
NATURAL ORBITALS FOR H2

In addition to this g type of in-out correlation,
there is an additional in-out correlation provided by
additional terms of the 0-„ type after the first one.
This is, however, essentially impossible to separate
from left —right correlation energy since it is not clear
whether the energy improvement occurs from the oG-

diagonal interaction with the major o, terms (left-
right correlation) or the interaction with the major o„
term (in-out correlation) or both. It seems most
likely to be the former, however, and we lump it to-
gether with that type in the following.

The next interesting case is the limiting best func-
tion which retains only axially symmetric orbitals for
basis functions. That is, the (o., + c.„), or Z limit.
This is the function which James and Coolidge"
identified as the best function using only four essen-
tial coordinates [omitting r» in their case, (ys —q ~) in
ours]. Whereas James and Coolidge reported
—1.1577 H for this limit, we find —1.160876 H for
our best function of this type (No. 20). The total Z

correlation energy in III is, therefore, 0.0276 H,
somewhat higher than but still close to the Ggure of
0.0239 H predicted from a symmetrical division of
correlation energy of the He atom. " Actually, the
total Z correlation energy is probably somewhat
greater than this ( 0.0286 H) since it seems clear
that the chief deficiency of function III is in the o-0-

terms. DJ' report a Z-type function with energy
—1.161695 H.

Comparing calculations No. 20 and No. 26. we find

an improvement in adding x terms of 0.0110 H. An
additional contribution of 0.00085 H results from
adding s-, terms (No. 26—No. 28), for a total s. correla-
tion energy contribution of about 0.012 compared to
0.015 suggested from He."Clearly left-right correla-
tion in H2 is more important than is computed from
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the united atom description of the molecule, and cor-
respondingly up-down or axial correlation is less im-
portant. This is a not unreasonable result considering
the increasing importance that left-right correlation
has with increasing internuclear distance and the de-
creasing importance of angular correlation for large
distances.

Finally, we should mention the 6 term (28—80) of
0.000535 H. DJ obtained an improvement of 0.000477
H upon adding their first 8, term. In He, terms of this
type contribute 0.00116 to the correlation energy, so
once again we see the decreased importance of axial
correlation in H. as compared to the same type of
correlation in He. It should be noted, however, that
the total correlation energy is very nearly the same in
the two cases, and He may still be retained as a very
good model for H2."

As Davidson and Jones point out, there is a notice-
able break in the energy contribution produced by
additional natural orbitals after the fourth term has
been added. This four term function (No. 22) in our
case had an energy of —1.169785 H. DJ report a
slightly better limiting energy of —1.169969, which
is a remarkably good result for such a simple function.

In conclusion, it can be said that the present cal-
culations have eon6rmed in detail previous surmises
about (a) the invariance of the natural orbital ex-
pansion, (b) its utility in wave-function comparison,
(c) the similarities between He and H&, (d) the rough
additivity of correlation energies of different types.
The calculations provide detailed natural orbitals
which should be useful in a variety of other calcula-
tions in which one is primarily exploring the effects
of a systematic rapidly convergent improvement in
the nature of the wave-function expansion.

» Hagstrom (reference 8) has also considered the effect of
adding y basis orbitals and found that a single (qr, q ) term
added to the 33-term function of Case III gave an improve-
ment of (0.00001 H.

Discussion on Natural Expansions and Properties of the Chemical Bond
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NzsazT: %hat are the symmetry properties of the natural spin-orbitals?
I owniN: A theorem was presented at the Madison Symposium in 1956 about the symmetry

properties of the natural spin-orbitals stating that they are symmetry-adapted. [See P. O. I,owdin,
J. Phys. Chem. 61, 55 (1957).J The basic theorem says that, if there is a normal constant of
motion A. commuting with the total Hamiltonian 3C which is built up from one-electron operators
A(i) by means of the sum

A. = g. A(i),
or by means of any other fundamental symmetric function of the one-electron operators, including
the product A(l) A(2) A(X), then the natural spin-orbitals associated with an exact or approxi-



DISC VHSION

mate eigenfunction 4' to K are always eigenfunctions to A(l) or (in the case of degenerate occupa-
tion numbers) can be chosen that way, provided + is an exact eigenfunction to A.

The proof has been given every year at the summer and winter institutes and is very simple.
The total wave function + may be written' as a superposition of Slater determinants D& formed
from a complete basis of one-electron functions which are chosen as eigenfunctions to A(1). Such
a basis is simply constructed from any complete basis by means of projection technique. Each
determinant is then also an eigenfunction to A associated with the eigenvalue under consideration.
Since this total eigenvalue is a linear, symmetric function of the one-electron eigenvalues, it is
clear that two determinants have either the same set of one-electron eigenvalues or differ in at
least two eigenvalues. In the latter case, the combination of the two determinants will not give
any contribution to the first-order density matrix depending on orthogonality, and this means
that this matrix is already partly diagonalized in the representation chosen. Any further diagonal-
izing will not change the fact that the orbitals are already eigenfunctions to the one-electron
operator A(1).

This proof is directly appl";cable to angular momenta, translations, cyclic operators, and abelian
groups, whereas, for the point groups, the terminology and the proof have to be slightly modified
by letting the complete basis introduced instead transform properly corresponding to the ir-
reducible representations. Again, one finds that the natural spin-orbitals are symmetry adapted.

This theorem is of importance, since it tells us that certain one-electron properties connected
with A(1) will be preserved and have a meaning even in the exact many-electron theory. It tells
us that, if 8, is a good quantum number, the natural spin-orbitals will be of either n- or p-type.
In a conjugated system with planar symmetry and the reaction 0, as a constant of motion, the
natural spin-orbitals will necessarily be either o=orbitals or x-orbitals, and the total number
of x-electrons is, for instance, a well defined quantity, even if it may differ from being an integer.
Finally, in solid-state physics, the reduced wave vector A; represents a one-electron property which
will be preserved also in the exact theory together with such concepts as "effective mass, " etc.
which is very important. [See P.-O. Lowdin, S. Appl. Phys. , Suppl. 33, 251 (1962)].

DxvmsoN: The natural expansion of the Kolos and Roothaan wave function for H2 illustrates
the utility of natural orbitals for a two-electron system. The natural expansion of 4' has the form

+ = Q; 0,'a;(l)n;(2),
where, if C& is chosen positive, t. ; is negative fori ) 1. The occupation numbers for the first five
orbitals are in surprisingly close agreement with those obtained by Shull for simpler wave functions.

In this expansion, it turns out that two logical levels of approximation appear. The first of
these involves one configuration and gives virtually the SCP energy. The next involves three
additional configurations describing correlation in the three space coordinates and gives 90'%%uc

of the correlation energy. Beyond this point the expansion converges more slowly and involves
terms designed mostly to fit the local correlation hole.

The natural orbitals can also be found from the eigenvalue equation

[(1 @ X ) (H + H TH) (1 g X)]X = EX,
where X is the coeKcient vector for a natural orbital. Here,

and T is the matrix defined by Lowdin with 0 = XX~. This method was tried at the Theoretical
Chemistry Institute, University of Wisconsin, with only 4 basis functions and was found to give
rapid convergence. Unfortunately, with a basis set of X functions the calculation of T involves
inverting an X' X X' matrix iteratively. [F. R. Davidson and L. L. Jones, J. Chem. Phys. 37,
1616 (1962)].


