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6' = —5,978 a.u.

1&9037 a.u. (186)

The function P(R) of Eq. (148) was determined from
analytical potential curves. As stated above, the q
values were taken into consideration in approxima-
tion form.

One always finds a,t about 8 = 1.9 a.u. a,n energy
minimum of —0.165 ~ 0.05 a.u. for the II3 system,
which corresponds to an increase in energy of about
3—9 kcal/mol over the H2 molecule (a good result in
view of the applied approximation in the q functions).

It is worth rema, rking that disregarding the q func-
tions in Eq. (160), which led to representation (154),
still did not give a reasonable minimum in the po-

In conclusion, we would like to consider some
equations of the perturbation theory concept of the
method. For this purpose, consider Eq. (163), which
we want to apply to the system of three hydrogen
atoms. So from Eq. (163a)

tential curve of the H3 complex if the separation of
neighboring H atoms were set equal in the linear
system and varied. Likewise omitting the association
[ac~bj results in an unsatisfying course of the curve,
if the arrangement of the three a,toms is a—6—c.

The examples show tha, t the equations of the
atomic association method in the frame of a varia, tion
treatment or in the perturba, tion theory representa-
tion reproduce, in their simplest form, interactions
between atoms that are essentially correct.
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1. INTRODUCTION

~AX the wave function be eliminated from quan-~ turn mechanics and its role be taken over, in the
discussion of physical systems, by reduced density
matrices? The author has believed in the afhrmative
answer to this question for over ten years. In the
present paper, he attempts to muster the main cur-
rent evidence in support of this belief. Prior to the
Hylleraas Symposium, the available evidence, prob-
ably, would not have convinced the average physi-
cist. However, the discovery, during the Symposium
of Theorem 9.3, and subsequently of Theorem 9.4,
gives real substance to the hope that it will soon be
possible to calculate the energy of the ground state
of an X-fermion system using density matrices as the
main mathematical tool.

In his summary' of the Boulder Conference on
Molecular Quantum Mechanics, June 1959, C. A.
Coulson remarking on the striking resurgence of in-

C. A. Coulson, Rev. Mod. Phys. 32, 175 (1960).

terest in the density matrix approach to the cV-body

problem stated, "It ha, s frequently been pointed out
that a conventional many-electron wave function
tells us more than we need to know. . . . There is an
instinctive feeling that matters such a,s electron cor-
relation should show up in the two-particle density
matrix. . . but we still do not know the conditions
that must be satisfied by the density matrix. Until
these conditions have been elucidated, it is going to
be very difFicult to make much progress along these
lines. "

Conditions on the utave function are known. It
must (i) satisfy Schrodinger's equation, and (ii) be
symmetric or antisymmetric with respect to the in-
terchange of similar bosons or fermions, respectively.
Condition (i) is easily transla, ted into a variational
condition on the two-particle density matrix. How-
ever, when Professor Coulson spoke there was no con-
venient formulation of the conditions on a reduced
density matrix implied by the symmetry or antisym-
metry of the wave function of the system. This is the
important lacuna to which Coulson drew attention,
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and with which the presen. t paper is concerned. We
refer to the problem as the X-representability prob-
tem—how can we recognize that an alleged two-
particle density matrix is, in fact, the reduced density
matrix of a system of X-indistinguishable particles.
Apart from occasional side remarks, we restrict our
attention to the case of fermions.

In Part I, we focus on the problem of approximat;—

ing an antisymmetric function of X particles by
means of sums of products of a lesser number of
particles. We begin by proving a famous theorem of
Erhardt Schmidt which reveals the significance of
Lowdin's natural spin orbitals as functions peculiarly
suitable for a least-squares approximation to X-par-
ticle functions, independently of any symmetry con-
siderations. The reduced density matrix appears in
this context as the kernel of an integral equation
which determines the natural spin orbitals. The
duality between the pth order and (X —p)th order
reduced density matrices, noted by Carlson and
Keller, ' is an immediate consequence of Schmidt's
theorem. We obtain new results when, to the situa-
tion considered by Schmidt, we add the requirement
of antisymmetry. As a necessary condition that an
alleged pth order reduced density matrix be X rep-
resentable we obtain upper bounds on its eigenvalues.
We also show that the 1-particle natural spin orbit-
als form a complete set for the expansion of the wave
function and all its reduced density matrices. Pinally,
we show that X representability is invariant with re-
spect to unitary transformations of a basis of one-
particle functions and, hence, that the X representa-
bility of a one-particle matrix must be expressible as
a condition on its eigenvalues.

In Part II, we use an argument of Fukashi Sasaki,
to obtain the best-possible upper bounds for the eigen-
values of the two-particle reduced density matrix.
This enables us to correct an error of Bopp' and to
obtain a lower bound for the energy level of the
ground state of a system of E fermions. By an argu-
ment also used by Bopp, we relate the energy of a
many particle system to the energy of helium-like

systems.
Part III solves the N representability problem for

the one-particle reduced density matrix of an en-
semble and takes an important step towards its solu-
tion for the lao-particle matrix. Other important new

results pertinent to pure states are: (i) an explicit
necessary and sufhcient condition for the X repre-
sentability of a one-particle reduced density matrix
of rank X + 2, and (ii) a rather complicated al-

s B.C. Carlson and S. M. Keller, Phys. Rev. 121, 659 (1961).
3 F. Bopp, Z. Physik 56, 848 (1959).

gorithm by which the X representability of a one-
particle matrix of rank r is made to depend on the
(X —1) representability of a matrix of smaller rank
and the X representability of another matrix of
smaller rank.

The work reported in this paper was begun in 1951
at the Summer Research Institute of the Canadian
Mathematical Congress which was supported by the
National Research Council of Canada. At that time,
the solution of the case p = 1, X = 2 of Theorem
4.1 was obtained. The main ideas of the paper, except
for those of Sec. 9, were presented to the Physics Col-
loquium of the University of Toronto in 1958, an-
nounced4 without proof in 1961, and treated' in a re-
port of the Quantum Chemistry Group of ITppsala
University. Theorem 9.3 was discovered during the
Hylleraas Symposium in the course of vivid discus-
sions with L. H. Thomas and L. Witten to whom the
author expresses his lively appreciation. The possi-
bility that the X representability of the two-particle
matrix is not expressible by means of its eigenvalues
alone was first suggested to the author in 1957 by his
graduate student, , C. A. S. Pegis.

PART I—NATURAL EXPANSIONS

2. The Central Problem

Fortunately, the existence of the two excellent re-
view articles by McWeeny' and ter Haar' makes un-
necessary any extended discussion of the manifold
applications or the considerable literature of density
matrices. We recall the salient facts. As shown by
von Neumann' the statistical operator D or, as ter
Haar' proposes to call it, the density matrix, is a more
satisfactory mathematical object than the wave func-
tion for describing a quantum mechanical system,
since it is equally applicable to pure states and to
statistical ensembles. In general, D = g w'D, where

D; are projectors onto pure states of the Hilbert
space of X particle functions and w' are positive real
numbers with sum 1, so that D corresponds to a sum
of pure states D; with weight w'. The wave-function
language applies strictly only to pure states which
seldom —some physicists would say, never —occur in
nature. Furthermore, the two-particle reduced density
matrix 0. contains all the information needed to dis-
cuss two-particle interactions. In particular, the en-

4 A. J. Coleman, Can. Math. Bull. 4, 209 (1961).
s A. S. Coleman, Quantum Chemistry Group, Uppsala Uni-

versity, Report No. 80, 1962 (unpublished).
s R. McWeeny, Rev. Mod. Phys. 32, 885 (1960).
r D. ter Haar, Rept. Progr. Phys. 24, 804 (1961).
8 S. van Neumann, 3fathematische 6'rundlagen der Quanten-

mschanik (Springer —Verlag, Berlin, 1982), Chap. IV.
s D. ter Haar, Physica 26, 1041 (1960).
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ergy of a system of X electrons can be expressed ex-
actly in terms of 0-. As shown by Dirac, in the case
that 0 is a single Slater determinant the energy is de-
termined even by the one-particle density matrix.
The hope that o. might prove a mathematically more
tractable object than 0' has caused much of the re-
cent attention to density matrices and is the inspira-
tion of the present paper.

Unfortunately, the terminology and notation of
our subject is still in some confusion. For example,
there are, in the literature, three different normaliza-
tions according to which the trace of the pth order
reduced density matrix is (i) 1, (ii) („), (iii) p. („).
The present author follows ter Haar in preferring (i)
which corresponds to the statistical interpretation
of the density ma, trices. The normalization (ii) was
natural to adopt when it was conjectured by many
people including the author that the reciprocal of (~)
is the least upperbound for the eigenvalues of an X-
representable pth-order fermion density matrix.
However, we show in Part II that the conjecture,
and Bopp's alleged proof of it, is false so that normal-
ization (ii) loses all cogency. The normalization (iii)
used by McWeeny and by Yang is the natural one
to adopt if one employs the notation of se"ond
quantization, however, the usefulness of that nota-
tion seems restricted to the case p = 1. It can be
argued that for p = 1, the normalizations (ii) and
(iii) allow the single con6guration ca,se to be charac-
terized by the idempotency of the one-particle density
matrix. However, the characterization Xp' = p is
just as convenient and, in any case, it appears that
the path of progress requires that we pass beyond the
single configuration approximation.

All workers on problems concerned with X par-
ticles in quantum mechanics are plagued with the

difhculty that the essence of the matter is frequently
hidden by a host of variables, subscripts, and super-
scripts which create an impression of a "big, buzzing
confusion. " For some problems, the notation of sec-
ond quantization has definite advantages, particu-
larly, if one is interested in one-particle expansions,
that is, in terms of orbitals. However, for expansions
in terms of geminals, that is, two-particle functions,
the current formulation of second quantization ap-
pears to be quite inadequate. This may explain why
so much of the discussion of interaction problems in
quantum field theory appears to be indiscriminate
beating of the air.

Probably, ter Haar' has given the most serious
thought to the problems of terminology in our sub-
ject. However, ter Haar's proposals fail to meet the
desideratum that good terminology attaches short

terms to the most important and most frequently re-
curring ideas. These are (i) the pth-order reduced
density matrix of a X-particle system; (ii) the eigen-
functions of the pth-order reduced density matrix;
and (iii) the corresponding eigenvalues.

Since for molecular and atomic problems the num-
ber of electrons does not change during the discus-
sion, Xmay be specified implicitly and we may speak
of the p matrix of a system without ambiguity. Thus,
our p matrix is ter Haar's pth-order reduced density
matrix; our X matrix is his density matrix and von
Neumann's statistical operator; our 1 matrix is ter
Haar's first-order reduced density matrix and Tol-
man' s, or Dirac's, density matrix. By a natural p state
of a system we shall mean an eigenfunction of the p
matrix of the system. We use the term orbital for any
one particl-e function (with or without spin according
as is most convenient) a,nd geminaP for any Aao-

particle function so that a natural 1 state will more
often be called a natural orbital and a natural 2 state,
a nctural gemina/. When he feels particularly daring
the author uses the contractions "norb" and "nag"
for natural orbital and natural geminal, respectively f

We shall call the eigenvalues of a p ma, trix, pth-order
eigenvalue s.

We frequently have occasion to partition. the X in-
distinguishable particles of our physical system into
two sets of pand qparticles with p+ g = X (0 & p,
q & X).The symbols p and q as superscripts will also
indicate that an operator or function pertains to the
space of functions of the particular p or q particles
into which the Xparticles were partitioned. Denoting
the spatial (and spin) coordinates of the ith particle
by x;, the p particles miQ akoays have coordinates

xg, x2, , x„and the q particles, x„+1, x„+2, , x~.
The p matrix of a system will be denoted by D".

For a system of Xparticles in a state with wave func-
tion O', D" may be regarded as an integral operator
with kernel

D (x, ,x, . x„,x„x,. x„) = %(x, . xg)p I I /

X N (xgx2 x„'x„+g x~) dIJ, , (2.1)
where the integration is with respect to the I ebesgue-
Stieltjes measure p,, on the q particles. The kernel
may also be denoted by

D"(1,2 .p;1',2' p') = D"(s;s') . (2.2)

We reserve the variables s and t for generic points in
the p and q particle spaces, respectively, in order to
be able to denote %(1,2 X) by +(8,t) and, thus,

The term geminal, with the same root as the latin Gemini—the Twins —is due to Harrison Shull.
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4 (s,t)% (s,t') dp„, (2 3)

where the integration is over the generic point s in @-
particle space. For an ensemble which may be
analyzed as a sum of pure states 4'; with weights w',

the p matrix

D" = Q;w'D;", (2.4)

where D," is the p matrix of +;.
As was remarked by von Neumann' the set of all

D~ is identical with the set 6'~ of positive Hermitian
operators of unit trace on the Hilbert space of anti-
synunetric X-particle functions. The set (P" is con-

vex, that is, if A and B belong to (P" then so does
nA + PB where o. and P are non-negative real num-
bers such that n+ lt = 1. We recall that Cis an ex-

treme point of a convex set if C = aA + PB implies
that A and B are multiples of C. The extreme ele-
ments of (P~ are the pure states. Equation (2.4) is,
thus, a particular case of the Erein —Milman theorem
which asserts that a compact convex set is determined

by its extreme points.
For fermions, the set (P" consists of all positive

Hermitian operators of unit trace on the space of
antisymmetric p-particle functions. Whereas the set
of all D" coincides with (P", the set of D" is a proper
subset of (P" which we denote by (Pp. It consists of
those positive operators of unit trace on the Hilbert
space of antisymmetric p-particle functions which are

p matrices derived from ensembles of X-particle sys-
tems. It is easily seen that (PP is a convex subset of
(P" and that its extreme elements are the p matrices
of extreme elements (i.e, . the pure state operators) in
(P~. However, the p matrix of a pure state in 6'~ is
not necessarily extreme in (P& as we shall see in Part
III.

We are now able to state precisely the prowem of
X representabi7ity to which Professor Coulson drew
attention.

Give an intrinsic characterization of tPLr as a subset

of (P". In other words, give criteria by which to recognize

when a positk|. IIermitian operator on the IIilbert
space of p particle functions -admits a representation in
the form (2.4) tvhere the D,"is representablein the form

ii For example, cf. F. Smithies, IntegraL Equations (Cam-
bridge University Press, Cambridge, 1958), Chap. VIII.

bring out its analogy with the Hilbert-Schmidt-
Fredholm kernel Z(s, t) of all textbooks" on non-
symmetric integral equations. Similarly, the q mat-
rix, D&, has kernel

D'(p+ 1, . N;(p+ 1)' 7') = D'(t;t')

(2.1) by means of an X pa-rtiele tvave function 4;.
Stated in this manner, the problem is pertinent to

bosons and fermions and may be specialized to one
or the other by requiring that 0; be symmetric or
antisymmetric. (The problem may be generalized by
requiring other symmetry types such as those occurr-
ing in the purely spin or orbital factors of a wave
function. ) Our concern in this paper is directed to
the case of fermions unless an explicit statement to
the contrary is made.

By the Erein —Milman theorem (P~p is characterized
by its extreme points. It is, therefore, sufficient to

solve the ¹epresentability problem for pure states
Whereas for a given pure state with wave function +
Eq. (2.1) delnes the kernel of the integral operator
D", we must solve the converse problem: Given an in
tegral operator D", decide whether or not there exists an
antisymmetric function 4 of X particles such that the

kernel of D" is representable in the form (8.I).
It seems that we have here a new mathematical

problem of considerable diKculty. The case p = 1
will be treated in Part III, but at present we do not
have a complete solution of the case of greatest
physical interest, p = 2.

3. The Natural Expansion of a Function of
Several Variables

Lowdin and ShulP' and Davidson" have given
striking numerical examples of the advantage of em-

ploying natural orbitals in a configuration expansion
for He and Hs. We turn now to the proof of a theorem
which probably reveals the full scope of this property
of natural p states of a given wave function. The
theorem and its proof are due, in essence, to
Schmidt"; however, we reproduce it in a modified
form appropriate to our present purpose, for the con-
venience of the reader.

If f& and g& are complex-valued functions of p
particles we define a scalar product in the usual man-
ner as

(f"lg') = f"g"dt.

and the norm
I I

f"I
I by

I I
f"I I' = (f"If"). Similarly,

I+(s,t) I'dt.dt.

We employ @(s,t) as the kernel of two different in-
tegral operators denoted by +,"and 4",. Iff' and f' are
functions on p and g space, respectively, then +'„f"

I2Per Olov Lowdin and Harrison Shull, Phys. Rev. 101,
1780 (1956).

rs E. R. Davidson, J. Chem. Phys. 37, 577, 2966 (1962).
i4 Erhardt Schmidt, Math. Ann. 63, 488 (1907).
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and 4,"f' are functions on q and p space defined by where

+f (t) = f ()q'(st)dw (8.2)
q 0 ~ 9 q )) 'Ii

~@cubi
= Cin ) mqu = Cia (8.11)

(8.12)
Cf'(s) = +(»t)f'(t)d~. (8.8)

II+II' = Z'~"'. (8.18)
Equation (8.12) expresses the duality between the

p matrix and the q matrix which was noticed by Gari-
son and Keller' but was probably first discovered by
Schmidt. "We henceforth assume that the natural p
states and the natural q states are related by (8.11).

We now turn to the proof of a theorem which re-
veals the role of natural states in the approximation
of functions of Inany particles.
Theorem B.l. (Schmidt) Given�asquareintegrablefun-

ction�

(s,t) where s belongs to p space and t to q space,
suppose that for u ( v, f;(s) with 1 ( i ( u and g, (t)
with 1 (j( v are linearly independent square in-
tegrable functions then the minimum,

I IVI I' —P", X,",
of

Thus, (2.8) and (2.4) may be expressed as follows:

(8 4)D" = Wq„',

D' = 4,'%", .
Suppose that u" is a normalized eigenfunction of

D" with eigenvalue ) so that

(8.6)

)!l~"II' = (D"~"l~"& = (e,'~"IC~"» o.
Thus, ) is a non-negative real so that D~, and sim-
ilarly D', are positive Hermitian operators, with finite
traces equal to

I IV I
I'.

We may associate eigenfunctions of D& with those
of D'. Let c be a complex number such that lcl' = X

and define p' by

~ = II+(s,t) —2 a'f'(s)g (')ll', (8 14)

cp' = 4„'n".
where a;; are arbitrary complex numbers, is obtained

(87) if we put
Then

. '. D'p' = Xp',

so that p' is an eigenfunction of D' with the same
eigenvalue ) . Further,

c4",p' = N4",n" = D'n" = Xn"

cb;;, g(u
0, g&u

and choose f, (s) = a";(s), g;(t) = a', (t) .

In other words, the best least-squares approxima-
tion to + as a sum of uv products of the form f;(s)g, (t)
1S

. . Np' = cn". (8 8) Q c;a";(s)a';(t) .
1

(8.15)

The norm of p'. is 1, for

~(p'lp'& = ( p'I p'& = (~:="l~:="&= (="ID"="&= )

since 0." is normalized.

D"(s;s') = Q; X";a";(s)a";(s'),

D'(t;t') = P;)',~';(t)m';(t'),

(8 9)

(8.10)

(p'lp') = 1

Thus, Eqs. (8.7) and (8.8) effect a 1:1correspondence
between normalized eigenfunctions of D" and D' with
the same eigenvalue. The correspondence is unique
except for the phase of p'. We assume henceforth that
the pth-order eigenvalues, Pip, are numbered so that
they form a monotonely nondecreasing sequence; so
that 'A," = max I XFI. The theory of integral operators
allows us to conclude that if Xg corresponds to the
natura/ p state 0.'; then

ci i=%'„n;. (8.16)

Proof There is n.o loss of generality in replacing
j f;(s) I by I a;(s) I, where n; is an orthonormal set of
u functions equivalent to I f;(s) I. Assume that this
has been done. Defining c;p; = g; a;;g, , where c; is a
complex number chosen so that

I lp;I I
= 1, we have

g a;,f;(s)g;(t) = g c;n;(s)p;(t). We expand 6 and
follow the classical procedure of completing the
square.

~ = II+ —Z'c'~'p'll',
= II+II' —Z c'(+:~'Ip'& —Z c'(p'I+:~'&

+ g C;C;,

= II+II'+ Z llc'p' —+:~'ll' —Z(+: 'I+l ').
For arbitrary n, , the best choice of p; is to make the
second term zero, that is, we must set
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The minimum of 6 is then attained for n; chosen to
maximize g (4„'n;~%'„'n;) = g (Tt"n;~n;) which, as is
well known, is achieved by choosing as 0.; the first u
natural p states, n,". It then follows from (8.16) that
P; = n,', and all the assertions of the theorem follow
immediately.

Note that Theorem 3.1 makes no use of the sym-
metry of +, but assumes merely that some definite
partition of the g particles into groups of p and q
particles has been effected. If 0' is either symmetric
or antisymmetric, it is easily seen that D" does not
depend on the choice of the p particles to which we
ascribe the coordinates x&, x3, . , z„. Thus, for bosons

and fermiona, there ia a unique p matrix associated
with a given system. Such is not the case if 4' belongs
to a symmetry type corresponding to a Young
tableau other than [N] or [1"].In particular, the
natural orbitals of a boson or fermion system are
unique. The following result is, therefore, not sur-

prising.
Theorem, 8.8. If + is symmetric or antisymmetric in
X particles then for 1 & p & X, each 0.," may be ex-
panded in terms of natural orbitals n';.

Proof. From (8.18) and Theorem 3.1 it follows that,
except possibly on a set of measure zero,

O(s, t) = Q; c;n";(s)n',;(t) .

Thus, setting p = 1, q = E —1,

C~(s, t) = g; c;n', (a)n', (t),
and, hence,

C;n';(t') =- n,'(S)+(S,t)dii„.

(3.17)

(3.18)

(8.19)

Hence, 0.,' is symmetric or antisymmetric according
as + is. Now suppose that P(a) is an orbital orthog-
onal to all the +-natural orbitals n';. Thus, by (8.17),

0 = tl(1)q (1,2,3 . N)dpi(1) = — P(1)+

X (2,1,8 N)di4(1),

and, hence, by (8.19),

P(1)ni(1,8, N)@(1) = 0.

Thus, any function orthogonal to the o.,' is orthogonal
to n ' and fol x3 x4 ' ' ' x+ fixed, n," ' (2,8 N) can
be expanded in terms of n';(2). By induction we see
that

%(1,2 N) = Q c' ""'"n' (1)n,, (2) n;'„(N) .

(8.20)

Since for any p, n," are obtained from @ by integra-
tion, the required result follows immediately.

Theorem 8.2 underlines the importance of the nat-
ural orbitals as the most suitable set of one-particle
functions to use in discussing a quantum system and
heightens our interest in finding a practicable method
of obtaining the natural p states of a system without
prior knowledge of O'. The following theorem valid
only for fermions will be very useful in the sequel for
the case p = 1.
Theorem 8.8. If + is antisymmetric and p is odd with

2p & X then

n" (p + 1, ,2p)n'(p + 1, . »)

X dpi(p+ 1, ,2p) = 0.
Proof. By the analog of (8.19) for general p,

c, n,"(p + 1, 2p(n,'(p + 1, N)di4(p + 1, 2p)

n" (1 p)n" (p + 1 2p)+(1 N)

X di4(1 2p) . (8.21)

In the last integrand the product of the first two
factors is symmetric with resp ct to the permutation
(l,p + 1)(2,p + 2) (p,2p), whereas 4 is antisym-
metric. Whence by renumbering the variables of in-
tegration we see the integral vanishes. Since c; W 0,
the required result follows.

Since the integral in (8.21) depends on N —2p free
variables we shall express Theorem 3.3 by saying that
for odd p, n," is strongly orthogono, l to o.,'.

4. Antisymmetric Expansion

It is clear from their definition that the natural p
states of a fermion system are antisymmetric, how-

ever, it is not immediately apparel. t that the right-
hand side of (3.17) is antisymmetric. We shall expect
the antisynnnetry requirement to lead to interrela-
tions among the [n,"] and [n';] and to impose condi-
tions on the values allowed for c";. Our next theorem
makes explicit a condition of this latter type. Per-
haps, it is of interest to record that the following re-
sult, obtained only in 1962, contains the particular
case p = 1 which was the first interesting result in

the subject obtained by the present author in 1951)
Theorem $.1. If N = 2p and p is odd, then the pth-
order eigenvalues of a fermion system in a pure state
+ are evenly degenerate.
Proof. Since p = q, D" = D', and p odd implies

Suppose n" is a p state corresponding to eigenvalue
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X. Then by (8.11), +,'n" = co.' is also a p state with
eigenvalue X. But n' is orthogonal to a" by Theorem
8.8. Thus, li is at least doubly degenerate.

Suppose f' is a further p state with eigenvalue li

and that f' is orthogonal to both ot" and a'. Then, by
(8.11), 4„'f" is also a p state with eigenvalue X.
Further

&Cf"l~'& = &f"IC~'& = e&f"I~"& = c&~"If"& = o

Using +", = —+,", we may show similarly that +„'f'is
orthogonal to n". It is orthogonal to f" by Theorem
3.3. Thus, if the multiplicity of A, is greater than 2,
it is at least 4. Proceeding by induction we show that
the multiplicity. of X is even or infinite. It is not in-
Gnite since D" has finite trace.

Our next result which follows easily from Theorem
3.1 will be needed in the proof of Theorem 4.4 but is
of intrinsic interest since it involves a new property
of natural p states.
Theorem $.8. If + is a given antisymmetric N-particle
function, and f" and f' are, respectively, functions of
the p and q particles arbitrary except that their norms
are unity, then the maximum of I&+I f f')I' equals V
and occurs when f' = cx,

" and f' = n,'.
Proof. The minimum of

I lyl I, if p = 4 —cf"f' (see
Fig. 1) occurs for c chosen so that &p J f"f' or when

&elf f) =c,

2
AN ——AN ——AN )

ANAq+I ——Aq+IA g ——AN .

The numbers

(4 1)

(4.2)

ai = &(s,) + 1)~"' 'l~'~')
are apparently of considerable significance in analyz-
ing interrelations among the natural states. Together
with analogous numbers obtained by replacing
(p,p + 1) by (p —1,p + 2)(p,p + 1), and so on,
they play a decisive role in Part II. If (4.8) is writ-
ten as an integral by means of (8.1) then we see that
Theorem 3.3 implies that

We shall apply the above property to the anti-
symmetrizers AN and A,+1 which are idempotents op-
erating on functions of the variables 1,2, ,X and

p, p + l, ,N, respectively. Thus,

A~ = (Nt)
' g e (~)~,

where the sum is over the X~ elements, x, of the
group of permutations of the N particles. By f"f'we
mean a function of the X particles, which at the
point x~x2, x~ of X-particle space assumes the
value f"(1,2 p)f'(p + 1, N). The reader will
now interpret (p,p + 1)f'f' as the function which as-
signs to x&, . . .x& the value f"(1,2, p —l,p + 1)
X f'(p, p + 2 N). It may be easily verified that for
q&X

and the minimum equals +ll' — lcl'. But by
Theorem 8.1 this equals II%' ' —V„and the min-
imum occurs when f' and f' are natural states.

if p=1, a'; 0 .-

For any p we may prove that

a";& 0.

(4.4)

(4.5)

c fpfq

Thus, the maximum of Icl' is X,", occuring when"= n~, '=0.'.
It is well known that a projector P, that is an

idempotent Hermitian operator (P' = P,Pi = P),
never increases the length of a vector on which it
acts. This follows easily from Schwarz's inequality.

(PxlPx) = (xlP'x) = (xlPx)

~ I&»I»&l' «*I*&&»l»&

The equality sign obtains if and only if x = Px.

These preliminaries enable us to state and prove an
important theorem.
Theorem $.8. If 4 is normalized and antisymmetric,
then

( ' 'IA "' l) & [1—
g 1

WAenp = 1

(4 7)

When

&a";u';IA~n";n';& = 1/N . (4 8)

p = q = 2 and o.";is proportional to 0.';,

&n,~;IA n, ;) = —[1 —2a;].

Proof. From (8.12) and (8.15) it follows that

(4.9)

(4 6)
with equality if, and only if, + = cA&n";0.'; where c is
some constant. Further
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= l(A +I "' ')I',
= I(+IA "' ')I',
& (vie)(A~n";n', iA~n", n', )

with equality if, and only if, ANO. ";0.,' and + are pro-
portional. By (4.1) the result (4.6) follows.

To prove (4.7) we use (4.1) and (4.2).

(n n'iA~n'n') = (A~n'n'IA~n'n'),
= (A~A. +in"'n'I A~A. +in'n') i( (A,+,n";n', iA„&n~n';) .

The last inequality follows because AN is a projector.
The equality obtains if and only if A&a";0,,' = A,+&0.";o.,',
which is obviously the case if (i) p = 1, N = q+ 1,
but may also occur if (ii) p = q = 2 andn";is pro-
portional to a';.

Making use of the antisymmetry of n'; we see that

A.+in"'n' =
1

[1 —(p,p + 1)
1

—(p p + 2) —(p»)]n"'n'

By explicit use of (3.1), we see that for u ) p

(n";nlrb ( pu) n"; nl) = a", .

Thus,

(Aq+in~n~ i Aq+inzn~) ( n~iAn~q~i n~n)~

the help of an (N —1)-particle function. Cases inter-
mediate between these two extremes will be consid-
ered in Part III.

By combining (4.6) and (4.7) we have a further
corollary.
Corollary $.88. The eigenvalues of an antisymmetric
normalized + satisfy

X"; = X'; ( [1 —ga";],
g 1

if2& p&q.
Since the sum of X; is unity, it follows that + has at
least q + 2 natural p states, We also s e that for
p) 2

)"; & 1/(g+ 1) . (4»)
This does not seem to be a very good upper bound

since ther are, apparently, cogent physical reasons
for believing that X'; is bounded by the reciprocal of
—', N(N —1).This belief was held rather widely (even
by the present author for some months), however we
show in Part II that for p = 2, (4.11) gives the best
possible upper bound I

Combining (4.6) and (4.9) and taking note of the
exceptional cases we obtain
Corollary $.8C. For p = tl = 2 with + = cA, [n', (12)
X ', (34)l,

)I.g ——-', [1 —2ag] . (4.12)

g 11
[1 —Va"'1 .

Noting (4.4), the results (4.7), (4.8), and (4.9) follow

immediately.
Theorem 4.3 immediately provides us with im-

portant necessary conditions for X representability.
Corollary $.8A. The first-order eigenvalues are
bounded above by 1/N. The bound is reached if, and
only if, 4 is proportional to ANQ.'n

The fact that

X'; & 1/N (4.10)

+ For example, Zq. (75) of P. O. Lowdin, Phys. Rev. 97,
1474 (1955).

is well known. "However, our corollary goes beyond
the mere inequality (4.10) to a necessary and suf-
ficient condition for the attainment of the bound. In
the Hartree —Fock (HF) approximation for 4 by
means of a single Slater determinant there are only
N natural orbitals, but since PX;'= 1, (4.10) implies
that X'; = X '. Indeed, this last equality completely
characterizes the Hartree —Fock approxima, tion. If Ã
of the X'; = X ', we are in the HF approxima, tion; if
only ) 1

——X ' the corollary restates our problem with

This corollary will guide our search in Part II for
an example to test the sharpness of (4.11).

It is well known that the Hartree —Fock approxi-
mation to an antisymmetric function is considerably
more a,ccurate than the Hartree approximation. This
is a consequence of the fact that the former repro-
duces the antisymmetry. The HF function corre-
sponding to the Hartree function f"(1,2 N)
= q»(l)q»(2) q»(N) is simply Av f" If we den. ote
the cofactor of &p&(1) in A& f"(1,2 . N) by
f~ '(2,3. N) it is apparent that, apart from a con-
stant factor, A &f"(1,2 N) and A&[y&(l) X
f" '(2,3, N)] are equal. This latter expression has
the same form as the X particle function which ap-
peared in Corollary 4.3A, except that here, as a factor
in a HF function, f" ' is expressible as a Slater de-
terminant, whereas the n" ' of Corollary 4.3A was an
arbitrary antisymnmtric function of X —1 particles.
Since the latter is more general, we anticipate that
functions of the type of Corollary 4.3A would lead
to better approximations than are possible by means
of a HF function, that is, a single Slater determinant.

We are, thus, led to the following problem. If f'
and f' are arbitrary normalized antisymmetric func-
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tions, of p and g particles, respectively, and

~ = II+ —e~ f'f'll, (4 13)

what choice of c, f" and f' minimizes 8't We shall not
solve this problem. Indeed, some evidence suggests
that no minimum is attained in the general case if
p ) 1. However, the following interesting result is
easily proved.
Theorem $.$. If f" and f' are corresponding p and g
natural states, c may be chosen so that

so that

D'=cr, (5.1)

t (1;1') = r(1';1), (5 2)

lem, which we discuss in terms of the physically im-
portant cases of the 1 matrix and the 2 matrix. Since
these will recur again and again, it is convenient to
have a notation for them which does not involve
indices. We suggest

~' & If~I
' —(g+ 1)~", (4 14) o. (12;1'2') = —0.(21;1'2') = 0 (1'2',12) . (5.3)

with equality if and only if p = 1.
Proof. As in the proof of Theorem 4.2, we see that for
the best choice of c

and that

&+I~ ff') = e&-4 ff'l~ f'f')

t" = II+II' —
I

le~~f"f'Il'

(4»)
&f f'I 4.f"f').

The proof of (4.7) depended only on the fact that
n,". and n'; were antisymmetric and normalized, and
not that they were natural states of &I. Thus,

&f"f'l~ f"f') & 1/(g+ 1)

with equality if, and only if, p = 1. Thus,

We have agreed that 0- is X representable if there is
an antisymmetric function + of Ã particles such that

+N—2+2 ~ (5.4)
The crux of our problem can then be stated as follows:

Given a function o satisfying condi tions (b.8'). Find
explicit criteria by which to recognize whether or not
0- is X representcble.
Stated in this form the problem seems to involve

integration and, therefore, to be a problem in analy-
sjs. However, it may also be given an algebraic
formulation, which is encouraging since, on the
whole, algebra is easier than analysis~

Suppose Ig;(1) I is a complete set of orthonormal
functions in terms of which it is possible to expand
4 and ~. Let

t" & II+II' —(g + 1)I&+If"f')I' (416) + = e""" '"g', (1)grr(2) g'. Q') (5.5)

with equality if, and only if, p = 1. By choosing
f" = cx", and f' = n,'we have the required result.

In the case p = 1, equality obtains throughout the
above argument so that we have the following more
explicit result.
Corollary $.$A. For p = 1 the minimum value,
"o;., of 5 in (4.13) is given by

Since 8„';.) 0, we have a new proof that XX& & 1
when

I fuff = l.
A comparison of Theorem 4.2 with Theorem 4.4

and Corollary 4.4A again illustrates the great ad-
vantage to be gained in approximating functions by
means of functions of the appropriate symmetry. The
extension of this technique to general types of sym-
metry is the main idea underlying the projection op-
erator technique exploited so strikingly in recent years
by Lowdin and his associates.

S. N Representability is a Unitary Invariant

We return to a consideration of the central prob-

s = —s = si, ~ei3J4 22212324 23242122

a,nd condition (2.1) is equivalent to

s = ~ c c~1~~~3~4 ~ 21 22 i3 ' ' iN 232433'

i3'''iN

(5 7)

(5.8)

In this notation, the central problem may be
formulated as follows:

Determine criteria which will enable us to recognize
uhether or not a tensor s"""', satisfying (6'.7), may'
be expressed as in (8.8) by means of a tensor
c' ' ""N, cntisymmetric in X indices.
The only parameter which enters either formula-

tion of the central problem is N, the number of
particles in the system; thus, the criteria we are seek-
ing must be expressible in terms of X. The difhculty
and novelty of the probleln consists in the necessity

= s"""'g,(1)g.(2)g,.(1')g,.(2') (5 6)

A necessary and sufhcient condition that + be
antisymxnetric is that c' "' 'N be antisymmetric in its
indices. The conditions (5.8) are equivalent to
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of imposing a symmetry condition by means of the
nonlinear expression on the right-hand side of Eq.
(5.8).

We referred to symbols occurring in (5.7) and (5.8)
as tensors, though in fact, so far, they are merely
symbols whose indices enjoy prescribed symmetry
properties and no allusion to changes of reference
frame has been made. If we replace g;(1) by any
other orthonormal system

g"(1) = a*.'g'(I), (5.9)

where a', is a constant unitary transformation such
that

/ r8;;a a,'=8
our conditions on + and 0. would take the same form
(5.7) and (5.8) with s""'*"and c"""&replaced by
their transforms as contravariant tensors by means

~ I
of a;*and its inverse al . We are using Schouten's no-
tation for tensors. " It follows that the X representa-
bility of s'*"""is invariant tvith respect to unitary
transformations Thus, . the criteria we are seeking, in
addition to being expressible in terms of X, should
involve only unitary invariants of s"""".

The above arguments apply equally well to density
matrices of any order. In particular, since the ),' to-
gether with their multiplicities, constitute a com-
plete set of unitary invariants of the Hermitian form
ii(1;1'), it follows that the conditions for the X repre-
sentability of a one particLe d-ensity matrix may be ex-

pressed in terms of g and the parameter X.
Alternatively, since the sums of the principal

minors of a Hermitiarl matrix also constitute a com-
plete set of unitary invariants, if

redundant, set of unitary invariants of o- and to give
them a physical interpretation. For example, ),' is
easily recognized as an occupation factor for the nat
ural gamines, n,'. Doubtless there are other invariants
of 0. which could be interpreted as bonding or correla-
tion factors between natural geminals or between
natural orbitals and natural geminals. If p has Rnite
rank, r, then the number of essential unitary in-
variants of o is —,

' r(r' —1)(r —2) as was pointed out
by E. R. Davidson in discussion.

In the particular case that all 1 eigenvalues are
simple, the o.; constitute an intrinsically determined
orthonormal set. If, expanding with respect to this
set, we have

o (12;1'2') = s"'*'*"n;,(l)n, , (2)n, .(1')n;.(2'),
then {s""""Iis a complete set of unitaryinvariants
of 0., in general, redundant. Presumably, s""provides
a measure of the occupation of the geminal (1jV'2)
X [n', (l)n,'(2) — n', (2)n,'(1)]; whereas s'"' would
measure the correlation between that geminal and
(1/V 2) [n,'(1)n,'(2) —n,'(2)n,'(1)]. It would appear
that the coefficients a&'&'&"', which are unitary in™
variants associated with 0., are the most obvious
building material from which to construct a satis-
factory theory of bonding. Work along this line was
reported by Shull at the Sanibel Conferences in 1962
and 1963.

However, the numerical success of Hylleraas' ap-
proach to helium suggests that satisfactory accuracy
will not be obtainable by methods using geminals of
the simple form above but will only be achieved
when we can work directly with the na, tural geminals,

~(l;1') = m""g', (1)g'.(1'), (5.10) PART II—BOUNDS ON X," AND ENERGY

where
1 2

~
1~ 2~ (5.11)

then the X representability of p, should be expressible

in terms of t., where t. is the sum of the principal
minors of m" of order u, that is,

'-m" mi '.-m'"'-
i 1j

The t. have the advantage of being rational expres-
sions ln mi .

For p(1;1'), {4]or {t„}constitute a complete and
nonredundant set of unitary invariants. Lowdin" has
interpreted the Xl as occupation factors for the nat-
ural spin orbitals. (I owdin's n; equals Xg.) It
would be very interesting to obtain a complete, non-

rs J. A. Schouten, Tensor Analysis for Physicists, (Oxford
University Press, Oxford, 1951).

Our main interest in this Part is to obtain bounds
on the eigenvalues of the 2-matrix and to use these to
give a lower bound for the energy of the ground state
of any system of fermions. This latter bound is ex-
pressed in terms of energy levels of helium-like

atoms, a topic to the understanding of which Pro-
fessor Hylleraas has made the fundamental contribu-
tions. In the course of the discussion, we are led to
consider wave functions which we describe as of ex-

tremt. type and which also appear in the BCS-
Bogoljubov theory of superconductivity.

6. Sasaki's Formula

In this section we prove a formula'" due to Sasaki
which should be extremely useful whenever a system

»Fukaehi Sasaki, Quantum Chemistry Group, Uppsala,
Report No. 77, 1962 (unpublished).
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of N particles is partitioned into two subsystems. The
proof we give is more pedestrian than Sasaki s orig-
inal unpublished argument which makes subtle use
of diagrams representing the action of any permuta-
tion on the partitioned system.

Recall that A~, A„and A, are antisymmetrizing
projectors which operate on functions of the X, p,
and q particles, respectively.
Theorem 8 1 In. te. rpreting to as the identity permuta-
tion and settingt, = (l,p+ 1)(2,p+ 2) (j,p+ j)
for 1 & j & p, we have Sasaki's formula

("„)A = A,A, g (—1)'(",) (,')t, A„A, . (6.1)

Proof. Denote the symmetric group of all permuta-
tions of the X, p, and q particles by 8&, S„, and 8„
respectively. The direct product H = S„)(S, is a
subgroup of S& of order p tg f. We say an element of
8& is of j type if it interchanges j of the p particles
with j of the q particles.

How many elemen. ts of j type are there? There are
(;)(,') distinct ordered pairs of sets such that the first
contains j p particles and the second set contains j q
particles. If 8 is of j type, it must interchange the two
sets of one such ordered pair. Suppose a fixed so of

j type interchanges the same two sets, then sp 8
= h P H. Thus, s = sob. Conversely for all ti g H,
sob is of j type and is associated with the same
ordered pair of sets. Hence, there are (,")(,')p!g! ele-
ments in S& of j type. A check on this result is pro-
vided by the observation that P,"=0 (,".) (,') is the co-
eKcient of x" in (1 + x)"(1 + x)' and, hence, that

Thus,
(—1)'T„T,t, T„T, = f,T~.

p!q!T~ ——T„T,[!Q (—1)'(,".) (,')t,]T„T,

(6.2)

p!v! Z (l)(l) = &!.
j=0

The representative of j type, so can always be
taken in the form kt;k ', where k g H. Hence, any j
type s = sob = kt, k

'nowhere

k, h g II and, therefore,
every j type element is contained in the double coset
Ht, H. Since, counting repetitions, the latter contains
(p!q!)' elements, each j type permutation occurs in
Ht, H with frequency

f = j'(p —j)!j'(v —j)'
Let T~ ——¹!A~= g e(s) s, where the summation

is over all s g SN and where e(s) is the parity of s.
Similarly, for T„a,nd T,. Setting T~ ——P' e(s)s where
the summation is over all s of j type, we have T&
= P,".=0 T& . Using the fact tha-t the parity is a charac-
ter we see that

and dividing by (ply!)' we obtain Sasaki's formula.
Replacing e(s) by 1 throughout the above argu-

ment we obtain
CoroZZary 6'.1A. If AN, A„and A, are symmetrizing
projectors, then

(„)Agg ——A„A, Q (",)(,')t, A„A, . (6.3)

Using (6.1) we now prove a formula, , also due to
Sasaki, for the value of (f f'~A~f'f') Sin. ce we shall
discuss p matrices derived from a variety of func-
tions, we introduce the notation D"(0) for the p op-
erator of which the kernel is given by (2.1).
Theorem 8.8. For antisymmetric functions f" and f',

(.")(ff'IA f"f') = Z (—1)'(') (l) tr {D'(f")D'(f')1

(6.4)
where tr stands for the trace of an operator.
Proof. Since A,f" =. f', A,f' = f', and A„and A, are
Hermitian, it follows that

(f fl A,A, t,A.A,f f') = (f f'It f"f')

Therefore, by (6.1),

(". )(f"f'IA f"t'& = Z (—1)'(")(')(f"f'lt,f"f') (65)

For j = 1, the scalar product on the right-hand
side is

(f'f'1( ,1p+1)ff') = f'(1. p)f'(p+1, &)

f"(p +»2. p)f'(l, p + 2 &)@s

D (f"il;p+ 1)D (f'ip+ 1;l)dpi(l, p+ 1)

= {'tr D'(f")D'(f')j . (6.6)
The other terms in the right-hand side of (6.5) may

be discussed similarly giving (6.4).
It is important for the sequel to estimate the value

of

tr [D'(f")D'(f') j (6 7)
Since both operators in (6.7) are positive Hermitian,
(6.7) is non-negative. Any Hermitian operator, A, of
finite trace may be expressed as A = Po n'P;, where
{P;{is a resolution of the identity. That is, AP;
= P;A, P; = P', , P;P; = 8;,P;. P; is a projector onto
an eigenvector with eigenvalue n'. If o.' = 0, and
ce 4 0 for i / 0 we may take all P;, except Po, to have
unit trace, and P P, = I, the identity operator. Sup-
pose that {Q; J is a simila, r resolution of the identity
corresponding to a second Hermitian operator B
= g P'Q;, then

tr (AB) = Q n'P' tr (P;Q;) . (6.8)
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Now

tr (P;Q, ) = tr (P', Q,') = tr (P;Q,'P;)
= tr [(P;Q,)(P,Q, ) ] & 0.

Suppose A and B are positive and that n' and p' are
ordered monotonically decreasing, then

tr (AB) & n' Q p' tr (P;Q;) & n' p tr (p'Q, )
t 42

& n' tr (B) .

Whence, if tr (A) = tr (B) = 1, tr (AB) & min
of [n', p'], where n' and p' are, respectively, the largest
eigenvalues of the positive operators A and B. In
particular,

tr ID'(f')D'(f')] & min [) '(f"),) '(f')] (6 9)

Following the general lines of Sasaki's report" we
are now able to prove his result on the bound for ) ";

which settles a conjecture of Yang. " Independently,
Professor Yang has obtained an alternative proof of
his conjecture by a quite different and very interest-
ing method.

We first define

A"(N) = ("„)sup (g), (6.10)

where the supremum is taken over all normalized
antisymmetric X functions + and V, is the largest p
eigenvalue of +. It then follows from (6.9) that

and, in particular,

Asg(2, N) = 1,
A4g(4, N) = 1+ 6g(2,N —4),

(6.15)

(6.16)

g(l,N) = 1,
g(3,N) = 1+ 3g(2,N —3),

(6.19)

(6.20)

g(5,N) = 1 + 10g(2,N —5) + 5g(4,N —5) .

(6.21)

The general solution of Eq. (6.13) has not been ob-
tained. However, the solution may be obtained by
recursion up to reasonable values of p fairly easily.
To fix the initial values we note that A."(p) = 1 and
also, by the Keller duality, cV(p + q) = A.'(p + q).
For p = 1, (6.19) gives A'(N) & 1, which is a best
possible result, since, in fact, Corollary 4.3A implies
that A'(N) = 1. For p = 2, (6.15) gives

A g(6,N) = 1 + 15g(2,N —6) + 15g(4,N —6),
(6.17)

where we use A„ for the backward p difference of N.
Similarly, for odd p, (6.13) becomes

g(p,N) = 1+ (")g(2,N —p)

+ (".—)g(p —1,N —p) (6 18)

and, in particular,

g(2,N) = [N/2] + c,
where c may depend on whether N is even or odd and
where the symbol [x] represents the greatest integer
less than or equal to the real number x. Since
A'2 = land A.'3 = A'3 = 1 weseethat

(i) «[D'(n"')D'(n')) & A'(q) (611)
for alii. Thus, if we drop the negative terms in (6.4)
and note (4.6) we obtain
Corottary 6'.8A:

() () ()
A'(p+ q) & 1+ Z (".)A"(q), (6.12)

g2N = N2 (6.22)
where the summation is on integral s such that
2 & 2s & p, that is, on even values of j in (6.4) In dominates A'(N) andis, therefore, anuPPerboundfor
stead of (6.12), consider the equality g)X,'. In other words, for alii,

g(p, N) = 1+ Z (i)g(2e,N —p) (613)
This difference equation determines g(p, N) for
1V & p if we know it for p & X & 2p. From the
structure of (6.13) we see that a solution g(p, N)
which dominates A.'(Ã) for p & N & 2p will dom-
inate A"(N) for all values of p a,nd N For even p, .
(6.13) becomes

g(p,N) —g(p,N —p) = 1+ (l)g(2,n —p) + .

+ ("„s)g(p —2,N —p)

(6.14)

is C. N. Yang, Rev. Mod. Phys. 34, 694 (1962)—the first
conjecture, on p. 696.

, & ((N —1) ', if N is even

].N ', if N is odd .

For even N, (4.11) gave the same bound, however,
the present result is sharper for N odd.

For p = 3, (6.20) and (6.22) lead to g(3,N)
= 1 + 3[(N —3)/2] and hence

A'(Ã) & 1+ 3[(N —8)/2] . (6.24)

For p = 4, we note that A'(4) = 1, A'(5) = A'(5)
= 1 A4(6) = A'(6) ( 3 by (6.22), and A'(7) = A'(7)
& 7 by (6.24). When Eq. (6.16) is solved, we find

A4(N) ( -', N[3N —13+ 3(—1) ] + yx, (6.25)

where y& equals 0, 13/8, —3, 21/8 according as N is
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congruent to 0, 1, 2, or 3 modulo 4.
It is clear that we could continue in this way to

solve (6.18) for increasing values of p. However, the

precise solution is probably not worth obtaining since
the most we can hope from it is a rough upper bound
on A"(Ã). Already, A3(5) = A.'(5) & 2 by (6.22),
whereas the bound given by (6.24) is 4 which is in

excess by 100%!
However, without obtaining the exact solution,

Yang's conjecture, " that for even p, g(p, X) is of
order X"",follows immediately from (6.14) by induc-
tion starting from (6.22). From (6.18) it then follows
that g(p, X) is of order X'" ""if p is odd. This was
noted by Sasaki in his Uppsala report. "

We can go further and determine the coe%cient,
8„, of the les, ding term in g(p, Ã). Suppose that
g(p X) 8„X""+ then for p even (6.14) implies
that

whence

From (6.18) we see that for p odd,

(6.26)

5„= P5„1. (6.27)

Setting 80 ——1, wehave ~&
——1, 82 ———„83 2) ~4 8

in agreement with (6.22), (6.24), and (6.25). We
draw the most important of the above results to-
gether in another theorem.
Theorem 6'.8. The p eigenvalues, X,", of a system of X
fermions are bounded by (~) 'Q„(Ã), where Q„(X) is
a polynomial in X of degree [p/2] with leading co-
e%cient 8, given by

1 3 5~ ~ ~ ~ ~

2 4 6 (6.28)

for even p, and by

for odd p.

5, =PS„1 (6.29)

Because of different normalization for D", Yang's
p„ is related to our b„by

(6.30)

In the preprint alluded to above, Yang has con-
jectured that the maximum of P,". is attained for pure
states of the extreme type defined in the next section
and on this basis has proposed a value for the best
possible p!A"(X). In any case, p!A"(X) cannot be less

than the value proposed by Yang nor greater than
the solution p!g(p,X) of (6.13).

7. Best Possible Bounds for the Second-Order
Eigenvalue s

In this section we de6ne wave functions of extreme

type and use them to show that (6.23) gives the best,
possible upper bound for X', . This result is important
and surprising. The example of A.'(5) showed tha, t, in
general, g(p, lV) of Sec. 6 is not the best possible
bound for A."(X) and it is, therefore, of interest that
an argument, which involved neglecting the negative
terms in (6.4), yet gives the best possible bound in
the case p = 2. Furthermore, seemingly cogent argu-
ments guided by physical intuition based on a one-
particle picture can be advanced to suggest that the
upper bound for X,' is the reciprocal of P). Indeed,
this was a widespread conjecture for which Bopp'
published an alleged proof. However, near the end of
his argument Bopp assumes, incorrectly, that his
basis set is orthonormal. The correct result for
g = 4 was known to the author in 1958, but, as far
as he is aware, the general case for arbitrary X was
first decided by Sasaki. " The case of X even was
treated independently by Yang. "

Since the energy of a classical quantum mechanical
system involving two-particle interaction can be ex-
pressed exactly in terms of the 2 matrix, any in-
formation about the 2 matrix will, almost certainly,
be important. In fact, as we show in the next sec-
tion, (6.23) leads directly to a lower bound on the en-
ergy of the ground state of a fermion system. Further,
the wave functions of the BCS theory are of the
type defined in (7.1).

In order to avoid useless proliferation of indices
we adopt the following notation throughout this sec-
tion: g denotes a normalized gemincl which at point
(x&,x,) assumes the value g(12); gg and (23)gg denote
functions of four particles which at (x, ,x„x3 x4) as-
sume, respectively, the values g(12)g(34) and
g(13)g(24); f is a normalized orbital strongly orthog-
onal to g, that is, J f(l)g(12)dg(1) = 0 for all x2 ', for
even X, g~ is a normalized function of X particles
proportional to the antisymmetrized product of X/2
equal factors g; for odd X, f~ is a normalized function
of A particles proportional to the antisymmetrized
product of f and (X —1)/2 equal factors g. Thus, for
X even

g"(1,2. 7) = cNA~[g(12)g(34) . g(X —1,7)],
(7.1)

where c& is a normalization factor which, without loss
of generality, we assume to be real and positive.
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Further, for X odd

f"(1,2 . N) = dgA~[f(1)g(23) . g(N —1,N)],
(7 2)

where again we assume the normalization factor d~
is real and positive.

The functions g" and f" are of extreme ty pe if the 1
eigenvalues of g are equa, l and if f is strongly orthog-
onal to g. The latter condition implies that g, and g",
have finite rank, r, equal to the reciprocal of a 1 eigen-
value of g, and that the rank of f" is r + 1. Note
that, for E even, r &~ X, otherwise g" would be
identically zero.

Our next theorem generalizes Corollary 4.3C.
Theorem 7.1. If X is even,

Thus, (7.8) is proved and (7.4) follows immediately

by the same argument as Corollary 4.3C.
Corottcry 7.1A. For even X and +, a normalized func-
tion of the form eA&[gg" '] = g"

1
[1 —(rt, —2)a~] & 4 (

N
2 1

Proof. The second inequality is an immediate conse-
quence of (4.6), (4.7) and the observation that a~
cannot be zero since g~ ' may be expanded in. terms
of the natural orbitals of g.

From the proof of Theorems 3.1 and 4.3, we have

)' = max I(+ln'n" ')I',
where o.2 and o~ ' are arbitrary normalized functions.
Therefore,

A~[g(12)g '(3,4 N)] = A~, [g(12)g" (3 N)],
(7.8)

where A~ 1 is the antisymmetrizing projector on

2,3 .X. Further,

where

~: & l(~lgg"-') ',
& lel'l(A w" 'Iw" ')I',
& (-4 w" 'Iw" '),

since c is a normalization constant. The first in-
equality in (7.8) follows from (7.4).
Corothry '1.18. If N is even (N —1) ' is the best
possible upper bound for ) ', .

~
= t [&'( )&'( ')1. (7 5) Proof. From (6.9) and (7.5) it, follows that

Proof By (7.1).
Ag[g(12)g" '(8. .N)] = cg 2Ag[g(12)Ay 2g(84)

X g(N —l,N)]
= c~ 2A~[g(12)g(34)

X g(N —l,N)] (7.6)

by (4.2). If N = 2m, the expression g(12) . g(N
—1,N) is left unchanged, except for sign, by 2"m!
elements of 8&. Thus, in the expansion of the right-
hand side of (7.6) there are (2m)!2 m(m!) '

1.8.5. . . (2m —1) distinct, terms. On the other
hand, any term in A„,[g(12) . g(N —1,N)] occurs
in (7.6), and this also contains (2m —1)!2 '""
X ((m —1)!) ' = 1.8.5 (2m —1) terms since
8N & contains a subgroup of order 2 '(m —1)!
which leaves each term unchanged apart from sign.
Checking the coeKcient of the leading term we see
that

A) [g(12) . .g(N —l,N)] = A~ i[g(12).

X g(N —l,N)] (7.7)

. . A~[gg ] = c~ 2A~, [g(12)g(84) .g(N —1,N)],
= c~,A~, [g(12)A~,[g (84)

X g(N —l,N)]},
AX—1[gg ]

a~ ( min (n', P'),
where n' and p' are the greatest eigenvalues of D'(g)
and D'(g" '), respectively. Thus, if we take for g a
function of rank r with equal 1 eigenvalues, r ', we

have c& & r ' and

1 —(N —2)a~ & (r —N + 2)/r .
For suSciently large r, (7.8) implies that ), is arbi-
trarily close to (N —1) '.

It can be shown that for even N, the natural orbit-
als of g" are the same as those of g, and that the 1
eigenvalues of g~ are a function of the corresponding
1 eigenvalue of g. The proof of these and related re-
sults will be published elsewhere. It may also be
shown. that c& is a minimum for g of extreme type
(among g of the same rank) and that in this case the
first inequality of (7.8) becomes an equality so that
V, = (N —1) '(r —N + 2)r ', as was proved by
Yang.

We turn now to the case of odd X.Using Theorem
6.1 with p = 1, q = X —1

1
(fg glArfg g) = (fg .gIA) )[1 —(N —1)X

X (12)]A»fg g),
1=

N (fg glA fg g), -
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since f is strongly orthogonal to g. Using (7.1), (7.2),
and the idempotency of AN and AN & we have

N d&(fg ' ' glfA& '9—' ' '9) ~

1 2 1 dN
d~(Ay-yg glA~ zg ' —'g)

CN —1

~ ~ dN +CN —1

Furthermore,

(7.9)

(A gf 'lgf" ')

GN2 1

c'„,

= O'N, (A~f9 gl A~f9 g),
2X —2 cN 3 (7.10)

by (7.9). However, by (7.4) for even N,

1 2

X —1
[1 (N —2)a~] = c~ 2(A~-g '' gl'A~g g)

2
CN —2

2
CN

Thus, for odd N, (7.10) and (7.11) imply

(7 11)

By the same argument as for Corollary 7.1A and
7.1B we may prove a
Corollary 7.1C. For odd N ) 1 if + is of type f" of
(7.2), then

(1/X)[1 —(X —3)an &] & X& & (1/N) (7.13)

and, hence, X ' is the best possible upper bound for

For + of extreme type with g of rank r, aN &

——r '

and the lower bound for X', in (7.13) becomes

1 r —N+3
E r (7.14)

E = (N/2) tr [Ko], (8.2)

8. Ground-State Energy

Though we have criticized Bopp's article, ' in. fact,
it is both important and ingenious. The gist of Bopp's
argument is reproduced in ter Haar's review' and we
shall be guided by it to obtain a lower bound for the
ground state of any system of fermions.

7%then the Hamiltonian of a system of X indis-
tinguishable fermions involves only one- and two-
particle interactions so that

H = Q H, (i) + Q H2 (ij), (8.1)
2

it is possible to greatly simplify the calculation of the
energy of the system for the pure state +. By the
well-known simple calculation, the energy E may be
expressed as

a. (12;1'2') = Q s,,(p;(12)p;(1'2') .

Substituting this in (8.2) gives Bopp's formula

E = (N/2) Q s;;e;

Since 0. is a positive operator of unit trace

s;; = (p;l~q, ) & 0,

(8.6)

andes;; = 1.
From the extremal properties of the natural geminals

Sii & )1. (8.7)

where cr = D' and

K = Hi(1) + Hi(2) + (X —l)H2(12) . (8.3)
In particular, for X electrons in an atom of nuclear
charge Z,

Z Z X —1K = ——hg ——A2 ————+ (8.4)2 2 r1 r2 f12

for a common approximation which neglects spin.
The advantage of (8.2) is that it does not involve

the X-particle wave function but only the 2 matrix
0(12;1'2'), it is exact, and unlike approximations to
the energy in terms of the 1 matrix, it is linear in the
density matrix and occupation numbers. One could,
therefore, hope to obtain the ground-state energy
of an Ã-particle system merely by choosing 0- to
minimize (8.2). It was while he enjoyed the hos-
pitality of the Summer Research Institute of the
Canadian Mathematical Congress in 1951 that this
possibility first occurred to the present author. He
proceeded to calculate the energy of the ground state
of I i and was somewhat surprised to obtain a value
about 30%%uo !oo low! This shook his naive and un-
examined faith in Ritz and Rayleigh but aroused
his interest. In that first attempt 0- had been varied
over too large a class of functions. The restriction
to X-representable 0 had not been imposed. If the
&-representability problem can be solved for the 2
matrix, the way will be open for the direct appli-
cation of (8.2). In the next section a restricted class
of X-representable 0- will be described with the help
of which, together with (8.2), it should be possible
to obtain moderately good upper bounds for the
ground state of S-fermion systems.

However, it is possible to use (8.2) to obtain a
lower bound, without having solved the X repre-
sentability problem completely, by merely employ-
ing the bound (6.23) on X&. Let &p;(12) be an eigen-
function of K with eigenvalue e; so that Kq; = e;q;,
and suppose that I &p, I form a complete orthonormal
set of two-particle functions, so that we may find
complex numbers s;, = s, ; such that
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and for X odd

E ) — — Q s, = —Q s;, (8.9)
1 1

where the summations are over the lowest eigen-
values of Z. The bound (8.8) was announced in 1958
to the Physics Colloquium of the University of
Toronto and is similar to the result obtained inde-
pendently by Bopp except for the factor and range
of summation. However, Bopp goes a step farther
and notices that by a change of the unit of length
(8.4) may be transformed into the Hamiltonian for a
two-electron atom with charge Z/(X —1).Thus, for
Be+, Z/(X —1) = 2 and s; can be obtained from the
spectrum of He. In this particular case of X = 3.
his factor X(X —1)/2 and our factor X coincide so
the bounds given by Bopp and (8.9) are identical,
Because of the inaccuracy involved in substituting
1/3 for sip ssg and sss and neglecting all higher terms,
one would expect a very poor approximation. It is
astonishing that for Be, the bound is within 1 jo of
the actual value, and almost incredible that for 0'+
with Z = 8, X = 3 the bound is low by less than. 3
parts in 14,107. These results suggest that it would

be of considerable interest to expand the known wave
functions of Be+ in terms of natural geminals to de-
cide how close they are to functions of extreme type.

Bopp's method of evaluating (8.8) and (8.9) has
the advantage that it uses atoms as calculating ma-
chines, but it is restricted in application to cases for
which Z/(X —1) happens to be an integer. It is pos-
sible to eliminate this restriction by dividing K of
(8.4) by Z' and replacing Zr, by r, , etc. , so that

where
E = (XZ'/2) tr (Zo), (8.10)

with

+, (8.11)

y = (X —1)/Z.
Calculations by Hylleraas and Mitdal and by Sharma
and Coulson for the lowest energies of two-electron
systems as functions of Z may be used to obtain the
lowest eigenvalue of K as functions of y. For a
neutral atom with large X, y is less than but close to
1, so that K approximates the Hamiltonian of H

It f oil ow st hat f or X even, s;; & (X —1) '; for X odd,
s,; ( X '. We may, therefore, conclude that for the
ground state (E ( 0) if N is even

N —1

(8.8)

which apparently has only one bound state. On the
other hand a theorem" of Zhislin asserts that for

y ( 1, K has an infinite number of bound states with
energies below the dissociation energy. Thus, for X
large there is apparently a gap between the one
lowest eigenvalue of (8.11) and the eigenvalues of an
infinity of bound states close to the dissociation en-

ergy. Zhislin's theorem shows that there is a similar
"gap" associated with the K appropriate to a neutral
lattice, so that it is an obvious temptation to relate
this energy gap to the famous energy gap in the
theory of superconductors.

PART III—N REPRESENTABII ITY

In Part III we make a direct attack on the prob-
lem of X representability of the one- or two-particle
density matrix which may be viewed in two aspects,
according to whether the matrix is derivable from a
pure X state or from a statistical ensemble of pure X
states. Since the la,tter matrices form a convex set

(cf., Sec. 2) we search for its extreme elements. In
Theorem 9.1 and 9.3 we provide a complete and

simple characterization of 1 matrices representable

by ensembles of X particle states. Theorem 9.3 pro-
vides the proof of a conjecture made by L. H. Thomas
at the Hylleraas Symposium. Theorem 9.4, which was

discovered since the Symposium, states that, for X
even, wave functions of the extreme type de6ned in

Sec. 7 give rise to 2 ma, trices which are extreme

points of the convex set O'N. Theorem 9.4 seems to
bring us close to the solution of the X-representa-
bility problem for the 2 matrix and provides us with

a large class of suitable 0 which, when used in Eq.
(8.2), should lead to extremely good upper bounds

for the energy of the ground state of a fermion system.

9. Ensemble Matrices

We recall that, in Sec. 2, (P' was defined as the set
of all positive IIermitian operators of unit trace on the
Hilbert space of p-particle functions, and (PN as the
subset of elements of (P" which are ensemble X repre-
sentable.
Theorem 9.f. An extreme element, p, of the convex
set (P~ is representable by a single Slater determinant
which is uniquely determined by p except for phase.
Proof. The 1 matrix of a single Slater determinant is

of rank X and, as follows from Corollary 4.3A., has
eigenvalues all equal to X '. Suppose that.(1;1 ) = (1/W~"(1).—.(1 ) + + .-(1).--(1')~

(9.1 )

rs G. M. Zhislin, Tr. Mosk. Mat. Obsc. 9, 81 (1960),
Theorem III, p. 84.
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A direct calculation shows that p, is + representable
with

pressed in terms of natural orbitals of +, all cross
terms disappear in (2.1) and we find

+ = (N!) '[g (1)~ (2) g~(N')], (9.2)
t (1;1') = Z'[Z lc I']n'(1) '(1') (9.5)

p = np&+Pcs& (9.8)

where n ) 0, P ) 0, n + P = 1 and p, and ps are N
representable. By Corollary 4.3A the rank of each of
p, l and p2 is at least N, therefore, the rank of the
right-hand side of (9.3) is greater than N unless the
natural orbitals of pl span the same space, of dimen-

sion N, as the natural orbitals of p2. In the latter case

pl = p2
——p, by the first paragraph above.

To prove the theorem we must show that every
extreme element of Pit is of the form (9.1). This we
do by proving that any y & tP„' is a weighted mean
of p of the form (9.1).

Suppose p is + representable where 0 is a pure N
state. By Theorem 3.2,

+= gc [K], (9 4)

where [E] is a normalized Slater determinant, and E
runs through some appropriate set of indices. %e
form D'(4') according to (2.1).Since the [K] were ex-

where [y, (1) q~(Ã)] is the Slater determinant
formed from the orthonormal set q, (1). The expres-
sion in square brackets in (9.1) is the Dirac density
matrix p(1;1 ) which is idempotent, Hermitian, and
of tr N. Regarded as an operator, p is the projector
in the 1-particle Hilbert space onto the X-dimensional
subspace spanned by [q, }.By Theorem 8.2, if p is 4
representable, then + may be expanded in terms of
the eigenfunctions q; of p. Apart from phase, there is
only one normalized antisymmetric function of E
variables which can be expressed in terms of the X
functions q;. Equation (9.2) defines such a function.

%e next note that the dimension of the range of
the sum of two positive Hermitian operators A. and
8 which act on a finite dimensional space is equal to
the dimension of the union of their ranges. For we

may choose eigenvectors f; and g, of A and B, re-
spectively, which span their ranges such that Af;
= n;f;, Bg, = P,g, with n; & 0, P, ) 0, 1 & i & ri,
1 & j & rs. Suppose f is any linear combination of the
f; and g, , then (A + B)f = Oimplies that Af = Bf-
and, therefore, that (flAf) = ( flBf)—which is pos-
sible only if Af = 0 and Bf = 0 since A and B are
positive. Thus, the dimension of the range of A + B
is equal to the dimension of the set spanned by such f,
namely, the dimension of the linear space spanned by
all the f; and g;.

We may now easily see that any tl, of the form (9.1)
i8 extreme in (PN. If not then

where for each i the inner summation on K is on
those K such that y; occurs in [K].It is apparent that

where

t =Zlclt (9 6)

ss W, E. Jenner, Itudkments of Algebraic Geometry (Oxford
University Press, Oxford, 1963), Chap. VI.

t x = ND'(Ã]) .
The proof of Theorem 9.1 is thus complete and we

may deduce
C'Orothry 9./A. The set of ensemble X-representable
1 matrices is the convex set containing all 1 matrices
of Dirac type (9.1).

The p = Ntt in (9.1) is completely determined by
the N-dimensional space spanned by pl, q», q».
Thus, if we work in a space S spanned by a basis set
of dimension 3f, there is an extreme 1 matrix associ-
ated with each N-dimensional subrace of . The set
of such subspaces may be put into 1:1correspondence
with the points of a so-called Grassman variety" in a
space of dimension (g). We, thus, have
Corollary 8.lB. The extreme elements of 5',& may be
indexed by the points of a Grassman variety.

%e next prove a conjecture of L. H. Thomas which
will lead to a more practical characI;erization of O'N

than that given by Theorem 9.1. Let Z consist of all
vectors v = (v„us,vs, ) in a space of arbitrary but
fixed dimension with 1 & v; & 0 and P v, = N. The
v; are real numbers.
Theorem 0.8. The set 2 is convex and its extreme
points are the vectors with N components equal to 1
and all others equal to zero.
Proof. The proof that 2 is convex is obvious.

By the condition on the vectors in 2, each has at
least N positive components. Thus, a mean of any
two has more than N components unless the nonzero
components of the original vectors were the same
and equal to 1.Thus, the vectors with N components
equal to 1, are extreme.

No other vector in 2 is extreme. Suppose v g 8
and that v is not of the above type and, therefore,
has at least N + 1 positive components which, with-
out loss of generality, we assume to include
~1 i 2 ~N+1 with ~l + ~2 + + ~X+1 ~

= (1,1 1,0,0 ) have its first X components equal
to 1, the others must be zero.

Since v~+& & 1 it is possible to choose e ) 0 so that
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vN+& & 1 —c and also so that 0 «& vN. With any
such e we define w by means of the equation

2
0 =

N(N 1) Z [ij]X]~ (9 9)

v = ~u+ (1 —e)w. (9.7)

For 1 & i & N, w; = (v; —e)/(1 —e). Clearly
0 & w, & 1. For N & i, w; = v,/(1 —e) & 1. We
easily verify that P w, = N Th.us, w g 2 and by
means of (9.7) v is expressed as a mean of u and
w g Z. Hence, v is not extreme.

By the Thomas space, we designate the set, GN, of
elements of 6" with eigenvalues less than or equal to
N '. Thus, for p Q 3~, y = g a'P, where 0 & No. '

1. Hence, p —Np' = g n'(1 —Nn')P„and, .

therefore, p, —iVp' is a positive operator. An im-
mediate consequence of Theorems 9.1 and 9.2 is
Theorem 8.8. (PN = GN and, therefore, (PN consists of
those operators ii g P' such that p —Np' is positive.

The importance of this theorem is dificult to ex-
aggerate. It means that the conditions on the 1 xnat-

rix, sometimes referred to as the Pauli conditions, are
not only necessary, but also suKcient for a given 1
matrix to be X representable by a pure state or a
mixture of pure states. It justifies many past pro-
cedures in the statistical mechanics of fermion sys-
tems and helps explain their success. Theorem 9.3 is
the answer to a question first posed to the author by
Lowdin at the Sanibel Conference in 1962.

As was remarked in Sec. 2, the preimages in (P" of
the extreme elements of (PN are pure states. Theorem
9.1 shows that it is not true, conversely, that the
images in 6'& of pure states are extreme. An interest-
ing unsolved problem which we discuss brieQy in the
next section is to characterize those matrices in (P~

which derive from pure states.
In the Hartree —Fock case for which + is a single

Slater determinant, p is of the form (9.1) and

0.(12;1'2') = P[p(1;1')p(2;2') —p, (l;2')p(2;1')],
(9.8)

where P = N(N —1) '. In the general case, it would
seem to be worth attempting to approximate 0. by
(9.8) subjecting p only to the condition that it lies in
Thomas space and choosing p so that the trace of o is
unity. A more elaborate suggestion along these lines
will be found in the author's Uppsala report, '
(Theorem 12) .

Will arguments similar to those above throw light
on the X representability of the 2 matrices' We
easily see that D'(4) for 4' a single Slater deter-
minant [1,2 . N] has the form

where [ij] is a normalized two-particle Slater de-
terminant. Since this gives rise to a 1 matrix of form
(9.1) which has a unique preimage in (P~, we easily
see that (9.9) is extreme in (Pi'i. However, there must
be other extreme elements, because weighted means
of operators of the type (9.9) could never have eigen-
values greater than 2/N(N —1) which do occur for
N ) 3 according to Corollaries 7.1Band 7.1C.

Since the set (R& of elements of 5"with eigenvalues
less than X ' is convex, it is natural to conjecture
that (RN coincides with 6'~ for N odd and also with
(P~+, . While the discussion of Sec. 5 showed that it
would be possible to characterize 6'& xnerely by con-
ditions on the eigenvalues of its elements, this is
rather too much to expect for O'N. Indeed, the follow-
ing counterexample disposes of the above conjecture.

I et I';; denote the projector on the space spanned
by the single Slater determinant [ij], then (N + 1) '

X [82 + Rs + .+ R~ + P.3 + P-] belongs to
S&, but it has an image in (P1 whose largest eigen-
value is (N —1)/(N + 1) which is impossible, by
Corollary 4.3A, if N ) 2.

However, combining the results of Sec. 7 with the
second paragraph in the proof of Theorem 9.1, we
can prove
Theorem 8.$. The D'(4') obtained from 4' of extreme
type are extreme elements of the convex set 5'&.

Proof. Recall that 4 of extreme type were defined by
(7.1) and (7.2) with g such that D'(g) has finite rank,
r, and equal eigenvalues X,' = r '. The corresponding
2-matrix D'(+) has an eigenvalue V, equal to the
maximum possible for any 4' of rank r. D'(4') must
be extreme. For if not, it, is a weighted mean of N
representable 2 matrices of lesser or equal rank. The
maximum eigenvalue of a 2 matrix of lesser rank is
strictly less that V, by Sec. 7, and, therefore, weighted
means of such matrices could not have eigenvalue ) 1.
On the other hand, any matrix of the same rank
spanned by the same set of orbitals as D'(+) which
is to contribute towards the eigenfunction g with
eigenvalue )1, xnust have the same function g with
the same eigenvalue and must, therefore, result from
the extreme %' of (7.1) in the case N even or from
(7.2) in case N is odd. This proves the theorem.

Setting r = N for N even in (7.8), or r = N —1
for N odd in (7.14), gives the eigenvalue 2/N(N —1)
and we obtain another proof that 0. of (9.9) is ex-
treme.

Theorem 9.4 provides us with a very large class of
extreme elements of (P&. Any weighted mean of these
extreme elements would, when substituted for a. in
(8.2), give an upper bound on the ground-state en-
ergy. For a fixed basis set of r linearly independent



686 A. J. COLEMAN

p; we may choose g of extreme type in a continuous
infinity of ways. Since r is arbitrary we have an in-
numerable number of classes each containing a con-
tinuous infinity of extreme elements of (P&. This
seems almost enough~ If we have found all the ex-
treme elements then (certainly if we restrict our-
selves to D' of finite rank) P~2 could be characterized
as the convex set containing the extreme elements
described in Theorem 9.4. It is an open conjecture
that Theorem 9.4 does indeed describe att the ex-
treme elements of (PN.

10. Reyresentability by Pure States

A pure state is on the frontier of the space 5'~. Be-
cause of the linear nature of the transition (2.1) from
DN to D"; the images of pure states will be on the
frontier of (P„". Can they be characterized in a more
precise manner? In this section we state a few of the
more important results obtained in this connection
for the 1 matrix. For proofs, the interested reader is
referred to Secs. 6 and 8 of our Uppsala Report. '

Throughout this section, X representcbility refers
to representability by means of a pure state and p is
an arbitrary member of (P'.

Theorem 10.1. p is X representable if each of its
eigenvalues has multiplicity divisible by Ã.
Theorem 10.8. LM is 2 representable if, and only if, all
its eigenvalues have even multiplicity.
Theorem 10.8. If p is Ã representable, its rank
rAN+1.
Theorem 10.$. If the rank of p is N + 2 it is N repre-
sentable if, and only if, (i) for N odd, X', = N ' and
the remaining eigenvalues are evenly degenerate and
less than N '; (ii) for N even, its eigenvalues have
even multiplicity and are less than N '.
Theorem 10.8'. If p is X representable and its first m

eigenvalues equal X ', then there is an orthonormal
set p, ,p„q such that p(1;1') = N ' +PAL;(I) p;(1')
+ p&(l;1'), where pj is (n —m) representable by
means of a function which is strongly orthogonal to
all q;.
Theorem 10.6'. p, is X representable by 0' if, and only
if, it may be expressed in the form

p = hnn + (N —1)%pi + (1 —Nk)p2,
where u' is a natural orbital of +, p& is (N —1)
representable by n~ ' the corresponding (N —1)
natural state of 0', and p, 2 is X representable by a
function which is strongly orthogonal to n' and
n~ '

This theorem settles the question of Ã representa-
bility of 1 matrices, in principate, by a double induc-
tion on g and the rank. The proof given in the Upp-

sala Report can be greatly simplified by using the no-
tation of second quantization. If, in that notation,
the c; refer to natural orbitals, Theorem 10.6 is a con-
sequence of the obvious fact that + may be expressed

+ = +i+i++ y

where a&p = 0. The (N —1) function a,@ plays the
role of nN ' above.

The final two theorems are rather tantalizing, sug-
gesting as they do, that the theory of graphs might
play a decisive role in characterizing S-representa-
bility. We shall say that two natural orbitals n,' and
n,' are connected if they occur in the same Slater de-
terminant in the expansion of 0 in terms of natural
orbitals. This condition, in the notation of second
quantization is a;a,% @ 0.
Theorem 10.7.

Z (~'.): & (N —1) (~', ):,
where the summation is on all i connected with j, and
where equality obtains if, and only if, n,' belongs to
an isolated set of X mutually connected natural or-
bitals (all are elements of one Slater determinant and
occur in no other).
Theorem 10.8. If Pl + X,' ) N ' then n,' and u,

' are
connected.

11.Concluding Remarks

Have we succeeded in eliminating the wave func-
tion from quantum mechanics? Not quite t However,
Sec. 9 has almost made it unnecessary for the cal-
culation of the energy of the ground state of fermion
systems. The final step towards this desirable goal
will probably be taken when the conjecture at the
end of Sec. 9 has been decided. Even if the conjec-
jecture is incorrect there is a good chance that it
cannot be settled without providing us sufFicient in-
sight to obtain all the extreme elements of (P~.

Since wave functions of type gN play a crucial role
in the BCS theory of superconductors it would seem
that a necessary development in solid-state physics
is for us to develop facility in thinking in terms of
geminals rather than orbitals as in the past. The
exactness of Eq. (8.2) might further suggest, as a
fundamental tool in analyzing the states of solids,
the graph of XI against e; since X& can be interpreted
as the occupancy number of the corresponding
geminal.

It is clear that we have raised many new problems
for chemists, physicists, and mathematicians. There
is the problem of developing proper numerical tech-
niques for the effective use of Sec. 9 in the formula
(8.2). It would be of interest to analyze known wave
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functions in terms of natural orbitals and natural
geminals. Can the unitary invariants of o. be used to
develop a rational theory of bonding? of off-diagonal
long range orders? Algebraic geometry may throw
some light on the set of extreme points of {P&, as may
graph theory. A deeper understanding of 6'& for

p ) 2 will be of value for any physical situation.
which requires more than two-body interactions for
its analysis.

fiLote added in proof (a) H. . W. Kuhn in his paper
"Linear Inequalities and the Pauli Principle, " Pro-
ceedings of Symposia in AppLied Mathematics
(American Mathematical Society, Providen. ce, Rhode
Island, 1960) Vol. X, Combinatorial Analysis, pp.
141—147, proved Theorem 9.2 by a considerably
more elegant method. (b) T. Ando, in a private com-

munication [see also following paper, p. 690], has
pointed out that in the statement of Theorem 10.4
(ii) the phrase "are less than" should read "are less
than or equal to." (c) Dr. Kummer of the Institute
for Physical Chemistry, Zurich remarked in private
conversation that the conjecture at the end of Sec.
9 is false for X = 2. The author subsequently proved
that D'(A3(fg)) are extreme in tPl for all g strongly
orthogonal to f Ho. wever, it appears from (7.14)
that X = 3 is somewhat peculiar, and he still main-
tains the conjecture for X greater than 3. (d) In
view of the role of g~ in the relatively successful BCS
theory, and of Yang's proof" that large )', implies
magnetic ftux quantization, it would appear that the
first inequality of (7.8) gives us a criterion for the
onset of the correlated superconducting state.

Discussion on "Structure of Fermion Density Matrices"

by A. J. Coleman

LowDIN: In connection with Professor Coleman's talk, I would like to repeat a comment which

I made to him at the winter institute one year ago. Irrespective of the normalization, the expec-
tation value of the Hamiltonian H = Ho + g; H; + g~&~H;, can be written in the form [Cf.
P. O. Lowdin, Phys. Rev. 97, 1474 (1955), particularly p. 1477; Advances in Chemical Physics,
edited by I. Prigogine (Interscience Publishers, Inc. , New York, 1959),Vol. 2, p. 207; particularly

p. 319]

H0 + +Hi + 2 H12 I (xlxl ~xlx2)dxldx2
X

(H.,)..=
I' (xix2 ixix2) dxidx2

i.e., it can be defined in terms of the second-order density matrix. Here it is convenient to charac-
terize every function I'(x&x2 x, ~x,'x2 x,') which is Hermitian, positive definite and of finite

trace as a Fermion "density matrix. "
Some of the first calculations using a variation of the density matrix were carried out by

Mayer [Cf. J. E. Mayer, Phys. Rev. 100, 1579 (1955)], but his restrictions on P have been con-

sidered too weak [Cf. R. H. Tredgold, Phys. Rev. 105, 1421 (1957)].
Professor Coleman has focused the attention on the conditions such a matrix has to fulfill to

be derive, ble from a wave function + = +(xi, x2, xi') for X particles, i.e., to be iV-representable.

Here I would like to emphasize the existence of a theorem (1956) saying that, if I'(x&x2~x,'x2) is

derivable from an ¹h-order density matrix F(x&x2 .x~~x,'x2 x~), then

(H)r ) Eo,

where Eo is the lowest eigenvalue of H; the equality sign holds only if the ¹h-order density

matrix corresponds to the exact eigenfunctlon Np.

The proof is simple, provided one can use the fact that the solutions CA., to the eigenvalue

problem II+I, ——E&+L, form a complete set. In the general case, I'& represents a mixture of states
and may be expanded in the form

I'(X~X') = +pi +,(X)Cp,+,*(X'),
where X = (x x2, . x~). Introducing the normalization Tr (I'~) = 1, and the convention that,

H operates only on the unprimed coordinates, one obtains


