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Semidirect Products and Point Groups
8. L. ALTMAN N

Department of Metallurgy, Oxford University, Oxford, England

INTRODUCTION

A LTHOUGH the properties of the point groups
are very well known, there has been recently

considerable interest in them. One reason for this is
that one wants to simplify the construction of sym-
metry-adapted functions, which requires the trans-
form Bp of an arbitrary function p under all the op-
erations jt,'& of a group (see Sec. 6). This was the tech-
nique used by the author' to obtain spherical har-
monics adapted to the irreducible representations of
the point groups. In a later note, ' I remarked that one
could exploit the method for the reduction of space
groups given by Bouckaert, Smoluchowski, and Wig-
ner. ' This is so, because all crystallographic point
groups admit of an invariant subgroup that is a direct
product of cyclic groups and which occupies the same
position with respect to the corresponding point
group as the translation group does with respect to
the space group. Commenting on this remark, Mc-
Intosh4 observed that a more powerful method was
available, because the point groups could be expressed
as semidirect products, a concept which had been de-
veloped some years before by Mackey. ' Accordingly,
McIntosh was able to give a very complete theory of
the point groups and their representations. Whereas
McIntosh based his work on the treatment of the
matrix representations, the present author' was able
to show that in most practical cases a simpler treat-
ment was possible, if the bases of the representations,
rather than the representations themselves, are taken
as the starting point. In this way, moreover, the
graphical character of the Bouckaert, Smoluchowski,
and signer method can be preserved, which allows
one to obtain many results without the need of labo-

' S. L. Altmann, Proc. Gamb. Phil. Soc. 53, 848 (1957).
2 S. L. Altmann, Progress Report No. 8, Quantum Chem-

istry Group, Mathematical Institute, Oxford, 1957, p. 88 (un-
published).

3 C. P. Bouckaert, R. Smoluchowski and E. Wigner, Phys.
Rev. 50, 58 (1986).

4 H. V. McIntosh, Symmetry adapted functions belonging
to the crystallographic lattice groups, Tech. Rept. No. 58—3,
RIAS, Baltimore, 1958 (unpublished); ibid J. Mol. Spectr. . 5,
269 (1960).

'" G. W. Mackey, Proc. Nat. Acad. Sci., Wash. , 35, 537
(1949); Ann. Math. 55, 101 (1952).

S. L. Altmann, Phil. Trans. Roy. Soc. (London) A255, 216
(1963).

rious algebra. The purpose of this note is to provide a
nonmathematical introduction to this work. Accord-
ingly, no proofs will be given, but the reader can find
them in the reference given. '

1. DEFINITIONS

If two groups N and C are such that any element
E; of one commutes with any element C'; of the other

X;C;= CX;
their group product (i.e., the set of all elements of the
form E;C;) forms, as is well known, a, group G which
is the direct product of N and C:N x C = G. On the
other hand, if N and C do not commute in detail but
rather

(2)

for all (.; Q N, then the group product forms a group
which is called the semidirect product of N and C, for
which we propose the notation

Nn C=G.
Equation (2) means that N is invariant with re-

spect to C and, as the converse will not be true in gen-
eral, this means that the order of the factors in (3) is
significant. We agree that the invariant subgroup
will always be given first. '

2. THE POLES OF ROTATIONS AND

THE INVARIANT SUBGROUPS

Since the invariant subgroups are much used in the
theory it is useful to have a graphical method to ob-
tain them. This requires the concept of the pole8 of a
rotation, which was introduced long ago. They are
the two points of the unit sphere that are left in-
variant by a rotation. An invariant subgroup N of G
is such that its poles are only permuted among them-
selves by all the operations of G. As an example, we
show by means of this rule in Fig. 1 that C3 and D2

are invariant subgroups of D3 and T, respectively.

3. THE CRYSTALLOGRAPHIC POINT GROUPS

The invariant subgroups of the eleven proper point

The definition given for the semidirect product agrees with
that of the "group product" given by M. J. Buerger, ELemen-
tary Crystallography (John Wiley 4 Sons, Inc. , New York,
1956), p. 486.



S. L. ALTMANN

I
I
I
I
I~QQ ~ ~ ' ~ ~ ~ ~ ~

~o~ I r ~ ~~ ~
I r

srr I'
Ir'

I
I

r r
~ I ~IP

'reo a+oyoe
~ r~ p (' ~

I~~eroI ~ ~ ~ ~
~ I

I
~
o'' 4

groups can be easily obtained by the rule of Sec. 2. In
the second column of Table I we list a special type of
invariant subgroup which we call a halving subgroup.
'lhis is such that its order, that is the number of its
element, s, is exactly one-half that of the correspond-

group G. The first, to obtain groups with the inver-
sion, leads to a well-known direct product form. The
second, to obtain groups without the inversion, can
be reworded to express it in terms of semidirect prod-
ucts.

To give these prescriptions briefly, we shall use a
plus sign to denote the juxtaposition of elements of
two groups and a dot sign to denote a group product
(later to be identified as a direct or semidirect prod-
uct as the case may be). The prescriptions are:

(i) Groups with inversion. From the proper group 6
we form

6' = 6+ Gi = G (E+ i) =— G ~ C;. (4)

FIG. 1. The poles of invariant subgroups. In D3 the poles of
C3 are denoted by the two triangles. They are invariant under
the operations of C3 and they are permuted by the three binary
rotations, the poles of which are denoted with ellipses. In T
the poles of D2 are the ellipses at the ends of the axial cross.
Each binary rotation leaves two of these poles invariant and
permutes the rest, whereas the threefold rotations permute
the binary poles cyclically.

ing group. If we want to write a proper point group
in the form G = N n C where N is halving, it is clear
that C must be a group of two elements, i.e., a group
C, . Hence, we quickly obtain the semidirect product
forms listed in the third column of Table I.T does not
possess a halving subgroup but a semidirect product
form can be easily obtained from Fig. 1.

The improper groups G' are of two types, with or
without the inversion i, and there are two well-known

prescriptions to obtain them starting from a proper

Here, E is the identity operation and Ci the group
whose elements are E and i.

(ii) Groups without the inversion. Express a proper
group G in terms of a halving subgroup N as

Form

O=N a C, =—N+NC2.

O' = N+NCgi.

Since C2i is a reAection 0., we can write

O'=N+N(r =N (E+o.) —= N ~ C, . (6)

In comparing (4) and (6) notice that i commutes
with any other operation, but not so 0-. Hence, the
different, type of product that appears in each case. It
should also be noticed that the second rule can be
very brieAy expressed as follows:

Write a proper group G = N n C, (N halving).

Txsz, z I. Proper and improper point groups.

C2 and C3 are groups with the rotation axis and mirror plane parallel and perpendicular,
respectively, to the principal axis of the invariant subgroup. The rotation axis and mirror
plane in C2 and C', are perpendicular and parallel, respectively, to the principal axis. The
symmetry elements in C2' and C," are as in C2 and C,' but they also bisect two secondary
axes of the invariant subgroup. The threefold axis of C3, D3, and C3„ is diagonal to the three
binary axes of D2.

Proper Halving
groups subgroups

Semidirect
product form

Groups
with i

Groups
without i

CI
C2
C3
C4
C6

D2
D3
D4

D6

T
0

CI

C2
C3

C2
C3
C4
D2
C6
D3

CI n C2

C3

C2n C2
C3
C4
D2
C6
D3

D2
Tnc2

n C2

=—C2xC,
n C2
n C2
n. C2'
n C2
n C2'

n, C3
=D2 nD3

Ci
C2I, = C2
C3i = C3
C4A = C4
C6~ = C6

D3d = D3
D4p, ——D4

x Ci
x C;
x C;
x C;
x Ci
X Cg
x Ci

Tp, =T x Ci
Pg ——QX C;

D6p, =D6 x C;

C, =CgnC,

C3I = C3

C2v = C2
C3.
C4,

C6„
D3a = D3

~ ~

S4
n C3—=

nC, =—

=C3 n
= C4
nC", =
=C6 n,

n C3'=

C3 xC',
C2x C',
C',
C,'
S4 n C2
C,'
S3 n C2

Td ——T n C," = D2 n C3v
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The corresponding improper group. without inversion
isG'=N A C,.

The results of these rules for the 32-point groups
are summarized in Table I.

4. TRIPLE PRODUCTS

There are two very useful relations for triple prod-
ucts:

(N'n C') wC=N'A(C'AC), (7)

(N' A C') x C = N' n, (C' x C) . (8)

Equation (7) is valid, when ¹ and C' have all poles
in common or when no pole of one group is taken into
a pole of another by an operation of C. However, this
condition can always be satisfied, except for cases of
no interest.

As an example of (7):

0 = T n, C,"= (D, n C,') n C,"
= D, n, (C,' n C2 ) DQ A D3 y

(see the note at the head of Table I for an explanation
of the meaning of the primes). As an example of (8):

D„= D, x C; = (C4 n, C,') x C;
= C4 A (C,' x C;) = C4 n, C,'„.

tors, the representations of C3 can be seen to the left
of Table II.

When N = D& ——C2 x C2 the representations are
designated by a k vector of two components, which is
possible because the two binary rotations involved
commute. The concept of a k vector can still be used,
with some care, when N = T.

5.2 The Representations of the Semidirect Product

Consider the group 6 = N A C, and assume that
bases are available that span the irreducible repre-
sentations of N. We denote them, in row vector form,
with the symbol (p~. We shall first treat the ca,se
when N is abelian (either cyclic or direct product, of
cyclic groups). In this ca,se Q ~

is one dimensional.
The first step in the prescription to form a basis of

a representation of 6 is to form the star of the repre-
sentation. This is obtained as follows. Take a basis

(pk~ that corresponds to a vector k (i.e., to one of the
irreducible representations of N) . Form all the vectors
Ck (all C g C). The set of all vectors thus obtained is
the star of the representation. For each vector Ck in
the star there will be a basis (p~~~. A basis for the
representation of G is obtained by forming the direct
sum of the bases (p&j,

~
(all C Q C). That is, we form

the row vector (ggp QQ k

Many useful relations between the point groups
can be obtained in this manner. Among other things,
they, as well as the relations given in Sec. 3, allow us
to classify very systematically the various isomor-
phisms between the point groups.

5. THE REPRESENTATIONS

Itis well known that, if G = N x C, the represen-
tations of G can be obtained from those of N and C in
a very simple way. We shall show in this section that,
analogously, the representations of G = N A C can
be built up from those of N and C.

S.l The Representations of the Invariant Subgroup

Fre. 2. The stars
of C3,. In forming
the star of k = 1 it
should be remem-
bered that axial
vectors change sign
when rejected on
their own plane.

,Ek
0
'ok

k=c

%e shall first consider the case when N is a cyclic
group C„of order n. The n one-dimensional represen-
tations are given by D"(C,) = exp (2~ikr/n) where

k, r = 1,2, n Here, D'(C,) .is the representative of
C, in the A;th irreducible representation of the group.
Ic is an index that labels and specifies the representa-
tion and it is very convenient for our purposes to rep-
resent it by an axial vector k in the direction of the
axis of rotation. The modulus of k will take the values

1,2, n, but it is more convenient to take the equiva-
lent symmetrized ranges [—-,'(n —1), 2 (n —1)]and

[——,'n, —', n —1] for n odd and even, respectively. A.s

an example of these representations and their k vec-

We illustrate in Fig. 2 the stars of C3 C3 A C, .
They are two, and we can see that they show an es-
sential difference. Whereas for k = 0 we have k = 0
repeated twice in the star, for k = 1 we have k = 1

and k = —1 in the star, and no k vector appears
more than once in it. We shall call a simp/e star one
that contains no repeated k vector and a composite
star one that does.

It can be shown that a simple star corresponds to
an irreducible representation. So, for C3, ——C3 A C„
if (P, ~

and (P, ~

are the bases corresponding to k = 1

and k = —1, respectively, the basis of the corre-
sponding irreducible representation of C,„ is (p, , p, ~.



j44 H. L. ALTMANN

The representation itself is easily obtained. The rep-
resentations of the operations of C3 are diagonal mat-
rices. In fact, for C3 for instance, from the representa-
tions of C3 listed in Table II, we have

c (~ I

= (~ I ,

Hence,

as shown in Table II. The matrix for 0-. results simply
from the conditions

When N is nonabelain, a basis (pI of a,n irreducible
representation of it will be multidimensional. It can
be seen that, for the cases of interest in the point
groups, it is enough to choose (gI such that one of its
columns be irreducible under K.

6. SYMMETRY-ADAPTED FUNCTIONS

Consider a group G of elements 6„, represented in
the jth irreducible representation by matrices
D'(0,). The operators

are such that when applied on an arbitrary function
p they transform it into a function p'„adapted to the
tth column of the jth representation. That is

which follow from the way in which the star was gen-
erated. The matrices for the remaining reQections

(Cso, and C,'c..) are obtained by multiplication.
To deal with composite stars we require a new con-

cept, that of the co group of t-ke k vector, K. This is the
group of all operations of C (in G = N A C) that
leave k invariant. For instance in C3„ for k = 0, this
group is C,. The prescription to obtain an irreducible
ba, sis for a composite star is now as follows: (i) choose
a basis (pkI of the representation of N which corre-
sponds to the k vector of the star and such that it
belongs to an irreducible representation of K. (ii)
Generate the star with the operations of C that do
not belong to K (i.e. avoid repeated k vectors in the
star) and form the new basis of G by writing the
direct, sum of all the (paI for a,ll the k's in the new

star.
The reader can verify that the representation for

4 = 0 of C3 generates two representations of C3., in
accordance to whether the corresponding basis is
chosen to belong to either of the two irreducible rep-
resentations of C„ in which o-„ is represented by +1
and —1, respectively.

These operators satisfy the condition'

Considernow G = N n C. Weshallshowthat the
work with the operat, ors (9) can be much simplified
by obtaining first functions that are symmetry-
adapted with respect to N. Write G = P; NC„
where, as the plus sign before, the summation sign
denotes a juxtaposition of elements. Then

w', , = g, g.D'y. c,)*„x.c,
= g, g.D'(c,x.)*„c,x,
= g, g,„D'(c,)*,„D'(x,).*,c,x,
= g, g.D'(c, )*,.c, g. D'pv, )„*,x,

(12)

(13)

(14)

In Eq. (13) we use the relation NC = CN. Equa-
tion (14) results from the matrix multiplication rule,
whereas Eq. (15) involves a mere rearrangement of

8 For this and other properties of these operators see, for
instance, 8. L. Altmann, "Group Theory, " in Quantum
Theory, edited by D. R. Bates (Academic Press Inc. , New
York, 1962), Vol. II, p. 144.

TABLE II. The representations of C3, in relation to those of C3.

C3 is a counterclockwise rotation by 2m/3. C30., and C320.„are mirror planes that form angles
of 2x/3 and —2m/8, respectively, with 0-„.

~ = exp (2s.i/3)

C3
k/r

co-group
of k

Z
0

C3
1 2

Csv

A1 1

C2
3 C3~, C,'0-„

1 1
A1 0 star C,

'F 1 I
~ star C1

i J'

1 1 1 —1 —1 —1
'1 ''e '(e* '( 1'' e'' e"'

1, , e*
I e, l j,e*,e
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terms. Prom the description of the irreducible repre-
sentations of 6 given in See. 5, it follows that the
D'(X,) are irreducible representations of N, so that
the summation over s in Eq. (15) is an operator such
as (9), but for the group N. Hence, if we apply the
operator (15) on a, function pI symmetry-adapted to
N, and if we use Eq. (11),we obtain

W'„y', = g. g, D'(C, )*,.C,y.'. (16)

This means that the symmetry-adapted functions
with respect to N have to be transformed only under

C in order to obtain symmetry-adapted functions
with respect to G. Hence, the step-wise procedure in-
volved in (16) requires the use of n + m symmetry
operations, if n and m are the orders of N and C, re-
spectively, whereas the direct application of (9)
would involve n m operations.

We can see in Table II that often the matrix repre-
sentatives have zero diagonal elements. This, of
course, simplifies even further the work with the op-
erators (16) and a set of rules to obtain the results in
as simple a way as possible can be given.

Discussion on Treatment of Symmetry Properties

F. A. MaTsKN, Chairman

Dow&TH: A program for applying the Boys vector-coupling reduction method for atoms has
been developed. This method rests on the use of orthonormal orbitals. If we define eingangs A.

and 8 of symmetries l&s& and l&8&, respectively, and if these eingangs have no common nl orbitals,
they can be coupled to give an eingang C of symmetry LS by the use of Clesbsch —Gordan or Boys
X-coefficients. Two eingangs made up of exactly the same orbitals can be used to write a new,
larger eingang as follows:

(nl
+

) g w + [( nl)a, s, z,
( lq)z, s,z,]LB'

Li Si R~
L~$2R~

These relationships are basic to a vector-coupling scheme for atoms. This scheme is cori-
venient for introducing correlation in atoms, e.g. , if we wish to introduce 2p correlation terms in
¹ we obtain 3 pairs of the type:

[(2p')'D(nil, n2l2)'D]'S, [(2p')'P (n)l, nmlm)'P]'S, [(2p')'S(n, l,n, l,)'S]'S,
where there are 15 pairs.

The computer program developed takes any configuration and generates from this all per-
mitted terms with whatever restrictions are introduced in the specification. More important,
from any two configurations a table of the integrals over the radial coordinates is generated.
This program works for all nt types of orbitals, but t & 2 eingangs which include more than 2
electrons are not permitted at present.

COLEMxx: About one year ago, Fukashi Sasaki, a student of Kotani, now working at Uppsala,
discovered a formula which was of great usefulness in the theory of density matrices and should
have wide application to systems of Fermions. If X = p + q, p & q, and A&, A„and A, are indem-
potent antisymmetrizers on the X, p, and q particles, respectively, the Sa8aki s Formula is

p A„= AA, P (—1)'
~ i (1 p+1)(2p+2) (ip+i) AA, ,

where („) is the binomial coefFicient, and (1, p + 1), etc. denotes a transposition of the first and
(p + l)th particles. The formula appeared, for the First time to my knowledge, in Quantum
Chemistry Group, Technical Report No. 78, May 1962, Uppsala University, Uppsala, Sweden
(unpublished). If the factor (—1)' in Sasaki s formula is replaced by 1 the formula becomes valid
for the symmetrizing operator.


