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INTRODUCTION

~
T has previously been shown' that hydrogen-mole-

cule wave functions may conveniently be repre-
sented in terms of natural orbitals. ' In this represen-
tation, many of the approximate wave functions for
H2 in the literature were classified by the number of
independent approximate natural orbitals required in
the expansion and, in particular, by the occupation
number of each natural orbital. It was sho~n that the
occupation numbers were relatively invariant to a
wide range of approximations to the H2 wave func-
tion. It seemed desirable to explore the natural or-
bital representation in greater detail with a more ac-
curate H& wave function. The results of this study are
presented in this paper using the wave function for
H2 obtained by Hagstrom. ' This function represents
an expansion in terms of configurations of products
over basis orbitcts. The latter were chosen in elliptical
coordinates.

Since this work was completed, Davidson and
Jones' have made an approximate analysis of the
Kolos and H,oothaan' wave function for H2 using an
expansion of the latter function in terms of elliptical
basis functions also. The results from the present ex-
pansion and that of Davidson and Jones are very
similar, but since they are somewhat complementary,
refer to different initial functions, and since ap-
proximations are present in each (despite the title of
the Davidson —Jones paper which refers to the 'exact'
wave function) it has seemed worthwhile to report on
our calculations in detail.

THE WAVE FUNCTION

The Axially Symmetric Case

The basis orbitals used by Hagstrom may be de-
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(a„o,) = o, (1)o,(2)

(~. ~l) = ~.(1)~l(2) + ~l(1)~.(2)

(~. ~-) = ~.(1)~-(2)

(o.,o.') = o„(1)o.„'(2) + o.'(1)o.„(2) .

(2)

(3)

(4)

(5)
No cross terms of the type (o „&r„)occur because these
are not of the correct symmetry for the ground state
of H2, 'Z+.

In Table I are listed the expansion coeKcients over
symmetrized orbital products of the types mentioned
above. Two functions are listed, one utilizing basis
orbitals with ~ = 0, the other with basis orbitals
having r = 0.7. Each function (hereafter labeled I
and II, respectively) has 21 configurations identified
by the values taken by n, j, n', j' in each.

The two functions, when judged by the coefficients
of corresponding terms, seem very different. Of
course, some of this difference resides in the different
normalization inherent in the v 4 0 case, but even a
cursory glance shows order-of-magnitude changes in
relative magnitudes of coe%cients that do not arise
from these factors. On the other hand, function I had
an expectation value of —1.160877 H whereas func-
tion II had a corresponding value of —1.160867 H.
From the similarity of the two, one suspects that the
two functions are very much alike indeed.

The Axially Nonsymmetric Wave Function

If one takes the 21 terms of function I and adds 12
additional terms involving orbitals with m ~ 0, one
obtains the wave function III of Table I. As detailed
by Hagstrom, ' each of these additional 12 terms is a

fined in unnormalized form as

'"[(~'-—1)(1 —~')]' ' ' ' (1)
Of course (see Hagstrom'), when r W 0, these orbit-
als are not symmetry adapted, and one should use
either sinh rri or cosh re for the exponential depend-
ence on g. This was done in Hagstrom's paper, and
the results given here refer specifically to this modi-
Gcation for the v & 0 case.

For m = 0, the axially symmetric case, the indi-
vidual configurations fall into types:
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symmetry adapted function constructed from the or-
bital product mentioned, and contains several terms.
Both n. type (m = 1) and 5 type (m = 2) terms were
included by Hagstrom. The parameters were chosen
so that l, = 1.0, f' = 1.6, fq = 2.4, with 7 = 0

Txm, K I. Expansion coefFicients for functions I—III for H2
ground state, 8 = 1.4B.

Parameters

Tg

Energy
CoeKcients

00 00 0
00 10 0
10 10 0
00 20 0
10 20 0
20 20 0
00 02 0
10 02 0
20 02 0
02 02 0
00 12 0
10 12 0
20 12 0
02 12 0
12 12 0
01 01 0
Ol 11 0
11 11 0
01 21 0
11 21 0
21 21 0
00 00 1
00 10 1
10 10 1
00 20 1
10 20 1
20 20 1

Ol Ol 1

01 11 1
11 11 1

00 00 2

00 10 2
10 10 2

1.0
0.0

—1.160876

-0.0087887

0.7881251—1.2171204
—0.0661788

0.4676114—0.2899662

0.1184771—0.0682915
0.0826878-0.0455797

-0.0298110
0.0747009—0.0149941
0.0481551-0.0662282

—0.1798084

0.2248688—0.5887168
—0.0876668

0.2805845—0.1162789

1.0
0.7

—1.160868

0.0097768
0.2874846—0.8529619

—0.0124179
0.1298724—0.0662108
0.0822608—0.0809868
0.0055889—0.0188284

—0 ' 0279961
0.0850662—0 ' 0059061
0.0167674—0.0285848

—0.8740089

0.4544907—1.0660162
—0.1750527

0.4494511—0.2287198

1.0
0.0
1.6
2.4—1.178128

0.0198471
0.7891454—1.0904790

—0.0570666
0.4158727—0.2121888
0.1124440—0.0500289
0.0288185—0.0414525

—0.0241888
0.0582115—0.0092581
0.0428525—0.0577419

—0.1789298
0.2186688—0.5066228

—0.0829584
0.2159984—0.1079781

—0.1802079
0.2787864—0.5168725

—0.1254296
0.2491158—0.1488569

—0.0269511
0.0245001—0.0811282

—0.0260508

0.0265872—0.0886826

a CoefBcients refer to unnormalized term groups built up from normalized
basis orbitals as described in text. The five labels for each coeKcient refer,
respectively, to n, j, n', j', m.

throughout. This function led to a total energy of
—1.173128 H which compares moderately well with
the Eolos and Roothaan result of —1.174448 H. The
difference of 0.0013 H corresponds to only 0.9
kcal/mole or less than 1% of the tnnding energy of
the H2 molecule. Thus, one has real reason for be-

lieving that all the major contributing terms to the
hydrogen molecule wave function have been included.

Further improvements almost certainly would not
introduce startling new features, but rather would
make relatively imperceptible changes in those al-
ready present.

It should be noted that each m, 5, etc. , orbital prod-
uct introduces either two or four terms in the result-
ing function of symmetry 'Z+, in contrast to the 0-

terms above which introduce either one or two. Thus,
denoting the complex conjugate of ~.by rr. , we would
have

(~.,~.) = ~.(1)~.(2) + ~„(1)~„(2) (6)

(m. ,~.') = ~.(1)rr.'(2) + rr. (1)m (2) + ~.'(1)rr„(2)

+ rr.'(1)x.(2), (7)
in which x„refers to a symmetry adapted orbital. The
coefFicients in Table I refer to unnormatked collec-
tions of terms, as explicitly written above, built up
from normelized basis orbitals.

NATURAL ORBITAL ANALYSES

6 H. Shull and P.-O. Lowdin, J. Chem. Phys. 30, 617 (1959).

Natural Orbitals and Occupation Numbers

The transformation of functions I—III to natural
orbital form has been suKciently detailed elsewhere
to make a summary unnecessary here."In the nat-
ural expansion, terms of the types (3), (5), and (7),
etc. are no longer present, and consequently one has
a much shorter expansion in terms of the natural or-
bitals. For example, the 21-'term' functions I and II
reduce to 8-term functions, and the 33-term function
III reduces to a 15-term function. In Table II we col-
lect the coeKcients of these natural expansions (and
their squares, the occupation numbers) together with
the comparable results reported by Davidson and
Jones as function IV.

Several comments are appropriate at this point.
Since the occupation numbers and coeKcients of
Table II are derived from different approximate func-
tions, there is no necessary theoretical trend to be ex-
pected except, of course, that as the wave function
becomes close enough to the exact result, the occupa-
tion numbers much approach the unique exact values.
Since function IV was more nearly exact to begin
with, it is probable, but by no means certain, that
these occupation numbers come close to the exact
ones.

If one has a wave function of limited accuracy, on
the other hand, one can expect that the occupation
numbers of the orbital types represented are fre-
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quently larger than the final exact values. This arises
because the sum is one in either case, but in the exact
function these are distributed over many more dif-
ferent orbitals. One can see this trend unmistakably
in comparing functions I and II with either III or IV.

TABxz II. CoeKcients and occupation numbers of the natural
expansions for the ground state of Hg.

IV

Natural

0.99248019—0.10621056
10g 0.99246589
10-„ —0,10632065
lm.„
20-g —0.05814868
17rg
30 g

—0.01172749
27l Q,

20„—0.01001600
ling
40 g

—0.00847583
271 g

50g —0.00309353
3~
30„ —0.00272593

28g

—0.05821135

—0.01142289

—0.00997319

—0.00823981

—0,00294573

—0.00270422
~ ~

Occupation

0.98501693
0.01128068

lo-g 0.98498856
la 0.01130406
17r„.
20-g 0.00338068 0.00838856
17'g
30.g 0.00013758 0.00013048
27l Q

20„0.00010032 0.00009946
ling
40-g 0.00007184 0.00006789
27l g
50-g 0.00000957 0.00000868
37r„30-„0.00000743 0.00000731
2Bg

Orbital

0.99087921—0.10079559—0.06589991—0.05506054—0.01262812—0.01034755—0.00950498—0.00943045—0.00931588—0.00735706—0.00380140—0.00287450—0.00268486—0.00250262—0.00219404
Numbers

0.98184161
0.01015975
0.00434280
0.00303166
0.00015947
0.00010707
0.00009034
0.00008893
0.00008678
0.00005413
0.00001090
0.00000826
0.00000721
0.00000626
0.00000481

0.991058—0.099473—0.065109'—0.054810—0.011845'—0.009967—0.009362'—0.009745—0.009723'—0.006552

0.982195
0,009896
0.004239
0.003004
0.000140
0.000099
0.000088
0.000095
0.000095
0.000043

0.99999998 0.999894

a These are Davidson and Jones' coefficients multiplied by 4 2 for direct
comparison with III. J. Chem. Phys. 37, 2966 (1962).

The latter pair differ from the former by the pres-
ence of axially nonsymmetric terms. But it is curious
that the comparison between III and IV shows sev-
eral anomalies in larger occupation numbers for sev-
eral orbitals for IV, even though the occupation num-
ber sum is somewhat less for IV. The exceptions are
10-„20-„, and 15,. Hagstrom' has already suggested
that the major energetic improvement in his function
will probably come through the addition of additional
o-, orbitals, and perhaps this relationship confirms his
surmise.

For completeness, the natural orbitals themselves
are tabulated in Table III. The forms of the indi-
vidual orbitals are rather close to what one might re-
gard as ordinary molecular orbitals for the system at

TABLE III. Coe%cients of individual natural orbitals. '

Orbital njm

10-g 000
100
200
020
120

20.g 000
100
200
020
120

30g 000
100
200
020
120

40.g 000
100
200
020
120

50g 000
100
200
020
120

10.„010
110
210

20„ 010
110
210

80.„010
110
210

17'-„001
101
201

271.„001
101
201

87t. 001
101
201

17l-g 011
111

27rg 011
111

lr, 002
102

28, 002
102

0.7751838—0.0182938
0.2051068
0.0840284
0.0189941
2.3481981—2.0649158—0.3006984—0.0227048—0.0705186
0.2911858—1.5669283
0.1596774
0.2424954
1.2310460

—5.6830024
10.532489—5.6212752
0.7602321—0.7239284

—1.2397225—0.3280373
1.6405961
8.8965410—3.7746948

—0.2978886—1.0608224
0.3969886
3.1350537—3.6508410
0.5372562

—5. 1368978
10.235268—5.9537640

IIb

0.4899568
0.0042642
0. 1101755
0.0089553—0.0054690
1.8888388—1.1922526—0. 1680481—0.1500014
0. 1038979

-0.0851014
0.6987698
0.0079942—0.1219611—0.7503688

—8.0552815
5.6634442—2.9915935
0.5123127—0.5189459

—0.5788622—0.3584359
0.9870279
2.2760955—2.2025924

—0.4340626—1.4901394
0.5468881

4.5211094—5.1262410
0.7288097

7.4511289—14 ' 494043
8.8080743

0.7634488
0.0174145
0.1880335
0.0871151
0.0102222

2.8935902—2. 1663214—0.2408600—0.0116937—0.0801900
—0, 8243185

0.4687794—0.877241i
0.4755183
0.9805583

—5.5930646
10.622112—5.5787836
0.6389422—0.8823743

—1.3263036—0. 1504680
1.5702888
8.8976451—3.8139986

—0.3238739—1.0297319
0.3915845
3.2407999—3.8754268
0.6665443

5.0692557—10.155563
5.9410388
0.4088046
0.3458974
0.2752753

2. 8867064—1.3608281—1.0054973
—8.4055843
16.201853—8.5422076

0. 1893029
0.8175903
8.3775585—3.2825727

—0.2658001
1.2555156

—4.0609476
3.8711272

a See Table I for orbital parameters. Coefficients are those of the normal-
ized orbitals.

b Coefficients of the cosh 7g and sinh 7g basis functions. See text below
Eq (&).

hand. Of course, the first approximate natural orbital
is very close indeed to the SCF orbital —the (ener-
getically) best possible molecular orbital. But the
higher natural orbitals, although bearing a resem-
blance in form to the excited molecular orbitals of the
system, are considerably different in extent. This is
fundamentally a result of the fact that they are func-
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tionally descriptive of the ground state (in the present
case), a,nd, hence, have a spatial extent appropriate
to the ground state of the molecule.

The comparison of the natural orbitals arising from
I and III is particularly interesting. These two func-
tions use precisely the same basis orbitals for 0- func-
tions, but the latter has, in addition, both x- and 8-
basis orbitals. The 0- basis in III, of course, is allowed
to vary freely.

As can be seen from the table, the natural orbital
coeKcients for functions I and III are in remarkably
close agreement with the exception of the 3o-, orbitals.
Although in this latter ca, se 30;(I) and 3a;(III) ap-
pear to be quite different, they actually have an over-
lap of 0.9813. The corresponding overlap between
40,(I) and 30;(III) is 0.1919, so that 30,(III) ~ 0.98
30,(I) + 0.19 40;(I).

Similarly 40;(I) and 40,(III) have an overlap of
0.9815, although in this case the coeKcients are very
parallel. This is an excellent example of how slight
variations in basis sets make startling variations in
coeKcients for relatively small changes in the over-
all function. The relatively large change (about 2%)
in natural orbitals 3 and 4 in going from calculation
I to calculation III is almost certainly a result of the

near degeneracy of the corresponding occupation
numbers.

Energies of Truncated Functions

Lowdin and Shull showed that the ordered set of
terms in the natural expansion represented term-by-
term the optimum density representation of the
original function. Furthermore, in the case of He at
least, there seemed to exist an extraordinarily close
relationship between the first such term and the or-
dinary Hartree —Fock solution. An analogous ener-
getic similarity is to be expected between the trun-
cated natural expansions of rank higher than one and
the corresponding optimum energy calculations. The
latter are, however, very dificult to do whereas once
a complete energy calculation for the system has been
done, the corresponding truncated natural orbital
energies can be obtained fairly trivially.

In Table IV we have listed the energy expectation
values for a number of truncated natural expansions
for functions I, II, and III. A number of cases have
been included in order to show the degree and rate of
convergence for a rather typical wave function.
Davidson and Jones (hereafter referred to as DS) give
some interesting comparative figures derived from

TABLE IV. Energies of truncated natural orbital expansions.

Gale.
0 g 0'u ~e ~g ~g

1 1
2 2
8 3

5 5
6 2
7 8
8 4
9 3

10 4
11 5
12 4
13 0
14 6
15 5
16 6
17 7
18 6
19 7
20 8
21 8
22 4
28 5
24 7
25 8
26 11
27 12
28 18
29 14
80 15

1
2
8
1
2
8
1

8
1
2
8

2
8

2
3
8
8
8
3
8

—1.188814—1.141433—1.142801—1.142681—1.142786—1.151948—1.152618—1.152671—1.159405—1.159980—1.159970—1, 159949—1.160462—1.160506—1.160236—1.160745—1.160787—1.160842—1.160840—1.160876"

—1.138850—1.141472—1.142824—1.142652—1.142803
1.151971—1.152688—1.152689—1.159431—1.159950—1.159994—1.159951—1.160461—1.160504—1.160234—1.160738—1.160779—1.160338—1.160828—1.160868b

—1.188444

—1.142740

—1.160746—1.162780—1.169785—1.170868—1.171828

—1.171742—1.172474—1.172593—1 ' 178058—1.178128"

a L is the expansion length. For ~, 5 types, etc. , each term in the expansion formally contributes a
rank of 2 to the total rank. These terms are counted here in 'expansion length' as single terms.

b The energy of the complete expansion used.
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Kolos and Roothaan's better wave function. (at a very
slightly different internuclear distance), using an ex-

pansion in terms of a finite set of basis functions
larger in number than, but very similar in nature to,
those used here. Since their starting function is better
and the number of expansion orbitals is greater than
in the present calculation, it is to be expected that
their limiting values should be slightly lower than
those reported here.

First, looking at the energy of the first natural or-
bital, we find that our calculations I—III are in ex-
cellent agreement and very close to the SCF result.
Compared to —1.133444 H for III, DJ repor t,

—1.133467; both are very close to the SCF energy of
—1.13856I obtained using the same 50; basis orbit-
als used in calculations I—III and to the value
—1.133630 H obtained by Eolos and Roothaan' at
the same internuclear distance using a slightly differ-
ent basis set. The optimum SCF energy seems to be
at a slightly shorter distance than the observed
equilibrium distance. Eolos and Roothaan report a
value of —1.133642 (interpolated) at 8 = 1.375. It is
interesting to note that the first natural orbital from
calculation III, including angular terms, has a lower
expectation value than the first orbital from calcula-
tion I omitting the angular configurations. This
phenomenon was also noticed in an earlier calcula-
tion on He.'

The expansion length of 2 terms is a particularly
in~,cresting case since so many of the widely known
approximate functions for H2 fall into this class. In
particular, as Shull' has shown, the Wang function
with energy —1.13910 H, the Weinbaum function
(Wang + ionic terms) with energy —1.14796 H, and
the Rosen function (polarized Wang function) with
energy —1.1485 H, all fall in the rank 2 category
with one 0-, and one 0-„natural orbital represented.
This is No. 6 of Table IV where we find an energy of
—1.151948 and —1.151971, respectively, for func-
tions I and II. DJ report an energy of —1.151939,
surprisingly a little above our results. This suggests
that at least some of the remaining discrepancy be-
tween their function and that of Eolos and Roothaan
lies in an inadequate representation of the 0-„class of
orbitals. Davidson and Jones' in an independent cal-
culation of correlation splitting in the hydrogen
molecule obtained an energy of —1.152072 H, when
they minimized the energy of the rank 2 function di-
rectly. The corresponding energy of their rank 2 func-
tion obtained by truncation of the complete variation
function was —1.151943, slightly above the results

7 K. R. Davidson and L. I.. Jones, J. Chem. Phys. 3'7, 1918
(1962).

reported here despite the fact that the variational en-
ergy was slightly better.

All of these functions can be expressed in "u,e"
form:

4 = &[~(1)~(2) + ~(1)~(2)],
and, therefore, have the physical intuitional sim-
plicity of the Heitler —London approach. At the same
time, of course, they have considerably lower energy
and are, hence, better representations of the bond
than the cruder Wang, Weinbaum, or Rosen func-
tions.

The only other previously reported rank 2 function
with lower energy is that of Mueller and Eyring'
using only two terms of a similar basis set in elliptical
coordinates. Their reported energy of —1.154 H
(computed from the published binding energy of
4.20 eV) is in error, however, as previously suggested
from the occupation numbers. ' We have recalculated
the energy for this function using the published val-
ues of the parameters and have obtained instead a
value of —1.14951 H. This is a negligible improve-
ment over the result of Inui' (the same calculation
without so-called 'ionic' terms) of —1.14930.

The limiting energies of expansions consisting of a
single or a limited number of symmetry types have
general interest. These form mathematically justi-
Gable divisions of the correlation energy into types
which seem to be approximately additive in many
cases. Furthermore, there seems to be a relationship
between those observed for H& and for He."

The a, limit (calculation No. 5 of Table IV) seems
to be at about —1.1428 H since our best result is very
close to this. The difference between this result and
the SCF result in the same calculation of —1.1334 H,
may be classed as the ultimate attainable g in-out
correlation energy. The total is 0.0094 H. It is inter-
esting to compare this result with the improvements
of 0.0083 (No. 6—No. 18 of Table IV), of 0.0082 (No.
7—No. 19), and of 0.0082 (No. 8—No. 20) for corre-
sponding functions with one, two, or three 0; terms in
addition. One observes the usual diminution of im-
provement with an increasingly good wave function,
but the value is nevertheless surprisingly constant.
Probably a similar correlation energy term would re-
sult from more thorough analysis of function III,
since the addition of only a single additional 0-, or-
bital improved this function by 0.0071 H (No. 21—
No. 22). In this ca,se, the functions contain a ~ term
as well.

8 C. Mueller and H. Eyring, J. Chem. Phys. 19, 1495 (1951).
9 T. Inui, Proc. Phys. Soc. Japan 20, 770 (1988).
't) Harrison Shull, Ann. Acad. Beg. Sci. Upsalien. 3, 65

(1969).
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In addition to this g type of in-out correlation,
there is an additional in-out correlation provided by
additional terms of the 0-„ type after the first one.
This is, however, essentially impossible to separate
from left —right correlation energy since it is not clear
whether the energy improvement occurs from the oG-

diagonal interaction with the major o, terms (left-
right correlation) or the interaction with the major o„
term (in-out correlation) or both. It seems most
likely to be the former, however, and we lump it to-
gether with that type in the following.

The next interesting case is the limiting best func-
tion which retains only axially symmetric orbitals for
basis functions. That is, the (o., + c.„), or Z limit.
This is the function which James and Coolidge"
identified as the best function using only four essen-
tial coordinates [omitting r» in their case, (ys —q ~) in
ours]. Whereas James and Coolidge reported
—1.1577 H for this limit, we find —1.160876 H for
our best function of this type (No. 20). The total Z

correlation energy in III is, therefore, 0.0276 H,
somewhat higher than but still close to the Ggure of
0.0239 H predicted from a symmetrical division of
correlation energy of the He atom. " Actually, the
total Z correlation energy is probably somewhat
greater than this ( 0.0286 H) since it seems clear
that the chief deficiency of function III is in the o-0-

terms. DJ' report a Z-type function with energy
—1.161695 H.

Comparing calculations No. 20 and No. 26. we find

an improvement in adding x terms of 0.0110 H. An
additional contribution of 0.00085 H results from
adding s-, terms (No. 26—No. 28), for a total s. correla-
tion energy contribution of about 0.012 compared to
0.015 suggested from He."Clearly left-right correla-
tion in H2 is more important than is computed from

II H. M. James and A. S. Coolidge, J. Chem. Phys. lp 825
(1988).

the united atom description of the molecule, and cor-
respondingly up-down or axial correlation is less im-
portant. This is a not unreasonable result considering
the increasing importance that left-right correlation
has with increasing internuclear distance and the de-
creasing importance of angular correlation for large
distances.

Finally, we should mention the 6 term (28—80) of
0.000535 H. DJ obtained an improvement of 0.000477
H upon adding their first 8, term. In He, terms of this
type contribute 0.00116 to the correlation energy, so
once again we see the decreased importance of axial
correlation in H. as compared to the same type of
correlation in He. It should be noted, however, that
the total correlation energy is very nearly the same in
the two cases, and He may still be retained as a very
good model for H2."

As Davidson and Jones point out, there is a notice-
able break in the energy contribution produced by
additional natural orbitals after the fourth term has
been added. This four term function (No. 22) in our
case had an energy of —1.169785 H. DJ report a
slightly better limiting energy of —1.169969, which
is a remarkably good result for such a simple function.

In conclusion, it can be said that the present cal-
culations have eon6rmed in detail previous surmises
about (a) the invariance of the natural orbital ex-
pansion, (b) its utility in wave-function comparison,
(c) the similarities between He and H&, (d) the rough
additivity of correlation energies of different types.
The calculations provide detailed natural orbitals
which should be useful in a variety of other calcula-
tions in which one is primarily exploring the effects
of a systematic rapidly convergent improvement in
the nature of the wave-function expansion.

» Hagstrom (reference 8) has also considered the effect of
adding y basis orbitals and found that a single (qr, q ) term
added to the 33-term function of Case III gave an improve-
ment of (0.00001 H.
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NzsazT: %hat are the symmetry properties of the natural spin-orbitals?
I owniN: A theorem was presented at the Madison Symposium in 1956 about the symmetry

properties of the natural spin-orbitals stating that they are symmetry-adapted. [See P. O. I,owdin,
J. Phys. Chem. 61, 55 (1957).J The basic theorem says that, if there is a normal constant of
motion A. commuting with the total Hamiltonian 3C which is built up from one-electron operators
A(i) by means of the sum

A. = g. A(i),
or by means of any other fundamental symmetric function of the one-electron operators, including
the product A(l) A(2) A(X), then the natural spin-orbitals associated with an exact or approxi-


