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1. INTRODUCTION

N applying the principles of quantum mechanics
to chemistry we must deal with large numbers of

electrons located in the fields of many positive
charges distributed arbitrarily in space. The multi-
centered character of chemical electron systems al-

lows only limited applicability of the symmetry con-
siderations of atomic structural physics and the or-
thodox methods of many-particle theory. Thus,
quantum chemistry has been able to gain access to
purely chemical questions only when such treatments
are chosen, as, for example, the Huckel treatment,
the resonance concept, the method of hybridization
of at,omic states, or the "atoms in molecules" treat-
ment.

This paper involves calculating the energy states of
molecules, as well as atomic systems, where we mean

atoms which cannot enter into mutual bonding rela-
tionships. The basic idea of this work, which we will

call the concept of "atomic associations, "is to reduce
the multicentered problem to a series of conveniently
solved single-center systems. Thus, we may deal with
an arbitrary molecule using a formulation free from
factors involved in using a finite number of fictitious
at,oms. This method of "building" t,o larger mole-

cules distinguishes it from most conventional treat-
ments, which always begin with a multielectron and
multicenter system. Thus, the large errors obtained in

deriving excitation, dissociation, or resonance energy
of molecules or parts of molecules, which are always
small when compared to total energy, are removed
because the absolute values often can be determined
rather exactly as a percentage.

The semiempirical frame of this method includes
the atoms in molecules'" and "united atom'" treat-
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PPdr = 1. (la)

This leads to an eigenvalue problem for Eq. (1) with
eigenfunction lt, (s = 1, 2 . ) and corresponding en-

ergy eigenvalue G.. The Pauli principle also applies
independently to Eq. (1) and requires of the solution
of lt, (which depends on all electron coordinates) that
it be antisymmetric in these coordinates. Thus,

T,,P, = f, (T;, is an in—terchange operator) (2)
3 For example: H. Hartmann, Z. Naturforsch. 2a, 489

(1947); Tien Chi Chen, J. Chem. Phys. 23, 2200 (1955);
R. G. Parr, J. Chem. Phys. 26, 428 (1957);K. M. Howell and
H. Shull, J. Chem. Phys. 30, 627 (1959); H. Hartmann and
0. Gliemann, Z. Phys. Chem. 15, 108 (1958); 19, 29 (1959);
and J. R. Hoyland and F. W. Lampe, J. Chem. Phys. 37, 1066
(1962).

4 R. A. Ogg and M. Polanyi, Trans. Faraday Soc. 31, 604
(1935); M. G. Evans and M. Polanyi, Trans. Faraday Soc.
31, 875 (1935).

ments and the method of a single-center expansion'
as a special case. The general formulation of the
atomic associations method shows how "activation
energy" can be determined and thus permits a rela-
tionship to earlier calculations whose goal was the
approximate determination of "activation energy"
using the three-atom process. '

Examples calculated thus far (Sec. 6) give results
agreeing more closely with empirical values than
those from conventional treatments. The information
from energy surfaces does not always agree with the
magnitude of the chemist's activation energy, but
the approximate course of the energy surfaces per-
mits general conclusions about the order of magni-
tude of activation energy, and the information from
energy surfaces is absolutely necessary for further
study of all the steps of a reaction.

The basis in quantum mechanics (quantum chem-
istry) for calculating the physical and chemical prop-
erties of molecules and atomic systems is the time-
independent Schrodinger equation

(5('. —6)+ = 0 (1)
for relatively slow atoms, where the solution 4 of
this partial differential equation will be assumed as
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must be valid when the electron coordinates are in-
terchanged. The coordinates of an ith electron can
be described, for example, by the space coordinates
(x,,y, ,s;) = r; and a spin coordinate a;.

For a system of n electrons, P. is written in detail as

tion in only a few cases so approximation treatments
are used, often proceeding from the fact that

c.
is always valid if 8, is the minimum of

$s = fe(Ger 's'rny&ip's' ' 'o'a) ~ (3)

Neglecting relativistic effects and the spin-orbit
coupling, the Hamiltonian operator 5C in Eq. (1) be-
comes

(9)

where the approximation functions P, are varied and
are linear combinations of definite functions x„

~= Zb(')+Z Z „+Z Z "-", (4)
Z, c„x„.

From Eqs. (9) and (9a) it follows that

(9a)

where

A, (i) = ——,'~, —g ";~;=,+,+Zp, 8

9g; Bg; 88; where

N —1

8, = Q,*Hg.dr + Q
) =I p,-h+l ~Xp

(10)

(iu Cartesian coordinates) when X atoms have the
nucleus charge Zq(X = 1,2,3 Ã) and atomic units
are used. If the vector of atom ), (charge Z~) is de-
fined as Rg = (jt'i...Rg„,Bg,), then

n n—1 ne= ga(')+ g
i=1 i=1 j=i+I ~ij

and where h, (i) is determined by Eq. (4a), so that it
is then convenient to consider only the so-called
"electron energy"

(5)

And all of the properties of the system can be derived
from P, and 8..

We want particularly to discuss the total energy
G„where

F„=8, (Zg, Rg,n) . (6)

P, is also a function of these parameters. This means,
then, that if one knows the number of electrons and
the arrangement of the nuclei with their charges, all
of the physical and chemical properties of the system
can be determined uniquely by Eqs. (1) and (2).

8., as functions of the parameter Nq, are called
"energy surfaces. " To every arrangement of nuclei
belongs a, completely orthogonal system of P, func-
tions. In the case of two atoms a, b(N = 2), 8, is de-
pendent only upon B.b and in. the bonding case can
be represented approximately by a Morse curve, for
example (see Sec. 5).

If 8, is dependent on two parameters, one obtains
a family of surfaces representing the series for all
atomic arrangements, such as for three atoms which
interact with one another in a linear process of the
form

E. = 8. —
P =1 p=X+I ~Xp,

because this always remains finite for the difference
between nucleus interaction and total energy. So in
the following we will use the expression "energy sur-
faces" only for E,.

2. THE CONCEPT OF ATOMIC ASSOCIATIONS

The point of departure of this concept is the as-
sumption that one Inay expect good results in multi-
center problems, if one can assume a sufhcient num-
ber of exactly solved single-center problems. That
means for energy calculations, which are calculated
from a zero level, that it contains the largest part of
the total energy. Thus the energy, which arises from
the multicentered character of the system (as does
the bonding energy or activation energy), is obtained
with greater exactness and reliability. So it is valid
to develop a formulation that contains the atom
problem as a basis and describes the molecules with
the aid of "structures" which are constructed from
the different atom arrangements.

These structures, which we will call "atomic as-
sociations" [K] are obtained by the transitions
B~„~0 (unions) and Rq„—+ ~ (separations) which
actually receive nuclear charges in the molecule. ' For

a+ bc~~ob+ c. (7) H. Preuss; Z. Naturtorsch. 12a, 599 (1957); 13a, 864
(1958); Naturwiss. 4'7, 241 (1960), Yheoret. Chim. Acta 1,

The Schrodinger equation (1) gives an exact solu- 42 (1962) Z. Naturforsch. 1sa, 489 (1968).
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example, if there are three atoms —c, fi, and c—then where we note that, due to Eqs. (1), (4), (10), and
one of the five associations obtained can be written (ll),
in the form (X —6 )0. —= (H —E.)4. —= o (21)

[K] = [a[bc]

and has the transition
is valid. Corresponding to Eq. (20), the eigenvalue of
Eq. (19) also follows from the passage to the limit

Another association is

which comes from the transition

g.b
—+ ~; Itl..~ ~; R~. —& ~ . (13a,)

We designate the single-center system as (bc) in
Eq. (12), and (a) or (6) as "partial unions" in Eq.
(»)

In general, we determine that every atomic as-
sociation [K] (number 7l~) contains the partial
unions (K,) (j = 1 A~),

&IH(K)l) = Z &l~(K)l& (23)

is valid, and the electron energy of the association
[K] results from the sum of each individual energy
of the single-center systems (K,):

(22)

Similar equations can also be written for the par-
tial unions. H(K) consists of a series of single-center
systems whose interactions disa, ppear due to the pas-
sage to the limit of lim~K]. Thus

IK] = [K IK.I. IK. ], (14) 6.(K) = +6.(K;) . (24)

where

1&AK&X. (14a,)

If the number of atoms in (K,) is further defined
as XK,, then

must be valid, as is

IBC(K,) —e, (K, ) }q, = 0 (25)

and C'.(K) follows from Eq. (20) as the antisym-
metrical product (P„ is a permutation operator) of
all pe

The solution of the Schrodinger equation for the
partial union (K,) is defined as p~, , so we have

(16)

if XKj is the number of electrons in the partial union
(K,). As an abbreviation for transitions (12a) or
(13a) we write lim ~xj or lim~l, t, respectively.

In the sense of the concept of atomic associations,
the Hamiltonian operator can be pa, rtitioned:

H = H(K) + V(K), (»)
whereby the anticipated values of the remainder
V(K) disappear with the transition to [K]:

lim (~V(K)~) = 0, (18a)

»m &~H~) = &~H(K) ~) . (1flb)
[K]

The eigenfunctions of the operator H(K)

]H(K) —6, (K) }C.(K) = 0 (19)
are then obtained from the solution of H from the
transition

(2o)

0 =D'g( —1) "P (27)

based on running through all permutation. s obta, ined
in the numerical value of O'. This is essentially the
basis of the concept of atomic associations.

The index s of P. that we ca,rried along in the
equations distinguishes the different eigenstates of
the system. In this sense Eq. (26) means that such
p~, (X~;) are used, as always follow from the passage
to the limit, of lim~~~ of Eq. (21) for Eq. (19) accord-
ing to Eq. (25), i.e. , s numbers the different energy
surfaces, an.d every passage to the limit for an atomic
a,ssociation is a, definite surface. Thus, in addition to
excited states of (K,), they also appear under cir-
cumstances in which the fictitious partial unions no

where (—l)~ = 1 or —1, depending on whether P
contains an even or odd number of transpositions.
(D' is a normalization constant. ) The eigensolutions
of Eq. (25) are thus already antisymmetrical, but it
will be possible generally to apply the operator
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if the sum runs over all nucleus charges of the partial
union (K;). In any event, the association C,(K) be-
longing to it can appear for energy surfaces in which
the total system

QZ, =n (29)

is neutral.
The partitioning of H in Eqs. (17) and (23) can be

done in many ways due to the indistinguishability of
the electrons relative to their numbering. This fact
leads to the so-called exchange-degeneration of the
solutions of Eq. (1), which was reduced by require-
ment (la) and the Pauli principle (2) and leads to
unique antisymmetrical solutions, because

(30)

is valid for II, and this leads directly to the previ-
ously mentioned ambiguous numbering that is not
equivalent to any physical ambiguity. We can de-
cide about this later only on the basis of suitability in
relation to a simple calculation of this or that reduc-
tion of H.

In this connection another difference in the ap-
pearance of C,(K) must be pointed out. According
to Eq. (20), C'. (K) is obtained as a limiting function
of P, if certain Rq„s go to zero or infinity corresponding
to associations of [K]. The representation (26) for
C,(K) is also to be understood in this sense. These
functions represent an orthogonal function system
when passed to the limit'

longer represent neutral atoms. This is expressed by

(N2)

g Zi. n, ,

H(K) = ae(a) + 6e(c) + ae(bd)

K(a) = —-', Q 6;—
n

se(c) = —-', Q Ai—
i=1
+b+ d

se(bd) = —-', g Lb—

Z '+ZZ —,
g —1

Z —'+Z Z
i=1 rci i=1 j=i+1 rij

Zb + Zg

i=1 rbd, i

nuclei to make use in every case of the fact that the
single particle functions are solutions for hydrogen
atoms.

Through the concept of atomic associations certain
points are distinguished on the energy surfaces whose

corresponding energy values are represented by Eqs.
(22) and (24) as energy sums originating from free
atoms. An X-atom molecule can be set in relation to
systems which possess the same quantity of elec-
trons, but it exhibits a smaller number of atoms. Due
to Eq. (11),this relationship can always be produced.
The possibility of distinguishing specific curves on
the energy surfaces will be handled in Sec. 4.

The number of associations (7k~) increases rapidly
with N. If for two atoms, a and 6, there are only two

[afb], [ab], then for X = 3 there are the following
five association possibilities: [afblc], [albc], [able],
[b lac], [abc]. For four atoms —a, b, c, and d—one ob-
tains 15 possibilities [afbfcfd], [afbcd], [bfacd], [cfabd],

[d abc], [ab fcd], [ad fbc), [ac bd], [a fb fcd], [cfd lab],
[a cfbd], [afdfbc], [bfdfac], [c bfad], [abed], some of
which, however, need not always be considered as
taking place physically.

As an approximate illustration, H(K) can be given
for K = [ale f M], in atomic units, as

lim C,*(K)g,(K)dr = b. ,
[X]

(208)

ii b +SLY 1 Rb +rid+ZZ (3la)

For fixed H(K) in Eq. (19) the C,(K) are, in contrast,
originally pure products of p~, (X~;) and for this,
Eq. (20a) is always valid. But because we always
want to view the Eq. (26) representation of C, (K) as
a point of depa, rture, Eq. (19) is to be understood as
a relationship that can be applied to every product
of Eq. (26), depending on how H is partitioned by
Eq. (17).

Thus, here we obtain the same conditions as in the
Heitler —London method for II& molecules, i.e., there
the Hamiltonian operator was differentially parti-
tioned relative to the electron numbering on the

6 For the foregoing degeneration, one applies the proper
linear combinations, constructed according to representation
{26), in c,{K).

where, from Eq. (16), ni ('A = a,c,M) represents the
number of electrons which, in the passage to the
limit of

gab ~ OO +cd ~ OO

Bbd ~0,
"belong" to atom X.

Then from Eq. (24)

(Bib)

8, (alclbd) = F„(a) + R, (c) + 6, (bd) . (32)

The concept of atomic associations joins the bases
of two known methods. On the one hand it deals with
the method of "atoms in molecules, '" derived only
from the association

[Kj = [alblcl
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which started from the completely separated atoms,
a,nd on the other hand, deals with the "united
atoms'" treatment in which the point of departure is

If one substitutes Eq. (85) in Eq. (9) and makes P, a,

minimum in the coefFicient c„, one obtains 3f
secular equations

[L) = [abc .S) . (84) QC, {H„—P,S„}= 0; (t = 1 3I) (86)

In the first case, the y~;(X~,) of Eq. (25) are the
total atomic functions of the atoms that are a,ctually
in the molecule, while Eq. (84) gives only a single
total atomic function.

Because so far we know the q K; in many cases
either not at all or only for some roughly approxi-
mated atoms, Eq. (84) as a point of departure assists
in comprehending a, common single-center repre-
sentation. ' In the other case, one must apply both
treatment (88) and (84) in a semiempirical form, by
which the 8.(K,) have been determined from spectro-
scopic data and the matrix elements of V(K) for the
determination of the total energy were calculated
with approximation functions.

Thereby, an approximate ca,lcula, tion of the energy
surfaces is possible, which is Eq. (88), produces very
poor results when B~„—+ 0 because the appIication
of Eq. (84) when Ri„—+ ~ does not produce the en-

ergy expected from Eq. (22) for 8,(a{b{c~. .X).
From a purely theoretical standpoint this semi-

empirical conception does not permit further con-
clusions for the applied approximation function from
Eq. (9), and so far we do not know if one uncondi-
tionally exists in this case (for details see Sec. 5).
Nevertheless, this semiempirical form is of grea, t
practical value and has in the last few years pointed
up new possibilities for molecular calcula, tions. As
this treatment is not at all exhausted, there are many
important and interesting problems here for the
future.

from which, if the eigenvalue G. of

det {H„—P, S„}= 0 (87)

is substituted in Eq. (86), the coefficients C., for P,

= minimum are determined. The elements of the
secular determinant (81) are defined as follows:

H„, = x*„Hx,dr, S„= g*, x(dr . (87a)

If one designates the vector of the coeKcients C„with
K, every equation of (86) gives in matrix fashion

If, in contrast, all eigenvectors 5 of Eq. (86) are put
together in a matrix K, it can be written in the form

(@ —SS)5 = 0, (88a)

where @ and 8 are the matrices of the elements of
Eq. (87a,) and 8 is a diagonal matrix

81 ~ 0
'M (89)

whose elements satisfy the inequality Eq. (8).
To combine this form of the variation treatment

with the concept of atomic a,ssociations, we first con™
sider only the electron energy in Eq. (11)and replace
K with H [after Eq. (10)J in Eqs. (86) to (88). Like-
wise, we must substitute the approximation values
E, of Eq. (11) in Eq. (89) in the place of P„.

Next, due to Eq. (20), we require of the approxi-
mation solution (85) that

3. THE MATHEMATICAL MODEL OF THE
METHOD OF ATOMIC ASSOCIATIONS. limp. = C, (K)

1&1
(4o)

a. In the Form of a Variation Treatment.

A form of the varia, tion treatment that is used
quite often is the representation of the approxima-
tion solutions of Eq. (1) as linear combinations of a
function set x, = x,(ri;ai ) [compare with Eq.
(9a))

(85)

If the set x, is complete, then in principle it allows,
by means of an infinite sum in Eq. (85), all solutions
of Eq. (1) to be represented exactly:

be valid. In order also to allow for excited states, as
the case was in Eq. (89), we reduce the freedom in
the choice of the function sets x, in Eq. (85) so far
that, in addition, the limiting condition

lim x, = y„(K)
tKl

shall also be satisfied for every association [KJ
(K = 1 ' ' ' AN) . Requirement (41) includes Eq.
(40) because according to Eqs. (41) and (20a), the
C,(K) represents an orthogonal system according to
a passage to the limit. Thus,

(85a)
0limS = 8 =

0 (42)
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is valid if the C,(K) is still assumed as normalized. Eqs. (26) and (27)] that, Eq. (45) go over to the form
Because of Eqs. (17) and (18), as well as the applica-
tion of Fqs. (1.9) and (21), one further obtains

lim @ = K(K) (43)

with
[K]

Ei (K) 0
0

'
E (K) r (43a)

so that the elements of the normalized vector 5, from
Eq. (38) give

lim C„= b„
[K]

(44)

and so that the matrix 5 of Eq. (38a) becomes a unit
matrix, which is equivalent to Eq. (40) because of
Eq. (35).

Because the requirements of Eq. (41) are thus im-
posed on x„, we also obtain the correct behavior of
the energy surfaces in the passages to the limit from
the association [K], all within the frame of the varia-
tions treatment [Eqs. (35), (36), and (37)].

%e now pass on to constructing the function y„
with allowances for Eq. (41), with the help of the
atomic associations [K].

For finite B~„, it is na, tural to describe the x, as
linear combinations of all C,(K) [the I CAA = linear
combination of atomic associations]:

AN

x,(,N) = ZB-, (N)~. (K), (45)

whereby C,(K) is also valid for Pnite internucleus
distances. These C (K) then describe systems of
atoms as they are defined in the atomic a,ssocia, tion
[K], between which no interactions are forthcoming.
The BK are functions of all R),„and

llm BK = 8KL,
[L]

(46)

Bx, =—B~~(& W r), (47)

must be satisfied from the first because of Eq. (41).
Again the index r numbers the individual energy
states and in Eq. (45) includes such C(K) as belong
to equal energy surfa, ces r. In contra, st, we also want
to set

where x,(N —1) is again constructed according to
Eq. (45) and no longer contains the atom X,. That is,
with this transition all the BK belonging to associa-
tions in which atom Xp is united with other atoms
must disappear. Therefore we ean also write Eq. (48)
in the following fa,shion:

AN —1

lim x, (n,N) = g'"'B (N —l)C, (K),
Rgp @~co K

in which the symbol (Xo) indicates that definite as-
sociations ha, ve been omitted.

On the other hand, it must be required further that
all associations in Eq. (45) disappear for a definite

R~,„,~ 0, where the atoms Xp pp ale separated. %e
want to describe this in the following way

AN —1

lim x, (n,N) = Q ' '"'B~&(N —1)y, (K) . (49)
R Xp Pp~P K

It may be seen that in Eq. (48) x,(N —1) is already
antisymmetrical and that this representation makes
the energy expression interesting in the way the
amount E„(XO) for the total electron energy of N —1

atoms standing in interaction increases additively. If
Xp remains at inanity, the calcula, tion also can be
made from the beginning with x,(N —1) without

p~. entering.
Manifold applications of Eqs. (48a) and (49) lead

to a single associa, tion in every case. In Eq. (48),
after further transitions, the a,ssociation (33) results,
while in Eq. (49) the association (34) of the united
atoms finally results. Thereby it is shown tha, t in Eq.
(45) the methods mentioned in Sec. 2 are obtained as
a special case.

Now, in order to construct BK to satisfy the above
conditions, we introduce definite functions Pq„be-
tween every two atoms ) and p that are dependent
only on the separation of the two atoms and which
will sa,tisfy the following conditions:

which has no inAuence on the fulfillment of condition
(41)."

But still further demands can be made on BK. If
one of the N atoms (for example atom ),0) is brought
to infinity, it must be required in this case [due to

I

7 The counting of the energy surfaces in s [compare with
Eq. (35)] represents the same as results from the interaction
of the original states E„(gy).

1. lim P),„(R),„) = 0,
R) ~

—+0

2. Pg„(Rg„) &~ 0,
lim Pg„(Rp,„) = ~ .

R),~—woo

Then we define
[K]

II„= +P„(R„),

(50a)

(50b)

(50c)
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where only the P» are multiplied with one another
in the product whose separations (in the association
of [K]) belong to the separated atoms. Illc shall be set
equal to unity for the association of the united atoms.
Thus every association is associated with a function
IIK.

Table I contains some examples for the atomic
numbers X = 2, 3, and 4.

Tash, z I. Atomic associations for N = 2, 3, and 4.

c', from Table I we will obtain the following repre-
sentation for x.
x(n, 3) = D'{e(abc') + P., P„e(c'tab)

+ P.,P. ,C (b]ac') + P.bP., C (aibc')

+ P.,P„P., 4 (a]bric') I, (54)

if D is the normalization constant. One easily recog-
n.izes that for 8» —+ 0, and, respectively, 8» —+ ~,
the association C (abc), and, respectively, 4 (a~ b~c), re-
mains. If in Eq. (54) c —= c' goes to infinity (B., —b ~,
B„~~), Eq. (54) takes the form

+K

{1) [ab]
(2) [aib] P.,

(1) [abed] 1
(2) fa bcd] P bP„P,d

(3) [b acd] P,bPb, Pbg
(4) [c abd] P,+b,P,g

(5) [d abc] P,QPbgP g

(6) [ab cd] P,P dPb, Pbd
(7) [«bd] P.bP.dPb.P.d

(1) [abc]
(2) [a bc]
(3) [b ac]
(4:) [c ab]
(5) [a bic]

N =4
%]

(8) [adicb]
(9) [a bc d]

(10) [c ab d]
(11) [b ad c]
(12) [a bd c]
(13) [a.d b]
(14) [b ac d]
(15) [a bicid]

1
PabPac
PabPbc
PacPbc
PabPbcPac

PacPabPcd Phd
P abP acPbd Pcd Pad
PacPbcPadPbdPcd
PabPbdPacPcdPbc
PabP ad PbcPcd Pac
PacPadPbcPbdPab
PabPbcPadPcdPbd
PabPacPadPbcPbdPcd

C(ab}c) + P.,e(a~ b~ c)

{I+2P.bS(4~5) y I.', }

(55)

if the numbering of the associations from Table I are
applied in the overlap integral S(4~5) from Eq. (58a).
But the representation (55) is identical with Eq. (48)
for X = 3 and Xo ——c, as will be shown. Likewise
one obtains from Eq. (54) the functions &c(bc~a) or
bc(aC]b) fOr a ~ ~ Or b b ~ .

On the other hand, if in x(n, 4) the atoms a, b, c,
and d are so separated that only the separations B.b
and B.d stay finite, the following expression results:

where

g II~II.S„„(K]L)
K, L

(53)

S„,(K~]L) = C„*(K)C„(L)dr.

With Eq. (53) the matrix elements of the matrices @
and 8 then can be calculated with Eq. (37a), and from
Eq. (37) we are able to determine the energy surfaces
by approximations, where for M —b ~ in Eq. (35)
(due to the completeness of x,) the approximation
values converge with the exact values.

Because Eq. (52) satisfies our given conditions, we
now demonstrate a simple example and from that, go
into a possible determination of the P» functions.
Assume four centers —a, b, c, and d—if in Eq. (53) we
allow center d to go to c (8,& +0) and call this uni—ting

Further, if we set

AN —I

IbIc lib-' P IIL
L

BJ: thus de6ned then fuKlls all conditions stated
above, as we now show in detail.

The resulting normalized x, function becomes

lim x(n, 4) = D"{C(ab~cd) + P,gC(ab~c~d)

+ P. bC( a~ b~ cd) + P.bP.dC (a~b~c~d) },
(50)

which can be written as an antisymmetrical product
of two functions g(cb —b) and g(c —d):

where

lim x(n, 4) = O',g(a —b)g(c —d), (57)

lim x(n,X) = Oq(a —b)q(c —d)g(e —f), (59a)
or

lim x(n, X) = Qx(n. ,X.)x(n —n„N —X,), (59b)

g(a —b) = D {c(ab) + .Pcb( ia)b}, (58a)

g(c —d) = D' {C(cd) + P„C (c~d) } . (58b)

With this, a process is described which, if, for ex-
ample, the systems a—b and c—d are stable, exists
in two molecules (ab) and (cd) in the separation of
the system a, b, c, d, just as in Eq. (55) the separation
of the atom c from the system c, 6, c was forthcoming.
Corresponding to Eq. (57), Eq. (55) can be written
in the form

lim X(n,3) = ey,b)(a —b) . (55a)

The transitions (55a) and (37) a,re completely valid
in general if partial systems of x(n, Ã) are removed
from one another. Thus
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P~, (%, ..)I ~.(B~,.) —= P~,„.(B~,.) . (61)

With this definition we also get, an invariance of the
structure of Eq. (35) for the transition B„,—+ 0.

According to Eqs. (55a) a,nd (58), q(X —p) is
identical with z(n, 2). That we choose another symbol
for x(n, 2) is based on the fact that it allows a con-
venient determination of Pq„ for g(X —p), in addition
to other reasons discussed in Sec. 4.

If we write in the pla, ce of Eq. (58)

n(~ —~) = C @(~~) + C C'(~l~), (62)

and determine the energy (as well as the coefficients
Ci and C«) from a secula, r problem according to Eqs.
(36) and (37) and H according to Eq. (10a), we ob-
tain two energy curves Ei and E«(Ei ( E~i). E~

for 8» —+ 0, and, respectively, 8» —+ ~, goes to the
exact eigenvalues 6(Xp) and 6(X~p), respectively.
Thus EI can be considered as an approximation for
the eigenvalue of the electron energy of the system
A —p, which coincides with this for R~„—+ 0 and
—+ ~. From comparison with Eq. (58) it follows that
we must set

C«/C, = Pg„(B),„) . (03)

Equation (63) shows the correct behavior for Pi,„,
which is

Cl -—- 0,

if X. at,oms having together n electrons are split
apart from the total N atoms.

The case where a definite B&,„~0 in x(n, X) must
be considered still more closely. If, for example
A'..~0,
lim x(n, 3) = D[C(abc)

+ P.g(Bg.,)Pp, (Bg.,)C (acerb)] (60)

follows from Eq. (54) and B.~ ——B„=B... is under-
stood as the distance between 6 and the united atom
(ca), which, for exa, mple, lies at the center of gravity
of a and c. According to Eq. (50), Pi,„(Bq„)is defined
only for two atoms X and p actually arising in the
molecule and resulting from Bq„—+ ~ . If we require
of Eq. (60) that it again assume the structure of
q(a' —b) if a' = (ac), we can determine P. ..(B...)
because it must then be generally true that

the other atoms. This assumption is related to the
experience that in most cases the bonding energy be-
tween two atoms in molecules remains unchanged
in the first approximation.

Also one can proceed in the same way for excited
states with Eq. (02) and obtain again a P&,„function
for the next lowest of the two eigenvalues. Thus had
we applied the same Pi,„functions for all states [see

Eq. (47)], the possibility of an improvement of the
formulation (53) would exist, i.e., corresponding to
the excited states, which are determined in x„ the
associated P~„would find application. In the case
where X = 2, it, then appears that, from

4. = ZC-n. (1 —~) (64)

that the g„are built with the P» constructed from

Eq. (02) for the rth state [Eq. (58)].
In Eq. (64) 1Vl states are determined by approxi-

mations. If for R~„—+ ~ some of the terms of the
united atoms split up, it means that some of the
functions C,(Xp), according to the degree of splitting

up, must arise manifoldly in some q„. For X ) 2 the
behavior is such, for example, that "excited" P~, „are
applied if the excited electron has its greatest density
on atom )Ep. In general, it may be said that through
the use of excited states the inexactnesses in the IIK
due to the variation of C„in Eq. (35) are partly cor-
rected. In so far as that happens, the terms in Eq.
(35) depend on the quantity 1lI. The use of an x„
from Eq. (53) for the calcula, tion of the ground states
might give only a rough approximation, particularly
if the number of centers is large. In this case it is use-
ful to construct the functions

A~

x = Q B~C(K) (65)

Hg~ —— 4'(L)HC (K)d7-

[corresponding to Eq. (45)] and to determine the co-
e%cient BK from a secular problem. Here, only an
eigenvalue will give the proper behavior in the
ground state, while the other solutions are not usable
physically. This is because only for a Kth column
and row of the determinant (37) in the equation

Cll ——- 0, R)„ = 0 . (03a,)

With this, a possible determination of P» is stated.
The product formulation for IIJ; from Fq. (51) ca,n

then be interpreted approximately so that the P»,
which are determined on the unperturbed bond
X —p, cannot be changed by an approximation of

where

Sg~ —— 4*(I) C (K)dr (L = 1 7lA')

C*(L)[H(K) + V(K)]e(K)d~

6(K)SL,yg + C'*(L)V(K)4(K)dr i (60)
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does the expression (~ V(K) ~) disappear [compare with
Eq. (18a,)]. The matrix Q does not transform to a
diagonal matrix for other states. From that we may
expect relation (46) only for a state. That is, there is,
for example,

lim Xp = CIp(K)
[K]

(67)

if the index 0 denotes the ground state. ' With BKO de-
termined thusly we could have done the calculation
in formulation (45) in place of (52), if one assumes
Eq. (47), which in the case of P „jb aisc laly was not
necessary, as remarked above.

Formulation (45) may be considered as a good ap-
proximation, by which the BKp from Eq. (65), and
the remaining BK,(r W 0) from Eq. (52), find apphca-
tion. Although BKO satisfies all conditions from Eqs.
(48) and (49), it might be difficult to comprehend the
many-dimensioned BKp(B&„) analytically in total
space. There it can be thought of, particularly if X is
large, only over the partial range where formulation
(65) can find application. In this sense the introduc-
tion of the one-dimensional I'~„possesses great ad-
vantages. But the BKp from Eq. (65) presents a pos-
sibility for-proving the usefulness of Eq. (52) in some

R),„fields.

C' (K) = ll ~K (&K ) . (68)

As already pointed out in Sec. 2, the single C,(K) in
this case build an orthogonal system without a pas-
sage to the limit because the pl&, themselves can be
made orthogonal. Thus, we have

g(~) ( )
CjjirI (rj'Kj )Cjjirj (riKj)dT&&ICj 8nm (69)

if the (m) and (n) differentiate the different states
(including degeneration) of the single-center system

b. A Perturbations Theory Representation

The perturbations theory representation9 proceeds
from the fact that the solutions of the atomic prob-
lem (24) exist and that with these &pK, (nK, ), a C,(K)
is constructed according to Eq. (19) if a fixed parti-
tion of H is adopted in relation to the electron
enumeration. That is, C,(K) still is not antisym-
metrical in this approximation, rather it must be
written as the simple product

(K,). Therefore,

C,*C,(K)dr = 8„ (70)

is also valid because in the states r and s, if these
differ, at least two states of a q K; are different. If
continuous functions exist, the eigendifferentials in

Eq. (69) are written with this thought in mind.
That we write a pure product in Eq. (68) shows a

certain relationship to the Hartree treatment or to
the shortened method of molecular states, where in
the first step a formulation is used for the wave func-
tion that is not antisymmetrical. In the sense of the
perturbation calculation, whose formulation has been
written out so far only for orthogonal function sets,
we write the total wave function of Eq. (1) as a de-
velopment

0 = 0 (K) + Z j 'Kk" (K), (71)

where it is to be expected that lf, gives an a,ntisym-
metrical result for the completion of the series devel-
opment. Simple examples, which have been cal-
culated through for similar cases, confirm this. "The
pK are parameters which we will now go into further,
and ilj,"'(K) will be determined more closely in the
frame of perturbation theory.

Corresponding to Eq. (71) we also ca,n write for the
electron energy of the system

E, = 6, (K) + Q jI~6."(K) . (71a)

With Eq. (19) the Hamiltonian operator can now be
represented, for a formal expansion of Eq. (17), in the
form

II = FI(K) + jIICV(K) . (71b)

In the Eqs. (19), (70), (71), (71a), and (71b) we
have the basic equations of the perturbation theory.
%ith them we can. consider the results from the sub-
stitution of Eq. (71) in the energy expression E, of
Eq. (10),and comps, re the resulting single expressions
with equal powers of jiK [together with Eq. (71)].
That gives defining equations for the P,"'(K) and the
corresponding 8,"'.

If further P,"' is developed similarly according to
the complete system of the C,(K) a,nd Eqs. (19) and
(71b) are again heeded, one finally obtains the follow-
ing equations for the first 8,"':

s ff in Eq. (05) all 4 „(K)of the rth energy surfaces were col-
lected together, their determination would be valid only for
the rth state.

9 H. Preuss, technical note, April 20, 1959, University of
Uppsala, Uppsala, Sweden.

8"(K) = C*(K)V(K)C (K)dr = V„(K), (72a)

Io E'.-0. Iiowdin and J. O. Hirschfelder, technical report,
August 20, 1957, University of Uppsala, Uppsala, Sweden.
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(2)( ) g V, (K)V„,(K)...6, (K) —6 (K) '
Now if we link up the ith approximations of Eqs.

(71) and (71a) we obtain the developments
~72b&

as well as for the P(*'

p(0) y pO) + p(1) +
g pa(0) + Z(1) + Z(l)

(79a)

(79b)

where individually we get
(73a)

AN

p,") = QX(K)c,. (K),

(1) V,„(K)(K) = Z ~-(K)

AN

(78b) P.'' = Q X(K) Q- K
'

K
C' (K),

(2) K V ), (K) V)„(K)... Ã. (K) —6.(K)][6.(K) —6-(K)]
V„(K)V, (K)

( )Ã. (K) —6-(K)]

0

(80a)

(80b)

Higher approximations of the perturbations theory
result in rather complicated expressions. Eqs. (72)
and (73) suffice for a determination of P, and E, if
the "perturbation" V(K) is small enough, whereby
the products of the integral U.I, disappear rapidly
enough if the order (i) of the development increases.
But U,~ is only small if we remain in the vicinity of
an association [K] for the arrangement of the atomic
nucleus. Otherwise, we must proceed from another
association which gives suKciently small V,~.

We want to distinguish between the single develop-
ments (71) and (71a), which proceed from a definite
association [K], by means of f,'»' snd E,'»', which are
mutually equal if all approximations are allowed, all

pK are mutually equal, and the treatment converges.
Hence, we can simultaneously link up all f,(»' and

E (K')

if only

AN

4 = Zl((K)4
AN

E, = QX(K)E, (K),

(74)

(75)

AN

PX(K) = 1 (76)

is va, lid. In order to agree again with Eq. (17), we

also want the above requirement on the p, l& to be
limited by

p»=—p1. =1, (K&L). (77)
Thus, because of Eq. (76), in Eqs. (74) and (75) it is
done by taking the means from the f,(») a,nd E,("),
which still depend on all B~„.

Because of Eqs. (20) and (22) it is required of the
'A(K), along with Eq. (76), that the following relation
is satisfied

lim X(L) = ()»I, .
]:&1

as well as

AN

E."' = g Z(K)6.(K), (81a)

AN

E,"' = g ~(K)V,„(K), (Slb)

AN

E(") = 6., (K) + g 6("(K) + R(') (K) (82)

is valid, with

(82a)

Due to Eqs. (78) and (18a), the approximations for
i &~ 1 in Eq. (79) disappear for every transition into
an atomic association.

An important circumstance is that by means of
the coupling of the single g») and E,'»' in Eqs. (74)
a,nd (75) the relationship, a.s it existed in the original
form of the perturbation calculation, between the
single approximations P.(*)(K) and 6(( )K)of Eqs.
(71) and (71a) is lost. That, is, that we thus still have
included from Eq. (79) the approximation of the ith
order, but that we can no longer assume any de6ni-
tion of an order for the perturbations calculation in

Eq. (79). It can thus arise, for example, that a,

definite choice of the X(K) gives good E,(0)-values

(~E"'~ (~E,"'~, for i &~ 1), but that P,"' still repre-
sents a rough approximation with this X(K).

If we assume at first that the development (71a)
converges, then
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From this it follows from Eq. (79b) that
m

P1«) + Q PT(~) + g(~) (l )
i=1

A&V

8,'„'() ) = g Z(K)R„"(K) .

(83)

(83a)

6."'(K)
6,")(K) —6'."(L)

which due to Eq. (72a) assume the form

(89)

(i =1 m),
one obtains

X(K) = D„,(K)/D, „,
where D„(K) represents the minor of

(84)

(85)

1 1
6"'(K) . 6"'(A )

6!"'(K) 6!"'(A ) (86)

if the first row and the Kth column are struck out and
a,re multiplied by (—1)~+'.

Due to Eq. (18a) one recognizes with Eqs. (72),
(85), a,nd (86) that Eq. (78) is a,iso satisfied for X(K).
Equation (83) transforms from there in

A)p

E, = +6,(K)D (K) + R,.(X), (87)

if the X(K) of Eq. (85) is substituted in I)!„,(P,) from
Eq. (83a). The first sum of Eq. (87) has the form of
I&',!0) from Eq. (Sla,). That means that X functions
have been found from Eq. (85) [already substituted
in E,"' of Eq. (Sla)] that, approximate energy surfaces
up to the error

~

T)!„(P) l. I"rom Eq. (87) it also follows
that

wit)1

D(E)

E. = 1),'„"/D„, + 14,.(X)

(6)Kr„( )Le, (A )
6!"(K) 6!"(A.)

(88)

e.""'(I0) 6',"'(A ) . (SSa,)

For diatomic molecules (Ab ——2) one obtains from
I&iqs. (85) and (86) the 'A functions

Due to Eq. (76)
~

T)!., (X)
~

is always smaller than (or at
most, equal to) the largest, ~I)l (K) ~.

If now we set m = Ab —1, X(K), for example, can
be uniquely determined from the requirements of
Eq. (76) a,nd

V„(L) L V„(K)'( ) =
V..(L)'—

'
V„(K) ' ( ) =

V.,(K)'—V., (I,)
(89a,)

From Eq. (89a) we then get the expression

E E~.) 6, (K) —[V., (K)/V„(I )]F,(I )
1 —V-(K)/V-(L)

as an approximation of the energy and from which
is thus produced a relationship with the P~„ func-
tions of Eq. (50). The requirements (76) and (78) on
X(K) are also satisfied by B~ of Eqs. (46) and (52)
so that a further possibility for X(K) exists in the
equality

X(K) —= B~. (91)

For Ab &~ 3 the B~ of Eq. (52) and the X(K) of
Eq. (85) are different, but for A& ——2, Eq. (91) can
be used in agreement with both ca,ses if we set

». = —V-(K)/V-(L) (92)

and [K] represents the association of the united
atoms. Definition (92) consequently gives a, Pz„
which can be used in Eq. (64) for the state s.

In principle, there is for every s a set of X(K) func-
tions for which

P~(&) 0
i=1

is valid so that the exact energy can be described in
the form of (Sla):

Zq
E(0) (94)

Also these 'A(K) exist if series (87) no longer con-
verges. From this, one sees that the X(K) in Eq. (83)
can alter the convergence behavior i&i that they have
an inAuence on the contributions of E,"' to the total
energy in Eq. (Slb) and further approximations for

2 0 0 0

The behavior of E"' may be studied still further if
the ) (K) of Eq. (91) are used. If there are three
atoms —a, 6, and c—and the last is removed, one ob-
tains the expression

&«» F„(c~g,b) + P.bG, (g~b~c)

1+P.b

which, due to Eq. (24), must also be written in the
form

(89) L«) & ( ) + L(05) + P-b[6 (0) + 6 (5) }

1+P.b
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The quotient (95a) will likewise be obtained for
X=2.

If four atoms —a, 6, c, and d—are thus removed

(the separations a, b and c, d remaining finite), the
E."', corresponding to Eq. (56), transforms to

E«» E,(ab~cd) ~ P. tF„(cd~a~ b) ~ P~F„(ab~c~d) ~ P.&P.,dg. (g~b~c~~d)

1 + P.~ + P..+ P.d'. ~
(96)

,(o) g, (ab) + P.,e, (a~b) L(cd) + P.gf„(c~ d)

1 + P.b 1 + P.d (n) c+ b —a~~ (c —b) + a'

(c —b)'+ a
c b —a~~

(96a)

Equation (93) means for the diatomic molecule
that a P„b from Eq. (95a) exists which gives the
proper curve of the energy with (~),.+ b, ( —b)* +

+
8 (ab) —E (measured)
E(measured) —6(a~b)

'

The difference between the P.(, of Eqs. (92) and (97),
if the latter is known, gives information in so far as
the assumption (84) of the atomic association treat-
ment already describes the relations in the diatomic
molecule.

(y) c" + b —a~+- (c —b)" + a
(102)

c —b+ a'"

which, among other things, one defines as nucleo-
phillie, electrophillic (n), or radial (p) substitution
mechanisms. In all cases, one assumes that a more or
less loose transition state is formed and then decays.
With Eq. (57) the limiting states of the reaction

a c
~

+ ~ =b-d (103)
6

4. GENERAL FORMULATION OF THE TREATMENT

In Sec. 3a, we obtained Eq. (55) for the case of
three atoms —a, 6, and c—and the transition It'.b, —+ ~
and R., ~ ~. According to Eq. (55a) the system can be represented by means of

which may also be written as a sum of two expression free valences (x) or ions (&), the following types of
for X = 2 [compare with Eq. (57)]: substitution reactions can be described with the

limiting conditions (98a,) and (99a)

a —6 .c
can thus be described with

(98)

co(ab~c) = ep.rl(a —b) .

If atom a is removed

(98a)

a- 6 —c ) (99)

one obtains in the place of Eq. (98a) the function

co(ab~cd) = Qi)(a —b)g(c —d), (104a)

(d(ac~bd) = CLg(a —c)g(b —d), (104b)
if on both sides of Eq. (103) the separations between
unbonded atoms go to infinity.

Within the concept of the atomic associations both
processes can be described by an expansion of Eq.
(62) if the following formulations are applied for the
reactions (102) and (103):

co(a(bc) = Qq„g(b —c) . ,

Now if the system

a o ~ ~ g e ~ ~

(99a)

(100)

x = Cro)(abic) + Czi(d(aibc),

x = Ci(d(ab cd) + Crgv(ac~bd) .

As in Eq. (62),

(105)

(106)

is not stable, in contrast to the molecules a-6 and b-c,

the representations (98a) s,nd (99a) can be compre-
hended as stable ground states (substitution)

O'I ——0

Jt,'„—+ oo,

QO ga ~ OO

(105a)~bc~ O )

a+ b —c~a —b+ c (101)

for whose accomplishment a certain energy is neces-

sary and which one defin. es as the activation energy
(101) (with definite corrections).

If we also include excited atoms (*) or atoms with

are now valid for (105) and the same for (106) if the
rnolecules a—b and c—d or a—c and 6—d are separated
from one another.

After the C, and C» of Eqs. (105) and (106) have
been calculated from a secular problem we can pro-
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ceed as in Eq. (64), i.e., the total wave function is
written as a linear combination of all x:

H = H(o, —b,c) + V(a —b,c),
H = H(b —c,a) + V(b —c,o,),

that the &o(&p, v) are now eigensolutions of

{H(X —p, v) —EP —p, v) }(u(Xy,v) = 0 (109)

and the energy is

EP, —p, ,v) = 8(v) + 6(X —p), (109a)

if 8(X —p) is the electron energy of the molecule
X —p and G(v) is explained according to Eq. (25).
Corresponding to Eq. (18)

ls now valid lf

lim(IV(X —~,v)l) = 0 (110)

That means, then, that we have distinguished
definite curves on the energy surfaces which are given

by 8(X —p). The last step consequently represents
a logical extension of the concept developed in Sec. 2.

If H were to be partitioned as

H = H(X —p, v —o) + V(X —
v, ,v

—~) (112)

for co(Xplvo) of Eq. (106), then the ~ a,re now solu-
tions of

(107)

The formulation of this method can now be made
more generalized. We remarked in Sec. 2 that by
means of atomic associations the points are dis-
tinguished on the energy surfaces whose correspond-
ing energy values can be represented as sums of en-

ergy coming from the single-center systems. This
energy enters into the theory as exact values in that
the wave function is constructed with the eigensolu-
tions of this particular atomic configuration, and use
is made in the calculation of the partitioning of H in
Eq. (17).Corresponding to the representations (105)
and (106) only one pa, rtitioning of H in this way can
be assumed:

in Eqs. (108) and (112), as was noticed about Eq.
(19) relative to Eq. (17). In the place of Eq. (26) we
now have Eqs. (98a) and (108).

It is also possible to begin with a partitioning of
the Hamiltonian operator according to the general
representation (59), but processes (101) and (103)
might be of greater chemical interest.

The equations used so far assume the exact solu-
tions of Eqs. (19), (25), (109), or (113) in a, ll cases,
with which the total wave functions were constructed,
whereby definite functions P~, (R~„) of Eqs. (50) and

(52) or coefficients of Eq. (65) were determined so
that the electron energy of the total system trans-
forms to the exact energy values of the above solutions
for certain configurations'of the atomic nuclei.

It may be assumed that the center of a partial
union, consisting of XK, atoms, lies in the center of
the nuclear charges R~, of the shared nucleus
charges'

Q Zgggs; ——0, (114)

[K] = [K,IK. I

. IK..], (»5)
the case can arise that for a fixed atomic arrangement
in the molecule definite centers of nuclear charges
8&; coincide or are identical with some g~. This
means, therefore, that the assoriation (115) must be
arranged in direct reference with other similarly re-
lated associations through definite atomic arrange-
ments, as obtained froin Eq. (115), through the com-
bining of partial unions, to produce the aforemen-
tioned result. For example, if %si = Rs2 it follows
from (115) that

(115a,)

where

where the distance of the atom ) from the center
gK; iS

Rgs, = %), —Rx, [m, of Eq. (5)]. (114a)

Requirement (114) also applies to the assoriation of
a molecule united to an atom.

If we consider a definite association [K],

{H(X —p, v —o) —E(X —p,v —o) }co(Xplva) = 0,
(113)

(K[) = (KK2), (115b)

where

E(X —p,v —o) = 8(X —p) + 8(v —o), (113a)

and consequently

AK &AK. (115c)

and (I V() —p, v —a.) I) in Eq. (112) disappears if the
two molecules are separated from one another.

It would be possible to say the same about the
Eqs. (109) and (113) in relation to the pa, rtitioning

The associations derived in this way from an associ-
ation [K] always possess a smaller number of partial
unions. We want to designate them as transition as-
sociotions belonging to [K] and write K[K'.
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From Eqs. (35) and (45) we constructed the total
wave function from the eigenfunctions of different
associations (no interactions existing between the
partial unions). Due to Eq. (85) we require of the
coefficient B» in Eq. (45) that

llm BK = 8KL
[Ll

(116)

There are many constructions of 0-LK which agree with
requirement (116).We want to choose those that in-
clude process (115a), where an association [K] co-
incides with a minimum of two centers of nuclear
charge essentially by taking its place by means of
the corresponding transition associations.

In order to show the structure of 0-LK in detail, we

again introduce [a,s in Eq. (50)] functions q»;»,
—= q;,

between every two centers of nuclear charge %»; and

%», which depend only on B;, [Eq. (118)]and satisfy
the following condition

lim ~q;;(8;;)( = ~ . (119)

Then we define [again analogous to Eq. (51)] the
product

[Ll

= II q;, (g;, )
~ 2

K[L (120)

shall be valid. A possible representation of BK as a
function of the nucleus distances B~„, which also
satisfies a, number of requirements stated in Sec. 3,
was given with Eq. (52) by the II» of Eqs. (50) and
(51).From Eq. (115s,) it must now be required of the
B» in Eq. (45) that they also retain with greater
weight the multitude of atomic associations appear-
ing through S»; = R»;. That is, that the B» also
must depend on the coordinates of the center of
nuclear charge in such a way that a replacement of
the atomic associations of Eq. (115a) is assumed for
definite arrangements in the molecule, without
thereby influencing the earlier stipulations on. BK.

An extension of the definition of B» of Eq. (52) is
possible in this sense as follows:

8.= r~'g. r. . (I»)
If the FK are constructed as linear combinations of
the II» of Eq. (51), then

r~ = P» II »~i». (117a)

The OK are dependent on the nucleus distances of the
P&,„of Eq. (50). Hence, the Oj' are to be understood
as functions of the separations of the centers of
nuclear charge where, corresponding to Eq. (5),

wherein only the transition associations of [K] are
admitted for [L]. Otherwise we set

yL =—0. (120a)

In Eq. (120) only those q;, are multiplied together
whose separations 8,, in [L] belong to different par-
tial associations or to separations between a partial
association and an atom (when the latter are under-
stood as partial associations). For the association [L]
of the united atoms, which is a transition. association
for every association) we write

L K
VL = VL = 1 (120b)

Equation (120b) is also valid for an [L] correspond-
ing to separated atoms.

For a,ssociation [K] = [K~K2~K3] there exists, for
example, four transition associations

[L] = [K,K2~Ks], [M] = [K,Ks~K,],
[8] = [K ~K2KS], [7'] = [KK.K],

with the y~K functions

(121)

K
PK Q12$13g23 )

K
g8 = g12g13 )

K
PL g13$23 )

K 1 0

K
&M = QI2$23 )

(121a)

&L = PL/ ~M PM K[3/I, (122)

and, hence, define 0LK as a function of the 8;;.Due to
Eq. (120a), the sum in Eq. (122) runs over the transi-
tion associations of [K], which we again denote by
the symbol K[M. Prom Eq. (122) it follows that

K[L . (122a)

Before we state an interpretation of the 0-LK as de-
fined in Eqs. (117) and (117a), we want to show that,
with Oi» [Eq. (122)], the requirements (116) on the
B» that were constructed in Eq. (117) are satisfied.
For that purpose we must first examine the treat-
ment of of for the transition. to the different associ-
ations. From Eqs. (119), (120), and (122) it follows
that

X
lim &M ~KM
[Kl

(123)

If, for example, (K) = a, (K2) = (bc) and (Ks) = (d),
then (U) = [ab~c~d] is not a transition association of
[K], and hence y~» = 0.

To every a,ssociation [K] having A» partial unions
there belong AAK —1 transition associations if A~,
according to Sec. 2, represents the number of associ-
ations by X atoms.

Next we set
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llIIl 0 I, (
[&I

If Eq. (117a) is substituted in Eq. (117)
8

8 &8 O.I-

g. P. 11.~'.

and if Eq. (122) is heeded, one obtains

8
8 &8~K

g3 118

and further [due to Eq. (52)]

(123a)

(124)

(124a)

B~ = +3B3~~ 8[K . (125)

As the conditions (46) and (116) are already satis-
fied for B, in Eq. (52), it follows with Eqs. (123) and
(123a) that for the B»

is valid. I& or all further transitions it is enough to re-
quire that the 0-LK always remain limited

if the association [L] is the same as that resulting
from [8] through the equality of some 5», in the
sense of Eq. (115a,b). From these examples, one
recognizes that the 0»» in Eq. (128b), due to Eq.
(122a), assume a,n average value construction of all
energy of atomic association E(K) whose associations
are transition associations to [8], and that the mo-
mentary position of the centers of nuclear charge has
an infiuence on which association [K] in Eq. (128b)
has the greatest importance.

Finally, the I'K functions for three atoms, a, 6, and
c, can be sta, ted (for later use) whereby the different
partial unions and associations are abbreviated in the
following manner:

(1) = (a), (2) = (b), (3) = (c), (4) = (ab), (5) = («),
(6) = (bc); [I] = [abc], [II] = [a)bc], [III] = [b)ac],

[IV] = [c(ab], [V] = [a)b(c] = [1[2(3]. (131)

There then results
llm BK = 8KL, .
[L]

(126)

The eNcacy of the 0-LK is seen best in the frame of
the perturba, tion method (Sec. 3b). From Eq. (91)
we can set

I' =P I,P
P12P23 F5III 1+ q23

'

P13P23q34
IV 1+q34 '

P12P13$16
II 1+ q„'

X(K) = B» (127)

and obtain from Eq. (Sla) for the first term of the
development (79b)

Ag

E") = PB,16(K). (128)

6(8) = p»0»e(K) 8[K . (128b)

Now if we assume that in the association [8] no
center of nuclear charge coincides with another
(Q;, 4 O,i 4 j) and then take relation (119) in the
rough form

lV'(~ )I = ~ f» &;, », (119a)

it follows from Eq. (128a), due to Eqs. (120) and
(122), that

6(8) = 6(8). (129)

Consequently we again obtain relation (128) for E"'.
If conversely some of the %», in [8] are equal, it thus
follows from Eq. (119a) that

After introducing Eq. (125) this again transforms to
form (Sla)

E"' = +38.2V, (8),
if in place of R(K) we set

P13P23 P12P23 P12P13
I

1 + q34 1 + F3 1 + q13
'

(132)

While a convenient connection for the P~„ func-
tions from Eq. (97) to the potential curves is pro-
duced, it is not so easy to And a corresponding rela-
tion to the energy surfaces for the q;; functions.

In any event, we will become acquainted with a
possibility in See. 6 of making use of the behavior of
0-I. without knowing the q;, functions explicitly.

After the introduction of the q;; functions, the
definition (61) of the P b)etwee tnhe centers of
nuclear charge is modified. For definite B~„~0 some
of the II» in I'» [Eq. 117a)] disappear as, of course,
do those [K] which are not transition associations of
the associations indicated by the transition 8» —+ 0,
which we can call [M]."From Eqs. (117), (117a), and
(124a) it then follows for the energy [Eq. (128)] that

@(3) g~ +, 11,~:6(K)
g. rr,

' (133)

whereby 8 runs over only all transition associations
of [3I].From Eq. (120a) the condition 8[K must also
be valid for the [K] in Eq. (133), so that in Eq. (133)
only transition associations of [3I] and their energy

~(8) = 6(I.) , 8[I. (130)
II It should be pointed out here that the association [M] is

first represented when all remaining R)„go to infinity.
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E(K) enter in. The P&,„of the rema, ining II, in Eq.
(133) are now functions of the center of nuclear
charge distances, whose attending partia, l unions are
given by the association [3'] D.ue to the transition
R~„—& ~, expressions in the form of the left side of
Eq. (61) appear in the II~ [Eq. (51)] in Eq. (133).
We designa, te these II8 with II8, in contrast to the II8
with which the energy [Eq. (128)] in Eq. (133) like-
wise can be represented if the partial unions are again
understood as atoms, because the transition B~„~0
can be thought of as a reduction in the number of
atoms of the system. More general than in Eq. (60),
we must require that both representations for E"'
be the sa,me. This, then, again lea, ds to a definition of
the P&,~;(R,,), which appear for Ri„—+ 0 and are
contained in the II&.

A comparison of the two representations for the
energy gives for every [3~I] a number of relationships
between II8 a,nd II8.

Qs Ils a~ Qi, III. o~ 3I[8
3' [K

(134)

or, from Eq. (124a), the shorter

~K (134a)

from which can be derived the P~„between partial
unions, which originally were not defined [Eq. (50)].

In the case of three atoms, c, 6, and c, the relation
for P. , ~, follows from Eq. (134)

P.,(R.,„)P.b(R. , g.)q. , t,.(R., g.)
1 + q. , b, (R,b, ) + P t, (R,b, )P, (R., t„)

(135)
Equation (135), when solved for q, gives a, tI which

automatically satisfies Eq. (119) (also compare Eq.
(161)].Similarly, Eq. (123a) is satisfied in the Eq.

(132) representations if Eq. (135) is utilized.

lim g = ui(K),
f K]

(»6)

if tu(K) represents the diagonal matrix of the eigen-
values of Eq. (19) according to Eq. (43a). The longest
possible retention of C (K) in the calculations means
that the elements of the matrix @ of Eq. (37a) can
be written as

H, , = X,*HX,(&, (137)

and further, due to Eq. (53),

S. THE SEMIEMPIRICAL CONCEPTION AND

SOME APPROXIMATIONS

Once the formulation has been developed for
ha, ndling every molecule as a,n assumed collection of
solved single-center problems, the question now a,rises
of how useful the developed equations are in light of
our knowledge of the exact functions &p~, (n~;) whose
eigenvalues give only the approximation solutions

p~, (n,~,) and P, (K,).
In the frame of his method, MoKtt' has pointed

out in which ways the calculations can be carried out
with a,pproximation functions. Later, Bingep' and
Artma, n," in particular, did this in another respect.

Applied to the method of atomic associations, this
means that the calculation is made formally with the
exact solutions C(K) of Eq. (19) a,s long a, s possible,
and only at the conclusion of the calculation is C (K)
replaced by C(K). In this way, the correlations of
the electrons of the fictitious single atoms (partial
unions) are mutually taken into consideration. An
important result is that the limiting behavior of the
matrix @, which is now transformed to @, still holds
because it is valid that

H„= g. g. 11.II.H„(KlL)
{[g- g. rI II. 8„,(KlL)][+ g. rr 11.8„(KlL)]}'

The individua, l H and 8 resulting are

8 ~(KlL) = 4'*(K) 'C(L)d (139a)

pare with Eq. (66)].
I~'rom Eq. (18a)

lim V,', '(KlL) = 0
[Ll

is still valid, as is [Eq. (20a)]

(140)

II„(KlL) = c„*(K)lie,(L)d~ = 6,(L)s„,(KlL)

+ V.'"(KIL),
lim $„(KlK) = 8„,
[K]

(141)

V,', '(KlL) = C*, (K)V(L) 4, (L)dv. ,

for the 8 integral, which survives due to the limiting
(139b) conditions for the II~ of Eq. (52), so that from this

jf Eqs. (17) and (19) find application in (139b) [com- 1'- K. Artmann, Z. Physik 149, 299 (1957).
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the relation (136) results as before for the elements
(138) of @."

That is the semiempirica, l conception of the varia-
tion treatment, which consists of ga, thering the ele-
ments of the matrix lo(K) from experiments and cal-
culating the integrals of (139) with approximation
functions.

There a,re still three facts to be pointed out, which
are characteristic of this form of the method:

1. Through the empirical set ting of the "zero
levels" h)(K) of Eq. (133), the molecular energy cal-
culated from Eqs. (86) and (37) is essentially more
exact because only the interaction energy of the dif-
ferent associations is handled with approximation
functions C(K). Through lv(K) the largest parts of
the energy are determined, so that it can be assumed
that the coeKcients 0,„ in Eq. (35) also are a good
approximation of those obtained from Eqs. (188) and
(139).

2. We are not concerned with a Ritz treatment for
the energy variations, which lead to Eq. (36) and
(37), because the energy values obtained are beyond
the boundaries of the actual ones [compare (8)]. In
principle it happens much more often that these en-

ergy values lie a bit lower than the exact ones.
3. Because the matrix $ is usually not Hermitian,

in place of @ we write

O= kl@+Z"], (142)

if $+ is the matrix adjuncted to $. Because of the
II~ in Eqs. (138) and (140), the boundary results of
$ remain as obtained by Eq. (136).

Concerning Point 2, notice tha, t we can no longer
say which set of functions x„of Eq. (35) actually
have been used, or whether one even exists. Con-
versely, we ca,n establish that a more consequential
and sensible formulation exists [refering to a calcula-
tion of the energy surfaces of molecules with as-
sumptions (137)—(139) as before], which also permits
a calculation of the energy of larger molecules be-
cause the concept of atomic a,ssociations has re-
mained uncha, nged in basic structure for the semi-
empirical conception. Together with the IIK respec-
tive to FK, which guara, ntees the correct behavior of
the energy surfaces in definite limiting states, the
empirical information emerging in the determination
of h)(K) has been applied in a far-reaching manner.

The chosen approximation functions C(K) can be
constructed from either Eqs. (26) or (68), and the
approximated total atomic function p", (n~, ) can be,

» H. Preuss, "Acta Valadalensis, Part I", 1958, University
of Uppsala, Uppsala, Sweden, technical report.

for example, a Hartree or a Hartree —Fock function.
The calculation of the matrix elements of Eq. (139)
is also applicable for the case in Eq. (62), from which
a P» similarly can be determined.

Consequential behavior likewise is obtained by ap-
plication of formulations (105) and (106) according
to Eq. (139). Together with Eqs. (108) and (109)
there now results

~*(Xy~v)Ha(Xp~v)dr = E(X —y, v)

+ co*(Xp~v) V(X —p, ,v)a(xp~v)d~,

~*(X~pv)Hco(X~yv)dr =- E(p —v, X)

+ (o*(X~pe) V(p, —v, ~)a(X~yu)dr, (143)

and, for example

co*(Xp~v)Ha(X~ pv)dr

= ~(~» ") ~ ("&l~)~P l&v)dr

+ ~ P pl. )V( —.,~)~(~lpv)dr, (143a)

if ~ is a,ssumed to be normalized Here also the poten-
tial energy of the atoms ) and p, are experimentally
determined from Eq. (109a). The same is true for
(u(Xp~vo) in Eq. (106).

We will consider more closely the ca,lculation of the
energy of the system —c, b, and c—with the aid of a
secular problem (37) whose matrix elements result
from Eq. (143). This procedure shows certain
similarities to a,n earlier method which in special
cases drew on the approximation determination of
activation energy. ' Due to Eqs. (110) and (143) one
sees from Eq. (37) that for c ~ ~, and, respectively,
c —+ ~, that we obtain the exact energy of the
molecules a—b, and, respectively, 6—c, plus the energy
of the free atoms. In the work named above the two
energy curves of the reaction

a +5 c —&u 5+—c—(144)
had been considered in a simple manner for a fixed
separation 8.5 and which results in 8&, a,s a variable.
In this case we a,re concerned with the potential en-
ergy curve W&. on the left side of Eq. (144), which is
displa, ced a bit vertically through the ion c .On the
right side of Eq. (144) the energy curve of the inter-
a,ction W. of the ion c corresponds to the completed
molecule c—b. Because the two curves do not inter-
sect, a, rough conclusion can be made about the ex-
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pected "a,diabatic activation energy" of Eq. (144)
from the course of the lower energy curve.

This simplification of the example (144) is con-
tained in Eq. (31) with Eq. (143), if one interprets
the integral in the following way for the rough ap-
proximation (B.b = const)

E (a,b —c) + '(c*((tlbc) V((bib —c)cc(albc)dr

= Wb. (Bb.) —W,

E(c —b,c) + co*(club) V(c,(t —b)a)(clab)dr

(145)

be'(ajbc) V(a, b —c)o)(club)dr

= W. (Bb.) —W,

where W represents the nucleus interation. The over-
lapping of the two co functions may be neglected.
Further, it may be assumed that

and in the frame of the perturbation calculation we
know that there are definite P» and q;, with which
the exact electron energy of a system can be de-
scribed already, through E"' of Eqs. (79b) and (8la).

Thus the P» and q;; functions have an inhuence
on the amount of calculation, hence one should try
to go a step farther than we have so far in the ap-
plication of empirical values because one also uses the
measured data for P» and q;, for the determination.
In this case the relation (97) can be applied, if one
still subtracts from E (measured) the energy of the
separated atoms

0(R) = E(measured) —8((bib),

and which must be written in the form"
(147)

P(B) I&( b) —&( Ib) I
—U(R) (g & 0) (,48)

U(R)

According to

a)*(albc) V(c,a —b)ce(clab)dr = n, (145a)
U = 0 + Z.Zb/R. b, (149)

where n may be assumed to be small compared to
W. or Wb. .

From Eq. (37) both solutions for (145) are (in-
cluding W)

0'(B) goes further together with the potential curve
U of the diatomic molecule, whose atoms have the
nucleus charges Z. and Zb. U(B) can be represented
by approximations by means of the known Morse
curve"

6 = s [Wb + Wj & (a~+ s [Wb W] )' (146)
—2N(R Ro) 2

—e(ib —BD)I—(150)

which for u = 0 represent the energy curves men-
tioned above. If 0. is shifted slightly from zero the
intersection will be raised and the two curves split
off at "point of intersection" (Wb. = W.) by the
amount l2nl. The energy trough of the two curves in

Eq. (146) is identical with that given above, from
which the "activation energy" may be estimated.
Thus the calculation of the total energy with the aid
of Eq. (143) already includes a known, more simple
estimation method.

What has been said so far is essentially an outline
of the semiempirical conception of the method of
atomic associations. In principle, the P»and q;, func-
tions can be chosen arbitrarily if they satisfy only
conditions (50) and (119).Approximations for Pb„are
stated in the Eqs. (63) and (92). The approximation
functions C(K) find application in every ease. The
choice of the P» and the q;, decides how many func-
tions x, must be carried along in Eq. (35) and to
which approximation the perturbation calculation
(79) must be carried through in order to obtain the
energy well enough. In the first case the secular
problem (36) a,nd (37) can be held to a minimum

through an apt choice of the P» and q;, functions,

in which Ro stands for the equilibrium separation of
the atoms and —D is the value of the potential be-
longing to 80. The parameter a is determined from
the curvature Lc of Eq. (150), which is connected with
the eigenfrequency of the molecule. The D, c, and 8,
values for a number of molecules are stated in the
literature. " Unfortunately, the Morse curves de-
scribe the actual potential rather poorly for small and
large B, so that with Eqs. (150) and (148) a sufficient
approximation for P(B) can be expected only for
average R. Conversely, P(0) = 0 is not fulfilled with
(148) or (149).

It is still valid from Eq. (50) that

lim 0(B) = 6(ab) —E((bib)
B—+0

(151)

lim U(B) = 0.

i4 If s(ab) —s( ~b) a( U, which usually is satisfied, then
P & 0, as required in Eq. (50b).

&5 M. P. Morse, Phys. Rev. 34, 57 (1929).
&6 H. Sponer, Molekulspektren und ihre Anwendungen auf

chemische Prob(erne (Springer-Verlag, Berlin, 1936). G. Herz-
berg, MolecuLar Spectra and MolecuLar Structure (D. Van
Nostrand Company, Inc. , New York, 1950).
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= 6(abc) —6(c) —6(b) —6(c),
A'„, = G(~lyv) —6(~lylv),

6 (cb) —6 (0 lb) Z.Z,
1+ P(R) R (152)

When solved for U, it follows from Eqs. (148) and as well as
(149) that

(1560,)

so that, for example, with an analytically stated
P(R), which still contains free parameters, the con-
dition can be satis6. ed that

(1) P(0) = 0 (3) U(Rb) = D—
(2) P(~) = ~ (4) BU(BRl g=v, . ——0

(5) O'U/BR'lv, =v,. = k . (153)

With that, a potential course could be found which
should represent a good approximation of all ranges
of R."

With the Pb„values from Eqs. (150) or (152) and
(153) we can now consider the treatments of Secs. Ba
and Sb. And from Eqs. (134) and (135) we can And

the q;, functions if the I'),„functions are known. Thus
we conclude tha, t the determination of the energy
surfaces for systems with more than two atoms goes
back to diatomic systems and to the a,tomic energy
a,ppearing in the concept of atomic associations. In
particular, the method in Sec. 3b (perturbation
method) allows an explicit statement of the energy
surfaces for X &~ 3, for which the I ~„and q, , func-
tions from Eqs. (148), (152), and (184) can serve.

%e will carry this out in more deta, il for the ex-
ample of a triatomic system a, 6, c. The F~ functions
in this case have been stated already in Eq. (132).
With the assistance of Eq. (148) the total energy can
be represented by the potential curves U(R) be-
tween the atoms if we initially ignore the inhuence of
the q;, functions. (In this case we set q;; = ~ .) One
then obtains

1
2

1
2

1

2

(-:—::)' (::",)"(-:—;)'

A.'b

ab ac

~AC +Q,c
U U

bc ac
(157)

So for dF„„=—0 „„the initial forms of Eq. (157) give
the rough approximation

6= W+Ub+0„+U. , y (158)

whose interpretation lies at hand.
The pa, ssage to the consideration of the q;; func-

tions is easily made with the assistance of Eqs. (124),
(125), and (128b). In this case, the structure of Eq.
(154) remains, and in place of Eqs. (156a) and
(156b) there now enters

Dy„= G(Xp) —8(X) —8(p), (156b)

if the zero level of Eq. (154) is the energy of the three
sepa, rated atoms.

Due to Eq. (24) 6b„„and A„„are equal in this form.
That we distinguish between these two, however, is
due to a, subsequent adoption of the q;; functions.

With Eq. (154) we found an approximation for the
energy surfa, ces of the triatomic system. It is worth
remarking that a development of 8 from the 8 func-
tions occurs in the following way:

6'„„=6(~lpv) —6(olplv),

~" = 6(~v) —&(~lv), (159)

whereby from Eqs. (128) and (132) we obtain the
individual results

= —+ + '+ ' = ——+ W (154)
Q Rb Rb. R Q

with

P = c-b OabUbcUac + c-bbc [Dab Uab] [Aac Uac] Ubc

+ A.', [D.b —U.b] [Ab. —Ub, ]U.„

+ A.'b[D., —U.,][hb, —Ub,]U.b,

Q = U.bUb, U., + [A.b
—U.b][L4,. —U..]Ub.

+ [A.b
—U.bj[hb, —Ub.]U.,

+ [A., —U..][&b. —Ub.]U.b,

)
6(~~v) + v(~1~v)6(~l~v)

1 + v(~l~v)

0(+l+v) —Qa, vv ~ (160)

as well as

(155)

a,nd the abbreviations

Ub„=—Ub„(Rb„),

&(~1~Iv) = &(~lvlv) .

The function q can then be determined from Eq.

(156) (135)

&7 A paper on this subject is in preparation by the author.
(,l„„.."( + " -)

PavPav Pa, vv

(161)
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if the Pb, „, is known from Eq. (148). Because Pb s„
and I'b„Pb„have about the same course and the
numerical values increase rapidly, one can expect
that q(o&libv) goes rapidly to infinity with increasing
distance. The case where 8, , „„—+ 0 should be in-
vestigated particularly, although we will not discuss
it here.

The formulas are remarkably simplified if the three
atoms are on a line. Then we have

pected. For a detailed statement about the reaction
process there are further circumstances to be taken
into consideration that arise from the application of
the time-dependent perturbation calculation. " For
tha, t purpose, the knowledge of the energy surfaces
is necessary above all else. Only in the pure adiabatic
case (very slow nucleus movement) can the ground
state of an energy be derived from energy surfaces
alone, which essentially

'

represent the activa, tion
energy.

Rcc Rcb + Rbc c

z-
~bcac It) bc ~ac

a ~ c

—
(o& 6'I 1 + P (R) I + 2P(R)P(2R)6..

1+ 2P(R)P(2R) + P (R) I1+ P(2R) }

z. z,
Rccb , Rbc + Rcb ~ ~ c Rc, bc Rab + Rbc

b c

(162)

If three of the same e atoms exist and if the I'~„ is
brought in again and R.b

——Jt!bc ——8 sti11 holds, it
follows from Eqs. (154) and (155) that

6. SOME NUMERICAL CALCULATIONS

The semiempirical conception of the variation
treatment (Sec. Sa) may be applied to a simple H,+

molecule. For Eq. (62) the applied approximation
functions give

4.(clb) =—[2~(1+ S)] '(c "'+ c ") = C'c(clb)

C, (cb) = (8/s. ) 'e "' =- C&&(cb), (united atom, He+) .
(166)

From Eq. (109) the operator of the total electron en-

ergy has the form

(163)

where q(blcc) = 0 is set by approximations and the
remaining q's are assumed to have been very large;
moreover, 8 cannot be very small, all of which
must be left out of Eq. (163)." So individually we

have
= 6 (ccc) —36(c),

The integral 8 in Eq. (166) is

—(a+b) ~

b.
H

(167)

(168)

Acc = 6( c)c—26(c) . (163a) The two eigenvalues F&&(K) in Eq. (19) yield

With the aid of the I'~„and q;, functions of Eqs.
(148) and (161), one may conveniently make an ap-
proximate determination of the energy surfaces of

"~arbitrary atomic systems in complete generality with
Z"' in Eq. (88a). In the next step there is an im-

provement because the matrix elements (72a) are
calculated with approximation functions and the en-

ergy resulting from Eq. (79b) is

p(&) + $0)

if the nearest approximation of Eq. (8lb)
AiV

P,."' = Z."' = g ) (K)V„(K)

(164)

(165)

ls utilized.
Conclusions can be obtained from energy surfaces

acquired in this way using approximations for the
order of. magnitude of the activation energy to be ex-

bs The assumption q(brac) = 0 gives the same sign in Eci.
(130), so s(acerb) = s(abc).

——'6 —1
H(clb) = ', ' V(clb) =

H(cb) = —-', 6 —2/r, ,

—1/rb, b

—1,~r. ,

V(cb) = 2/r, —1/r. —1/r, . (170)
Here H(cb) is identical with 3C(c) according to Eqs.
(24) and (25). H(clb) likewise can be shown with
X,(b) or X,(c).

Available integral tables" can be used with success

H. Hellmann, EinfUhrung in die Quantenchemie (Franz
Deuticke, Wien, 1937).

~0 J. Miller, J. M. Gerhauser, and F. A. Matsen, Quantum
Chemistry Integrals and Tables (University of Texas Press,
Austin, 1959); M. Kotani, A. Amemiya; E. Ishiguro; T.
Kimura, Tables of Molecular Integrals (Mamzen, Tokyo,
1955); R. C. Sahni and J. W. Cooley, NASA, Washington,
I). C., technical note D-146, I, II, 1959; H. Preuss, Integral-
tafeln zur Quantenchemie (Julius Springer-Verlag, Berlin,
1956/61) Vols. I—IV.

&0(clb) = —0,5 a.u. , G&&(cb) = —2,0 a.u. (169)
and the partitioning of the operator H of Eq. (17) is

begun in the foHowing way
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for the calculation of the matrix elements of H with
the functions (166), which are used in the secular
problem (37) [compare Eq. (66)]. Only the three-
center integral that occurs

For the H2 molecule there results in place of Eq.
(166)

Co(alb) = —[2(l + 8)] '(e '""+"' + e '""+"'
)

1 2

[a 'Ib c] = ——e '"'""'dr
fa

(»1) C (ab) =
3

—g(rc~+rc~)
e

7r
) = 1.70 (175)

rr

ec
a'lbc] = '

2 2

, ,[ac

]([a 'lbb]+ [a 'I«]) ' ia 'lb c]
](La 'lb b) + La 'I«])

12
]((a 'lbb]+ [a 'I]«) )~ [a 'Ib c]
]([a 'lb b]+ I:a 'I"]),

has not yet been collected in a table, so by means of
the approximations

1
2
1
2

1 1 1

1 1

~b2

~a2

with 8 from Eq. (168).The "united atom" is now an
He atom which again lies in the middle between the
two protons. The Hamiltonian opera, tor (in a.u. ) is
now partitioned according to Eq. (17) as follows:

(172)
V(alb) = ' ~a2 rl2

it must be refered back to the known integral
na

[a 'Ibc]; (n = 1,2). The definition of the integral
when applied to Eq. (172) is

~b2

1 1
H(ab) = ——6) ——A2—

2 '
2

2 2 1

~c2

(g
~ (aP) ' -iar) +t)r ),"dr,'

(nP): 1 („„p„)d
fg

(173)

V(ab) = 2
It cl

and the eigenvalues from Eq. (19) give

1 1

ra2 ~b2

(176)

Due to compute, tion (172) one obtains two energy
curves for the electron energy E0, as shown in Table II.

TABS z II. Energy values for H2.

8o(alb) = —1,0 a.u. , 8o(ab) = —2,9037 a.u. .
(177)

The calculation of the integral that arises likewise
can be carried through exactly until we reach the
t,hree-center integral

[a-'Ibc]
0.0
1.0
2.0
3.0

—2.000—1.479—1.099—0.908—0.500

—2.000—1.465—1.090—0.904—0.500

and

1 X X 1 1
[a c

I
c b ] = —,X' —(rai+~rci+~rc2+rb2) ~

8
~12

(178)

6o = Eo + 1/8 + 0.5 (174)

from which we get a bonding energy of about —2.60
~ 0.08 eV for a nucleus distance of 2.0 a.u. , using
the values from Table II. This result is in good agree-
ment with the exact values of 2.78 eV for R = 2.0
a.u.

The characteristic of the method of atomic associa-
tions is that Eo exactly transforms into the eigen-
values of Eq. (169) for B.b ~ 0 or I)'.„Q

The potential energy curve P„, with Eqs. (11) and
(169) is

The above integral was handled according to the
Mulliken approximation":

1 X Xl 1 X Xl 1 1 Xg 1 1 1 1

[aclcb] = 4 [ac][cb]I[a ale c] + [a alb b]

)) XXX XX1
+ [cele c] + [c clb b]} . (179)

2~ R. S. Mulliken, J. Chim. Physi. 46, 497 (1949).

Although as yet there is no exhaustive discussion of
the integral approximations used for many quantum
chemistry calculations, this much can be said at pres-
ent: These in forms (172) and (179) are better if the
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nucleus distances are made smaller. Hence, one may
expect a greater exactness for the H2 bond energy
values calculated in this way because the equilibrium
is smaller for H2 than for H,+.

The method of atomic associations for function
(175) gives a bond energy of —4.71 eV. The bond
distance amounts to 1.42 a.u. The exact values are
—4.74 eV and 1.40 a.u.

Finally, the II3 system may be handled according
to the generalized treatment (Sec. 4). Prom Eqs.
(105), (108), and (109) we have

C

E-E

which were experimentally determined. The func-
tion U(R) represents, according to Eqs. (147) and

(149), the potential energy curve of H&.

The H3 system was calculated for the case B.b
= Rb, ——8, which may exist in reality through the
reaction

II+ H2 ~~H2+ H. (185)

All three-centered integrals must again be estimated,
where we first set X' = 1 as a good approximation in

the place of Eq. (182a). After adding the nucleus re-
pulsion energy o/2R, one obtains the energy values

8(R) for the Hs complex (atomic units) listed in

Table III.

U(a —bc) = ——1 1 1 1

~ci ~ck
TABLE III. Energy values for H2, when X' = 1.

U(c —b,a) = ——I
Ai

1 1 1 1———+ —+-
~a& ~aj ~ijc ~ij

(180)

s(B)

s(R)

1.0
+0.303

2.0—0. 108

l.25
+0.086

2.5—0.085

1.5—0.054

3.0—0.057

1.75—0.099
0—0.027

o&(able) = 0'f, (, (1,2)q, (3)[(r(1)P(2) —(r(2)P(1)]n(3)

~(bulla) =- &4 (2,3)~f-(3)[~(2)P(3) —~(3)P(2)]~(I)
(»I)

where (r and P represent the spin functions. [0, is ex-
plained in Eq. (27).] f.(, (and, respectively, P(„.) are
approximation solutions for the free H2 molecule and
were regarded as expanded Heitler —London —%ang-
funct lOns

In the next step of the calculation, approximation X'

of Eq. (182a) was used and gave the following re-
sults (Table IV), which for R ~( 2.5 are lower than
Table III. Thus the lowest energy of the H3 system
is reached at about 8 = 1.85 a.u. and still lies about
0.05 a.u. = 1.36 eV = 30 kcal/mol higher than these
of the free H2 molecule.

in which the parameter )' is still a function of the
nucleus separation. In very good approximation

)'(R&„) = 1 y I/4R&„(182a)
can be written for 0.5 ~( R),„.The (v„ functions are
the solutions for the H atoms (ground state)

(„= (I/~)'e "v. (182b)

Then the matrix elements from Eq. (14,&) were cal-
culated with function (181), whereby [due to Eq.
(109a)] in

E(X —
IJ,,v) = 6(v) + G(X —y) (183)

the right side represents the energy of the hydrogen
atom and the H~ molecules (ground state)

8 (v) = —0.5 a.u.

F(X —)a) = —1 0 ——+ U(R), ) (a.u. ) (184)
1

&X@,

2~ W. Heitler and F. London; Z. Physik 44, 455 (1927);
S. C. Wang, Phys. Rev. 31, 579 (1928).

TASLE IV. Energy values for H2, when (182a) is used.

8 1.0 1.25 1.5 1.75 2.0 2. 5
G(A') +0.18 —0.03 —0.097 —0. 118 —0. 117 —0.086

These results agree very well with the results of
other methods, "which likewise give a nucleus dis-
tance of about 1.80 to 1.90 a.u. From the 30 kcal/mol

energy difference for the H, molecule nothing as yet
can be concluded further about the activation energy
of the Hs process (185) because in the above calcula-
tions the position of the diagonals It'..b = Rb. = 8
first were determined on the energy surfaces. Be-
cause the tunnel effect and the oscillation states must
be taken into a,ccount for reaction (185) and the
process might in no way follow a purely adiabatic
course, an essentially small activation energy can be
expected. The measured activation energy lies at
about 10 kcal/mol.

&3 II. Eyring and M. E'olanyi, Z. Phys. Chem. (B) 12, 297
(1931);J. O. Hirschfelder, E4. Eyring, and B.Topley; J. Chem.
Phys. 4, 170 (1936).
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6' = —5,978 a.u.

1&9037 a.u. (186)

The function P(R) of Eq. (148) was determined from
analytical potential curves. As stated above, the q
values were taken into consideration in approxima-
tion form.

One always finds a,t about 8 = 1.9 a.u. a,n energy
minimum of —0.165 ~ 0.05 a.u. for the II3 system,
which corresponds to an increase in energy of about
3—9 kcal/mol over the H2 molecule (a good result in
view of the applied approximation in the q functions).

It is worth rema, rking that disregarding the q func-
tions in Eq. (160), which led to representation (154),
still did not give a reasonable minimum in the po-

In conclusion, we would like to consider some
equations of the perturbation theory concept of the
method. For this purpose, consider Eq. (163), which
we want to apply to the system of three hydrogen
atoms. So from Eq. (163a)

tential curve of the H3 complex if the separation of
neighboring H atoms were set equal in the linear
system and varied. Likewise omitting the association
[ac~bj results in an unsatisfying course of the curve,
if the arrangement of the three a,toms is a—6—c.

The examples show tha, t the equations of the
atomic association method in the frame of a varia, tion
treatment or in the perturba, tion theory representa-
tion reproduce, in their simplest form, interactions
between atoms that are essentially correct.
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Structure of Fermion Density Matrices
A. J. COT, EM+N

Queen's University, Kingston, Ontario, Canada

1. INTRODUCTION

~AX the wave function be eliminated from quan-~ turn mechanics and its role be taken over, in the
discussion of physical systems, by reduced density
matrices? The author has believed in the afhrmative
answer to this question for over ten years. In the
present paper, he attempts to muster the main cur-
rent evidence in support of this belief. Prior to the
Hylleraas Symposium, the available evidence, prob-
ably, would not have convinced the average physi-
cist. However, the discovery, during the Symposium
of Theorem 9.3, and subsequently of Theorem 9.4,
gives real substance to the hope that it will soon be
possible to calculate the energy of the ground state
of an X-fermion system using density matrices as the
main mathematical tool.

In his summary' of the Boulder Conference on
Molecular Quantum Mechanics, June 1959, C. A.
Coulson remarking on the striking resurgence of in-

C. A. Coulson, Rev. Mod. Phys. 32, 175 (1960).

terest in the density matrix approach to the cV-body

problem stated, "It ha, s frequently been pointed out
that a conventional many-electron wave function
tells us more than we need to know. . . . There is an
instinctive feeling that matters such a,s electron cor-
relation should show up in the two-particle density
matrix. . . but we still do not know the conditions
that must be satisfied by the density matrix. Until
these conditions have been elucidated, it is going to
be very difFicult to make much progress along these
lines. "

Conditions on the utave function are known. It
must (i) satisfy Schrodinger's equation, and (ii) be
symmetric or antisymmetric with respect to the in-
terchange of similar bosons or fermions, respectively.
Condition (i) is easily transla, ted into a variational
condition on the two-particle density matrix. How-
ever, when Professor Coulson spoke there was no con-
venient formulation of the conditions on a reduced
density matrix implied by the symmetry or antisym-
metry of the wave function of the system. This is the
important lacuna to which Coulson drew attention,


