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I. INTRODUCTION

&HE problem of refining the simple LCAO —MO
or Hiickel method for treating complex unsat-

urated molecules' by antisymmetrization and con-
figuration interaction is not new. In addition to treat-
ments based on strictly variational procedures, pre-
ceded by mathematical calculations of the necessary
integrals, ' various attempts have been made to
formulate semiempirical procedures starting from
"configurations". ' ' The empirical side of these meth-
ods lies in the fact that certain integrals are evaluated
with the help of experimental data.

Although the methods in question have provided
excellent procedures for practical applications, "all
of them start from the idea that any simple LCAO-
MO procedure previously used for treating a particu-
lar molecule, could, at most, provide a reasonable
choice of what Boys calls the predetor functions"; it
would not eliminate the need of evaluating again the
fundamental empirical parameters. For this reason,
the procedures so far proposed do not provide com-
plete understanding of the relationship between the
results of the simple LCAO —MO method and those
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obtained from its extensions including antisymmetri-
zation. This situation is not entirely satisfactory.

It is important, therefore, to try to reformulate the
explicit inclusion of antisymmetrization and config-
uration interaction in the LCAO treatment of mo-
lecular systems in such a way that light is shed on
the relation between the simple theory ignoring de-
tailed electron repulsions and the more complete
theory including electron repulsions. That is the main
purpose of this paper. Our discussion overlaps in part
previous treatments of similar problems' but sev-
eral features are new and others are highlighted in a
particular way.

II. MATHEMATICAL PRELIMINARIES

The results obtained here will be general, as far as
the classes of molecule and types of orbital involved
are concerned. One simplifying assumption will be
made for electron-repulsion integrals, however; for
these integrals we shall use the Mulliken approxima-
tion, known to be a good approximation at least for
m orbitals. I4

Let 4 —= (pi, ps, ,&N) be a system oi' X atomic
orbitals chosen as a basis for an LCAO —MO calcula-
tion. We write a general molecular orbital iver; in the
form

Qs csips .
Alternatively, in matrix notation, we have

Here C is the matrix which satis6. es the two equations

HC = SCE, (3)

C SC = i, (4)
~'G. G. Hall and J. E. Lennard-Jones, Proc. Roy. Soc.

(London) A202, 155 (1950).
&2K, Ruedenberg, J. Chem. Phys. 34, 1861, 1878, 1884,

1892, 1907 (1961);K. Ruedenberg and E. M;. Layton, Jr., J.
Chem. Phys. 34, 1897 (1961).

&s W. T. Simpson, Theories of Electrons in 3Iolecules (Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1962), pp. 36—38,
53—59. See also W. T. Simpson, J. Chem. Phys. 28, 972
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Phys. 35, 2268 (1961).
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where S is the matrix (e'4) the elements of which
are

(supposing that the elements of C are all real):

(ig'fkl') = g„„c„;c„,''c, c '(Ik fp ) .
S„„=1, Spv = pppvd7 ~ (5) Introducing Eq. (8), we then obtain

The molecular orbitals P, are orthonormal. The mat-
rix H is the representation in the basis C of some ap-
propriate effective operator 3C.k&. Elucidation of the
nature of this operator is an essential problem for us.

For the electron-repulsion integrals which will ap-
pear we write

(@vapo) = qPp(1)gp(2) (1/r»)gy(l)g, (2)dr~drk, (6)

(ij~kl) = P,*(1)fk*(2)(1/r»)P, (1)f&(2)dr&dr& . (7)

In this notation, Mulliken s approximation is

(pvlpo) =
k Sp„Sp.[(lklklpp) + (vvlpp) + (Ikploo)

+ (vv~o o )] . (8)
The stronger zero-differential overlap approxima-
tion" can be obtained from these (and subsequent)
formulas by setting Sp = 8p and Sp = 8p, .

We will be dealing with general electron configura-
tions represented in terms of Slater determinants, for
example,

I), (1)),(1) ) .(1)
1 i)kk(2)Xk(2) X.(2)

where X; denotes a general spin orbital and i = 1,
~ .,n, with n the total number of electrons. We shall
indicate the various determinants by the letters A,B,

. The spin orbitals are orthonormal.
The formulas giving the matrix elements of the en-

ergy operator will contain integrals of the type
(X;X,~4X&). [The notation is the same as in Eqs. (6)
and (7)].We may express these integrals in terms of
the corresponding integrals over the atomic orbitals,
taking into account Eq. (8). In general, one has

(X;X,')XkXl) = (ij'[kl') .8(i,j') s(k, l'), (10)
where a prime denotes that the corresponding spin
orbital belongs to a configuration B not necessarily
equal to A, and the subscriptsi, j, 1c, l denote molecu-
lar orbitals which are the spatial parts of the corre-
sponding spin orbitals X;, X,, Xk, X& (not necessarily
different). The symbol s(i,j) is 1 or 0, according to
whether ); and ) j have equal or different spins.

Let us consider now the integral (ij'~kl'). We have

i' R. G. Parr, S. Chem. Phys. 20, 1499 (1952).

(Qmn )k =
2 Qr (Crmc~n + Crymcrn') Skr

we obtain finally

(14)

(ij'~kl') = Q'„FQ.. .
where F is an Xth-order matrix, a matrix of Coulomb-
repulsion integrals, whose general element is

(F) ~ = (ml ') . (16)
The vectors Q „have an important property. Let

1~ be the vector formed by X elements, all equal to 1.
Then

1 Q krm=nQmn'1kr = s gyyr(crmSrqcypy + CkmSgrcrn )
= -' [(t-"S&)-'+ (& Sc)-'] = 5-', (17)

where 5
„

is 0 if the spatial parts of 'A and X. are dif-
ferent.

III. DERIVATION OF BASIC ENERGY FORMULAS

We now seek the matrix elements (A~BC~B) be-
tween two Slater determinants A and B. We let A
and B be so ordered that identical spin orbitals bear
the same subscripts in both of them. The electronic
Hamiltonian K we take to have the form

X = +,3.-"(i)+ —; g,', —. (18)'
r'2

(The nuclear —nuclear repulsion terms will be added
later. ) We then find, employing the usual rules,

(A~ae~B) = g, ()k, ~ae""~g)5,"'
+ —', Pk~[(xk)g Xhl) —PkM~4Xk)]5k";,

(19)

4(ij'~kl') = g„„,.c„;c„,'c, C.& 8„„8„(plk~pp)
+ gpvpy Cpy'Cyy'' Cp kcyl' Spv Sp y(pp~O'&)

+ gpvpy Cpfcvr' 'Cpkcyl 'SpvSpy (VV~ PP)

+ Qpvpy Cpr'Cyj' pCckly'8 pSvp(yV~VO'0') . (l2)
Since the sums are carried over all the atomic orbit-
als, we can interchange the corresponding subscripts
in the sums, getting

4(ij'~kl') = gp„.[cp;c„,'cpkc«'Sp„Sp.

+ C Cpv
'Crcypkl'8 vSpp +yCvr'Cpj 'Cpkcol'SpySpy

+ Cvr'Cpr"Cykcpt'SpvSpy] (pp~ pp) ~ (13)
Now, the term in square brackets can be written:

(Cpy'Cyy' + Cyy'Cpy'') Spv (Cpkcyl' + Cykcpl') Spy

Therefore, if we define a vector Q ., determined by
the LCA.O coeKcients, such that:
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where sums are over occupied orbitals 4 and ) l in Therefore,
A, )k and ) 1 in 8,

(~.Ice'""I~l) = X.*(1)~""'(1)xl(1)d., (20)

and we have introduced the symbol

2 Qf( Q~r. Fl))( 8(i' s(k, k') s(l, l') ()(".(

= —', g.', Q„F1~N- s(k, k') b.
"'

Ski. .. = ) 1*X1dz-- X2X2dr . . X~ IX' 1dV- Q), Qa&'Fl)) s(k, k') b(",

X)*,~1XP+1d~ . Xl I'Al Idz' Xi+1K'l+Idz- Q~ Q.~'F1~ s(k, k') b~"

X X„*X'.d~, P,„CA, X,'( B), (21)
n (n —1)

N N
2X' (27)

which has only the values 0 or 1. Evidently,

{X,Ix""Ig) = C, (e sc"'"'e)C,.'s(k, k')

= C), H""C~'s(k, k') .

From Eqs. (10), (14), and (22) we thus obtain

(22)

The same procedure also holds for the term (()~), jN)
X 1))FQ(i of Eq. (25), which gives the same results,
because it is a real scalar which can be transposed
without changing its value and because k and t can
be interchanged in the sum. Finally,

(AIRIB) = QpC~H""Cp's(k k') bl",

+ —', pi~ [Q~), FQ ('(s( k, k) s(l, l')

—Q.i FQ(p's(k, l') s(l,k')](),";.

r
-'

Qadi N
1))F1~

N
— s(k, k') s(l, l') ()I",

'

(23) =, +~i 1~F1w& =, 1~F1~() . (28)
1

p t AB n(n —1) t,B

2Ã 2X
We observe that two kinds of Q„„appearin the

second sum of Eq. (23). The second term of the sum
is formed solely by vectors deriving from different
molecular orbitals. In fact, it is formed (due to the
special ordering of the configurations) by different
spin orbitals: The presence of the factors s(k, l') and

s(l, k') makes the term vanish if the corresponding
spin orbitals have the same spatial parts. Now
vectors Q„„derivingfrom molecular orbitals essen-
tially diA'erent have a vanishing sum of their ele-
ments: %e intend to introduce certain new vectors

Q „such that this property be common to all of
them. These vectors are [see Eq. (17)]

Q „=Q„„—(() „/X)1&. (24)

The second term of the argument of the second sum
in Eq. (23) can be rewritten in terms of the Q„„with-
out any other change. As for the first term, it can be
rewritten

Let us now notice that

Qik Fl)( =
2 gppp [cp&cpp 8yp (PPIPp) + cp&ca& 8w~ (PPI Pp)]

2 2 Ic"~"Z. [(PPIPP) + (»Ipp)]c" I

= C, (SJ + JS)Cp' ——Ci KC(, , (29)

where

(J)». = k Z. (nrlpp)~", (3o)
and also, under Mulliken's approximation Eq. (8),

(I).. = Z, I 2 ~..[(pplpp) + (»Ipp)]I
= Q, (PPIPv) . (31)

Upon substituting Eq. (25) into Eq. (23) and tak-
ing into a,ccount Eqs. (28) and (29), we obtain

(AIBcIB) = —,1„F1„()"
2X

-t, ~ca' t
Q(). FQ(( —— Qp), + —1~ F Q«'+ ——1~N

t= Q(~'FQ(i'+
N

1NFQ(( + Qkk F1N
iV

+ 1~F1~~kk t ~ll

Now, according to Eq. (21),

S"' = S"„''s(n,n') S.„.(25)

+ —', Q~li [Qgg FQ«'s(k, k') s(l, l')
—QL FQ~p's(k, l') s(l, k')]()pi . (32)

This is our 6nal formula for the matrix elements of
the electronic Hamiltonian operator.

The molecular core—sigma electrons and nuclei-
has an energy which must be included in the total en-
ergy of each molecular state. The atoms in the core
generally bear one or more positive charges, the
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(40)

Extending the argument, for the average repulsion
for n electrons we would havecore core

Ecore E0 + @Coulombic

Coulomb repulsions between which are long range basis. This repulsion would be given by
effects which will vary substantially from molecule to
molecule. To obtain a formula which will contain all 8, =, Q., («~pp) .
essential long-range effects we separate out these N2

Coulomb terms

(A. ~3C ~B) = (Term I) + (Term II) + (Term III),
(36)

where

Term I = Ec'."i. b;.& —,1NFIN&, (37)2N'

Term ll = g C (H""+ K)C '

&& s(k, k')S,"

Term III = -,'gb I [Qbb FQ I I
' s (k,k') ' s (l,l')

—Qbi FQIb's(k, l') s(l,k')]8bl (39)

These terms will be separately analyzed in the next
section.

IV. ANALYSIS OF BASIC ENERGY FORMULAS

In Eq. (36), Term I corresponds to a constant op-
erator, independent of the molecular orbitals, and it
is present only in the diagonal elements of the energy
matrix it plays the role of a zero-point correction.
Term II is a Hiickel-like term that we will want to
look at closely. Term III is a more complex correc-
tion, without analogy in the Hiickel scheme.

Discussion of Term I

and take a new Hamiltonian,

tot coreX K + ECoulombic ~

Further, we note that the Coulombic terms are not
point-charge repulsions, but repulsions between or-
bital-like positive "holes" in neutral charge clouds":

ECoulombio 2 gct («~PP) ~ (35)

Here the double sum is over all orbitals which when
filled with one electron each make all atoms neutral,
essentially spherical entities, and the sum excludes
repulsion of each orbital with itself.

We can now write the matrix elements of K"' as
the sum of three terms: Term I = — [(X —1) P, («~«)2g

—Z'p («Ipp)]

[special case only] .
(42)

This is a simple sum of differences of electronic-re-
pulsion integrals.

A discussion of the other two terms will allow us
to further clarify the meaning of Term I. %e remark
Anally at this point that the term in question de-
pends both upon X and n. If, with the number of
electrons the same, X is increased (~.e., if the basis
comes closer and closer to a complete set), Term I
goes over into a pure nuclear —nuclear repulsion term.

Discussion of Term 0
If only Term II of Eq. (36) were present, we would

have a simple Huckel theory, with the operator X,,ff

of Eq. (3) given in matrix form by

H.II = H"" + [(n —1)/1V]K .

In operator form we would have

(43)

~„I= ~""+ [(n —I)/X]$1, (44)

where in turn (R is the Coulomb feld generated by X
valence electrons of the system [see Eq. (81)]:

n(n —1) n(n —1)8„= Q p (00 ~pp) = 1NFlN .
2N' 2N'

(41)

This shows that the constant Term I is a sort of av-
erage electron —electron repulsion subtracted from the
nuclear —nuclear repulsion.

For neutral molecules we may expect considerable
cancellation between the two parts of Term I. For
simplicity consider the case n = X, one z orbital
per nucleus, and a neutral molecule. Then we would
have, from Eqs. (35), (37), and (41), for A. = B,

(45)To get a feeling for Term I, let us evaluate the
mean repulsion between two electrons distributed at
random among the various atomic orbitals of the Let us consider the potential energy term in K,«.

Let c denote a single a tom which contributes N. or-
I6 R. G. Parr and R. Pariser, Z. Chem. phys. 23, 711(1955). bitals to the atomic orbital system, (P.X. = 1)))'). In
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a central field approximation, the corresponding po-
tential energy term is given by

formally assigned to a by Eq. (47) with respect to its
nonbonded state is then:

(50)

(46)

where n,.denotes the number of electrons belonging
to g,. We now suppose that the n electrons of the
system under study are distributed uniformly among
all the orbitals. Since we are considering one electron
in the average field of all the others, the electrons we
are interested in here are n —1. The mean occupa-
tion number of a given orbital will thus be (n —1)/X,
and Eq. (46) becomes

p,* (2)y, (2) (1/r»)dr, . (47)

Equation (47) may be regarded as a generalization of
a, well-known Goeppert —Mayer and Sklar formula, ,

'
to the general case of atoms which furnish any num-
ber of electrons (less than 2X.) and any number of
orbitals. It leads to the expression

(48)

It is worth noting that Eq. (48) can be given a very
simple interpretation: The effective Hamiltonian is
still a core Hamiltonian: it corresponds to a core in-
cluding all the electrons minus one, wherein the
various atoms are assigned equal fractions per orbital
of the electrons of the system. With this definition,
the effective Hamiltonian is fictitious not only be-
cause of its one-electron-nature, but also because it
relates to atoms in which nonintegral numbers of
electrons are present.

The potential Uf (1) tends to that of a neutral atom
when

This in general implies that X should be very large
and the average number of electrons per atomic or-
bital should be close to one. It must also be noted
that the expression "neutral atom" in this context
signifies an atom whose valence orbitals are each
singly occupied; the "neutral atom" corresponding
to nitrogen in a system like the x system of pyrrole is
actually the positive nitrogen ion.

A few examples showing the values the factor
(n —1)/X can take may be instructive. Let n. be the
electrons actually shared by atom a, and X be the
orbitals which belong to it; the defect of electrons

We call d. the "core charge" of atom a. We then con-
sider as an example the x systems of compounds
formed by condensed five-membered rings with one
heteroatom sharing an electron pair per ring (e.g. ,
pyrrolopyrroles). In this case (n —X —1) = m —1,
where m is the number of rings, and X = 2 + Bm.
Here we have two types of atoms: C, with n, = 1,
and X (in pyrroles X is nitrogen) where n. = 2.
Values of d are as follows:

B' =, Q,. (ppioo) .x' (51)

This shows how electron repulsion is taken into ac-

m 1 2 3 4 5

1 2 3 4 1
0

8 11 14 17 4

7 9 11 13 3 2
d. +1+—+—+—+—+—+—

8 11 14 17 4

The core charges shown here are fairly high, and they
tend to further increase in magnitude when m —& ~.
It is not necessary to build a table to show that, on
the contrary, if the number of heteroatoms with a
lone pair is kept constant, the core charge tends to
zero, when the number of atoms increases.

Ruedenberg" has remarked that in hydrocarbons
an electron tends to see the atoms as essentially
neutral atoms. The preceding discussion clearly shows
that Eq. (48) gives a mathematical formulation of
this remark and that the remark definitely does not
hold true for complicated heterocyclics.

If the identification of the Hamiltonian of Eq. (44)
or Eq. (48) with the Huckel Hamiltonian is accepted,
one sees that the validity of a Hiickel procedure is
contingent upon the condition of Eq. (49). This, in
general, holds for rather large values of X, except in
the case of heterocyclics like those treated above.

Let us now go back to Term I. The physica, l in-
terpretation leading to Eq. (48) describes each elec-
tron in the fieM of the other n —1 electrons dis-
tributed in amounts (n —1)/X among the various
atomic orbitals. If the electron in question were
localized on the o--th orbital, we would have a re-
pulsion [(n —1)/Xjg, (ppioo. ). But each electron is
supposed to be distributed in equal fractions over all
the Ã atomic orbitals, for which the average repulsion
will be
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count in the X.ii of Eq. (48). It can be seen that this
interpretation is correct by considering that Q„„is
defined by Eq. (24) and is a net charge vector (vide

infra). Now when the energy of a configuration is
calculated, the expectation values of 3C,ff are summed
over n electrons. The total repulsion energy taken
into account in this way is [see Eq. (41)]

This shows that the term —B.that enters Term I is
actually only a correction relating to a double sum
similar to the correction that is introduced when, in
the Hartree —Fock method, the sum of the orbital en-
ergies is to be used for evaluating the total energy.

This analysis shows that together the first two
terms of Eq. (36) take into account the electron re-
pulsion as far as it can be treated as an average re-
pulsion relating to all the possible equivalent dis-
tributions of the n electrons over the Ã atomic or-
bitals. Term I couM in principle be combined with
Term II."However, it may be useful to keep them
separate. If we assume that Term III represents only
a perturbation on the energy, it follows that the
charge distributions (and hence the dipole moments)
of molecules are essentially determined by 3C.ff.

Discussion of Term III
Term III of Eq. (36) is a correction which cannot

be related directly to an appropriate operator, be-
cause of the nature of the vectors Q .'.

In general, it is not possible to give an intuitive in-
terpretation of all of the vectors Q„„,because they
are expressions which contain the coeKcients of dif-
ferent molecular orbitals, and, hence, are related as
much to the particular mathematical nature of the
orbital approximation as to physical facts. However,
when the orbitals to which the subscripts m and n'

refer are the same, it is possible to use a well-known

interpretation of the elements of Q .: they are the
net charge of the given molecular orbital. This in-
terpretation is important, for instance, when the
fundamental state of a system is described by a single
configuration. Then, of the two terms which make up
the argument of the double sum, the first one is
classically interpretable as the contribution to the
interaction energy between the electrons resulting
from the fact that the latter are not uniformly dis-
tributed over the molecule; the second term is the
well-known exchange term which represents essen-
tially an additional correction related to the fact that
a Slater determinant distributes each electron with
different spins over diferent orbitals, so that the in-
teraction, even classically, is no longer given only by

the repulsions contained in the erst part of the sum
under study.

As to the quantitative importance of Term III, if
the values of the integrals were the same, the correc-
tion terms would be the smaller the more uniform the
charge distribution of each molecular orbital. Conse-
quently, we can conclude that a system in which the
atoms and bonds are similar to each other will usu-
ally be rather well described by the Huckel method.
This is due also to the fact that, if the net charge on
an atom is quite high for a given molecular orbital,
it will usually happen that the other charges are
rather small. In other words, products of elements of
the Q vectors are essentially second-order corrections
withrespect to the charges.

On the other hand, it must be noted that the effect
of Term III is introduction of some long-range effects.
This is because the elements of the matrix F cannot
be treated by simple nearest-neighbor approxima-
tion, and, hence, they can sometimes produce im-
portant contributions coming from atoms quite far
from each other. An interesting consequence of this
is that "localized" bonds in the sense of the Hiickel
method may in some cases interact quite strongly
when Term III is taken into account.

A further elucidation of Term III would bring in
effective electronegativities and electronegativity
differences. ""

V. NEAREST NEIGHBOR APPROXIMATION

We must now examine the possibility of introduc-
ing a nearest neighbor approximation into Eq. (36),
for if this could be done the problem of evaluating
empirically all integrals could be made quite simple.

As far as the effective Hamiltonian BC.ii of Eq. (48)
is concerned, since the potential terms in it are quite
close to those of a neutral atom, it gives rise mainly
to short-range forces, and, hence, it can be more or
less easily reduced to a nearest-neighbor approxima-
tion. We should add, however, that the foregoing
analysis shows also that this approximation is not
very satisfactory when one or more atomic orbitals
share with the electron system under study more than
one electron, because the corresponding atoms ap-
pea, r essentially as ions in the system.

On the other hand, there is not much hope that the
nearest neighbor approximation can actually be used
as far as Term III is concerned, notwithstanding
some results obtained by Murrell and Salem. "As far
as the matrix F is concerned, those authors indicated

i7 R. G. Parr, J. Chem. Phys. 33, 1184 (1960).
I8S. N. Murreu and L. Salem, 'S. Chem. Phys. 34, 1914

(1961).



610 G. DEL RE AND R. G. PARR

that some sort of nearest-neighbor approximation
was possible, at least for the m systems of hydrocar-
bons. In order to examine the problem in general, we
reformulate their basic theorem on the basis of Eq.
(36).

We know that g„(Q„)„=0. Therefore, if we
add to F two matrices of the same order X resulting
from the products of two diagonal matrices w and v
by the matrix 1»whose elements are all equal to one,
the product Qt,'FQ~~ remains the same. In fact, let

F = F + W1NAr + 1NNV .
From Eqs. (17) and (24) we find:

Therefore,

1~~Q .' = 0

Q;,'F'Qi~' = Q; FQu'.
Let us now build the matrix

(55)

Therefore, it is evident that the matrix F can be re-
placed by a matrix F' defined by Eq. (57), where a,ll

the elements can be expressed as sums of differences
between electron repulsion integrals: these differ-
ences can, in fact, be made to correspond to nearest
neighbors, next nearest neighbors, etc. , but this has
to be done on the basis of the particular topology of
each individual molecule. In addition, one wonders
whether the argument given by Murrell and Salem
to support the conclusion that, when differences are
used, the differences relating to non-nearest neigh-
bors can be neglected, also holds when sums of such
differences are considered. H,uedenberg has come to
similar conclusions. "

Although these remarks do not prove that a near-
est-neighbor approximation is necessarily impossible,
they show that it cannot be introduced in a direct
and general fashion. Moreover, it seems clear that
when the charges of atoms far apart are disparate and
not negligible, the effect of Term III is definitely to
remove the justification for a nearest neighbor ap-
proximat, ion.

VI. CONCLUSIONS

For those cases where the factor (n —X —1)/X
is small, we have seen that 3C.ff does satisfy the con-
dition which is implied by the Hiickel method,
namely, it gives rise essentially only to short range

[A],.= -', (F„„+F„„). (56)

This matrix is of the type wl&~ + 1~&v, and there-
fore F' = F —A satisfies Eq. (55). Now,

forces" and hence parameters reasonably constant
from molecule to molecule. It is a,iso clear that dipole
moments may be good physical quantities for de-
termining empirically the matrix elements of X.f f.
Thus K.ff can be considered sufFicient for a satis-
factory treatment of a molecular problem under the
condition that the energy be calculated taking into
account at least Term I of Eq. (36). The latter de-
pends essentially on the nature of the atomic orbitals
and upon the geometry of the molecule; it can be in-
cluded if it is so wished. In general, the energies ob-
tained from 3'..ff alone will be comparable to each
other under the usual condition that they be referred
to similar frameworks, or that there be differences
where the framework effects somehow cancel out.

It thus is possible to define an atomic Hamiltonian
which is neither the core Hamiltonian nor that of a
neutral atom, but an intermediate one, which comes
close to the latter when the number of electrons is
very close to tha, t of atomic orbitals and the latter is
large, and it is possible to identify this Hamiltonian
with the Hiickel Hamiltonian of simple LCAO —MO
calculations in the sense that its use is equivalent to
neglecting only the contribution to the electron re-
pulsion due to the details of the electron distribution
in the molecular system. "

If this identification of BC,ff with a Hiickel Hamil-
tonian is made, a better interpretation of the validity
and limitations of the nearest neighbor approxima™
tion in the Hiickel method becomes possible; in addi-
tion, it is possible to define the correction to the sum
of the orbital energies that is necessary in order to
obtain the correct total energy. This correction does
not depend upon the coefFicients of the molecular or-
bitals obtained from X',.ff,' it can be considered as con-
tribution to the "framework" energy of the system
under study. "

In the scheme obtained here, and within the limits
of any physical interpretation of exchange terms, the
energy obtained from a Hiickel scheme differs from
the actual energy because of the non-uniformity of
the electron distribution in each orbital. This differ-
ence, represented by Term III of Eq. (86), can be
given an interpretation in terms of net charges and
"transition" charges, so that it is possible to analyze
better what systems may be expected to give reason-
able results when treated according to the Huckel
scheme, and what systems are, on the contrary, very
much affected by the more accurate treatment, and
in particular by the inclusion of long-range effects.

Although it may have some advantages from the
computational point of view, Eq. (36) is but a differ-
ent way of writing well-known formulas. The most
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significant aspect of the results obtained here are that
they may provide a formal link between the Huckel
method and the inclusion of antisymmetrization in
the LCAO scheme, thus making the analysis of the
relationship between the two easier, and, in particu-
lar, providing the possibility of transferring whatever
physical interpretations may be given to the results
of the simple Inethod to those of a more refined cal-
culation. It may also be noticed that our treatment

has been carried out without any limitation to special
classes of molecular systems (with the possible ex-

ception of those for which Mulliken's approximation
does not hold). It therefore may help to make a little
clearer the problems involved in the extension of
methods primarily conceived and tested for the ~-
systems of hydrocarbons to electronic systems in-

volving different species of atoms and atomic
orbitals.
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Intermolecular Forces
A. DALGAR NO

Geophysics Corporation of America, Bedford, Massachusetts

l. INTRODUCTION

&HE concept of an intermolecular force between
a pair of particles has been of great value in our

nuderstanding of a wide range of phenomena and
considerable attention has been given in recent years
to the problem of deriving the intermolecular forces
appropriate to speci6c atomic and molecular sys-
tems. The subject of intermolecular forces was re-
viewed in 1960 by Buckingham' for neutral systems
and by Dalgarno' for ionic systems, and this review
is concerned mainly with subsequent developments.

2. SEMIEMPIRICAL PROCEDURES

It is appropriate to begin with a description of
semiempirical procedures since their application has
provided most of our detailed knowledge of inter-
molecular forces. There are two procedures, one of
which employs data on transport coeKcients and
scattering and the other of which employs spectro-
scopic data.

2.1 Transport Coefficients

The mathematical theory of nonuniform spheri-
cally symmetric gases, developed by Chapman and

Enskog, ' reduces the prediction of transport phe-
nomena to the calculation of scattering cross sections

o, (u) = 2 f r(U, ii)(i —cos's) siniisii, (i)
' On leave of absence from Department of Applied Mathe-

matics, Queen's University of Belfast, Northern Ireland.
r R. A. Buckingham, Planetary Space Sci. 3, 205 (1961).
s A. Dalgarno, Planetary Space Sci. 3, 217 (1961).
3 J.O. Hirschfelder, C. F. Curtiss, and R. B.Bird, Molecular

Theory of Gases and Liquids (John Wiley tk Sons, Inc. , New
York, 1954).

Q, (v) = ~ Q (s + 1) sin (ri„)—ri, )
4x ~ 2

A;,=p
(4)

Qs(v) = k. g 2 +3 sin(g„s —g,), (5)
4s- " (s+ 1)(s+ 2)

s=p 2s+3

where 0 is the angle of scattering, v is the relative
velocity of the colliding particles, I(v,8) is the differ-
ential cross section, and / is a positive integer. To a
first approximation, the coeKcient of diffusion is de-
termined by Q& (v) and the coeKcients of viscosity and
thermal conductivity by Q, (v), while the coeKcient
of thermal diffusion depends upon Qi(v) and Q, (v).
Explicit expressions for these various transport co-
efFicients may be derived from formulas given in the
treatise of Hirschfelder, Curtiss, and Bird.'

If the interaction potential V(R), 8 being the sep-
aration of the colliding particles, is known, I(v, 0) can
be calculated. Because the factor (1 —cos' 0) in the
integrand of (1) suppresses the contribution from
small-angle scattering, a classical description of the
scattering is usually suKciently accurate. According
to it, the cross sections may be written

Q, (v) = 2 f (i —cos 8)rdp, (2)
p

where
dB/8'

2V(Z) ' (3)
R' p'

p being the impact parameter, p the reduced mass,
and 8 the classical distance of closest approach.

For light elements at low temperatures, it may be
necessary to use a quantal description of the scatter-
ing. According to it


