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INTRODUCTION

T has previously been shown! that hydrogen-mole-
cule wave functions may conveniently be repre-
sented in terms of natural orbitals.? In this represen-
tation, many of the approximate wave functions for
H, in the literature were classified by the number of
independent approximate natural orbitals required in
the expansion and, in particular, by the occupation
number of each natural orbital. It was shown that the
occupation numbers were relatively invariant to a
wide range of approximations to the H, wave func-
tion. It seemed desirable to explore the natural or-
bital representation in greater detail with a more ac-
curate H, wave function, The results of this study are
presented in this paper using the wave function for
H; obtained by Hagstrom.? This function represents
an expansion in terms of configurations of products
over basis orbitals. The latter were chosen in elliptical
coordinates.

Since this work was completed, Davidson and
Jones* have made an approximate analysis of the
Kolos and Roothaan® wave function for H; using an
expansion of the latter function in terms of elliptical
basis functions also. The results from the present ex-
pansion and that of Davidson and Jones are very
similar, but since they are somewhat complementary,
refer to different initial functions, and since ap-
proximations are present in each (despite the title of
the Davidson—Jones paper which refers to the ‘exact’
wave function) it has seemed worthwhile to report on
our calculations in detail.

THE WAVE FUNCTION

The Axially Symmetric Case
The basis orbitals used by Hagstrom may be de-
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fined in unnormalized form as

o = EetT(E — 1A — )" ()
Of course (see Hagstrom?®), when 7 5 0, these orbit-
als are not symmetry adapted, and one should use
either sinh 79 or cosh 79 for the exponential depend-
ence on 7. This was done in Hagstrom’s paper, and
the results given here refer specifically to this modi-
fication for the 7 = 0 case.
For m = 0, the axially symmetric case, the indi-
vidual configurations fall into types:

(00,00) = 0:(1),(2) 2)
(00,00) = 0,(1)03(2) + 07(1)o,(2) 3)
(6w,0u) = 0u(1)ou(2) 4)
(0u,00) = 0u(1)ou(2) + ou(1)au(2) . (5)

No cross terms of the type (o,,0.) oceur because these
are not of the correct symmetry for the ground state
of Hz, 12: .

In Table I are listed the expansion coefficients over
symmetrized orbital products of the types mentioned
above. Two functions are listed, one utilizing basis
orbitals with » = 0, the other with basis orbitals
having 7 = 0.7. Each function (hereafter labeled I
and II, respectively) has 21 configurations identified
by the values taken by #, j, n’, 7/ in each.

The two functions, when judged by the coeflicients
of corresponding terms, seem very different. Of
course, some of this difference resides in the different
normalization inherent in the 7 5 0 case, but even a
cursory glance shows order-of-magnitude changes in
relative magnitudes of coefficients that do not arise
from these factors. On the other hand, function I had
an expectation value of —1.160877 H whereas func-
tion IT had a corresponding value of —1.160867 H.
From the similarity of the two, one suspects that the
two functions are very much alike indeed.

The Axially Nonsymmetric Wave Function

If one takes the 21 terms of function I and adds 12
additional terms involving orbitals with m # 0, one
obtains the wave function I1I of Table I. As detailed
by Hagstrom,?® each of these additional 12 terms is a

624



NATURAL ORBITALS FOR H

symmetry adapted function constructed from the or-
bital product mentioned, and contains several terms.
Both 7 type (m = 1) and § type (m = 2) terms were
included by Hagstrom. The parameters were chosen
so that ¢, = 1.0, & = 1.6, {5 = 2.4, with 7 = 0

TasLe 1. Expansion coefficients for functions I-IIT for H
ground state, R = 1.4B

I 1I 111
Parameters

[ 1.0 1.0 1.0

Ts 0.0 0.7 0.0

r L. - 1.6

¢s . C. 2.4
Energy —1.160876 —1.160868 —1.173128

Coefficients®

00 00 O —0.0037887 0.0097768 0.0198471
00 10 0 0.7831251 0.2374346 0.7391454
10 10 0 —1.2171204 —0.3529619 —1.0904790
00 20 O —0.0661733 —0.0124179 —0.0570666
10 20 O 0.4676114 0.1293724 0.4153727
20 20 0 —0.2399662 —0.0662103 —0.2121838
00 02 0 0.1184771 0.0322608 0.1124440
10 02 0 —0.0632915 —0.0309368 —0.0500289
20 02 0 0.0326873 0.0055339 0.0288185
02020 —0.0455797 —0.0188234 —0.0414525
00 12 0 —0.0293110 —0.0279961 —0.0241838
10 12 0 0.0747009 0.0350662 0.0532115
20 12 0 —0.0149941 —0.0059061 —0.0092581
02 12 0 0.0481551 0.0167674 0.0428525
1212 0 —0.0662232 —0.0235343 —0.0577419
01010 —0.1798084 —0.3740039 —0.1739298
01110 0.2243633 0.4544907 0.2136638
11 11 0 —0.5387168 —1.0660162 —0.5066228
01210 —0.0876663 —0.1750527 —0.0829584
11210 0.2305345 0.4494511 0.2159984
21210 —0.1162739 —0.2237198 —0.1079781
00 00 1 —0.1802079
00101 0.2737864
10 10 1 —0.5163725
00 20 1 —0.1254296
10 20 1 0.2491153
20 20 1 —0.1488569
01011 —0.0269511
01111 0.0245001
11111 —0.0311232
00 00 2 —0.0260503
00 10 2 0.0265872
10 10 2 —0.0336326

a Coefficients refer to unnormalized term groups built up from normalized
basis orbitals as described in text. The five labels for each coefficient refer,
respectively, to =, 7, n’, j/, m.

throughout. This function led to a total energy of
—1.173128 H which compares moderately well with
the Kolos and Roothaan result of —1.174448 H. The
difference of 0.0013 H corresponds to only 0.9
keal/mole or less than 19, of the binding energy of
the H, molecule. Thus, one has real reason for be-
lieving that all the major contributing terms to the
hydrogen molecule wave function have been included.
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Further improvements almost certainly would not
introduce startling new features, but rather would
make relatively imperceptible changes in those al-
ready present.

It should be noted that each =, §, ete., orbital prod-
uct introduces either two or four terms in the result-
ing function of symmetry =}, in contrast to the «
terms above which introduce either one or two. Thus,
denoting the complex conjugate of m, by 7., we would
have

(rwyma) = m(1)7u(2) + mu(1)m(2) (6)
and
(mym) = m(D)7(2) + F(D)m(2) + m(1)7(2)

+ m)m(2), Q)

in which , refers to a symmetry adapted orbital. The
coefficients in Table I refer to unnormalized collec-
tions of terms, as explicitly written above, built up
from normalized basis orbitals.

NATURAL ORBITAL ANALYSES

Natural Orbitals and Occupation Numbers

The transformation of functions I-III to natural
orbital form has been sufficiently detailed elsewhere
to make a summary unnecessary here.?® In the nat-
ural expansion, terms of the types (3), (5), and (7),
ete. are no longer present, and consequently one has
a much shorter expansion in terms of the natural or-
bitals. For example, the 21-‘term’ functions I and II
reduce to 8-term functions, and the 33-term function
III reduces to a 15-term function. In Table II we col-
lect the coefficients of these natural expansions (and
their squares, the occupation numbers) together with
the comparable results reported by Davidson and
Jones as function IV.

Several comments are appropriate at this point.
Since the occupation numbers and coefficients of
Table II are derived from different approximate func-
tions, there is no necessary theoretical trend to be ex-
pected except, of course, that as the wave function
becomes close enough to the exact result, the occupa-
tion numbers much approach the unique exact values.
Since function IV was more nearly exact to begin
with, it is probable, but by no means certain, that
these occupation numbers come close to the exact
ones.

If one has a wave function of limited accuracy, on
the other hand, one can expect that the occupation
numbers of the orbital types represented are fre-

6 H. Shull and P.-O. Léwdin, J. Chem. Phys. 30, 617 (1959).
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quently larger than the final exact values. This arises
because the sum is one in either case, but in the exact
function these are distributed over many more dif-
ferent orbitals. One can see this trend unmistakably
in comparing functions I and IT with either III or IV.

TasLe II. Coefficients and occupation numbers of the natural
expansions for the ground state of Ho.

1 II 11T v
Natural Orbital
log 0.99246589 0.99248019 0.99087921 0.991058
low, —0.10632065 —0.10621056 —0.10079559 —0.099473
1wy . ... —0.06589991 —0.065109*
20, —0.05814368 —0.05821135 —0.05506054 —0.054810
1w, o e —0.01262812 —0.011845
30, —0.01172749 —0.01142289 —0.01034755 —0.009967
27y . . —0.00950498 —0.009362>
20, —0.01001600 —0.00997319 —0.00943045 —0.009745
15, .. e —0.00931583 —0.009723>
40, —0.00847583 —0.00823981 —0.00735706 —0.006552
21y . .. —0.00330140
50, —0.00309353 —0.00294573 —0.00287450
3 . e —0.00268486
30, —0.00272593 —0.00270422 —0.00250262
e 25, . —0.00219404
Occupation Numbers
1o, 0.98498856 0.98501693 0.98184161 0.982195
lo,  0.01130406  0.01128068  0.01015975  0.009896
1. 0.00434280  0.004239
20,  0.00338068  0.00338856  0.00303166  0.003004
1m, 0.00015947  0.000140
30,  0.00013753  0.00013048  0.00010707  0.000099
2wy, 0.00009034 0.000088
20, 0.00010032  0.00009946  0.00008893  0.000095
138, 0.00008678  0.000095
46,  0.00007184  0.00006789  €.00005413  0.000043
21y 0.00001090
50,  0.00000957  0.00000868  0.00000826
3y 0.00000721
30, 0.00000743  0.00000731  0.00000626
254 0.00000481
0.99999998 0.999894

s These are Davidson and Jones’ coefficients multiplied by V2 for direct
comparison with III. J. Chem. Phys. 37, 2966 (1962).

The latter pair differ from the former by the pres-
ence of axially nonsymmetric terms. But it is curious
that the comparison between III and IV shows sev-
eral anomalies in larger occupation numbers for sev-
eral orbitals for IV, even though the occupation num-
ber sum is somewhat less for IV. The exceptions are
loy, 20, and 18,. Hagstrom® has already suggested
that the major energetic improvement in his function
will probably come through the addition of additional
o, orbitals, and perhaps this relationship confirms his
surmise.

For completeness, the natural orbitals themselves
are tabulated in Table III. The forms of the indi-
vidual orbitals are rather close to what one might re-
gard as ordinary molecular orbitals for the system at

S. HAGSTROM AND H. SHULL

hand. Of course, the first approximate natural orbital
is very close indeed to the SCF orbital—the (ener-
getically) best possible molecular orbital. But the
higher natuval orbitals, although bearing a resem-
blance in form to the excited molecular orbitals of the
system, are considerably different in extent. This is
fundamentally a result of the fact that they are func-

TasLe III. Coefficients of individual natural orbitals.>

Orbital njm I IIb IIT
1o, 000 0.7751338 0.4399568 0.7634488
100 —0.0132938 0.0042642 0.0174145
200 0.2051068 0.1101755 0.1880335
020 0.0840284 0.0089553 0.0871151
120 0.0189941  —0.0054690 0.0102222
20, 000 2.3481981 1.3388388 2.3935902
100  —2.0649158 —1.1922526 —2.1663214
200 —0.3006984 —0.1680431  —0.2408600
020 —0.0227048 —0.1500014 —0.0116937
120 —0.0705136 0.1033979  —0.0801900
30y 000 0.2911853  —0.0851014 —0.8243185
100 —1.5669283 0.6987698 0.4637794
200 0.1596774 0.0079942  —0.8772413
020 0.2424954 —0.1219611 0.4755183
120 1.2310460 —0.7503688 0.9805583
4o, 000 —5.6830024 —3.0552815 —5.5930646
100 10.532489 5.6634442 10.622112
200 —5.6212752 —2.9915935 —5.5787836
020 0.7602321 0.5123127 0.6339422
120 —0.7239284 —0.5189459 —0.8823743
50y 000 —1.2397225 —0.5788622 —1.3263036
100 —0.3280373 —0.3534359 —0.1504680
200 1.6405961 0.9870279 1.5702888
020 3.8965410 2.2760955 3.8976451
120 —3.7746948 —2.2025924 —3.8139986
loy 010 —0.2978886  —0.4340626 —0.3238739
110 —1.0608224  —1.4901394 —1.0297319
210 0.3969886 0.5468881 0.3915845
204 010 3.1350537 4.5211094 3.2407999
110 —3.6508410 —5.1262410 —3.8754268
210 0.5372562 0.7288097 0.6665443
3o 010  —5.1368978 7.4511289 5.0692557
110 10.235268  —14.494043 —10.155563
210 —5.9537640 8.3080743 5.9410388
1, 001 0.4088046
101 0.3458974
201 0.2752753
2y 001 2.3867064
101 —1.3608281
201 —1.0054973
3y 001 —8.4055843
101 16.201853
201 —8.5422076
1wy 011 0.1893029
111 0.8175903
2, 011 3.3775585
111 —3.2825727
13, 002 —0.2658001
102 1.2555156
264 002 —4.0609476
102 3.8711272

a See Table I for orbital parameters. Coefficients are those of the normal-
ized orbitals.
B b (go)efﬁcients of the cosh 77 and sinh 75 basis functions. See text below
q. (1).
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tionally descriptive of the ground state (in the present
case), and, hence, have a spatial extent appropriate
to the ground state of the molecule.

The comparison of the natural orbitals arising from
I and III is particularly interesting. These two func-
tions use precisely the same basis orbitals for ¢ func-
tions, but the latter has, in addition, both 7~ and 6-
basis orbitals. The ¢ basis in III, of course, is allowed
to vary freely.

As can be seen from the table, the natural orbital
coefficients for functions I and ITI are in remarkably
close agreement with the exception of the 3q, orbitals.
Although in this latter case 30,(I) and 3q,(III) ap-
pear to be quite different, they actually have an over-
lap of 0.9813. The corresponding overlap between
4¢,(I) and 30,(III) is 0.1919, so that 30,(III) ~ 0.98
30,(I) + 0.19 40,(I).

Similarly 4¢,(I) and 4¢,(IIT) have an overlap of
0.9815, although in this case the coefficients are very
parallel. This is an excellent example of how slight
variations in basis sets make startling variations in
coefficients for relatively small changes in the over-
all function. The relatively large change (about 29%,)
in natural orbitals 3 and 4 in going from calculation
I to calculation III is almost certainly a result of the
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near degeneracy of the corresponding occupation
numbers.

Energies of Truncated Functions

Lowdin and Shull showed that the ordered set of
terms in the natural expansion represented term-by-
term the optimum density representation of the
original function. Furthermore, in the case of He at
least, there seemed to exist an extraordinarily close
relationship between the first such term and the or-
dinary Hartree-Fock solution. An analogous ener-
getic similarity is to be expected between the trun-
cated natural expansions of rank higher than one and
the corresponding optimum energy calculations. The
latter are, however, very difficult to do whereas once
a complete energy calculation for the system has been
done, the corresponding truncated natural orbital
energies can be obtained fairly trivially.

In Table IV we have listed the energy expectation
values for a number of truncated natural expansions
for functions I, IT, and III. A number of cases have
been included in order to show the degree and rate of
convergence for a rather typical wave function.
Davidson and Jones (hereafter referred to as DJ) give
some interesting comparative figures derived from

TasLE IV. Energies of truncated natural orbital expansions.

Cale.
No. L& 65 oo m w 3§ 1 II 111
1 1 1 —1.133314 —1.133350 —1.133444
2 2 2 —1.141433 —1.141472
3 3 3 —1.142301 —1.142324
4 4 4 —1.142631 —1.142652
5 5 5 —1.142786 —1.142803 —1.142740
6 2 1 1 —1.151948 —1.151971
7 3 1 2 —1.152618 —1.152633
8 4 1 3 —1.152671 —1.152689
9 3 2 1 —1.159405 —1.159431
10 4 2 2 —1.159930 —1.159950
11 5 2 3 —1.159970 —1.159994
12 4 3 1 —1.159949 —1.159951
13 5 3 2 —1.160462 —1.160461
14 6 3 3 —1.160506 —1.160504
15 5 4 1 —1.160236 —1.160234
16 6 4 2 —1.160745 —1.160738
17 7 4 3 —1.160787 —1.160779
18 6 5 1 —1.160342 —1.160333
19 7 5 2 —1.160840 —1.160828
20 8 5 3 —1.160876>  —1.160868> —1.160746
21 3 1 1 1 —1.162730
22 4 2 1 1 —1.169785
23 5 2 1 2 —1.170368
24 7 3 2 2 —1.171328
25 8 5 3 1
26 11 5 3 3 —1.171742
27 12 5 3 3 1 —1.172474
28 13 5 3 3 2 —1.172593
29 14 5 3 3 2 1 —1.173058
30 15 5 3 3 2 2 —1.173128%

s L is the expansion length. For =, & types, etc., each term in the expansion formally contributes a
rank of 2 to the total rank. These terms are counted here in ‘expansion length’ as single terms.
b The energy of the complete expansion used.
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Kolos and Roothaan’s better wave function (at a very
slightly different internuclear distance), using an ex-
pansion in terms of a finite set of basis functions
larger in number than, but very similar in nature to,
those used here. Since their starting function is better
and the number of expansion orbitals is greater than
in the present calculation, it is to be expected that
their limiting values should be slightly lower than
those reported here.

First, looking at the energy of the first natural or-
bital, we find that our calculations I-III are in ex-
cellent agreement and very close to the SCF result.
Compared to —1.133444 H for III, DJ report
—1.133467; both are very close to the SCF energy of
—1.13356 H obtained using the same 50, basis orbit-
als used in calculations I-IIT and to the value
—1.133630 H obtained by Kolos and Roothaan® at
the same internuclear distance using a slightly differ-
ent basis set. The optimum SCF energy seems to be
at a slightly shorter distance than the observed
equilibrium distance. Kolos and Roothaan report a
value of —1.133642 (interpolated) at B = 1.375. It is
interesting to note that the first natural orbital from
calculation III, including angular terms, has a lower
expectation value than the first orbital from calcula-
tion I omitting the angular configurations. This
phenomenon was also noticed in an earlier calcula-
tion on He.®

The expansion length of 2 terms is a particularly
interesting case since so many of the widely known
approximate functions for H fall into this class. In
particular, as Shull' has shown, the Wang function
with energy —1.13910 H, the Weinbaum function
(Wang -+ ionic terms) with energy —1.14796 H, and
the Rosen function (polarized Wang function) with
energy —1.1485 H, all fall in the rank 2 category
with one o, and one ¢, natural orbital represented.
This is No. 6 of Table IV where we find an energy of
—1.151948 and —1.151971, respectively, for func-
tions I and II. DJ report an energy of —1.151939,
surprisingly a little above our results. This suggests
that at least some of the remaining discrepancy be-
tween their function and that of Kolos and Roothaan
lies in an inadequate representation of the o, class of
orbitals. Davidson and Jones” in an independent cal-
culation of correlation splitting in the hydrogen
molecule obtained an energy of —1.152072 H, when
they minimized the energy of the rank 2 function di-
rectly. The corresponding energy of their rank 2 func-
tion obtained by truncation of the complete variation
function was —1.151943, slightly above the results

7E. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 1918
(1962).
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reported here despite the fact that the variational en-
ergy was slightly better.

All of these functions can be expressed in
form:

@, 0
U,v

¥ = Nu(@)(2) +v(1)u(2)],

and, therefore, have the physical intuitional sim-
plicity of the Heitler-London approach. At the same
time, of course, they have considerably lower energy
and are, hence, better representations of the bond
than the cruder Wang, Weinbaum, or Rosen func-
tions.

The only other previously reported rank 2 function
with lower energy is that of Mueller and Eyring®
using only two terms of a similar basis set in elliptical
coordinates. Their reported energy of —1.154 H
(computed from the published binding energy of
4.20 eV) is in error, however, as previously suggested
from the occupation numbers.! We have recalculated
the energy for this function using the published val-
ues of the parameters and have obtained instead a
value of —1.14951 H. This is a negligible improve-
ment over the result of Inui® (the same calculation
without so-called ‘lonic’ terms) of —1.14930.

The limiting energies of expansions consisting of a
single or a limited number of symmetry types have
general interest. These form mathematically justi-
fiable divisions of the correlation energy into types
which seem to be approximately additive in many
cases. Furthermore, there seems to be a relationship
between those observed for H, and for He.!

The o, limit (calculation No. 5 of Table IV) seems
to be at about —1.1428 H since our best result is very
close to this. The difference between this result and
the SCF result in the same calculation of —1.1334 H,
may be classed as the ultimate attainable g in-out
correlation energy. The total is 0.0094 H. It is inter-
esting to compare this result with the improvements
of 0.0083 (No. 6-No. 18 of Table IV), of 0.0082 (No.
7-No. 19), and of 0.0082 (No. 8-No. 20) for corre-
sponding functions with one, two, or three ¢, terms in
addition. One observes the usual diminution of im-
provement with an increasingly good wave function,
but the value is nevertheless surprisingly constant.
Probably a similar correlation energy term would re-
sult from more thorough analysis of function III,
since the addition of only a single additional ¢, or-
bital improved this function by 0.0071 H (No. 21—
No. 22). In this case, the functions contain a , term
as well.

8 C. Mueller and H. Eyring, J. Chem. Phys. 19, 1495 (1951).

9 T. Inui, Proc. Phys. Soc. Japan 20, 770 (1938).

10 Harrison Shull, Ann. Acad. Reg. Sci. Upsalien. 3, 65
(1959).
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In addition to this ¢ type of in-out correlation,
there is an additional in-out correlation provided by
additional terms of the o, type after the first one.
This is, however, essentially impossible to separate
from left-right correlation energy since it is not clear
whether the energy improvement occurs from the off-
diagonal interaction with the major o, terms (left-
right correlation) or the interaction with the major o,
term (in-out correlation) or both. It seems most
likely to be the former, however, and we lump it to-
gether with that type in the following.

The next interesting case is the limiting best func-
tion which retains only axially symmetric orbitals for
basis functions. That is, the (¢, + 0.), or Z limit.
This is the function which James and Coolidge™
identified as the best function using only four essen-
tial coordinates [omitting 71, in their case, (2 — ¢1) in
ours]. Whereas James and Coolidge reported
—1.1577 H for this limit, we find —1.160876 H for
our best function of this type (No. 20). The total =
correlation energy in III is, therefore, 0.0276 H,
somewhat higher than but still close to the figure of
0.0239 H predicted from a symmetrical division of
correlation energy of the He atom.® Actually, the
total Z correlation energy is probably somewhat
greater than this (~0.0286 H) since it seems clear
that the chief deficiency of function IIT is in the oo
terms. DJ? report a Z-type function with energy
—1.161695 H.

Comparing calculations No. 20 and No. 26, we find
an improvement in adding . terms of 0.0110 H. An
additional contribution of 0.00085 H results from
adding 7, terms (No. 26-No. 28), for a total = correla-
tion energy contribution of about 0.012 compared to
0.015 suggested from He.!* Clearly left-right correla-
tion in H is more important than is computed from

1 H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825
(1933).
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the united atom description of the molecule, and cor-
respondingly up-down or axial correlation is less im-
portant. This is a not unreasonable result considering
the increasing importance that left-right correlation
has with increasing internuclear distance and the de-
creasing importance of angular correlation for large
distances.

Finally, we should mention the A term (28-30) of
0.000535 H. DJ obtained an improvement of 0.000477
H upon adding their first §, term. In He, terms of this
type contribute 0.00116 to the correlation energy, so
once again we see the decreased importance of axial
correlation in H, as compared to the same type of
correlation in He. It should be noted, however, that
the total correlation energy is very nearly the same in
the two cases, and He may still be retained as a very
good model for H,.*2

As Davidson and Jones point out, there is a notice-
able break in the energy contribution produced by
additional natural orbitals after the fourth term has
been added. This four term function (No. 22) in our
case had an energy of —1.169785 H. DJ report a
slightly better limiting energy of —1.169969, which
is a remarkably good result for such a simple function.

In conclusion, it can be said that the present cal-
culations have confirmed in detail previous surmises
about (a) the invariance of the natural orbital ex-
pansion, (b) its utility in wave-function comparison,
(¢) the similarities between He and Hs, (d) the rough
additivity of correlation energies of different types.
The calculations provide detailed natural orbitals
which should be useful in a variety of other calcula-
tions in which one is primarily exploring the effects
of a systematic rapidly convergent improvement in
the nature of the wave-function expansion.

12 Hagstrom (reference 3) has also considered the effect of
adding ¢, basis orbitals and found that a single (¢u, ¢.) term

added to the 33-term function of Case III gave an improve-
ment of <0.00001 H.

Discussion on Natural Expansions and Properties of the Chemical Bond

F. Harris, Chairman

NesBeET: What are the symmetry properties of the natural spin-orbitals?

Lowpin: A theorem was presented at the Madison Symposium in 1956 about the symmetry
properties of the natural spin-orbitals stating that they are symmetry-adapted. [See P. O. Lowdin,
J. Phys. Chem. 61, 55 (1957).] The basic theorem says that, if there is a normal constant of
motion A commuting with the total Hamiltonian 3¢ which is built up from one-electron operators

A(?) by means of the sum

A= 2540, (1)
or by means of any other fundamental symmetric function of the one-electron operators, including
the product A(1)A(2)- - - A(N), then the natural spin-orbitals associated with an exact or approxi-



