (X) is ac-
tually diagonal in the eigenbasis of K. The super-
operator, which forms the commutator from any
operator with K, will be denoted by A;,

k(X) = [K,X] for any X g Q, (2.2)

—(X) = g g (~. —~ ) 'K.XK for anyX Q 8
num

(2 3)

and is in contrast to other inverses characterized by

-(X)1

k
= 0 for anyX Q Q. (2.4)

The general solution of the commutator Eq. (1.3) is

1X = —(Y) + (A), where A is an arbitrary operator .

(2.5)
I A fuller account of the theory of super-operators can be

found in: M. Rosenblum, Duke Math. J. 23, 263 (1956);J. A.
Crawford, Nuovo Cimento 10, 698 (1958);A. Mecirler, Nuovo
Cimento Suppl. 12, 1 (1959); O. Lumer and M. Rosenblum,
Proc. Am. Math. Soc. 10, 32 (1959);J. Schwinger, Proc. Nat.
Acad. Sci. 46, 257, 570 (1960); H. Primae, Helv. Phys. Acta
34, 881 (1961);C. N. Banwell and H. Primas, Mol. Phys. (to
be published).

and we call 1c the "derivation super-operator gen-
erated by K." A derivation super-operator has no
unique inverse, but we can define a special inverse of
k that we denote by -„' (in contrast to the general
k-'). The super-operator s has the whole algebra as
its domain and is defined by
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The Lie character of the functions s ( ) and ( ) the domain of the operator algebra to the Lie algebra
can be set in evidence by the relations generated by the operators K and V. The Hausdorff

formula'
—(X) = i lim e "e ' 'IX —(X)]e' 'dt,

a—+0 0
(2 6)

e'(H) = H+ —g(H) j—
g (H) +1 1

-at -tEctX tKt@
a~0 0

(2 7)

3. LEVEL SHIFT REPRESENTATION~ 3

A convenient way to formulate any approximative
perturbation theory is to perform a unitary trans-
formation of the Harniltonian in such a way that the
transformed Hamiltonian commutes with K,

UHU = H such that [K,H] = 0,
UU = UU=1.

It is of great advantage to preserve the Lie structure
of the problem and for this we set

U= exp' withe= —6 .t
(8 2)

This problem is uniquely defined only if we normalize
U in some way, and it is convenient to require a van-
ishing diagonal part of G, in respect to K,

(G) = 0 .

Splitting off the trivial part K we get from Eq. (8.1):

e (K+ V)e = K+ W with [K,W] = 0

a,nd(G) = 0.
We call this well defined problem the level-shift trans-
formation, 6 the generator of this transformation,
and W' level-shift operator. If E„is a nondegenerated
eigenvalue of H and if )t. and q„are the nth eigen-
value and eigenfunction of K, then we have the exact
relation

which are often convenient for practical computa-
tions [compare also Eqs. (4.1) and (4.2)].

with g(X) = [G,X], (4.1)

or written more conventionally without super-op-
erators

e'He '=-H y -„[G,H] + —,[G, [G,H]] + " (4.2)

+ (4 8)

G = —(V) +-- —(V) V+(V) + (44)1 11 1
A; 2k A;

Usually one writes Eq. (4.8) in the identical form

V —(V)
1
A;

+ (4 5)

Because the product of the two operators V and „-' (V)
is not within the Lie algebra, there are terms which
cancel if the diagonal part of V ~ V is formed. This
annoying canceling is avoided in the formulation Eq.
(4.8) from the outset.

shows clearly that the problem Eq. (8.4) can be writ-
ten completely in the domain of a Lie algebra. In the
same sense that we can formulate a problem of real
analysis in the field of complex numbers, we are al-
lowed to go outside of the domain of the Lie algebra.
This is usually done and perfectly all right, but one
should not wonder about the fact that in the final ex-

pressions there are such things as unlinked clusters
that all cancel' much in the same way that all imag-
inary terms cancel in the final result of a real problem,
formulated in the field of complex numbers. The
H,ayleigh —Schrodinger perturbation theory gives the
best known example. If we expand both sides of Eq.
(8.4) in powers of V and use Eq. (4.2) we get:

W = (V) + — —(V),V
1 1
2 k

E- = ~-+ 4-lwl~-), 5. GENERALIZED T-OPERATOR, DECOMPOSITION OF

A COMPLICATED PROBLEM IN SIMPLER
SUBPROBLEMS3so that in this case 8' gives actually the exact level

shift of the energy by switching on the perturbation.

Many of the difficulties connected with the various
perturbation methods can be avoided by confining 5 F. Haus(Iorff, Leipziger Her. Ges. %iss., math. , phys. El.

58, 19 (1906).
s K. A. Bruckner, Phys. Rev. 100, 86 (1955); J. Goldstone,

Proc. Roy. Soc. (London) A239, 267 (1957);F. Coester, Nucl.
Phys. 7, 421 (1958).

& K. M. Watson, Phys. Rev. 89, 575 (1958).

s S. Tani, Progr. Theoret. Phys. (Kyoto) 11, 190 (1959).
s H. Primae, Helv. Phys. Acta 34, 881 (1961).
4 F. J. Murray, J. Math. Phys. 3, 451 (1962).

In order to be able to handle singular potentials in
4. LIE STRUCTURE OF PERTURBATION THEORY3 4 perturbation theory, Watson' introduced a t-operator

whose diagonal part is our level-shift operator O'. We
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prefer a somewhat diferent definition and set:

r = W+ u(G) = W+ IK,G]. (5.1)

In the scope of a perturbation theory, one can look at
T as the "solution" of the problem. If one knows T,
one can get easily the level-shift operator W and the
generator G of the level-shift transformation,

W = (7'), G = —(T) .1

k
(5.2)

This T-operator is an ideal tool to get a solution of a
complicated problem in terms of the solutions of
simpler subproblems. Suppose one can split the per-
turbation V such that

e' (K + V )e
'" = K + W,

and, therefore, the operator

T =W +[KG]. (5.5)
Now it is possible to expand the perturbation V in
terms of the operators 7.' . By standard technique one

v = g. v" (5.3)
and that E + V" is a soluble subproblem. That is,
we suppose we know explicitly the level-shift trans-
formation

gets:

W = Q W + —Q Q([G, IK,G jj)

+ higher-order terms, (5.6)

G = gG +-- g g [G,r'+ W']

+ higher-order terms . (5.7)
Therefore, in first-order approximation, both the
level-shift operator W and the generator 6 of the
level-shift transformation of the complicated prob-
lem are adChtively composed from those of the simpler
subproblems. Up to the second order in energy there
are no energy denominators, so that the calculation
of the second-order level-shift operator is quite
trivial. Attention should be paid to the summation
restrictions o. W P which says that the solution of each
subproblem alone is already exactly contained in the
first-order term. In this formalism, many of the re-
sults of infinite-order perturbation series are im-
plicitely contained, but the use of any diagram tech-
nique or summation method is completely avoided.
Furthermore, we have the advantage that, if we stop
the development of the series at any order, the re-
sulting approximative level-shift transformation is
always exactly unitary.
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1. INTRODUCTION

W E consider the estimation of expectation values
for stationary states of Schrodinger's equation,

particularly for those states having the lowest en-
ergies. The paper contains no new mathematics, but
discusses the significance of known facts in a physical
setting. We denote the Hamiltonian by H, energies
by E, and wave functions by P; and suppose that the
Hamiltonian is bounded below, self-adjoint, and that
the lowest energy levels are point eigenvalues of

* This work was supported in part by the Department of
the Navy under Contract NORD 7386.

finite degeneracy. ' Thus, we have

II)„—E„P„=0, v = 1,2,

E1 ( E2 ( ~ ~ ~

Our considerations are formulated within the frame-

r T. Eato, Trans. Am. Math. Soc. 'FO, 195 (1951),has shown
that the first two properties are enjoyed by the usual Hamil-
tonians for atomic and molecular systems. The third has been
demonstrated by T. Eato, Trans. Am. Math. Soc. /0, 212
(1951) for the helium atom and by G. M. Zhilin, Mosk. Mat.
Obshch. Tr. 9, 81 (1960), for many other atomic and molecular
systems. Degenerate eigenvalues are to be counted repeatedly.


