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&HIS paper reports an investigation of basic prop-
erties of Fermion density matrices which, intro-

duced by Dirac' and extensively studied by Lowdin, '
have revealed ever growing importance in quantum
chemistry. Though the second-order density matrices
play the most important role in connection with en-

ergy determination of many electron systems, com-
pared with the first-order ones, there is a great deal
of difhculty to be overcome and no result of definite
importance has yet been obtained. This paper con-
tains an advanced study of properties of the 6rst-
order density matrices and the general properties of
higher-order ones. As to physical interpretations, in-
terested readers may consult ter Haar's monograph. '
In preparing this paper, the author was greatly in-
spired by Coleman's excellent papers" to which
about half of the results in this paper belong.

In Sec. II definitions and special notations used in
what follows are collected. It should be remarked that
our definitions of density matrices differ from those
in Lowdin' by scalars. Section III contains some
well-known properties of density matrices which
make cornerstones for the later sections. Section IV

D, (x';x) = D„(1',2', ,p';1,2, ,p)

p+1 ~ ~ ~

@*(x',p + 1, ,n)@(x,p + l, ,n),

6 P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
7 L. Mirsky, Quart. J. Math. 11, 50 (1960).
8 L. L. Foldy, J. Math. Phys. 3, 531 (1962).

gives upper bounds for higher-order eigenvalues.
While the basic inequality (Theorem 5) was proved
by Coleman, ' we present another proof. Theorem 6
seems new. One of the interesting problems in density
matrix theory, from mathematical standpoints, is the
reproduction problem; that is, to ask, given a non-
negative definite kernel, under what conditions it can
coincide with the pth-order density matrix of a nor-
malized antisymmetric function of n particles. The
complete solution to this problem has not yet been
settled. Section V reveals some difficult aspects in the
reproduction problem even in a modified form. Sec-
tion VI is completely devoted to the solution of the
reproduction problem under severe restriction on
rank. An interesting property on degeneracy is stated
in Theorem 11, which was proved in slightly incor-
rect form by Coleman' with tensor calculus. A cor-
rect formulation with a proof is given here. Theorem
12 seems new. Section VII has the aim of answering
the question of the best approximation of a,n arbi-
tra, ry function by a Slater determinant. The basic
Theorem 13 is essentially due to Lowdin and Shull'
and the generalized form presented here was an-
nounced by Coleman' without proof. Our proof is
Hilbert-theoretic and is essentially the same as
Mirsky's. ' Theorems 14 and 15 are stated in this
paper for the first time. Section VIII answers the
question raised by Foldy' concerning the minimum
number of configurations. Theorem 17 seems new.
Section Ix contains entirely new results concerning
the estimate of the deviation of eigenvalues. Finally,
in Section X, most inequalities used in the paper are
given simple proofs. However, because of limita, tion
of space, we can not produce all.

II. DEFINITIONS AND NOTATION

When + is a normalized antisymmetric function of
n particles, its pth-order density matrix is defined by
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FERMION DENSITY MATRICES 691

where i stands for the spin-orbital coordinate of the
ith particle and x for (1,2, ,p). When special ref-
erence to 0 is necessary, we write D„,+ instead of D„.
Sometimes D& is simply denoted by D. D,(x';x) can
be regarded as the kernel of an integral operator, and
its basic properties are deduced from the following:
(nonnegati ue defi, ni teness)

pD„+~~0

(normalization)

for every function q

of p particles, (2)

D„(x;x) = 1,

(antisymmetry)

A„D„= D„A, = D„, (4)

D„(x';x) = D,,r(x', p+ 1;x,p+ 1) . (5)
p+1

If we denote by I X,}'the eigenvalues of D„and by
the normalized eigenfunctions belonging to

them, respectively, D„can be represented in the form

D„(x';x) = Q X,(p,*(x')q, (x) . (6)

I X, } and Ip, } are called the pth order eigenualues and
the natural p states of +, respectively. Natural 1 states
are specially referred to as naturaE orbitaZ8. The num-
ber of nonzero ),; is called the p rank of %' and the 1
rank is simply referred to as its rank. The properties
(2) and (3) are converted into the following:

Q'h, = 1and0 ~(X, . (7)
j=l

For two norma, lized functions y,P of p particles, the
values

are called the p density of + on y and the p bond of4'
between p and it. The p density on the natural p state
q; is clearly equal to the pth-order eigenvalue X,.

III. CLASSICAL RESULTS

Here we collect basic well-known results, without
proof, which are used freely in the later development.

s Unless the contrary is mentioned, {X,! are always ar-
ranged in nonincreasing order, i.e., )1 & P2 ) . . . , repeated
with their respective multiplicities.

where A„ is the projection operator on the antisym-
metric part, i.e.,

~. —= (1/p!) Z( —1) P,
where P runs over all permutations of 1,2, ,p. D,
can be obtained from D„+& by the formula

Most proofs can be found in Lowdin. '
4 always denotes a normalized antisymmetric func-

tion of n particles.
Theorem 1. Given an arbitrary complete ortho-

normal system Ilt;} of orbitals, "4 can be expanded
as an (infinite) linear combination of Slater deter-
minants constructed from IP, }.When the rank of + is
finite, say r, and Iq&, }," are its natural orbitals belong-
ing to nonzero eigenvalues, 4' can be expanded as a
linear combination of Slater determinants con-
structed only from t&p, };.

This is fairly well known and easily verified.
Theorem 8. For every Slater determinant &p of p

particles,

p'( p) '
Dq u„q n.

In particular, in case p = 1, any 1 density is not
greater than 1/n and if it is equal to 1/n on some or-
bital P, then it is one of the natural orbitals and @is
written as a linear combination of slater deter-
minants all of which contain f as a component.

While this was explicitly mentioned by I owdin, '
the case p = 1 had been obtained by Watanabe. "

The only antisymmetric function whose natural
states of all order can be .easily determined is a Slater
determinant.

Theorem 8. If + is a Slater determinant with com-
ponents y1, y2, . , q„, then its natural p states con-
sist of all Slater determinants of p particles with com-
ponents q;, pi, . -, q;„, where 1 ~& i1 & i2 & ~ ~ &i„
~& n, and the corresponding eigenvalues are all equal
to p!(n —p)!/n!. In particular, in case p = 1, the
natural orbitals consist of q», A, , p. with the equal
eigenvalue 1/n.

The final result has been more or less known; how-

ever, in connection with density matrix theory it was
first pointed out by Carlson and Keller" and by Cole-
man. 4 The proof is straightforward.

Theorem $. For the natural p state ip, belonging to
a pth order-eigenvalue );, the function C; of (n —p)
particles de6ned by

C, (p+ 1, ,n)

] o ~ o p + 1 o ~ o p p ] o ~ o n
&) "~u

is the (not necessarily normalized) natural (n —p)
state belonging to an (n —p)th-order eigenvalue
equal to );, and

o'= Qy,"c, .
j=l

~0 An orbital is a function of a single particle.
ii 8. Watanahe, Z. Physik 113, 482 (1989).
~2B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659

(1961).
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D, (x';x) = D,i)(x',p + 1;x,p + 1)

IV. UPPER BOUNDS OF HIGHER-ORDER
EIGENVALUES

From Theorem 2 combined with Theorem 4 with

p = 1 it follows that every (n —1)th-order eigen-
value is not greater than 1/n. Now let Ig, } be the
natural (p + 1) states of a normalized antisymmetric
function + of n particles, then by (5) and (6) the
pth-order density matrix can be expressed

Theorem, 6. If either

s(1 p) = Z~A (» p)
j=l

e(1 p n) = /Pe(12 . n)

where If, }f and {4',}f are mutually orthogonal Slater
determinants of p particles and n particles, respec-
tively, then

= z ~ f 4'"(~'u+*&)A, (*z+ -),
j=1 p+1

where t p,;}are the (p + 1)th order eigenvalues. Since
each f, is a normalized antisymmetric function of

(p + 1) particles a,nd

As the proofs to both cases are quite similar, we con-
fi.ne ourselves to the erst case. Since the kernel D„ is
nonnegative definite, by the generalized Schwartz's
inequality (Sec. X4) and Theorem 2

,*x'p 1, xp 1
@+1

is its pth-order density matrix, it follows from the
above remark with p + 1 instead of n that for every
normalized function y of p particles

Hence

O'DA ~& ~t *DA

p!(& —p)!
n.

0*'DA'

~*( x)W*( 'x, p+1)0 (x,p+1)s(x') &
p+1 p 1'

hence

= g p; q*(x)P,*(x',p + l)P; (x,p + 1)p(x')

p& 1

;=i p+ 1 p+ 1'
because g;=& p; = 1 by (7). This means that every p
density of 4 is not greater than 1/(p + 1). On the
other hand, by Theorem 4 each pth order eigenvalue
is equal to one of the (n —p)th order eigenvalues
which are not greater than 1/(n —p + 1) for the
same reason. Since the greatest p density is equal to
the greatest pth-order eigenvalue by the variation
principle (Sec. X3), we have

Theorem G." Every pth-order eigenvalue is not
greater than

min I1/(p+ 1), 1/(n —p+ 1)} .
When either + or y can be represented as a linear

combination of relatively few Slater determinants,
the upper bound for the p density of + on q is suit-
ably improved.

13 It can be proved that, except in the case p = 1 or p= n —1, this upper bound is never attained. See Coleman. 5

Recently F. Sasaki (unpublished communication) has ob-
tained much better upper bounds.

x pl~, l
l~, l

p!(& —p)!
I

p'( —p)' x g I
.I'+ I .I'

n 0 ', j=l 2

x a x (Z I;II*)

~ x p!(~ —p)!
nt

The last equality follows from normalization of q and
orthogonality of IP, };i.e.,

Z l~, l' =

This estimate gives a better upper bound than that
given in Theorem 5 only when k ~( n!/(n —p + 1)!p!.
In the case p = 2, this means fc ~( n/2.

Finally, an estimate for p bonds is given. This also
follows from the generalized Schwartz's inequality
(Sec. X4) just as the above theorem.

Theorem 7.

t p bond between y and P}
~& I p density on &p }i X I p density on p }l

~& min. I1/(p + 1), 1/(n —p + 1) } .

V. DIFFICULTIES IN HIGHER-ORDER PROBLEMS

Given a nonnegative definite kernel E(l', 1) with
eigenfunctions I y, } belonging, respectively, to eigen-
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this problem can be reduced to solving a system of
simultaneous nonlinear equations

ci(cI, = 0 (i w j) (10)

where j g K means tha, t j is contained in the con-

figuration K and K —jmeans the (n —1) configura-
tion with j deleted. Thus, whether any + in question
exists or not depends only on the properties of {ii, }

but not on the eigenfunctions {&p;}.Difliculties arise
mostly from the condition (10) which requires that,
when E is expanded by {(|,}, the off-diagonal terms
must vanish. If we neglect requirement (10) and only

take into account the condition (9), putting p~

the problem is reduced to finding non-

negative solutions of a system of linear equations

This condition means that the 1 density of 4 on each

q; is equal to p;. Recently Kuhn" gave a positive
answer to this modified problem, the proof of which

is too di%.cult to reproduce here.
Th,eorem 8. Given a finite orthonormal system {q, }f

of orbitals and a finite sequence {p, };with the prop-
erty

there exists a normalized antisymmetric function +
of n particles such that

values {p, } which satisfy the condition

g p; = 1 and 0 ~& y; ~& 1/n,
j=l

is there any normalized antisymmetric function 4 of
n particles whose first-order density matrix coincides
with E? Vnfortunately, this is not always the case, as
is seen in Sec. VI. If + is represented, by Theorem 1,
as a linear combination of Slater determinants con-
structed from {q,},i.e.,

0 = Q ex+i(,

case p = 2 by Theorem 5. Given a finite orthonormal

system {P,};of two particles and a finite sequence

{X;}," w'th the p operty

g X, = 1 and 0 ~& X, ~& 1/(n —1),

is there any normalized antisymmetric function 4' of

n particles whose 2 density on f, is equal to X, , i.e.,

The answer, however, is negative. For example, if all

are Slater determinants of two pa, rticles, by
Theorem 2, X, must be not greater than 2/n(n —1).
On the other hand, it is pointed out by Coleman' that
the estimate iii Theorem 5 is the best possible. "This
means that whether {X,} can be a sequence of the 2

densities of a normalized antisymmetric function is

not determined by {X, } alone, but largely depends on

the choice of the orthonormal system {P;}.This
makes the problem much more difficult.

VI. REPRODUCTION PROBLEMS

Given a nonnegative definite kernel E(l', 1), under

what conditions does there exist a normalized anti-
symmetric function of n particles whose first-order

density matrix coincides with E? This problem is

called the reproduction problem of the first order. In
this section the reproduction problem of the first

order is given a complete solution for the kernel with

rank" not greater than n + 2.
For this purpose let us begin with a more detailed

study of the first-order eigenvalues. Let @ be a
normalized function of n particles with the natural
orbitals {y,} belonging to the first-order eigenvalues

{X, },respectively. Then + can be written in the form

4(l, ,n) = A.q»(1) C(2, ,n) + C, (1,2, ,n),
where 41 and c» are antisymmetric functions of

(n —1) particles and of n particles, respectively. In
fact, expanding C as a linear combination of Slater
determinants constructed from {y, }

g ca+ac .

The functions C» and C2 are given, respectively, by

Aq, (1) C(2, ,n) = Q ca+a

P&~~V j = P~ (j = 1,2, , r) .

i4 H. W. Kuhn, Proc. Symp. Appl. Math. 10, 141 (1960).

Can we extend this result to higher-order cases?
Naturally, 1/n must be replaced by 1/(n —1) in the

C2 ——Q cr,4i, ,
1+Is

«~ That is, the greatest pth-order eigenvalue can approach
the upper bound, min 1/(p + 1), 1/(n —p + 1)I.

&6 The rank of the kernel is the number of its nonzero
eigenvalues.
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where 1 Q L means that the configuration L does not Since the &p, are eigenfunctions of D, it follows that
contain 1.From this it is ea,sily seen that q» is totally
orthogonal" to both C1 and C». Then the first-order

px Dpg = Xr B,ild pi Dpz = 0(J A 1)
density matrix D is written in the form

D(1';1) = {A.A(1')4' (*)}*{A.v (1)4' (*)}

+ {A.y, (1)4,(x) }*Cs(1,x)

Substituting the decomposition, we obtain

X, = n/n'and 8(1) —= 0.
Normalizing 4», i.e., putting %r —= 4,/cri, we obtain
the result

+ 4 g (1',x) 4 s (l,x)

D(1',1) = 4vi (1')pi(1) + (n —1)4D~, (1';1)

+ Cf (1',x)Cs(l, x) .

with the abbreviation x = (2 . , n). For every two Since by (2)
permutations

1) '
) n d

j1)' ')Jn

) ) ) )

total orthogonality of y& to C» implies

v*( )4*(.. . -)v (j)4' (j, ,j-) = o

when'& / j&.

Hence, using antisymmetry of C», the erst term can
be calculated a,s follows:

v*(t )4'*(t',t-)~ (j)
2 'f n

X %(j2, j-) = —, ~~ (1')v~(1) +n' n

4,*(1',y) 4, (1,y),

where

y = (2, ,n —1) and n = 4,*4, .

The sum of the second and third terms is written in
the form

v,*(1')O(1) + e*(1')&,(1),
where 6 can be expanded by {q, }s without q „i.e.,

e = QPv, .

Total orthogonality of q» to C» implies that the last
term can be expanded by products of {q,},without

q1, l.e.)

4"*(1',*)4"(1,*) = 2 v' v*'(I')v (1)
t', j=2

&7 A function q of p particles is said to be totally orthogonal
to a function + of g particles (with p ( q), if

„~*(» p)+(» p a) -=f).

D(1;1) = D~, (1;I) = 1,

it follows that

Xg+ (n —1))ig+ C~sCs = 1.

Hence normalizing C», i.e., putting
1

%2 = (1 —n4) *4, when 1 —nk W 0

we attain a decomposition of D. Incidenta ly, notice
that the condition 8(l) —= 0 is equivalent to total
orthogonality of 4'& to 02. Summarizing, we have

Lemma 1.The first-order density matrix D of 0' can
be decomposed into the following form:

D = X,p,*q, + (n —1)X,D~, + (1 —nX, )D~, , (11)

where +& a,nd 0'2 are normalized antisymmetric func-
tions of (n —1) particles and of n particles, respec-
tively. Moreover, q», +&, and 0'2 are totally orthog-
onal to one another.

This decomposition was first shown by Coleman"
in a slightly different way. While he says that this
gives a double induction algorithm for the reproduc-
tion problem of the erst order, there is no way to de-
termine +& and 02 in terms of D alone, and so we can
not agree with him.

We need another lemma in order to give effective
applications of Lemma 1.

Lemma 8. In the decomposition (ll), if D~ has an
eigenfunction q belonging to the eigenvalue 1/(n
—1), it is also a natural orbital of 4' belonging to the
eigenvalue )1, and is totally orthogonal to +2 when
1 —

nkvd & 0.
This can be seen as follows: since ) & is the greatest

eigenvalue of D and the kernel (1 —nX, )D~ is non-
negative definite,
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'AI &~ q*Dq &~ )I q,*q ' n —1 X~ (P*Dg, q

+ (1 —n4) fr*14.y) (n —1)4 Jy"14,y
= Xl,'

hence it follows that

q*Dq& = X( and (1 —nh) v)*De,q = 0.
The former relation implies that q is the eigenfunc-
tion of D belonging to the greatest eigenvalue ) I by
the variation principle (Sec. XS), and the latter
shows the total orthogonality of y to +2.

Now we turn to the reproduction problem of the
first order. Let a nonnegative definite kernal E(1',1)
be given with the eigenfunctions {P,} belonging to
the eigenvalues {)i,}.By Theorem 5 a standard neces-
sary condition for the reproduction problem is

Q)i, = land0~(p, ~(1/n.
j=l

If, in addition to this, each p; is degenerate with
multiplicity divisible by n, i.e.,

)(((k—1)n+1 )((k 1)n+2 ' ' -IJ)n(~ 1$2i ,

' )
then there exists a normalized antisymmetric func-
tion 4' whose first-order density matrix coincides
with E. In fact, denoting by +I, the Slater determinant
constructed from P(&,)„+„.-, f(,„ the function 4 de-
fined by

1

[n)i(k —1)%+I] +)'
k=1

meets the requirement. It must be remarked that any
function of the form

1

ug{n)(io, g) ~g]'4), with )n),
~

= 1
k=1

also meets the requirement. This means that, even in
case the reproduction is possible, the solution is not
always essentially unique.

In the ca,se n = 2, the above degeneracy condition
is also necessary. The following theorem is due to
Coleman. '

Theorem 9. In the case n = 2, each first-order
eigenvalue is evenly degenerate.

For in the decomposition (11) n = 2 implies that
0'I is a function of a single particle, so D~ is +&~+I,'

hence by Lemma 2 X& is, at least, doubly degenerate
and +& is totally orthogonal to +2. Then all eigen-
functions of D~ are also eigenfunctions of D and we
can proceed inductively with D~ and so on.

This theorem shows that the rank of a function of
two particles is always an even number, so the condi-
tion (8) alone is not sufhcient for the reproduction
problem.

The condition (8) implies that the rank of E is not
smaller than n. Once it is equal to n, by Theorem 3 a
solution, in fact an essentially unique solution, to the
reproduction problem is given by the Slater de-
terminant constructed from the eigenfunctions.

The next step is to study the case of rank n + 1,
but, as is shown in the following theorem, this case
can not occur. Theorem 10 was proved by Coleman'

and by Foldy' "and by others by a different method.
Theorem 10. The rank of any normalized antisym-

metric function of n particles can not be equal to
n+ 1.

This can be proved by induction with respect to n.
When n = 1, the assertion is quite trivial because the
rank is always equal to 1.Assume that the assertion
is valid for any normalized antisymmetric function
of (n —1) particles. Let 4' be a normalized antisym-
metric function of n particles with rank n + l. In the
decomposition (ll) of the first-order density matrix
of 0', +I is a normalized antisymmetric function of

(n —1) particles with rank not greater than (n + 1)
—1 = (n —1) + 1;so by the induction assumption
for n —1, its rank is equal to n —1 and it is a Slater
determinant constructed from orthonormal orbitals,
say P&, $3, , f., each of which is totally orthogonal
to +2 by Lemma 2 when 1 —nial N 0. On the other
hand, if 1 —n), 1 ~ 0, from the construction in the
proof of Lemma 1 it is easily seen that the range" of
42 must be spanned by P, , P.. ' ' ' . P„and one more
additional orbital, say P„+(, leading to a contradiction
to total orthogonality of +I to 42 in case n ) 1.Thus
1 —nXI must be equal to 0, and then, in turn, + it-
self is a 81ater determinant and has rank n, contra, —

dicting the assumption. This means that + can never
have rank n + 1.

The next simplest step is a study of functions with
rank n + 2. This case is divided into two according
to whether n is even or odd, as is seen in the follow-

ing theorem which was proved by Coleman. ' in a
slightly incorrect form.

Theorem 11.If the rank of 4' is n + 2, then

(i) in the case where n is odd, X( ——1/n and each
of the remaining eigenvalues is evenly degenerate,

(ii) in the case where n is even, each eigenvalue is
evenly degenerate.

The assertion is obviously valid for n = 1 or = 2 by
Theorem 9. Assume that the assertion is valid for all
functions of particles less than n. For general n we
start with the decomposition (ll)

D = X,p,*q, + (n —l)X,Dg, + (1 —n4)D~, .
8 Foldy's proof seems to be wrong.

The range of +2 is the set of all linear combinations of its
natural orbitals belonging to nonzero eigenvalues.
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(I) The case X, = 1/n, i.e., when the third term
vanishes. Let pl, , p„+, be the eigenfunetionsof D~
belonging to the eigenvalues {p, },respectively, then
total orthogonality of q» to +, implies that each P, is
an eigenfunction of D belonging to the eigenvalue
X,+1 = (n —1)p~/n. When n is odd, n —1 is even and
llll has rank not greater than n + 1.Hence by induc-
tion assumption for n —1, each p, , o fortiori X;+1, is
evenly degenerate, and (i) follows. The proof for even
n is similar.

(II) The case Xl & 1/n. Then by Theorem 10%'2
is a Slater determinant, because its rank is not greater
than n + 1.Let P„P2, . , P. be the eigenfunctions of
Dg ) then

X D«{A(2), ,4, 1(j),4,il(j + 1) 4'(n) }

Since the range of @1 must be spanned by pl, p2,

p„, and one more additional orbital, say $.4.1, 1I'1 ean
be represented by a linear combination of Slater de-
terminants constructed from all (n —1) orbitals
chosen from P, , P2, . , P„+,, tha, t is,

+, (1, ,n —1) = g y, , . . .;„,Det {P;„,P;„,},
where 1 ~& i, ( . &i„, ~( n + 1. Total orthogo-
nality of 0'1 to 0'2 implies

% (21 . In)@2(1,2, ,n)

n

( 1) Pl. .. '—1, '41. lP '(1):0
j=l

Since {P,} are linearly independent, this relation
yields that all y&„„, l, ;+I,.are equal to 0, hence

where g' means the summation over all the con-
figurations with i„, = n + 1. Then, by Theorem 2,
f„+, is a natural orbital of D2,1 belonging to the eigen-
value 1/(n —1) so by Lemma 2 it is also a natural or-
bital of 0' itself belonging to Pl. Thus Pl is, at least,
doubly degenerate. Applying again the decomposi-
tion (11) to the density matrix D+1 of 11'„with q»

Dg, ——(n —1) q2y2+ [(n —2)/(n —1)jDe,

density matrix D+ can be written in the forln

Hence we can write

)11IPl IPl + )llIP2 IP2

n+2

+ Z (n —2)~lpl + „v»*v» .

When n is even, n —2 is also even and, by induction
assumption for n —2, each p, is evenly degenerate.
Consequently, each eigenvalue of D is evenly de-
generate. %hen n is odd, n —2 is also odd. Hence,
by induction assumption for n —2, the greatest p3 is
equal to (n —2) '. Then. by a calculation it is seen
that q» is an eigenfunction belonging to the eigen-
value X, + [(1 —n4)/n} which is strictly greater than
X&, contradicting the maximality of ) l. This shows
that, in the case where n is odd, ) I must be equal to
1/n.

The foregoing considerations culminate in the fol-
lowing reproduction theorem.

Theorem 18. In order that, given a nonnegative
definite kernel E(l';1) with rank not greater than
n + 2, there exist a normalized antisymmetric func-
tion of n particles whose erst-order density matrix
coincides with E(1';1), it is necessary and sufhcient
that

Q p, = 1 and 0 ~( p, ~( 1/ ,ni=I

where {p, } are the eigenvalues of E, and

(i) in the case where n is odd, the greatest eigen-
value is equal to 1/n and each of the remaining
eigenvalue is evenly degenerate,

(ii) in the case where n is even, each eigenvalue is
evenly degenerate.

The first condition implies that the rank is not
smaller than n, and the condition on degeneracy ex-
cludes n + 1. Thus, there only remains the proof of
the sufficiency for rank n + 2. When n = 1 or = 2,
the assertion is obviously true. Assume that the as-
sertion is valid for all the cases with functions of not
more than n —1 particles. Let {P,} be the eigen-
functions of E belonging to the eigenvalues {p, } in
non-increasing order, respectively.

(I) In the case where n is odd, by (i), E can be
written in the form

where C is a normalized antisymmetric function of
(n —2) particles with rank n. If Ip2 Ip4 ' ' lp.+2 de-
note the eigenfunctions of D~ belonging to the eigen-
values {p, }2+', respectively, {p.. . p„} and {lp2,

q4, . . .
, lp„+, } span the sa,me subspace, hence the

where

1* n —1'
E = 0'1 0'1 + Q p74i +lpga +1 1n j.=l

AP)'y&
Pi =

n —1
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p2, ~
——p2, ~( (n —1)

'
and Q p, = 1.

Thus {p, } satisfy the conditions in Theorem 12 for
n —1;hence, by induction there exists a normalized
antisymmetric function C» of (n —1) particles whose
first ord-er density matrix coincides with

p~g'~+~4'~+~
j=l

Then, finally, the function 0' of n particles defined by

e = n'Ay, (1)C,(2, ,n)

meets the requirement.
(II) In the case where n is even, E can be written

in the form

plpI $1 + p1$2 f2

1 —fl Pl+ Q (n —2)p~p, + P,*+2 P;+2,
j=l n

where

p; 2 ——(n —2)p, p, + I
(1 —nii, )/n] j = 1,2, ,n.

Since

npi + 2pn+2 )~ pr + p2 + ' ' ' + pm+2 =

it follows that

VII. APPROXIMATION BY A SLATER DETERMINANT

Given a normalized antisymmetric function @of n
particles, to what degree can it be approximated by a
Slater determinant or by a Hartree product? Since
an exact evaluation cannot be given in a simple
formula, in this section, a reasonable lower bound is
given in terms of the first-order eigenvalues.

For this purpose let us begin with an important
general theorem which was originally proved by
Lowdin and Shull' in the case where n = 2 and by
Coleman' in the general form. Our proof, however,
differs from theirs.

Theorem 18.20 Given p and k, when 4 varies over
all the functions of the form

C'(l, ,n) = ZA(l, ,p)+ (v+1, .
,n),

where {P,}," and {4',}f are arbitrary functions of p
particles and (n —p) particles, respectively. Then

min I% —CI = 1 —PX;,
where )&, )2, , 4 are the k greatest pth-order
eigenvalues. The minimum value is attained when
each P, is the natural p state belonging to li, and each
+; is the (nonnormalized) natural (n —p) state
given by

—1
p- = I:(n —2)p~] p~+ p-+. ——

n

Hence,

0 ~( p, ( (n —2)
'

and, similarly,

n

p2&' I = p2j and g p&' = 1
j~l

Thus {p, }i satisfy all the conditions for n —2; hence,
by induction there exists a normalized antisymmetric
function C» of (n —2) particles whose first-order
density matrix coincides with

n

p, 4, +24~+2 .
j=l

Denoting by C» the Slater determinant constructed
from {f, }3+',we can easily verify that the function +
of n particles defined by

4 = [4n(n —1)]*A.f~(1)f,(2) C, (3 n)
i+ (1 —nii, )'C, (l, ,n)

meets the requirement.

First of all, let {p;}be the natural p states belonging
to {X;};then by Theorem 4

+(*u) = Z v» (*)@ (v)

where

with abbreviations x = (1,2, ~ ~ ~ p) and y = (p + 1,
~ ~ ~, n). Hence,

Q X, = 1 —Q X, .

This means that the minimum in question is not
greater than

2O A general theorem of this type was recently obtained by
Mirsky. v
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I'

I Z ~»4'I = Z ~'~ (P'4')*(»0)

The last equation follows from the Parseval relation
(Sec. Xl). Then by the variation principle (Sec. X3)
combined with the definition of norm, this is equiva-
lent to the statement that the operator norm" of

g, =i e,P, is not greater than 1. Now cx, and p, can
be written in terms of P;

n, = Trace (D„,~ P, )

P, = Trace (D„,,i, P, ) .

Since both a, and p, are real, for some choice e,
= lor —1

In, —p, = e, i Trace (D„,~ P, ) —Trace (D„,~ P, 'I}.

nce

Zi, —p, I

= Trace (D, ,
—D. jg;P;),

j=l

By an inequality (Sec. X6) the last term is bounded
from above by the trace norm of (D„,+ —D„,c), be-

cause the operator norm of P,=& ~~P, is not greater
than 1 as shown above. Thus there remains the prob-
lem of estimating the trace norm of (D„,,i, —D„,,i).
Since

making both a, and p, . Now consider the deviation
of pth-order eigenvalues of C from those of O'. Taking
the natural p states {p, } and {P,} of + and C, re-
spectively, we can write their pth-order eigenvalues
in the form

4,*D.
, eA

In general, {q, } differ from {P, },so we have to use
another method in order to obtain the estimate.

Theorem 19.When {X,} and {y,} are the pth-order
eigenvalues of + and 4, respectively, then

1

Z
Since the generalized Wielandt's theorem (Sec.

X7) implies

g IA, —p, I
~& trace norm (D„,~ —D„,,i),

j=l

the assertion follows just as in the preceding theorem.

X. APPENDIXES

l. Expansion

Given a complete orthonormal system {P;(x)},
every function 4'(z) can be expanded

where

trace norm (D„,~ —D„,c,)

~& trace norm I', + trace norm F, ,

where

,*(x)+(x)

I', (z',z) =

I;(x';x) =

{+*(x',y) —C*(x',y) }O(z, y)

C*(z',y) {@(x,y) —C (x,y) },

and the following Pcrsevcl rt.tction holds

Zl
If the system is not complete, Besset's inequcbty takes
the place of Parseval relation:

and by an inequality (Sec. X6)
trace norm of I', Z I, I' &

2. Schmidt's Orthonormalization

and similarly

trace norm of I"2 ~&

1
2

Given a linearly independent system q», p2 ~

there exists an orthonormal system xl, x.. . y& such
that each p, is a linear combination of {x;}and con-
versely each y, is a linear combination of {q~,}.The
system {x,} is called Schmidt's orthonormalimtion of

the assertion follows.
In the above theorem {8, } are taken common in

22 5 arious definitions in this section are found in Sec. X6.

3. Variational Theorems

Let E(x';z) be a nonnegative definite kernel with
the eigenvalues {X,} in non-increasing order. The
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Then the norms of G are defined by the following
formulas: G(x';x)tt, (x') I' = [G (x';x) [' .

Operator norm: [ [G[ [
= (4) *

8chmidt norm:
I [6[[2 =

j=1

= Z(~)'.Trace norm

The inequalities used in this note are the following:
For every kernel G

[trace 6[ ~& trace norm 6 .

Given another kernel F(x;y), define the composite
kernel

L(x';x) = F(x',y)G(x, y);

then

The Schmidt norm is conveniently evaluated. In fact,
it is easily seen that

[6(x;x')I' = gX, .

Moreover, for an arbitrary complete orthonormal
system (P, }, the following (Schmidt's theorem) is
valid

This can be proved by expanding 6(x';x), as a func-
tion of x', in terms of If;(x') } and then applying the
Parseval relation.

7. Wielandt's Inequality

Given two N )& X Hermitian matrices A and B
with eigenvalues I X, } and l p, } in non-increa, sing
order, respectively, YVielandt's theorem" reads

N

Z I» —~ I
& 2 It I,

where I p, } are the eigenvalues of A —B.This can be
modified for the integral kernels.

Let F and 6 be two nonnegative definite kernels
with the eigenvalues I X, } and Iii, },respectively; then

I&, —p, [ ~( trace norm (F —6) .
j=l
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1. INTRODUCTION

~HE basic problem in the current quantum theory
of matter is the solution of the many-particle

problem connected with the Schrodinger equation
K+ = E+ for the stationary states. For atomic, mo-

* This work was sponsored in part by the U. S. National
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lecular, and solid-state systems, the problem is simple
in the sense that the Hamiltonian is assumed to be at
least approximately known, whereas for nucleonic
systems the interaction potentials are still not de-
termined. Here we concentrate essentially on the gen-
eral features of many-particle systems having a
Hamiltonian of the form:

x., = g x, + g 3.„+ gee, .+ " .

In the theoretical interpretation of the experi-
mental data for electronic systems, the so-called "in-


