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I. INTRODUCTION

HIS paper reports an investigation of basic prop-

erties of Fermion density matrices which, intro-
duced by Dirac! and extensively studied by Léwdin,?
have revealed ever growing importance in quantum
chemistry. Though the second-order density matrices
play the most important role in connection with en-
ergy determination of many electron systems, com-
pared with the first-order ones, there is a great deal
of difficulty to be overcome and no result of definite
importance has yet been obtained. This paper con-
tains an advanced study of properties of the first-
order density matrices and the general properties of
higher-order ones. As to physical interpretations, in-
terested readers may consult ter Haar’s monograph.?
In preparing this paper, the author was greatly in-
spired by Coleman’s excellent papers*® to which
about half of the results in this paper belong.

In Sec. IT definitions and special notations used in
what follows are collected. It should be remarked that
our definitions of density matrices differ from those
in Lowdin® by scalars. Section IIT contains some
well-known properties of density matrices which
make cornerstones for the later sections. Section IV
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gives upper bounds for higher-order eigenvalues.
While the basic inequality (Theorem 5) was proved
by Coleman,® we present another proof. Theorem 6
seems new. One of the interesting problems in density
matrix theory, from mathematical standpoints, is the
reproduction problem; that is, to ask, given a non-
negative definite kernel, under what conditions it can
coincide with the pth-order density matrix of a nor-
malized antisymmetric function of n particles. The
complete solution to this problem has not yet been
settled. Section V reveals some difficult aspects in the
reproduction problem even in a modified form. Sec-
tion VI is completely devoted to the solution of the
reproduction problem under severe restriction on
rank. An interesting property on degeneracy is stated
in Theorem 11, which was proved in slightly incor-
rect form by Coleman® with tensor calculus. A cor-
rect formulation with a proof is given here. Theorem
12 seems new. Section VII has the aim of answering
the question of the best approximation of an arbi-
trary function by a Slater determinant. The basic
Theorem 13 is essentially due to Lowdin and Shull®
and the generalized form presented here was an-
nounced by Coleman® without proof. Our proof is
Hilbert-theoretic and is essentially the same as
Mirsky’s.” Theorems 14 and 15 are stated in this
paper for the first time. Section VIII answers the
question raised by Foldy® concerning the minimum
number of configurations. Theorem 17 seems new.
Section IX contains entirely new results concerning
the estimate of the deviation of eigenvalues. Finally,
in Section X, most inequalities used in the paper are
given simple proofs. However, because of limitation
of space, we can not produce all.

II. DEFINITIONS AND NOTATION

When ¥ is a normalized antisymmetric function of
n particles, its pth-order density matrix is defined by

Dp(x,;x) = Dp(l/’2,,' . ',p';1,2,- . ’p)
5/ ¥ p+ 1, n)¥(x,p+ 1,---n),
PHl,eee,n
(1)

6 P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
7 L. Mirsky, Quart. J. Math. 11, 50 (1960).
8 L. L. Foldy, J. Math. Phys. 3, 531 (1962).
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where 7 stands for the spin-orbital coordinate of the
1th particle and z for (1,2, -,p). When special ref-
erence to ¥ is necessary, we write D, ¢ instead of D,.
Sometimes D; is simply denoted by D. D,(2’;x) can
be regarded as the kernel of an integral operator, and
its basic properties are deduced from the following:
(nonnegative definiteness)

/’ N S for every function ¢
¢"Dro 2 0 of p particles, 2)
(normalization)

IDae) =1, 3)
(antisymmetry)

A,D, = DA, =D, “)

where A, is the projection operator on the antisym-
metric part, i.e.,

A, = (1/p) 2 (=1)'P,
where P runs over all permutations of 1,2,---,p. D,
can be obtained from D, by the formula

D, (") = / Dea@ptlzp+ 1. (5)

If we denote by {;}° the eigenvalues of D, and by
{¢;} the normalized eigenfunctions belonging to
them, respectively, D, can be represented in the form

D, (") = ; Nel ()i () (6)

{N\;} and {¢;} are called the pth order eigenvalues and
the natural p states of ¥, respectively. Natural 1 states
are specially referred to as natural orbitals. The num-
ber of nonzero A; is called the p rank of ¥ and the 1
rank is simply referred to as its rank. The properties
(2) and (3) are converted into the following:

Son=1and0 < ;. (7)
Jj=1

For two normalized functions ¢, of p particles, the
values

/ ¢*D,e  and / e*Dy

are called the p density of ¥ on ¢ and the p bond of ¥
between ¢ and . The p density on the natural p state
¢; is clearly equal to the pth-order eigenvalue A;.

III. CLASSICAL RESULTS

Here we collect basic well-known results, without
proof, which are used freely in the later development.
9 Unless the contrary is mentioned, {\;} are always ar-

ranged in nonincreasing order, i.e., \1 > Az > ..., repeated
with their respective multiplicities.
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Most proofs can be found in Léwdin.?

¥ always denotes a normalized antisymmetric func-
tion of n particles.

Theorem 1. Given an arbitrary complete ortho-
normal system {y;} of orbitals,’® ¥ can be expanded
as an (infinite) linear combination of Slater deter-
minants constructed from {y;}. When the rank of ¥ is
finite, say r, and {¢;} are its natural orbitals belong-
ing to nonzero eigenvalues, ¥ can be expanded as a
linear combination of Slater determinants con-
structed only from {¢;}3.

This is fairly well known and easily verified.

Theorem 2. For every Slater determinant ¢ of p
particles,

! — |
/ Do < l’-(im_ﬂl;_
In particular, in case p = 1, any 1 density is not
greater than 1/n and if it is equal to 1/n on some or-
bital ¥, then ¢ is one of the natural orbitals and ¥ is
written as a linear combination of Slater deter-
minants all of which contain ¢ as a component.

While this was explicitly mentioned by Lowdin,?
the case p = 1 had been obtained by Watanabe."

The only antisymmetric function whose natural
states of all order can be easily determined is a Slater
determinant.

Theorem 3. If ¥ is a Slater determinant with com-

ponents o1, ¢z, -+, ¢, then its natural p states con-
sist of all Slater determinants of p particles with com-
ponents ¢ , ¢, *+, @i, Where 1 < i1 < 22 <--- <t

< n, and the corresponding eigenvalues are all equal
to pl(n — p)!/n!. In particular, in case p = 1, the
natural orbitals consist of ¢1, ¢z, - -, ¢. With the equal
eigenvalue 1/n.

The final result has been more or less known ; how-
ever, in connection with density matrix theory it was
first pointed out by Carlson and Keller'? and by Cole-
man.* The proof is straightforward.

Theorem 4. For the natural p state ¢; belonging to
a pth order-eigenvalue );, the function ®; of (n — p)
particles defined by

¢](p+ 1;"',77/)
- ‘/; (p}k(l’. ' 7p)\1’(1; P+ 1, .,n)

is the (not necessarily normalized) natural (n — p)
state belonging to an (n — p)th-order eigenvalue
equal to A;, and

¥ = ;ga,-.@j.

10 An orbital is a function of a single particle.

1S, Watanabe, Z. Physik 113, 482 (1939).

12B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659
(1961).
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IV. UPPER BOUNDS OF HIGHER-ORDER
EIGENVALUES

From Theorem 2 combined with Theorem 4 with
p = 1 it follows that every (n — 1)th-order eigen-
value is not greater than 1/n. Now let {¢;} be the
natural (p + 1) states of a normalized antisymmetric
function ¥ of n particles, then by (5) and (6) the
pth-order density matrix can be expressed

D,(z'z) = '/+1Dp+l @p-+1lp+1)
P

= 2w /pﬂxb?‘(x’,p + Dvs(ep + 4),

where {u;} are the (p + 1)th order eigenvalues. Since
each ¢; is a normalized antisymmetric function of
(p + 1) particles and

£+1¢?(x’yp + l)lﬁ,($,p + 1)

is its pth-order density matrix, it follows from the
above remark with p + 1 instead of n that for every
normalized function ¢ of p particles

fz,xf/;f*(@ﬁ(x’m + 1¢s(ep + Do) < p——:l ;

hence

/<p* o0

= T [ @t + DY @p + Del)

K 1
<f:lp—l-l_io-f—l’
because > ;-1 u; = 1 by (7). This means that every p
density of ¥ is not greater than 1/(p + 1). On the
other hand, by Theorem 4 each pth order eigenvalue
is equal to one of the (n — p)th order eigenvalues
which are not greater than 1/(n — p + 1) for the
same reason. Since the greatest p density is equal to
the greatest pth-order eigenvalue by the variation
principle (Sec. X3), we have
Theorem 6.2 Every pth-order eigenvalue is not
greater than

min {1/(p +1), 1/(n —p+ D}.

When either ¥ or ¢ can be represented as a linear
combination of relatively few Slater determinants,
the upper bound for the p density of ¥ on ¢ is suit-
ably improved.

13Tt can be proved that, except in the case p = 1 or p
= n — 1, this upper bound is never attained. See Coleman.
Recently F. Sasaki (unpublished communication) has ob-
tained much better upper bounds.
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Theorem 6. If either

k

‘)0(1)' : 7p) = Z a:"!/f(lf : 7p>

j=1

or

5
‘I’(l, CPy ';n) = Zl:ﬂi\llf(Lz:” ',’VL) 3

where {¢;}¥and {¥;}# are mutually orthogonal Slater
determinants of p particles and n particles, respec-
tively, then

'(n — !
/¢*DP¢<,CX£-<nn‘_p>-

As the proofs to both cases are quite similar, we con-
fine ourselves to the first case. Since the kernel D, is
nonnegative definite, by the generalized Schwartz’s
inequality (Sec. X4) and Theorem 2

< { / ﬁDpw,}%{ / wapwi}%

p!(n — p)!
< o .

I Jvin,

(677 -[a,-!
pln — !, <~ e’ + laf®
< n! X ,;1 2

= MT—M X kX (g [ajlg)

n!

I(n — p)!

= kx_____p.(n 7 p).‘
n!

The last equality follows from normalization of ¢ and
orthogonality of {y;};i.e.,

>l = flo =1.

This estimate gives a better upper bound than that
given in Theorem 5 only when k < n!/(n — p 4+ 1) Ipl.
In the case p = 2, this means k < n/2.

Finally, an estimate for p bonds is given. This also
follows from the generalized Schwartz’s inequality
(Sec. X4) just as the above theorem.

Theorem 7.

{p bond between ¢ and ¢}
< {p density on ¢}} X {p density on ¢}}
<min {I/(p +1),1/(n —p+ 1)} .
V. DIFFICULTIES IN HIGHER-ORDER PROBLEMS

Given a nonnegative definite kernel E(1’;1) with
eigenfunctions {¢;} belonging, respectively, to eigen-
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values {u;} which satisfy the condition
2w =1and0 <y <1/n, ®)
=1

is there any normalized antisymmetric function ¥ of
n particles whose first-order density matrix coincides
with E? Unfortunately, this is not always the case, as
is seen in Sec. VI. If ¥ is represented, by Theorem 1,
as a linear combination of Slater determinants con-
structed from {¢;}, i.e.,

v = ;CK\I/K,

this problem can be reduced to solving a system of
simultaneous nonlinear equations

jé ICKIZ = M (J = 1,2,' - ) (9)

and

> ckeL=0

K-j=L—i

@#7), (10)
where ; € K means that j is contained in the con-
figuration K and K — j means the (n — 1) configura-
tion with j deleted. Thus, whether any ¥ in question
exists or not depends only on the properties of {u;}
but not on the eigenfunctions {¢;}. Difficulties arise
mostly from the condition (10) which requires that,
when E is expanded by {¢;}, the off-diagonal terms
must vanish. If we neglect requirement (10) and only
take into account the condition (9), putting px
= |C:]?, the problem is reduced to finding non-
negative solutions of a system of linear equations

EPK=/~Li (.7=172;)
JEK

)

This condition means that the 1 density of ¥ on each
¢; is equal to u;. Recently Kuhn' gave a positive
answer to this modified problem, the proof of which
is too difficult to reproduce here.

Theorem 8. Given a finite orthonormal system {¢;}}
of orbitals and a finite sequence {u;}; with the prop-
erty

Dow= 1and0 < p < ~—,
j=1 n

there exists a normalized antisymmetric function ¥
of n particles such that

':7')'

Can we extend this result to higher-order cases?
Naturally, 1/7 must be replaced by 1/(n — 1) in the

/SOfD\IAPf = U (G=12-

14 H. W. Kuhn, Proc. Symp. Appl. Math. 10, 141 (1960).
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case p = 2 by Theorem 5. Given a finite orthonormal
system {y;}i of two particles and a finite sequence
{\;}7 with the property

Sa=1and0 <\ <1/(n—1),

J=1
is there any normalized antisymmetric function ¥ of
n particles whose 2 density on ¥; is equal to \;, i.e.,

[*I/?‘Dz.\lf‘h =N7?

The answer, however, is negative. For example, if all
¥; are Slater determinants of two particles, by
Theorem 2, \; must be not greater than 2/n(n — 1).
On the other hand, it is pointed out by Coleman® that
the estimate in Theorem 5 is the best possible.” This
means that whether {\;} can be a sequence of the 2
densities of a normalized antisymmetric function is
not determined by {\;} alone, but largely depends on
the choice of the orthonormal system {¢;}. This
makes the problem much more difficult.

VI. REPRODUCTION PROBLEMS

Given a nonnegative definite kernel E(1;1), under
what conditions does there exist a normalized anti-
symmetric function of n particles whose first-order
density matrix coincides with E? This problem is
called the reproduction problem of the first order. In
this section the reproduction problem of the first
order is given a complete solution for the kernel with
rank' not greater than n + 2.

For this purpose let us begin with a more detailed
study of the first-order eigenvalues. Let ¥ be a
normalized function of n particles with the natural
orbitals {¢;} belonging to the first-order eigenvalues
{)\;}, respectively. Then ¥ can be written in the form

\I’(lx : ';n) = Aﬂ‘Pl(l)q)l(z)' : ':n) + @2(1}2:' . ',77/) )

where &, and &, are antisymmetric functions of
(n — 1) particles and of n particles, respectively. In
fact, expanding ¥ as a linear combination of Slater
determinants constructed from {¢;}

¥ = ZCK‘I’K-

The functions ®, and &, are given, respectively, by

Anﬁpl (1)(1)1 (2) ° ‘7”) = Z cx¥x
1€K

and

d, = Z cr¥r,
1L

15 That is, the greatest pth-order eigenvalue can approach
the upper bound, min {1/(p + 1), 1/(n — p + 1)}.

16 The rank of the kernel is the number of its nonzero
eigenvalues.
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where 1 € L means that the configuration L does not
contain 1. From this it is easily seen that ¢, is totally
orthogonal” to both &, and &®,. Then the first-order
density matrix D is written in the form

D(1';1) = / (A (1) ®1(2) 1 { B (1) 21 ()}
+ [ B (@ @) 2 (12
_{__/;riw;"(l’,fc){An@l(l)‘I’x(x)}

+‘/‘CI)§(1,,$)CI)2(1’Q’;)

with the abbreviation x = (2,- -+, n). For every two
permutations

_ il,"',in) — (jl,"'yjn)
P <1’...’n and Q 1’...,n
total orthogonality of ¢; to &, implies

[ et @otn - idaGmGa i) = 0
When ?:1 # j}, .

Hence, using antisymmetry of &,, the first term can
be calculated as follows:

LS e =1 [ @)@ i)

(n!)2 e 2,000

n—1
2

X ®1(fo, i) = 5@ ()e(1) +
n . n

x [0 e,
where
y=(2,--;m—1)and a = /<I>i"‘1>1.

The sum of the second and third terms is written in
the form

ef(1hoe() + 0*1)e: (1),
where © can be expanded by {¢;}. without ¢y, i.e.,
6 = ;2 Bies -

Total orthogonality of ¢, to &, implies that the last
term can be expanded by products of {¢;}. without
@1, ie. s

ez w0 = 5 verae ).

17 A function ¢ of p particles is said to be totally orthogonal
to a function ¥ of ¢ particles (with p < ¢), if

fl,.,pﬁo*(ly- cap)¥(1,. P, ,q) =0

TSUYOSHI ANDO

Since the ¢, are eigenfunctions of D, it follows that

/gaikDgal = A\ and /gai"Dgai =00{=1).
Substituting the decomposition, we obtain

M =oa/nand O(1) =0.

Normalizing &, i.e., putting ¥, = &;/a?, we obtain

the result
D(1"51) = Mt (1)@ (1) + (n — )ADy, (1751)
-+ /d)é‘(l’,x)%(l,x) .

Since by (2)

/ID(I;I) = [Dw‘(l;l) =1,

it follows that

)\1—}—(n—1))\1+f<193‘<1>2=1.

Hence normalizing &,, i.e., putting
v, = (1 - ’/I,)\1)_%CI>2 when 1 — nh # 0

we attain a decomposition of D. Incidentally, notice
that the condition ©(1) = 0 is equivalent to total
orthogonality of ¥; to ¥,. Summarizing, we have

Lemma 1. The first-order density matrix D of ¥ can
be decomposed into the following form:

D = )\1&01“@1 + (n —_ 1)>\1D\I/, + (1 —_ n)\l)l)\[,:2 s (11)

where ¥; and ¥, are normalized antisymmetric func-
tions of (n — 1) particles and of n particles, respec-
tively. Moreover, ¢, ¥;, and ¥, are totally orthog-
onal to one another.

This decomposition was first shown by Coleman?*
in a slightly different way. While he says that this
gives a double induction algorithm for the reproduc-
tion problem of the first order, there is no way to de-
termine ¥; and ¥, in terms of D alone, and so we can
not agree with him.

We need another lemma in order to give effective
applications of Lemma 1.

Lemma 2. In the decomposition (11), if D¢ _has an
eigenfunction ¢ belonging to the eigenvalue 1/(n
— 1), it is also a natural orbital of ¥ belonging to the
eigenvalue \;, and is totally orthogonal to ¥. when
1 —nh #0.

This can be seen as follows: since A, is the greatest
eigenvalue of D and the kernel (1 — n\;)Dy, is non-
negative definite,



FERMION DENSITY MATRICES

M > /go*Dcp > ?\1‘ /goik(p]Z + (n — 1)\ f<P*D\y,€0

+ (1 —nN) _/¢*D«1,«> > =1\ fw*pr

=\ 3
hence it follows that

/qa*DqD = N and (1 — n\) /¢*D\1,Z<p =0.

The former relation implies that ¢ is the eigenfunc-
tion of D belonging to the greatest eigenvalue \; by
the variation principle (Sec. X3), and the latter
shows the total orthogonality of ¢ to ¥,.

Now we turn to the reproduction problem of the
first order. Let a nonnegative definite kernal E(1’;1)
be given with the eigenfunctions {y;} belonging to
the eigenvalues {y;}. By Theorem 5 a standard neces-
sary condition for the reproduction problem is

Doui=1and0 < p; < 1/n.
i=1

If, in addition to this, each u; is degenerate with
multiplicity divisible by n, i.e.,

ME-1)ntl = ME-ny2 = *°° = I-tkn(k = 1,2,' . ) 3
then there exists a normalized antisymmetric func-
tion ¥ whose first-order density matrix coincides
with E. In fact, denoting by ¥, the Slater determinant
constructed from ¥ —1yns1," - -, ¥ the function ¥ de-
fined by

¥ = ij [t i-yn 1]
meets the requirement. It must be remarked that any
function of the form
chl ak[nﬂ(k_l)n—rl]%\lfk with lOlk[ =1
also meets the requirement. This means that, even in
case the reproduction is possible, the solution is not
always essentially unique.

In the case n = 2, the above degeneracy condition
is also necessary. The following theorem is due to
Coleman.’

Theorem 9. In the case n = 2, each first-order
eigenvalue is evenly degenerate.

For in the decomposition (11) n = 2 implies that
¥, is a function of a single particle, so Dy, is Vi
hence by Lemma 2 ), is, at least, doubly degenerate
and ¥, is totally orthogonal to ¥.. Then all eigen-
functions of Dy, are also eigenfunctions of D and we
can proceed inductively with Dy, and so on.

This theorem shows that the rank of a function of
two particles is always an even number, so the condi-
tion (8) alone is not sufficient for the reproduction
problem.
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The condition (8) implies that the rank of E is not
smaller than n. Once it is equal to n, by Theorem 3 a
solution, in fact an essentially unique solution, to the
reproduction problem is given by the Slater de-
terminant constructed from the eigenfunctions.

The next step is to study the case of rank n + 1,
but, as is shown in the following theorem, this case
can not oceur. Theorem 10 was proved by Coleman®
and by Foldy®"® and by others by a different method.

Theorem 10. The rank of any normalized antisym-
metric function of n particles can not be equal to
n + 1.

This can be proved by induction with respect to =.
When n = 1, the assertion is quite trivial because the
rank is always equal to 1. Assume that the assertion
is valid for any normalized antisymmetric function
of (n — 1) particles. Let ¥ be a normalized antisym-
metric function of n particles with rank n + 1. In the
decomposition (11) of the first-order density matrix
of ¥, ¥, is a normalized antisymmetric function of
(n — 1) particles with rank not greater than (n + 1)
— 1= (n — 1) + 1; s0 by the induction assumption
forn — 1, its rank is equal to n — 1 and it is a Slater
determinant constructed from orthonormal orbitals,
say ¥z, ¥s, - * -, ¥a, €ach of which is totally orthogonal
to ¥; by Lemma 2 when 1 — n)\; # 0. On the other
hand, if 1 — n\ # 0, from the construction in the
proof of Lemma 1 it is easily seen that the range® of
¥, must be spanned by ¥», ¥s,- - -, ¥» and one more
additional orbital, say Y.+, leading to a contradiction
to total orthogonality of ¥; to ¥, in case n > 1. Thus
1 — n\; must be equal to 0, and then, in turn, ¥ it-
self is a Slater determinant and has rank n, contra-
dicting the assumption. This means that ¥ can never
have rank n 4 1.

The next simplest step is a study of functions with
rank n + 2. This case is divided into two according
to whether 7 is even or odd, as is seen in the follow-
ing theorem which was proved by Coleman® in a
slightly incorrect form.

Theorem 11. If the rank of ¥ is n 4 2, then

(i) in the case where n is odd, A\; = 1/n and each
of the remaining eigenvalues is evenly degenerate,

(i) in the case where n is even, each eigenvalue is
evenly degenerate.

The assertion is obviously valid forn = 1 or = 2 by
Theorem 9. Assume that the assertion is valid for all
functions of particles less than n. For general n we
start with the decomposition (11)

D = )\1§0ik¢1 + (n —_ 1)X1D\111 + (1 - n)\l)D\h .

18 Foldy’s proof seems to be wrong.
19 The range of ¥3 is the set of all linear combinations of its
natural orbitals belonging to nonzero eigenvalues.
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(I) The case \; = 1/n, i.e., when the third term
vanishes. Let Y1, - -, a1 be the eigenfunctionsof Dy,
belonging to the eigenvalues {p;}, respectively, then
total orthogonality of ¢, to ¥, implies that each ¢; is
an eigenfunction of D belonging to the eigenvalue
Niwi = (m — 1)p;/n. When nis odd, n — 1is even and
¥; has rank not greater than n 4+ 1. Hence by induc-
tion assumption for n — 1, each p;, a fortiori N4, is
evenly degenerate, and (i) follows. The proof for even
n is similar.

(IT) The case \i ¥ 1/n. Then by Theorem 10 ¥,
is a Slater determinant, because its rank is not greater
than n + 1. Let ¢4, ¥, - - -, ¥ be the eigenfunctions of
Dy, then

n

(—1)""g;(1)

=1

X Det {¢4(2),- - Yia (D5 (G + 1) - - -du(n)}

Since the range of ¥, must be spanned by ¢, ¥, - -,
Y., and one more additional orbital, say ¥u+1, ¥: can
be represented by a linear combination of Slater de-
terminants constructed from all (n — 1) orbitals
chosen from i, ¥, - - -, Yusr, that is,

¥, (17 cen = 1) = Z ’Yix"'in~1Det {‘pil) o '7¢in_1} )

1
‘I/2=E

where 1 < 4 <--- <% < n + 1. Total orthogo-
nality of ¥; to ¥, implies

/ v (21 - '7”)‘1/2(1;2)' : ')n)
2,000 m

= n!% 2 ("‘1)jH’71...j_1,j+1,nll/j(1) = 0 .
=
Since {y;} are linearly independent, this relation
yields that all v4,,,,;-1,+1.,» are equal to 0, hence

¥ = Z, Yiyiy_a Det {31’1':: T 'y‘)bin_l} ’

where >/ means the summation over all the con-
figurations with 7., = n + 1. Then, by Theorem 2,
Y41 18 @ natural orbital of Dg: belonging to the eigen-
value 1/(n — 1) so by Lemma 2 it is also a natural or-
bital of ¥ itself belonging to A\:. Thus A; is, at least,
doubly degenerate. Applying again the decomposi-
tion (11) to the density matrix Dy of ¥, with ¢»

= ¢n+1,
Dy, = (n — 1)7o¥ez + [(n — 2)/(n — 1)]De,

where ® is a normalized antisymmetric function of
(n — 2) particles with rank n. If ¢3, @4, -+, @uia de-
note the eigenfunctions of Ds belonging to the eigen-
values {p;}3%?, respectively, {¢1, -, ¥»} and {es,
@i, -+, ¢urs) span the same subspace, hence the
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density matrix Dy, can be written in the form

n+2

1
Dy, = = 2 o¥e; .
n 5=
Hence we can write

D= >\1<Pfk€01 + )\199;;902
n+2
1 —n)
+ z_; {(n = 2)\p; + ’—n-—l}sﬁfw .

When 7 is even, n — 2 is also even and, by induction
assumption for n — 2, each p; is evenly degenerate.
Consequently, each eigenvalue of D is evenly de-
generate. When n is odd, » — 2 is also odd. Hence,
by induction assumption for n — 2, the greatest p; is
equal to (n — 2)™*. Then by a calculation it is seen
that ¢; is an eigenfunction belonging to the eigen-
value \; 4+ [(1 — n\:)/n] which is strictly greater than
M\, contradicting the maximality of A;. This shows
that, in the case where n is odd, A\; must be equal to
1/n.

The foregoing considerations culminate in the fol-
lowing reproduction theorem.

Theorem 12. In order that, given a nonnegative
definite kernel E(1’;1) with rank not greater than
n + 2, there exist a normalized antisymmetric func-
tion of n particles whose first-order density matrix
coincides with E(1’;1), it is necessary and sufficient
that

>w=1and0 <y < 1/n,
J=1

where {u;} are the eigenvalues of E, and

(1) in the case where n is odd, the greatest eigen-
value is equal to 1/n and each of the remaining
eigenvalue is evenly degenerate,

(ii) in the case where = is even, each eigenvalue is
evenly degenerate.

The first condition implies that the rank is not
smaller than 7, and the condition on degeneracy ex-
cludes n 4+ 1. Thus, there only remains the proof of
the sufficiency for rank n + 2. Whenn = 1 or = 2,
the assertion is obviously true. Assume that the as-
sertion is valid for all the cases with functions of not
more than n — 1 particles. Let {¢,} be the eigen-
functions of E belonging to the eigenvalues {u;} in
non-increasing order, respectively.

(I) In the case where n is odd, by (i), E can be
written in the form
n+1

Z Pi‘[’;‘k ‘ia )
J=1

n—1

1
E = ; gbik v+
where

o = TVpk; 41
o —1"
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Then
pei = po; < (n — 1) and D p; = 1.
J=1

Thus {p,;} satisfy the conditions in Theorem 12 for
n — 1; hence, by induction there exists a normalized
antisymmetric function ®; of (n — 1) particles whose
first-order density matrix coincides with

n+1

; pj‘)b;k*rll//fﬂ .
Then, finally, the function ¥ of n particles defined by
¥ = n'Ag ()& (2, - - n)

meets the requirement.
(IT) In the case where n is even, E can be written
in the form

E = Ml\l/;klh + ,Uﬂ//éklpz

n 1 _ .
+ Z {(n — 2)”191‘ + _"';%}‘pﬁz“hw,
where
pize = (0 — 2)up; + [(1 — nw)/n]lj = 1,2,---n.
Since

nﬂl+2ﬂn+2>ﬂl+u2+ cee +“n+2= 1,
it follows that

Pn = [(n - 2)#1]4{#1 + Mny2 — %} 0.

\%

Hence,
0<p < (n—2)7"

and, similarly,

p2i—1 = pe; and Z p; =1.
j=1

Thus {p;}7 satisfy all the conditions for n — 2; hence,
by induction there exists a normalized antisymmetric
function &; of (»n — 2) particles whose first-order
density matrix coincides with

n

Z Pj‘:bj*wtl/a‘ +2 -

=1

Denoting by &, the Slater determinant constructed
from {¥;}572, we can easily verify that the function ¥
of n particles defined by

¥ = n(n — DA (¢ 2)8:(3,- - ,n)
+ (1 - nm)%fbg(l,' -em)

meets the requirement.
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VII. APPROXIMATION BY A SLATER DETERMINANT

Given a normalized antisymmetric function ¥ of n
particles, to what degree can it be approximated by a
Slater determinant or by a Hartree product? Since
an exact evaluation cannot be given in a simple
formula, in this section, a reasonable lower bound is
given in terms of the first-order eigenvalues.

For this purpose let us begin with an important
general theorem which was originally proved by
Loéwdin and Shull® in the case where n = 2 and by
Coleman® in the general form. Qur proof, however,
differs from theirs.

Theorem 132° Given p and k, when & varies over
all the functions of the form

CP(L "7n) = ;l//](l,,p)‘lf,(p + 17"')”’) )

where {y,}¥ and {¥,}} are arbitrary functions of p
particles and (n — p) particles, respectively. Then

k
min/|\I/—<I>[2=l— DN,
@ j=1

where A, Ne,-+:, N are the k greatest pth-order
eigenvalues. The minimum value is attained when
each ; is the natural p state belonging to \; and each
V; is the (nonnormalized) natural (n — p) state
given by

\I,J(p + 1)' ";n) = /¢T(1;yp)\ll(1:7p))n) .

First of all, let {¢;} be the natural p states belonging
to {\;}; then by Theorem 4

V(xy) = ]ZI: 0 (2)®;(y) ,
where
®,(y) = / of (@)Y (2,y)

with abbreviationsz = (1,2,--+,p) and y = (p + 1,
-+, n). Hence,

[ e - T e@nwr
-[1 S ewewr= % [iap

This means that the minimum in question is not
greater than
k
L— 2N,
j=1

20 A general theorem of this type was recently obtained by
Mirsky.?
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Now, let
P(z,y) = ,‘;‘1 ¥i(2)¥;(y)

with arbitrary {¢,(z)} and {¥;(y)}. Then there exists
an orthonormal system of p particles i1, Yiiz,- - -

"such that they constitute a complete orthonormal
system together with Schmidt’s orthonormalization
(Sec. X2) x1, X2, -+, x& Of ¥n, ¥s,- -+, ¥u. Hence, in
particular,

) . .7= Doenn
/;sbjk(‘,l/)k&’vﬁ'l(x) - O /l: — 1}2,. ..

Taking into account the fact that
f @ (@, )t ()

by Schmidt’s theorem (Sec. X6), we find that
fiv -t =3 [1[ wen - 2P
+ Z/ f (¥(@y) — 2@ @)|’
=2 f VIDY,; .

> 3 [1 [eepprer

On the other hand,

> [xnx+ X Jonw = [ =1

hence by Fan Ky’s theorem (Sec. X3)
k

fw, m—l—fo] Dpxy > 1= 2\

When combined with the preceding result, this yields
that the minimum in questionis equal to 1 — > % A;
and is attained by the optimal function Y k., ¢;(x)
X 2;(y).

In general, denoting by &’ the normalization of &
in Theorem 13, it is easily seen from the scaling
Lemma (Sec. X5) that

J= le

min /]\If — ®|° = min min /|\I/ — ad®'|?
@ ® a

= min {1 — /\I/*<I>’|2} =1 — max | /’\I/”‘<I>'|2
@ P

and*
Jre-

21 Without loss of generality we may assume
v = |[v*e| .

-2 2|/\p*q>1
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Hence, it follows that

min/[\I/ — @[
o]

=2{1— (1—min/|\1’—<1>|2>>
P

and the minimum is attained at the normalization of
the optimal function in Theorem 13. Summarizing,
we have

Theorem 14. Given p and k, when &’ varies over all
normalized functions of the form

j; ‘/’f (x)\I/J (y) ’

where {¢;} and {¥;} are arbitrary functions of p
particles and of (n — p) particles, respectively. Then

Igi,n/hll - = 2{1 - (ix)}

j=1

' (2,y) =

and the minimum is attained when &’ is the normal-
ization of the optimal function in Theorem 10.

Now we turn to the promised approximation prob-
lem. Since a Slater determinant &’ is written in the
form

&1, ) = ;;wja)%(z,m,n),

on taking p = 1 and & = n in Theorems 13 and 14,

we have
Theorem 15. For every Slater determinant &’

f[w—¢’{2>2{1 - (;x,)}

and for every (not necessarily normalized) Slater de-

terminant &
flq’—fbl2>1— 2N
=1

Finally, we treat approximation by a Hartree
product of the form ¢ (1)$2(2) - - -¥u(n), where ¢; are
normalized orbitals but not necessarily orthogonal.
Let {x;}? be the Schmidt’s orthonormalization of
{¥;17 (Sec. X2), then

= flwr =1,

= ; i Xi
= Det {ai;} X Det {xi,- -

[aw[
and

Det {\bly‘p’;' : ':¢ﬂ}

Then, by Hadamard’s well-known inequality,

| Det {ais}|* < H{ Z!aul}

Xl -
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Since ¥ is antisymmetric, i.e., A,¥ = ¥,
[ = 6 00:@) )P > 2 — 2

| (246 (@) - gu())]

It

Q—meAWﬁ%~%WN
—2— 5—‘ | /\1/* Det {¢1,¥n, - ¥a}|

2
2 2 — m/\ll*‘ Det {th%' : ',Xn} )

where we have assumed that, with suitable choice of
a phase factor,

/\I/* Det {Xl,"',Xn} = ‘/\II* Det {le"'y)(n}] .

On the other hand, by Theorem 15

2 f
2 — ; | ¥* Det {x1,7 )%
(n1)* i Xn}

— [ = o) Det 1x- 0]
>%1~<ZM>}
=1
Hence, combined with the above, it follows that
/|‘I’ — Yy “//nlz > 2{1 - <Z )\j/n!> } .
j=1

We can treat nonnormalized Hartree products in
quite a similar way.

Theorem 16. For every set of n normalized orbitals

¢/{7 ‘l/éy ) '7,/;;

ﬁw_w%uwf>%1“<;MM0?

and for every (not necessarily normalized) set of »
orbitals i, ¥, -+, ¢,

ﬂ?—%%~mﬁ>1-<§xm0.

VIII. OPTIMAL NUMBER OF CONFIGURATIONS

2

How many Slater determinants are necessary to
represent a normalized antisymmetric function ¥ of
n particles, when its rank is not greater than r? The
problem of this type was proposed by Foldy® in con-
nection with the fact that the rank of D can never be
equal to » + 1. Obviously by Theorem 1, (;) Slater
determinants will do; however, in practice, neglect-
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ing orthogonality between Slater determinants, the
optimal number will considerably decrease. Here we
take up some simple cases.

Theorem 17. If the rank of ¥ is not greater than
n + 2, it can be represented as a linear combination
of, at most, k Slater determinants where

k= (m++1)/2 whennisodd
or
k= (n/2) +1 whenniseven.

Proof by induction. When n = 1, the assertion is
obvious. Assume that the assertion is valid for the
case of functions of not more than n — 1 particles. If
the rank of ¥ is equal to n + 2 and » is odd, by
Theorem 12 ¥ can be written in the form

v = n%Anxh(l)‘Ih 2,---n),

where &, is a normalized antisymmetric function of
(n — 1) particles with rank n + 1; hence, by induc-
tion &; can be written as a linear combination of, at
most, (n — 1)/2 4 1 Slater determinants of (n — 1)
particles. Consequently, ¥ itself can be represented
as a linear combination of, at most, (n + 1)/2 Slater
determinants. The proof for the case of even n is
quite similar.

IX. PERTURBATION OF EIGENVALUES

Let ¥ and & be two normalized antisymmetric
functions of n particles with their pth-order eigen-
values {\;} and {u;}, respectively. It is clear that, as
& approaches ¥, ie., the quadratic deviation
[|% — ®[* approaches 0, each y; approaches ;. In
this section a reasonable estimate of degree of simul-
taneous convergence is given in terms of fi\If — 2
Let us start with an easier problem.

Theorem 18. Given an arbitrary complete ortho-
normal system { ©,} of p particles, with the abbrevia-
tion

a; = /epo,\yej

g = fe?‘Dp,cbej

it follows that

EIaj—ﬁsz{/l\v—@!z} :
=1

Consider the projection operator P; defined by the
kernel 6*(z’) ©;(x); then orthogonality of {©,} im-
plies that for any choice ¢, = 1 or —1 and for any
normalized function ¢ of p particles
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l

> eiej/(Pnﬁ)*(Pﬂ//)

ij=1

;f/ez‘-‘~ i2=/lw|2=1.

The last equation follows from the Parseval relation
(Sec. X1). Then by the variation principle (Sec. X3)
combined with the definition of norm, this is equiva-~
lent to the statement that the operator norm? of
> i1 &P; is not greater than 1. Now «; and B; can
be written in terms of P;

a; = Trace (D, v -P))
B; = Trace (D, P;) .

Since both «; and B; are real, for some choice e;
=1lor —1

la; — Bil = &{ Trace (D¢ -P,;) — Trace (D,,s-P,)}.

/1 Zéjpﬂpiz

I

hence,

2 las = B
= Trace {(Dp,‘ll — D, s)- (Z f;'R‘)} .

j=1

By an inequality (Sec. X6) the last term is bounded
from above by the trace norm of (D,y — D,s), be-
cause the operator norm of > ;.; ¢P; is not greater
than 1 as shown above. Thus there remains the prob-
lem of estimating the trace norm of (D, v — D,.s).
Since

trace norm (D, v — D,.s)

< trace norm I'; 4+ trace norm I,
where

Ii('5w) = /y (W (@' y) — o* @' )} ¥ (z,y)

and

I (2" 2) = /yé*(x’,y){\l'(w,y) — ®(z,y)},

and by an inequality (Sec. X6)

trace norm of T,

<{ S = wrf{ forf
S -}

trace norm of T'; < {/|\I/ — @}2} ,

and similarly

the assertion follows.
In the above theorem {6;} are taken common in

22 Various definitions in this section are found in Sec. X6.
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making both «; and 8;. Now consider the deviation
of pth-order eigenvalues of ® from those of ¥. Taking
the natural p states {¢;} and {¢;} of ¥ and &, re-
spectively, we can write their pth-order eigenvalues
in the form

A= /GD?‘Dp,w%

M = / VED, s, .

In general, {¢,;} differ from {¢;}, so we have to use

another method in order to obtain the estimate.
Theorem 19. When {\;} and {u,} are the pth-order

eigenvalues of ¥ and &, respectively, then

2 N =l < 2{/1‘1’ - ‘I’|2}
=

Since the generalized Wielandt’s theorem (Sec.
X7) implies

Z{ N — w| < tracenorm (D, v — Dys) ,
=

L
E

the assertion follows just as in the preceding theorem.

X. APPENDIXES

1. Expansion

Given a complete orthonormal system {y,(x)},
every function ¥(z) can be expanded

¥ = Z a;,

where

o = [re@ve

and the following Parseval relation holds

> el = [l

If the system is not complete, Bessel’s inequality takes
the place of Parseval relation:

T el < [,

2. Schmidt’s Orthonormalization

Given a linearly independent system o1, s, - -, ¢,
there exists an orthonormal system xi, xs,- - -, x& such
that each ¢; is a linear combination of {x;} and con-
versely each x;, is a linear combination of {¢;}. The
system {x;} is called Schmidt’s orthonormalization of

{ ‘Pj} .
3. Variational Theorems

Let E(2’;x) be a nonnegative definite kernel with
the eigenvalues {A;} in non-increasing order. The
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most well-known variational theorem reads

f e*Eeo < M

for every normalized ¢. Once the equality holds for
some ¥, that ¥ is an eigenfunction belonging to A;.

Another important inequality of this type is due to
Fan Ky.»

For every I orthonormal functions yi, s, - -

Z Jormy, < Z A

i=

] "l/k’

The proof proceeds as follows. Expanding each ¢,
by the eigenfunctions {¢;} of E

= ; aije; With a; = /‘Pﬁlli )
we have
k k
;/‘/’TE‘I’ Z: ; uazl/<P;kE‘pl
k k
= Z Z afaah /‘P;F‘Pl = Z Z |0‘il]2)‘l
i=1 I=1

=1 j,l=1
because ¢; is the eigenfunction of E belonging to A,

and is orthogonal to ¢, when j # 1. Since N; > M > N
asj < k < I, from the Parseval relation it follows that

Z / YIEY,

k-1 ok 3
< !cm[ N + )\L{Z Z [au‘ }
=1 i=1 I=k 1=1
r-1 J/ k k-1 k&
= 20\ 2 fea] } + MYk = 20 20 Jaal®
= i=1 =1 i=1

B
T

= (Al - )\Ic){z |Olu|2} + ke

< o

=1

I3
- )\k) + ]C)\k = Z)\z
=1

because Bessel’s inequality (Sec. X1) for the ortho-
normal system {y;} implies

k
3 lal < [l -
=1

4. Generalized Schwartz’s Inequality

If an operator H is nonnegative definite, for every
(not necessarily normalized) function ¢ and ¥

l f ¢Hy|* < { f w*Hw}{ / w*Hw} :

2 Fan Ky, Proc. Natl. Acad. Sci. U. 8. 37, 760 (1951).
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= I (the identity operator)

vl < fler 1o

The proof proceeds as follows. On putting

In particular, when H

Az/‘P*HSO; B:/¢*H¢; C=/‘P*H¢
and —C*/B,

nonnegative definiteness implies

o+ gy H( + ag) >0
that is,
A+ |a?B + aC + o*C* > 0
and substitution of « yields
A-B> |CP
5. Scaling

Given two normalized functions ¥ and &,

- %/\P*@iz,

where « varies over all complex numbers.
In fact, since

/I\If—a<I>{2=1+Ia[2—2Re|:af‘I/*<I>J,

with « = Be? and 0 such that

e’ fq/*qa = |/\I/*<I>|,

it follows that

Jlw - aof =1+ 15 — 2/ [wa] x Re (5)

Thus, to obtain the minimum in question, it suffices
to make 8 vary over all real numbers; consequently,
the problem is reduced to an elementary calculation
of a real quadratic function, and the minimum is at-
tained at 8 = |[¥*3|.

min /[\I/ — ad|® =
[24

6. Norms of an Operator*

It is sometimes convenient to introduce several
kinds of norms for a linear operator. Let G(2’;x) be a
general integral kernel and let {\;} be the eigenvalues
of the (nonnegative definite) composite kernel

H(' ) = f G*('5y)G (z3) -

24 For the detailed exposition, see R. Schatten, Norm Ideals
of Completely Continuous Operators, Vol. 27, Chaps II-111,
in Ergebnisse der Mathematisch (Sprmger—Verlag, Berhn,
1960).
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Then the norms of G are defined by the following
formulas:

Operator norm : ||G||. = ()}

{z)"

PIRCHLE

J=1

Schmidt norm : ||G||:
DGl =

Trace norm

The inequalities used in this note are the following:
For every kernel G

|trace G| < trace norm G .

Given another kernel F(z;y), define the composite
kernel

L('x) = /ﬂ F(",y)G(z,y) ;
then L] < [[F[[]|G[2
[L]: < |[F][«||G]]: and [[L]]: < [[F|[:||G]]« -

The Schmidt norm is conveniently evaluated. In fact,
it is easily seen that

/ G ) = 220N
z,z =1
Moreover, for an arbitrary complete orthonormal

system {y;}, the following (Schmidt’s theorem) is
valid
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> [ewmuer = ewmr.

This can be proved by expanding G(z’;z), as a func-
tion of «’, in terms of {¥;(2”)} and then applying the
Parseval relation.

7. Wielandt’s Inequality

Given two N X N Hermitian matrices A and B
with eigenvalues {A\;} and {u;} in non-increasing
order, respectively, Wielandt’s theorem?® reads

N N
; ]7\1 - .u'fl < ]z:; Ip;'| )

where {p,} are the eigenvalues of A — B. This can be
modified for the integral kernels.

Let F and G be two nonnegative definite kernels
with the eigenvalues {\;} and {g;}, respectively; then

>IN — w| < trace norm (F — G) .
=1
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1. INTRODUCTION

HE basic problem in the current quantum theory
of matter is the solution of the many-particle
problem connected with the Schrodinger equation
3¢V = EY for the stationary states. For atomic, mo-
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Fund for Swedish Culture, Knut and Alice Wallenberg’s
Foundation, The Swedish Natural Science Research Counecil,
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lecular, and solid-state systems, the problem is simple
in the sense that the Hamiltonian is assumed to be at
least approximately known, whereas for nucleonic
systems the interaction potentials are still not de-
termined. Here we concentrate essentially on the gen-
eral features of many-particle systems having a
Hamiltonian of the form:

ICop = chi_l_ Zﬂ&j—*— ‘Zkgcijk"i" e (1)

In the theoretical interpretation of the experi-
mental data for electronic systems, the so-called “in-



