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Then the norms of G are defined by the following
formulas:

Operator norm : ||G||. = ()}

{z)"

PIRCHLE

J=1

Schmidt norm : ||G||:
DGl =

Trace norm

The inequalities used in this note are the following:
For every kernel G

|trace G| < trace norm G .

Given another kernel F(z;y), define the composite
kernel

L('x) = /ﬂ F(",y)G(z,y) ;
then L] < [[F[[]|G[2
[L]: < |[F][«||G]]: and [[L]]: < [[F|[:||G]]« -

The Schmidt norm is conveniently evaluated. In fact,
it is easily seen that

/ G ) = 220N
z,z =1
Moreover, for an arbitrary complete orthonormal

system {y;}, the following (Schmidt’s theorem) is
valid
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> [ewmuer = ewmr.

This can be proved by expanding G(z’;z), as a func-
tion of «’, in terms of {¥;(2”)} and then applying the
Parseval relation.

7. Wielandt’s Inequality

Given two N X N Hermitian matrices A and B
with eigenvalues {A\;} and {u;} in non-increasing
order, respectively, Wielandt’s theorem?® reads

N N
; ]7\1 - .u'fl < ]z:; Ip;'| )

where {p,} are the eigenvalues of A — B. This can be
modified for the integral kernels.

Let F and G be two nonnegative definite kernels
with the eigenvalues {\;} and {g;}, respectively; then

>IN — w| < trace norm (F — G) .
=1
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1. INTRODUCTION

HE basic problem in the current quantum theory
of matter is the solution of the many-particle
problem connected with the Schrodinger equation
3¢V = EY for the stationary states. For atomic, mo-

* This work was sponsored in part by the U. S. National
Science Foundation, the King Gustaf VI Adolf’s 70-Years
Fund for Swedish Culture, Knut and Alice Wallenberg’s
Foundation, The Swedish Natural Science Research Counecil,
and in part by the Chemistry Research Branch, ARL, AFRD,
of the Air Research and Development Command, U. 8. Air
Force, through its European Office.

lecular, and solid-state systems, the problem is simple
in the sense that the Hamiltonian is assumed to be at
least approximately known, whereas for nucleonic
systems the interaction potentials are still not de-
termined. Here we concentrate essentially on the gen-
eral features of many-particle systems having a
Hamiltonian of the form:

ICop = chi_l_ Zﬂ&j—*— ‘Zkgcijk"i" e (1)

In the theoretical interpretation of the experi-
mental data for electronic systems, the so-called “in-
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dependent-particle model”’” has been remarkably suc-
cessful. The idea goes back to Bohr! and it was
further developed for atoms by Hartree? in his famous
SCF calculations. In this model, each electron moves
in the field of the nucleus (or nuclei) and the average
field of all other electrons corresponding to a certain
“effective” Hamiltonian. This intuitive idea was
brought in connection with the many-electron
Schrodinger equation through the work by Slater?
and Fock,* who showed that one could derive one-
electron wave equations of the type

gcefﬂl/k = Ekll/k, (2)

by approximating the total wave function ¥ by a
product of one-electron functions ¥, ¢2, - - -, ¥~ and
applying the variation principle. If the Pauli prin-
ciple is taken into account through the antisymmetry
requirement, the total wave function is instead ap-
proximated by a single determinant built up from the
spin orbitals ¥1,¥2, - - -, ¥~. This approach has been
very successful in the applications to various elec-
tronic systems. In atomic theory, it meets us under
the name of the Hartree-Fock scheme?®; in molecular
theory, it is characterized by the symbol ASP-MO-
LCAO-SCF?; and, in solid-state physics, it forms the
basis for the band theory of conductors, semicon-
ductors, and insulators.”

The energy error in the independent particle model
based on a single Slater determinant is usually called
the “correlation error,” and, for a discussion of its
character and order of magnitude, we will refer else-
where.® Here it is sufficient to mention a typical case:
the correlation energy for the hydrogen molecule is
—1.06 eV, which actually consists of two contribu-
tions 1.06 eV and —2.12 eV associated with the cor-
relation errors in the kinetic energy and Coulomb in-
teractions, respectively, according to the virial
theorem. Since 1 eV = 23.07 kcal/mole, these errors
are certainly of essential importance. In considering
various aspects of the Hartree-Fock scheme, one can
easily distinguish between the optimists and the

1 N. Bohr, Proc. Phys. Soc. (London) 35, 296 (1923).

2 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).

3 J. C. Slater, Phys. Rev. 35, 210 (1930).

4V, Fock, 7. Physik 61, 126 (1930).

5 Atomic SCF calculations have been reviewed in a series of
papers; see, e.g., D. R. Hartree, Calculation of Atomic Struc-
tures (John Wiley & Sons, Inc., New York, 1957); D. R.
Hartree, Repts. Prog. Phys. 11, 113 (1948), P.-0. Lowdin.
Proc. Robert A. Welch Foundation Conf. Chem. Res. 11,
Atomlc Structure 1958, 5.

6 C. C. J. Roothaan, "Rev. Mod. Phys. 23, 69 (1951); P.-O.
Lowdin, Phys. Rev. 97, 1490 (1955).

7For a survey, see, e.g., P.-O. Lowdin, J. Appl. Phys. 33,
251 (1962).

8 P.-O. Lowdin, Advances in Chemical Physics, edited by

1. Prigogine (Interscience Publishers, Inc., New York, 1959),
Vol. 2, p. 207
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pessimists: the optimists claim that, since the correla-
tion error is hardly one percent of the total energy,
the relative accuracy is high and the over-all picture
good, whereas the pessimists emphasize that most
physicists and chemists are usually not interested in
total energies but actually in “energy differences”
which are small in comparison to the correlation en-
ergies.

The qualitative success of the Hartree-Fock
scheme to describe the occurrence of closed struc-
tures in atoms, molecules, and solid state was usually
attributed to the fact that the electrons interact so
weakly through the Coulomb forces that the electrons
move practically independent of each other. It was
hence somewhat of a surprise, when Goeppert-
Mayer® and Jensen' discovered that the independent
particle approximation was just as useful in nuclear
theory in connection with the famous nuclear shell
model. Since the nucleons interact very strongly, one
had now to look for a new explanation of the success
of the one particle schemes, and Brueckner™ pointed
out that two-body correlations could actually be in-
corporated in the self-consistent-field schemes, if one
replaced “interactions” with “reactions’ in the deri-
vation of the effective potentials. This procedure is
discussed further below.

In order to reach beyond the Hartree—Fock scheme,
one has to achieve greater accuracy in solving the
Schrodinger equation and, in this work, Professor
Egil Hylleraas has been the great pioneer. In his
papers'? on the helium atom, he has established the
basic methods and principles that have been leading
the development up to date. He emphasized the im-
portance of the proper choice of coordinates as well
as the proper choice of basis in Hilbert space; he
stressed the fact that the discrete hydrogen-like func-
tions do not form a complete set, and that one has to
include the continuum or modify the character of the
set to make it complete. Here I mention three of
Hylleraas’s methods that have been of particular im-
portance, since they have been generalized to many-

9 M. Goeppert-Mayer, Phys. Rev. 74, 235 (1948); 75, 1969
(1949) 78 16 22 (1950).

Mayer and J. H. D. Jensen, Nuclear Shell Theory
(John Wlley & Sons, Inc., New York, 1955)

1 K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud,
Phys. Rev. 95, 217 (1954); K. A. Brueckner, Phys. Rev. 96,
508 (1954); 97 1353 (1955), 100, 36 (1955); K A Brueckner
and C. A. Levmson, Phys. Rev. 97, 1344 (1955); H
Bethe, Phys. Rev. 103, 1353 (1956); J. Goldstone Proc. Roy
Soc. (London) A239, 267 (1957); H. A. Bethe and J. Gold-
stone, Proc. Roy. Soc. (London) A238, 551 (1957); L. S.
Rodberg, Ann. Phys. 2, 199 (1957); to mention only a selec-
tion of the rich literature on this subject.

12 E. A. Hylleraas, Z. Physik 48, 469(1928) 54 347 (1930);
65, 209 (1930); and several other papers; see B A . Hylleraas,
“Abhandlungen aus den Jahren 1926-37 (Oslo, 1956)
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electron systems: namely; (a) the split-orbital
method, (b) the method using a correlation factor
containing the interparticle distances r;;, and (c) the
method of superposition of configurations. The first
approach has led to the general method of using
“different orbitals for different spins” that has been
discussed in detail at another session of this sympo-
sium. The second one represents the simplest way of
applying Hylleraas’s idea of ‘“correlated wave func-
tions” to a many-particle system, whereas the last
method is essentially an application of the Ritz’s ex-
pansion method to the Schrodinger equation.

The purpose of this paper is to show the interrela-
tion between the three methods and the modern treat-
ment of the many-particle problem based on the con-
cepts of wave and reaction operators. Usually, these
concepts are derived from infinite-order perturbation
theory, but here they are derived by means of an
elementary partitioning technique.’* The results are
also used to discuss the exact self-consistent-field
theory™ mentioned above. It is hoped that the dis-
cussion gives some idea of the mathematical and con-
ceptual structure of several of the methods used in
treating many-particle systems and their internal re-
lationships.

2. WAVE AND REACTION OPERATORS

Let us consider a Hamiltonian 3¢ = 3¢ + V,
where V is a perturbation which is not necessarily
small, and let ¢, be a normalized eigenfunction to 3Co
associated with the eigenvalue Ey, so that

<<Po!s00> =1. (3)

Note that we start out from a single unperturbed
eigenfunction, which is not yet further specified. In
order to find a solution ¥ to the Schrodinger equation

FCopo = Eosﬁo,

oV = EY (4)

we now introduce a wave operator W, which is defined
through the relations

¥ = I'V‘Po, (‘I’]¢o> = 1. (5)

The wave operator hence changes the unperturbed
eigenfunction into the perturbed one, and the nor-
malization is chosen so that ¥ is the sum of ¢, and a
term orthogonal to ¢,. The solution can later easily
be renormalized.

Multiplying the eigenvalue equation (4) to the left
by ¢F and integrating, we obtain

(¢o|3C|W) = H(po|¥) = E
13 P.-Q. Lowdin, J. Math. Phys. 3, 969 (1962); for numerical

aspects, see J. Mol. Spectr. 10, 12 (1963).
14 P.-O. Lowdin, J. Math. Phys. 3, 1171 (1962).
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and further
E = Ey + {o| V|¥)
= FEo + {@o| VIW|e0) . (6)

It is hence convenient to introduce the reaction op-
erator t through the relation

t=VW, @

since the expectation value of this operator with re-
spect to ¢, then gives the exact energy shift:

E = E, + <<Po|i‘¢0> . (8)

In order to derive formal expressions for W and ¢,
we now introduce the projection operator O con-
nected with the unperturbed eigenfunction ¢o:

0 = {fPo)(‘Pol = <P0<990i (9)

and its orthogonal complement P = 1 — O. One has
the relations:

=0, 0+=0, Tr(0)=1, (10)
Pe=pP, Pr=P, OP=P0=0, (1)
Poo = 0. (12)

For the projection of an arbitrary function ®, one has
0P = ¢o{po| ®) and particularly O¥ = ¢, according
to (5). Since (3¢ — E)¥ = 0, one has the following
identity:
O+ P)¥ = ¢, + PK'K¥
= ¢o + PK[K + P(3¢ — E)(O + P)l¥
o + PK7'P3Ceo

+ PK'[K — P(E — 3¢)P|¥ .

Il

v

(13)

Here K is an arbitrary nonsingular operator at our
disposal, and we now try to use it to get rid of the
last term. It is tempting to put K = P(E — 3C)P,
but this is actually not possible, since this operator is
singular and has no inverse. Instead, we put

K=0a0+PE—-3)P, T=PK'P, (14)
where « is an arbitrary number different from zero.
Since OK™'P = PK™0 = 0, the last term in (13) still
disappears, and we obtain

V =9+ TVg = (1+ TV)eo, (15)

i.e.,
W=1+TV. (16)
Hence, we have obtained a formal expression for the

wave operator containing the operator 7', which is
characterized by the relations

OT =TO =0, PE—3)T=P. (17
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Since 7/0a = —PK'OK™'P = 0, the operator 7' is
independent of «. In the following, for historic rea-
sons, we use the symbolic notation

T = P/(E — 3¢) (18)

but remember that it corresponds to the full defini-
tion of (14) with « # 0. In summary, we have the
relations

W=14+TV, t=V+VIV, (19

which form the basis of the theory. By means of (18)
and (8), one obtains further

P
(Bo — 30) — (V —

t=V+V (20)

Conltlon) ¥
which is the fundamental expression for the evalua-
tion of the reaction operator. It may be used to con-
struct first- and second-order iteration procedures to
evaluate (po|t|o), and we note particularly the con-
nection between the Newton—Raphson formula and
the variation principle treated elsewhere.’* The wave
operator is obtained afterwards by leaving out the
left-hand factor V, and for the true normalization
integral, one gets finally

(T|¥) = (po|l + VT*V]¢0) .
Connection with Infinite-Order Perturbation
Theory

If the inverse operator occurring in the definition
(14) of T is evaluated by means of a power series ex-
pansion of the type
(A—B)*=A"1+ A"'B4 — B)™

= A7+ A7'BA' + AT'BAT'BAT -+, (21)

one gets formulas corresponding to various types of
perturbation theory. There are two essential parti-
tionings to be discussed:

E—3=(E-—-3)—V
= (Bo — 3C) — (V = (b)) ,

and the first one is said to be of Brillouin type and
the second one of Schrodinger type. Introducing the
notations

(22)
(23)

= P/(E — 5), Ro= P/(B — ), (24)
we obtain the expansions:
T =T, (VTo)*
k=0
= Ro; [(V = {eolt|¢o))Ro]" (25)
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from which one easily derives the standard Brillouin
and Schrodinger perturbation series.”* For a simple
treatment of the so-called linked-cluster theorem in
the latter, we refer to a previously published paper.'®

3. SOME ASPECTS ON THE ONE-PARTICLE
SCHEME

So far, we have not emphasized the many-particle
aspects of the eigenvalue problem (4), and we note
that the formal expressions (19) and (20) are valid
for all types of Hamiltonians. Starting out from (1),
we write

JCo = Z@ (GCz + uz) 5 (26)

V= —Zuz+23cu+ >Rt e,

1<j i<i<k

27)

where the potentials u; are at our disposal. The un-
perturbed problem (3) is now separable and has the
solution

¢o=gl//i, Eo=:_[=]1:€;, (28)
(3C: + ua)¥s = e, (29)

where (3C; + ;) may be considered as an effective
Hamiltonian for the particle 7. The relation ¥ = W,
implies that the exact solution may be obtained by
letting the wave operator work on a Hartree product
@0, which is often characterized as a “model” func-
tion. Various approximate solutions can now be ob-
tained by choosing different approximate forms for
the wave operator.

Correlation-Factor Approach

One way to proceed is to approximate the operator
W by a multiplicative factor g, which is then anal-

ogous to Hylleraas’s “correlation factor.” Usually
one assumes that ¢ has the form:
g = g(T12,7'13,1’23,‘ . ) (30)

and is a symmetric function of all the interparticle
distances r;; involved. The good results obtained on
the helium atom!® and on the hydrogen molecule” by
means of simple correlation factors are very promis-
ing. It is interesting to note that, in the Bohm—Pines'®
plasma model for the solid state, the collective oscilla-
tions corresponding to the correlation effects enter

15 See reference 14, p. 1179.

16 P.-0. Lowdin and L. Redei, Phys. Rev. 114, 752 (1959).

17 A. A. Frost, J. Braunstein, and W. Schwemer, J. Am.
Chem. Soc. 70, 3292(1948) W. Kotos and C. C. J. Roothaan,
Rev. Mod. Phys 32, 205(1960)

18 See, e.g., D. Pmes, Solid State Phys. 1, 368 (1957).
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into such a correlation factor, and that the total
wavefunction is approximated by the form ¥ = gg,.
Wigner’s study of the electronic correlation in the
alkali metals is somewhat different, but Krisement*
has pointed out that his wavefunction is still close to
the form ge,.

In conclusion, it should be observed that the the-
ory developed by Dalgarno and Lewis* putting
W = 1+ F belongs essentially to the same category.

Projection Operator Approach

Let us now look at the case when there is a normal
constant of motion A which commutes with the
Hamiltonian (1) and has the eigenvalues A\, Az, - - -,
M. The eigenfunction ¥ to 3C is then also an eigen-
function to A or (in the case of a degenerate level F)
may be chosen that way. Since A commutes with 3Co
only for very special choices of the potentials u;, the
unperturbed function ¢, is usually not an eigenfunc-
tion to A, and it is then an essential feature of the
wave operator W to restore this property. It is often
convenient to approximate the wave operator by a
projection operator

Ok=HA:——)\—l‘, (31)

Ik )\k - )\l
which selects the proper component associated with
the eigenvalue N\ out of ¢,. A constant factor is
further needed to give the proper normalization ac-
cording to (5).

Symmetry properties of 3¢ are treated similarly by
means of the group-theoretical projection operators.
The total wavefunction is hence approximated by a
A— or symmetry projection of a Hartree product,
and this approach leads to the extended Hartree-
Fock scheme discussed in greater detail at another
session of this symposium. Since it contains the
method using ‘“‘different orbitals for different spins”
as a special case, it is closely related to the split-or-
bital method introduced by Hylleraas.

It should finally be observed that the wave op-
erator can be approximated by a product of a correla-
tion factor g and a projection operator O, and that
wave functions of the form gO¢, with proper choices
of ¢o and g may have excellent accuracy.?

Superposition of Configurations

Let us extend the set of one-particle functions
Y1, ¥, - - -, Yy With another set Yvi1, Yare, - - - orthog-

19 E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).

20 O. Krisement, Phil. Mag. 2, 245 (1957).

21 A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1955); Proc. Phys. Soc. (London) A69, 628 (1956).

22 P.-0. Lowdin, Rev. Mod. Phys. 32, 328 (1960).
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onal to the former so that the resulting set is mathe-
matically complete. By forming all possible products
of N factors out of this set, we obtain a basis ¢, ¢1,
@2, * + -, which spans the N-particle Hilbert space com-
pletely, and it is then easy to express P in terms of
these functions. The application of the wave op-
erator (14) to ¢, leads then to an infinite expansion
in terms of the set {¢x} corresponding to a superposi-
tion of configurations, where the coefficients are de-
termined by the properties of the wave operator.
Hence, there is a close connection between the re-
sults obtained by using infinite-order perturbation
theory, the wave operator, or an infinite-order secular
equation. The approach based on “second quantiza-
tion”’ can also be conveniently studied from this point
of view; so many different approaches can hence be
given a common basis. With this remark we conclude
the study of the three fundamental methods given
by Hylleraas and their relation to modern theory.

4. EXACT SELF-CONSISTENT-FIELD METHOD

The classical Hartree scheme was based on the
variation principle &eo|3¢ + V]eo) = 0, where ¢o
was a Hartree product of the type given in (28). The
resulting effective Hamiltonians (3¢; + ;) contain
Hartree potentials u; given by the formula:

Ui = Z Wsl3cs;1y;) + ;c WalSCon Wit 4+ -+,

(32)
where the summations go over all indices %7, and
the self-consistent-field (SCF) calculations are then
based on the cycle

Wi} = ui — 3Cets — {‘b’i} .
4

(33)

In addition to the original Hartree product ¢,
= Y- - Y5+ - - ¥, we now consider a ‘‘singly excited
product”

Pse. = kbl%“‘wk"‘\h, (34)

where one of the original orbitals ¢, has been replaced
by an “‘excited” orbital ¥ orthogonal to ¥4, so that
() = 0. The definition (27) of the perturbation
potential V leads then to the identity:

(€50 V) = 0, (35)

which is known as Brillouin’s theorem.? Sometimes,
it is also written in the form (p,..|3|@o) = 0, but it
should be observed that this theorem does not pre-
vent singly excited terms to occur in the expansion

2 L. Brillouin, Actualités Sci. Ind. No. 71 (1933); No. 159
§1934); C. Moller and M. S. Plesset, Phys. Rev. 46, 618
1934).
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of the exact expansion of the eigenfunction ¥. In the
literature, there are certainly some misunderstand-
ings about this point into the Hartree scheme: the
singly excited terms should always be properly in-
vestigated and included, and it is completely er-
roneous to think that the expectation values of one-
particle operators @ = Y; Q; will be given with higher
relative accuracy than the total energy—usually the
reverse will be true. For the kinetic energy T
= Y.; P}/2m, the error is actually the same as in the
total energy (but with the opposite sign, depending
on the virial theorem).

According to (6), one has the exact formula F
= Ey + (¢o| V|¥). It has been observed by Nesbet?*
and Sinanoglu® that, for Hamiltonians which con-
tain two-particle interactions 3C;; but no many-
particle interactions, one obtains

E = Ey 4 {¢o| V]eo) + {o|V|¥a.c.)

= {po|3C| o) + (o ;&i:'l‘l’d.e) ,  (36)

where ¥,.. is the sum of all terms in ¥ which are
“doubly excited”’” with respect to ¢,. The last term
represents the “‘correlation energy,” which hence de-
pends only on ¢, and the doubly excited term in the
expansion of ¥ subject to the normalization (¥|¢,)
= 1. Sinanoglu® has taken this observation as the
basis for his interesting approach emphasizing the
fact that ¥4... may be written in terms of ¢, and a set
of “pair functions.” Again, I feel that the importance
of accumulated effect of the singly excited, the triply
excited, and more highly excited terms in ¥ should
not be underestimated in treating general correlation
effects.

These remarks are here made in connection with
the Hartree scheme, but it should be observed that
the corresponding theorems hold in the same form in
the Hartree-Fock scheme, if ¢, is given as a Slater
determinant and the interactions 3C;;, 3C;js- - - in (32)
are replaced by the operators

3. = 3i;(1 — Pyy) (37)

— Py — P + P + Puy)
(38)

3ipm = (1 — Pij

where the P’s are permutation operators.

Let us now return to the problem of the singly ex-
cited terms which has been given an interesting treat-
ment in Brueckner’s theory.* As mentioned in the
introduction, Brueckner wanted to generalize the

2¢ R. K. Nesbet, Communication at the Summer Institute
on Quantum Chemistry, Uppsala, 1960 (unpublished).

% Q. Sinanoglu, Proc. Roy. Soc. (London) A260, 376 (1961);
J. Chem. Phys. 36, 706, 3198 (1962).
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SCF theory in such a way that it would take even
strong two-body interactions into full account, and
here we proceed still further and suggest an exact
formulation of the SCF method.* The Hartree
scheme is based on the variation principle {(3C)
= {po|3 + V]go), giving an upper bound to the
true energy, whereas the exact SCF method is based
on the exact formula (8) of the form E = {p|3Co
+ t|go), indicating that one obtains the exact energy,
if one replaces the perturbation V by the reaction ¢,
i e,

V——m—t (39)
- Zui+ Zi}cij-f' _Z}?Cfﬂc‘*‘ e Euz
+ Z b + ~z_‘,}‘tiﬂc + .- (40)

In the expansion of ¢, Brueckner included the two-
body reactions ¢;; but neglected the higher terms.
Here, all the terms in ¢ are fully included in the
formal treatment. If ¢ is momentarily fixed, and the
expression {@o|3C + t|¢o) is minimized, one obtains
one-particle Schrodinger equations of the type (2) or
(29), where the potentials u; are given by formula
(32) with the interactions 3C;;, 3Ci;,- - - replaced by
the reactions ti;, to,- - -:

Ui = ; Wilts |y + g Wbl + - -+, (41)

where the summations go over all indices 7. This
definition leads immediately to the identity

(@ac.ltlooy = 0,

which is the so-called ‘Brillouin—Brueckner theo-
rem.” One can then show that, if the expansion of ¥
is based on the one-particle functions Y1z, - -, Yx in
¢o and their orthogonal complement, the singly ex-
cited terms vanish identically. The goal of the more
elementary theories can hence be fully reached in the
exact SCF theory. For further details, we refer to
another paper.*

42)

Symmetry Properties in the Exact SCF Theory

It has been realized long ago that the symmetry
properties of a physical many-particle system play
an important role in the treatment of the correlation
problem. In the exact SCF scheme, the role of the
reaction operator is stressed, but one should be care-
ful not to overemphasize this aspect of the problem
on behalf of the symmetry properties. We have here
discussed the extension of the Hartree scheme, but
it is well known that, for fermions, the introduction
of the antisymmetry requirement reduces the orig-
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inal “correlation energy”’ by approximately a factor
one half and focuses the interest on particles of op-
posite spins. In the Hartree-Fock scheme, the re-
maining correlation error in the energy can be
further reduced, say about 859, by introducing “dif-
ferent orbitals for different spins” and by studying
the component of proper symmetry uniquely defined
by the basic Slater determinant. Hence, it is ap-
parent that by the combination of symmetry con-
siderations and Hylleraas’s split-orbital idea, one can
remove about 909, of the original correlation error
in the energy, before one has to introduce the con-
cept of the reaction operator.

It is easy, in principle, to combine the basic ideas
in the two approaches involving symmetry and re-
actions. If the total Hamiltonian 3¢ has a normal con-
stant of motion A, so that 3CA = AJC, it is well known
that an eigenfunction ¥ to 3¢ is also an eigenfunction
to A or (in the case of a degenerate energy level) may
be chosen in that way. It is now convenient to divide
the many-particle Hilbert space into subspaces as-
sociated with the eigenvalues A, Ay« -+, A to A, for
instance by means of the projection operators O, de-
fined by (31). These subspaces are orthogonal and
noninteracting with respect to 3¢ and A, so that they
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are essentially independent of each other. The un-
perturbed wavefunction ¢, may now be chosen as the
O, projection of the Slater determinant built up from
the N one-particle functions ¢, ¥s,- - -, ¥x; this de-
fines the projection operator O = |po)¢o|, and it is
then sufficient to introduce the orthogonal comple-
ment P with respect to the subspace associated with
the eigenvalue \; alone in investigating the ‘‘reac-
tion.” This means an essential simplification, and our
study gives an idea how a synthesis of many of the
current ideas for treating many-particle systems can
ultimately be achieved.
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Discussion on Perturbation Theory and Reaction Operators

0. SinaNoGLu, Chairman

NesBeT: Despite the great amount of theoretical work on the many-particle perturbation
theory, especially following the work of Brueckner and Goldstone, there have been very few
applications to finite systems. The implicit claim of this theory is that one can get reliable results
by abandoning variational methods in favor of selective summation of Feynman diagrams in
the perturbation theory. Obviously this is a quantitative issue; to resolve it, we must have de-
tailed computations. One of the first serious efforts to apply this theory to an electronic system
(the ground state of Be) has just been completed by Hugh P. Kelly, in his Ph.D. dissertation,
1962 (unpublished) at the University of California, Berkeley, supervised by Professor K. M.
Watson. Kelly has computed the continuum eigenfunctions of the Be Hartree-Fock operator,
and has integrated over the continuum in evaluating Feynman—Goldstone diagrams. One inter-
esting result is that he finds it essential to use the complete diagonal energy difference in energy
denominators, for example, for single excitation,

& — & — (ab|R]abd) , 1
rather than the formula characteristic of the second quantization approach
8a - 8(,7 (2)

changing from Eq. (2) to Eq. (1) involves a summation of diagrams to infinite order. Quantum
chemists will, of course, recognize Eq. (1) as the natural energy denominator to use, since it is
just the difference between energy mean values of the two interacting Slater determinants [see,
e.g., R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955)]. It was found that important
contributions to the energy come from diagrams different from the ladder diagrams considered
in the Brueckner theory. Kelly gets 2.48 eV for the correlation energy of Be, compared with R.



