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with a quadrupole on group A. The leading term will
again vary as 1/R*; furthermore, if one always
chooses the positive direction of 2z to point away
from group A this dipole quadrupole interaction may
be replaced by an equivalent monopole-octapole in-
teraction between a positive charge on B with the
same form of octapole distribution on 4 as above.

The magnitude of this equivalent positive charge
will be seen from Eq. (24) to be (a/b)as. This provides
the physical basis for the many-electron model of
Jones and Eyring.”® One cannot make the same cor-
respondence for the interaction of two electric dipole
transitions, since a different distance and angular de-
pendence is inherently involved, as may be seen from
the integral in the sixth term of Eq. (2),

—er 41—k
ZA1 VA o€ TA1T® 'B2
———————dndr.

T2

This gives the energy of interaction between two
dipoles of charge and will lead to a 1/R? dependence.

The helical pattern is once again formed by two
separate electrons. The linear motion of a transition
of group B becomes a circular motion as viewed from
group A with A as center. Then one observes a linear
motion of its own electron and a circular motion of
the electron on B giving rise to a helical drift of
charge. If one attempts to make the centers coincide,
as was done in the previous discussion, the net mo-
tion of charge is linear and the effect vanishes.

It is accordingly best to visualize the effect of two
electric dipole transitions in this way with the transi-
tions remaining on different groups. The models of

101, L. Jones and H. Eyring, Tetrahedron 13, 235 (1961).
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Kirkwood? and Kuhn'! are particularly instructive.
Although it is possible to set up equivalent monopole-
quadrupole interactions, no simple correspondence
with the static-charge, one-electron effect is feasible.
It is observed that a right-handed screw pattern of
polarizability does not always give dextro rotation,
for the sign also depends on the angles which the
symmetry axes make with the line of centers.

Preliminary calculations indicate that the ex-
ponential terms will be negative corrections involving
10-209, of the total rotation. Calculations with the
Kirkwood polarizability formula? on hydrocarbons
indicate that the coupled oscillator effect may ac-
count for less than one-half of the total rotation.

In the case of two methyl groups forming a screw
pattern, it will be worthwhile to take into considera-
tion the destruction of cylindrical symmetry of the
groups by adjacent bonds. This will split the degen-
eracy for orbitals directed along radial directions
enabling magnetic dipole transitions to occur with
axial components of magnetic moment parallel to
the electric dipole transitions known to occur. The
method for doing this has been outlined by Condon,
Altar and Eyring” in conjunction with the multipole
expansion, which gives the net charge effect. For
aliphatic carbon—carbon bonding the net charges will
be nearly zero and the incomplete screening effect
will predominate.
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1. INTRODUCTION

S the previous papers have indicated, it is still an
extremely difficult matter to treat even simple
atoms and molecules by quantum-mechanical meth-
ods. The most useful treatments at present available
* This work has been supported by the National Institutes

of Health, U. S. Public Health Service, under grant No.
GM-10123-01.

can give binding energies with an accuracy little bet-
ter than one percent. We are now going to consider
the application of quantum-mechanical methods to
complex organic molecules containing perhaps fifty
or one hundred atoms, and we are also going to con-
sider chemical problems in which an error of 0.1 eV
would be intolerable. Stated in this way the problem
seems quite hopeless. Even if the more refined “Group
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One” methods could be applied to molecules of this
size, which at present is out of the question, they
would not begin to give results with the required ac-
curacy. Thus the resonance energy of benzene, a very
large quantity in the chemical sense, is only a few
tenths of a percent of the total binding energy.

Nevertheless, a great deal of effort has been put
into solving this apparently hopeless problem, be-
cause the answers are badly needed by organic chem-
ists—and, surprisingly enough, much progress has
been made. The trick has been to use simplified
methods which in principle are much less accurate
than the Group One Methods used for small mole-
cules, but which in practice work well, because they
contain adjustable parameters. Any theoretical treat-
ment always benefits greatly, in terms of practical
success, for a parameter of two; the same is true in
the case of the “Group Two” or parametric methods
for conjugated systems.

2. BASIC METHOD

Let us first consider how we would treat our prob-
lem in a Group One manner. The only possible ap-
proach would be an SCF MO procedure, with the
further approximation of writing the molecular orbit-
als ¥,, as linear combinations of atomic orbitals ¢;;

¥, = Z; OmiPi - 1)
The coefficients a..; and the corresponding orbital en-
ergies could be found by the general method first sug-
gested by Roothaan,' being given by a set of simul-
taneous equations that can be solved by an iterative
procedure. The coefficients in these equations can be
expressed in terms of certain integrals over the set of
AOQ’s ¢; used as a basis. These AO’s should in prin-
ciple be SCF AQ’s for the componeat atoms; however
technical difficulties in evaluating the integrals make
it necessary to use AQO’s that can be expressed in
analytical form. Nearly all work in this field has
made use of Slater AQ’s as the basis functions.
Even with these assumptions and approximations,
the calculations remain exceedingly difficult, mainly
because of the difficulty of evaluating three- and four-
center electron-repulsion integrals. The full Roothaan
treatment has been applied only to a few simple
molecules, and its extension to molecules of the type
we are considering would require much larger com-
puters than any available. Calculations of this kind
would, in any case, be of doubtful value to chemists,
since we know from work on simple molecules that
the method is not accurate enough for chemical pur-

1C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
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poses. Our problem is first to simplify the treatment
to a point at which calculations can be carried out
quickly for large molecules and, secondly, to patch up
the weak points in it with parameters so as to im-
prove the over-all accuracy. In this endeavor, we will,
of course, be guided more by practical expediency
than by mathematical theorizing, for our object is the
purely practical one of getting results that will be
useful to chemists, rather than of constructing an
elegant mathematical edifice.

The first simplification rests on the use of the local-
ized bond model of molecules. We know empirically
that many molecules can be represented well, for
most chemical purposes, in terms of localized bonds.
Thus the heats of formation of saturated molecules
can be represented as additive functions of bond en-
ergies and their dipole moments as vector sums of
bond moments. This situation breaks down in the
case of conjugated molecules, where a set of adjacent
atoms are linked by 7 bonds; here the properties of
the molecule can no longer be represented as additive
functions of the bonds in it. Thirty years ago Hiickel
suggested that the 7 electrons could be treated inde-
pendently of the rest of the molecule. We suppose
each = electron to move in the field of a “core,” com-
posed of a framework of atoms linked by localized
two-center bonds whose energies are additive, and
we then calculate separately the nonadditive con-
tribution to the total energy due to the = electrons
moving in the field of the core. Virtually all calcula-
tions for conjugated systems have been based on this
Hiickel approximation, which of course represents a
very great simplification. Thus, the simplest con-
jugated hydrocarbon, 1,3-butadiene, contains thirty-
two electrons; the Hiickel approximation reduces this
to a four-electron problem.

Even with this simplification, the Roothaan treat-
ment still remains too difficult. The trouble lies in the
terms involving three- and four-center integrals. The
number of terms involving these integrals is formid-
able, and the integrals are also very difficult to
evaluate. Pople? met this situation in an Alexandrian
manner by simply ignoring the integrals altogether.
This approximation is usually described as ‘“neglect-
ing differential overlap,” i.e., the assumption that in
any small volume a7 of space

pipidr =0 (15#7). (2)

However, in practice this assumption is applied only
to the electron-repulsion integrals and to the overlap
integrals between pairs of AO’s. The one-electron ex-

2J. A. Pople, J. Phys. Chem. 61, 6 (1957).
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change or resonance integrals 8:;,

Bi; = stiH%dT,

are assumed to have finite (and often quite large)
values. Various attempts have been made to justify
these approximations theoretically, but the only
question that really matters for our purpose is
whether the resulting treatment works. Present evi-
dence suggests that it does—and, indeed, in at least
one connection the simplified treatment seems to
work better than the “correct” approach where all
integrals are included.

With these assumptions, the Roothaan equations
for a closed-shell molecule (i.e., one in which all elec-
trons are paired) can be written in a very simple
form.2 We first define two quantities, the m-electron
charge density ¢; at atom ¢, and the bond order p.; of
the bond between atoms ¢, j;

Zm nma?ni )

Pi; = Zm NmQmiQmj o (5)
where n, is the number of electrons occupying the
MO V¥,. If Eq. (2) held, ¢;: would be the expec-
tation value for the number of electrons occupying
the region of space defined by the AO ¢;. The co-
efficients a.; of the AO’s [Eq. (1)], and the cor-
responding Hartree—Fock orbital energies E,, are
then given by the eigenvectors and eigenvalues of the
F matrix, whose elements are

Fo = ai + § :(6ii0) + 205 ¢:(&,77)

3)

Qi; = “)

(6)

Fii(@ 5 3) = Bi; — 3 pii(13,37) - )
Here, the Coulomb integrals «; and the resonance in-
tegral B:; are defined by

a; = / pHepidr; Bi; = / eHcpidr , 8)
where H. is the core Hamiltonian,
_ h2 2 Zuez ]
Ho = “;‘[_ om VT j‘/:‘ Tow ©)

7 being the distance of the 7th electron from the uth
nucleus, and Z, the effective nuclear charge of
nucleus u. The electron-repulsion integral (#7,77) is
defined by

(@) = XX ) - ¢l@dndr.. (10)

(We assume that the functions ¢; are real; this in-
volves no loss of generality.)

M. J.S. DEWAR

Since the F matrix contains the quantities ¢; and
pi;, which are defined in terms of the coefficients @,
an iterative procedure has to be used to determine
the coefficients and orbital energies. The a.,.’s found
in one cycle are used to compute the F matrix for the
next. It is, however, a very simple matter to program
computers to carry out the necessary calculations
automatically, and suitable programs are now avail-
able at many centers. The integrals (¢z,77) can either
be calculated by direct quadrature or approximated
by simple classical models.?

The Coulomb integrals a; can be calculated using a
Goeppert—-Mayer—Sklar potential:
as = Wa)i + 25 [(@,5) — @,0)]

P

(11)

If penetration integrals can be neglected, Eq. (6) be-
comes

Fi= (W) + 3 ¢:(22,07) + ; (¢ — 1) (2, g5) - (12)

The one-electron resonance integrals 8;; can be cal-
culated, but they are usually treated as parameters.
If differential overlap were neglected in a consistent
way [Eq. (2)], these integrals would presumably van-
ish; nevertheless in practice a finite value has to be
ascribed to them. It is usual, however, to assume that
B:; vanishes, unless atoms ¢, j are directly linked to
one another.

Calculations carried out in this way do not lead to
very satisfactory results, even though the treatment
does contain adjustable parameters (the Bi;). This
failure could be attributed to several factors.

(1) The whole treatment may be inadequate; this
could well be the case, in view of the gross approxima-
tions involved. However, to admit this would be an
admission of defeat.

(2) The integrals (¢,77) should in principle be cal-
culated using SCF AOQ’s; it is, however, very difficult
to do this. Most published calculations have used in-
tegrals based on Slater AQ’s; these must differ con-
siderably from the SCF values, the SCF AQ’s being
much more diffuse. Thus, the overlap integral be-
tween 2p-AO’s on adjacent carbon atoms 1.4 A apart
is calculated to be 0.25 using Slater AO’s, but 0.33
using SCF AO’s.* One would expect the values for the
electron-repulsion integrals to be less, using SCF
AQ’s; and one would expect the difference to be
greatest for the one-center integrals (¢7,27), and to
decrease, in the case of two-center integrals (iz,77),
with increasing separation of the centers ¢, j.

(3) The treatment does not allow adequately for

3 R. Pa,_ri_ser and R. Parr, J. Chem. Phys. 21, 466, 767 (1953).
4R. S. Mulliken, J. Am. Chem. Soc. 72, 4493 (1950).
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the effects of electron correlation. Two types of cor-
relation can be distinguished®: wvertical correlation,
which controls the interchange of electrons between
the two halves or lobes of a p or m orbital, and
horizontal correlation, which controls the motions of
electrons along a given 7 lobe. The usual SCF treat-
ment ignores vertical correlation completely, and al-
lows for horizontal correlation only by using anti-
symmetric wave functions.

Pariser and Parr? and Moffitt® have pointed out
that the repulsion integrals calculated from Slater
orbitals do not give a good account of atomic-energy
states.

Moffitt® suggested a procedure in which experi-
mental values are taken for the energies of the com-
ponent atoms of a molecule, and where the relatively
small difference in energy between the atoms and the
molecule (the chemical heat of formation) is cal-
culated directly by a perturbation method. This
seems a very logical procedure; it has not been much
used, mainly because machine programs for it are not
readily available. Calculations by this AIM (atoms-
in-molecules) method have been reported only for a
few molecules and the results have not always been
too good. However, Slater values for the electron-
repulsion integrals were used in these calculations;
the arguments given below suggest that an analogous
parametric treatment might be very successful in-
deed.

Pariser and Parr? followed a different approach.
They proposed that the electron-repulsion integrals
be treated as parameters. They chose the one-center
integrals (#7,72) to give correct values for the atomic-
valence states, and adjusted the remaining integrals
so that: (a) the plot of integral vs ¢ — j separation
was a smooth line; and (b) the values of (¢z,7j) ap-
proximate to the ‘“normal” Slater values for large
internuclear distances. If these modified integrals are
used in the Pople treatment, the results are greatly
improved.

The argument used by Pariser and Parr was based
on the energy change in the reaction:

cC-+cCc-—Cc"+C. (13)

Assuming that the cores of the carbon atom remain
unchanged, and that the transfer involves a 2p-elec-
tron, this reaction should be endothermic by the
value of the (#7,72) integral for a carbon 2p AO. The
value estimated empirically in this way (11 eV) is

5M. J. 8. Dewar and C. E. Wulfman, J. Chem. Phys. 29,
158 (1958); M. J. S. Dewar and H. N. Schmeising, Tetra-
hedron 5, 166 (1959).

6 W. Moffitt, Proc. Roy. Soc. (London) A210, 245 (1951).
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much less than that calculated using Slater AO’s (17
eV). The difference could be due either to the in-
adequacy of Slater AO’s [cf. (2) above], or to electron
correlation (which must reduce the interelectronic re-
pulsion in the ion C™). Pariser and Parr assumed that
both these possibilities could be covered by using a
reduced value for the (#7,77) integral, and similar
arguments suggested that the other repulsion inte-
grals should also be modified.

The correlation involved in this case is what we
have described as vertical correlation. Dewar and
Wulfman® suggested that one might allow for this by
using an extreme model in which the pair of electrons
occupying a given p or w orbital are never allowed to
occupy the same lobe simultaneously. This idea has
been pursued’™® by the author in collaboration with
Mrs. Sabelli (formerly Miss Hojvat). We suggested
that the two-electron function ¥ for the pair of elec-
trons occupying a given p orbital ¢ might be written
in the form

V= (' +En) (8 — o8, (14)
where £, n are the two lobes or split p orbitals of the p
orbital

o= (1/vV2)(E+n). (15)
Likewise, the electrons in a # MO would be repre-

sented as occupying one or other of two split = orbit-
als, 5, H

I

m = 21 amifi; H, = Zi AmiNi - (16)
Preliminary applications”™™® of this split p-orbital
(SPO) treatment to simple w-electron systems seem
promising.

There are, however, difficulties in the way of this
formalism. Many of the objections that were raised
at first are groundless®® but one very serious diffi-
culty remains. Functions of the type indicated in Eq.
(14) are not orthogonal to the inner core orbitals (1s
and 2s in the case of carbon). If then the = electrons
are regarded as occupying SIIO’s instead of normal
m-MO’s, the Hiickel approximation is no longer justi-
fiable. This objection would certainly invalidate the
use of the SPO method in Group One calculations.

The same difficulties inevitably arise, although in a
less aggressive form, in any attempts to write cor-
related wave functions for 7 electrons. One obvious
procedure for doing this would be to use functions of

( 76M). J. S. Dewar and N. L. Hojvat, J. Chem. Phys. 34, 1232
1961).

8 M. J. 8. Dewar and N. L. Hojvat, Proc. Roy. Soc. (Lon-
don) A264, 431 (1961).
( 9 M) J. S. Dewar and N. L. Sabelli, J. Phys. Chem. 66, 2310
1962).
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Hylleraas type, containing the interelectronic dis-
tance explicitly. Procedures of this kind have been
used by Kolos® and by Julg and his collaborators.
However, as soon as we multiply the r-electron func-
tion by factors involving interelectronic distances, we
destroy its orthogonality to the core. In order to in-
clude correlation, we must either abandon the Hiickel
approximation (which is out of the question) or we
must use correlated functions that are orthogonal to
the core. No one has yet found a satisfactory way of
doing this. The problem of orthogonality escaped
notice in the earlier treatments because they followed
accepted paths; the SPO treatment drew attention to
the problem by stating it in an extreme and un-
orthodox form.

If we are to allow for correlation, we must then do
it empirically within the framework of the Pople
treatment, by empirical adjustment of parameters.
The main achievement of the SPO method has been
the insight it has given into the way this should be
done. A detailed study® has shown that the SPO
treatment, in spite of its apparent waywardness, in
fact leads to a set of equations for the orbital co-
efficients a..; [in Eq. (16)] very similar to the usual
Pople equations. The corresponding F-matrix ele-
ments are given [with the assumptions inherent in
Eq. (12)] by

Fii = (Wa): + 5 ¢:(1137) + ,.5, (g: — 1)(@,55) , (A7)

Fi;= (i #7) =By — 3pu(277) . (18)
Here, (77,77) implies a repulsion integral between an
electron occupying the upper lobe of the AO ¢, and
one occupying the lower lobe of the AO ¢;, i.e., an
integral we describe as an ‘“‘upper-lower” integral;
while (77,77) implies a similar repulsion integral be-
tween electrons on the same side of the nodal plane
of the 7 system (i.e.,, an “upper—upper”’ integral).
Although the theoretical basis of the SPO method
may be suspect, these results draw attention to a
physical interpretation of the integrals appearing in
the Pople treatment that enables one to see very
clearly the way in which the integrals must be
changed to allow for vertical correlation.
Consider the diagonal element F';; in the F matrix.
This is defined by

Fi = /<Pi(Hi)<PidT }

where H; is the one-electron Hamiltonian represent-

(19)

10 W, Kolos, J. Chem. Phys. 27, 592 (1957).

1A, Julg, J. Chim. Phys. 57, 19 (1960); A. Julg and P.
Francois, tbid. 57, 63, 490 (1960); A. Julg and M. Bonnet,
2bid. 57, 434 (1960).
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ing the motion of a given electron in the field of the
nuclei and a statistical distribution of negative
charge corresponding to all the other electrons. On
this basis, we can interpret the terms in Eq. (12) very
simply.

The first term, (W2,);, represents the sum of the
kinetic energy of an electron adjacent to nucleus <,
and of its potential energy due to the attraction of
that nucleus. It is, in fact, equal to the binding en-
ergy of a 2p-electron at a trigonal carbon atom. The
terms > ;-; (— (4,77)) represent the attraction of all
the other nuclei, using a Goeppert—-Mayer—Sklar po-
tential and ignoring penetration integrals. The re-
pulsion by an electron occupying the AO ¢, would
produce a potential (,77) ; since there are g; electrons
in the orbital ¢;, the terms Y ;. ¢;(7%,77) represent the
total repulsion of all the other electrons in the system,
other than those in the AO ¢;. In a closed-shell prob-
lem, half the electrons at any point have « spin, half
B spin; if the electron we are considering has a spin,
there will be 3 ¢: electrons at atom ¢ with 8 spin. The

repulsion due to these is covered by the term %

q:(12,12).

What will happen now if we allow for the effects of
vertical correlation? Vertical correlation tends®® to
segregate the electrons by spin on opposite sides of
the m-nodal plane. It does not effect the total electron
density at a given atom, but it makes the distribution
of a- and B-spin electrons in the two lobes of the
relevant 2p AO uneven. Correlation of this kind does
not therefore affect the terms ¢.(,57) in Eq. (12),
since each of these represents the total repulsion be-
tween our electron in the AO ¢; and all the electrons
(of either o or @ spin) in the orbital ¢;. However it
reduces the term % ¢:(¢7,77) ; for this represents the re-
pulsion between two electrons occupying the same
AO ¢,—and vertical correlation keeps these apart
and so reduces their mutual repulsion.

Let us now consider the off-diagonal terms of the
F matrix. First, the one-electron terms 3;;. These can
be interpreted in the following way (cf. Rueden-
berg'?). Consider a simple diatomic molecule in which
electrons occupy a MO ¥ given by

(20)

where ¢, ¢; are AQ’s of the two atoms. The total
electron density function, ¥? is given by

V¥ = 101 + Qae2,

¥ = aier + daps + 201020100 . (21)

This differs from the sum (al¢} 4+ afei) of the two
individual density functions (ai¢:)?, (@2¢2)?, by the

12 K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962).
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term 2a1a:0:1¢.. This term represents an additional
density in the region, where the AO’s ¢1,02 overlap,
due to the nonclassical phenomenon of interference
between wave functions. Consequently an electron
occupying the MO ¥ wil! be more tightly held than
one would expect from the binding energies of the
component AQ’s ¢1, 2. This extra binding energy ap-
pears in the off-diagonal elements of the ¥ matrix as
the one-electron resonance integral 8;;.

The two-electron exchange terms —2 p;;(47,7j) can
also be given a simple physical meaning. Consider
two electrons occupying orbitals ¥;, ¥,. If the elec-
trons behaved classically, the average Coulombic re-
pulsion between them would be given by

2
/ / ¥i(1) 7= W (2)dndr (22)
12

This result holds also in quantum theory, if the elec-
trons have opposite spins. However, if the electrons
have like spins, the Pauli principle forbids them to
occupy the same point in space at any instant. This
has qualitatively the same effect on the mutual
Coulombic repulsion energy as would a restriction
imposing a minimum value (r2)o on the interelec-
tronic distance—as would be the case, for example, if
electrons of like spin behaved like spheres of finite
size. One can see that the correction to the Coulombic
energy depends on the extent to which the electron
distribution represented by the wave function ¥;, ¥,
overlap in space; the more they overlap, the more
likely it is that the electrons try to occupy the same
point in space and the larger is the corresponding cor-
rection to the repulsion energy. It is not surprising to
find that the correction amounts to

2

f f W()B(1) = @) Vdndrs . (23)
This expression leads to the correction terms —3%
p:;(#%,57) in Eq. (7). Here the bond order p;; is a
measure of the extent of overlap of the electron oc-
cupying the AO ¢; with electrons in the AO ¢;; and
the factor % appears because only half the electrons
in the AO ¢; have the same spin as our first electron
in the orbital ¢;.

With this analysis to guide us, we can see at once
the effect of correlation on the off-diagonal elements
of the F matrix. Correlation does not affect the
resonance integrals B:;, since these depend only on
the behavior of single electrons and are unaffected by
electron correlation. However, correlation tendsto¢n-
crease the two-electron terms, and hence to increase
the integrals (4¢,j7) occurring in them, since such an
increase reduces the total mutual Coulombic repul-
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sion of the r electrons and so reduces the total energy.

The SPO Eqs. (17) and (18) appear as estimates of
the extreme variations that must be made in the re-
pulsion integrals to allow for almost complete vertical
correlation.

We can now arrive at a general scheme for para-
metric variation of the repulsion integrals:

(1) The integrals (¢7,77) must approximate to the
“normal’’ values at large internuclear distances, since
the corresponding charge distributions do not then
overlap, and the repulsions between them are inde-
pendent of their exact shapes;

(2) The use of Slater AO’s in calculating repulsion
integrals is likely to give values that are too large,
particularly for small internuclear separations;

(3) Vertical correlation can be allowed for by in-
creasing the repulsion integrals that arise from the
molecular exchange integrals K..; these correspond
to the off-diagonal two-electron exchange terms —3%
p:;(71,77) in the F matrix. The term % ¢:(¢,¢7) is also
affected, for this arises as a difference between a term
q:(71,72) coming from expansion of Coulomb integrals
Jmny and a term 3 p.;(¢7,72) coming from the exchange
integrals K,.; of course p:; and ¢; are identical, by
definition. Increasing the integral (¢¢,42) in the K term
therefore has the effect of reducing the integral (¢,¢7)
in the over-all term % ¢:(¢%,%).

3. HORIZONTAL CORRELATION

We are still left with the problem of horizontal cor-
relation. This, as Lowdin® has pointed out, tends to
make the densities of a-spin and B-spin electrons
alternate at any instant along a w-electron chain.
Lowdin has suggested a way of taking this into ac-
count by using different orbitals for a-spin and B-spin
electrons, chosen so that the total a-spin and B-spin
densities alternate along a conjugated system. There
are, however, technical difficulties in the way of this
treatment, and calculations have so far been made
only for simple molecules. One difficulty is that of
choosing over all functions that are eigenfunctions of
the total spin operator S, a point which is discussed
in more detail below.

There seems to be a simpler alternative to this.
Consider the effect that correlation has on the total
energy of a molecule. Correlation cannot effect the
one-electron terms «; and B;; in Eqgs. (6) and (7); it
acts only by reducing the interelectronic repulsions
by ensuring that the electrons synchronize their mo-
tions so as to keep apart. Now it is difficult to allow

B P, O. Lowdin, in Proceedings of the Symposium on
Molecular Physics, Nikko, Japan, 1953 (unpublished).
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for this in a standard LCAO MO wave function be-
cause each AO occupies the whole of space. When we
expand such a MO in terms of the AQ’s, each term in
the expansion is a function covering all space. It is
impossible to write satisfactory correlated wave func-
tions in terms of orbitals of this type. The difficulty
would be avoided if we could use as a basis a set of
AOQ’s that do not overlap; in this case the three- and
four-center integrals between them would vanish.
The success of the apparently illogical Pople ap-
proximation, where these two-electron integrals are
neglected and yet the one-electron integrals 8;; are
retained, may be due to this; it may in effect be
adjusting the repulsion integrals in just the right way
to allow for horizontal correlation.

Correlation, however, has another effect. By re-
ducing the probability that two electrons occupy the
same point in space, it reduces the correction terms
(“exchange energy’’) of Eq. (23). This could be al-
lowed for by reducing the two-electron exchange
terms, —2 p.;(#,77), in Eq. (7). The correction should
presumably be greater, the further apart the AO’s
o, ¢;. Combined with the argument given above, this
suggests that one could take both vertical and hori-
zontal correlations into account by increasing the
terms — 2 p;;(#1,77) for neighboring atoms, but making
them decrease rapidly with increasing interatomic
distance for nonneighboring atoms, and of course cor-
respondingly decreasing the terms 3 ¢.(¢%,%7) in the
diagonal matrix elements [Eq. (12)].

4. CONFIGURATION INTERACTION

The use of configuration interaction in LCAO MO
calculations was introduced some time ago by
Craig.* Although the SCF ground-state configura-
tion does not mix with singly excited configurations,
it can mix with more highly excited ones, and of
course the single excited configurations can mix with
one another. The possibility that configuration inter-
action may be important is one of the ugly spectres
of MO theory; for the number of possible configura-
tions is so large, even in molecules of quite moderate
size, that it is out of the question to take them all
into account. If this were found to be necessary, it
would invalidate the entire MO approach. One could
of course try to limit the damage by including only a
limited number of arbitrarily chosen configurations;
but this would introduce a most undesirable in-
tuitive element into the treatment—and would at
the same time complicate it greatly. A further ob-
jection is the difficulty of picturing the results of con-

14 D, P. Craig, Proc. Roy. Soc. (London) A200, 474 (1950).
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figuration interaction in chemical terms; this would
limit the chemical utility of any treatment based on
it. For these reasons it seems an admission of defeat
to introduce configuration interaction into our treat-
ment of complex molecules; our treatment if it is to
be of any practical value must rest on the use of
single-determinant wave functions.

We can make one exception to this stricture. As
Moffitt'® has pointed out, configuration interaction is
much more important in cases where the interacting
configurations are degenerate; here, indeed, it is es-
sential to take the interactions into account. The in-
clusion of this first-order configuration interaction
presents no difficulty or ambiguity, however, since
the number of interacting configurations is clearly
defined and small. We must on the other hand try to
avoid including the smaller and very numerous sec-
ond order interactions between nondegenerate con-
figurations.

Similar difficulties arise in the valence bond and
Pariser—Parr methods, where the philosophy is to use
configurations built up from simple basic orbitals and
to compensate for the inadequacy of the individual
configurations by introducing configuration inter-
action. These methods seem to have fallen out of
favor in recent years. A further objection to the
Pariser—Parr method is that it predicts far more ex-
cited states of low energy than are observed; thus
pentacene is predicted'® to have twenty-one states of
energy less than 7 eV above the ground state, whereas
the ultraviolet spectrum gives evidence only for four.
It is true that the transitions to most of the states are
predicted to be forbidden, but this restriction would
probably be removed if allowance were made for the
effects of molecular vibrations (cf. the “forbidden”
band of benzene at 208 mu which has an extinction
coefficient of 10*). Moreover, the calculations covered
only singly excited configurations; inclusion of more
highly excited configurations would presumably have
still further increased the number of states predicted
to have energies below 7 eV.

5. ALTERNANT HYDROCARBONS

An alternant” conjugated system is one in which
the m-bonded atoms can be divided into two sets, no
two atoms of the same set being directly linked. This
is always possible in molecules where there are no
odd-numbered rings. The MO treatment for an
alternant hydrocarbon with an even number of con-

15 W. E. Moffitt, J. Chem. Phys. 22, 320, 1820 (1954).

16 R. Pariser, J. Chem. Phys. 24, 250 (1956).

17 See C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy.
Soc. (London) A192, 16 (1947).
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jugated atoms (even AH) assumes a particularly
simple form, first deduced for the Hiickel treatment
and later shown® to hold also in the Pople approxima-
tion. The essential features can be summed up as fol-
lows:

(1) ¢g: = 1{for each atom; (2) p;; = 0 if atoms 7, 7,
belong to the same set; (3) To each occupied MO ¥},

there corresponds an empty or virtual MO ¥, related

by

* 0

Z Amipi + Z AmjP;
* 0

Z Qmipi — Z AmiPj 4 (25)

where each summation is over atoms belonging to the
same set; (4) Singly excited configurations arising
from transitions between pairs of related orbitals
¥, ¥, are unique, but the remaining transitions ap-
pear in degenerate pairs.

Several phenomena can be explained very simply
in these terms:

(a) AH’s are nonpolar, whereas nonalternant
hydrocarbons (e.g., azulene, fulvene) have significant
dipole moments.

(b) Inductive substituents have little effect on the
energy of the lowest m—=* transition; this would be
expected since the transition is between orbitals
where the orbital densities a2 of the various atoms
are the same. There is, therefore, no change in the -
electron distribution in passing from the ground state
to the excited state. This is not the case for non-
alternant hydrocarbons; here, inductive substituents
produce quite large shifts in the absorption bands, the
shifts depending in a predictable way on the position
of the substituent.’-2

(¢) The first four absorption bands correspond to
transitions between the two highest occupied MO’s
W1, Vi and the two lowest unoccupied MO’s ¥;,,
¥,—1. Two of these are unique, but the other two,
(¥h — ¥,_) and (¥}, — V;,) are degenerate. A de-
tailed analysis® shows that first-order configuration
interaction between them leads to a splitting into two
states, and that the transition to the lower of these
should be forbidden or partially forbidden, the transi-
tion to the other being correspondingly more intense.
Clar? has indeed found that aromatic hydrocarbons

V) = (24)

v, =

18 J. A. Pople, Proc. Phys. Soc. (London) 68, 81 (1955).

19 H. C. Longuet-Higgins and R. G. Sowden, J. Chem. Soc.
1952, 1404.

20 E. Heilbronner, in Non-Benzenoid Aromatic Compounds,
edited by D. Ginsberg (Interscience Publishers Inc., New
York, 1959), p. 171.

M. J. 8. Dewar and H. C. Longuet-Higgins, Proc. Roy.
Soc. (London) A67, 795 (1954).

2 A. Clar, Aromatische Kohlenwasserstoffe (Julius Springer-
Verlag, Berlin, 1941).
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commonly show four distinct bands in the uv-visible
region, two strong (p,8’), one very strong (8), and one
weak (a). Moreover, the « and 8 bands seem to be re-
lated since the ratio of their frequencies is always
about 1:1.3. This pattern corresponds very nicely to
that predicted for an AH using the Pople approxima-
tion.

One interesting point is that the regularities indi-
cated above hold only in the Pople approximation.
They disappear in a full SCF treatment where three-
and four-center and overlap integrals are included.
The weakness of the a bands, for example, could then
be explained only by introducing very extensive con-
figuration interaction. This supports the suggestion
made earlier, that the Pople approximation may ac-
tually give a better representation of molecular
structure in terms of single determinants than can a
full SCF LCAO MO treatment based on Slater AQ’s.

6. HUCKEL APPROXIMATION

The elements of the Pople F matrix for an even
AH assume a particularly simple form:

Fi = (Wa)i + % (45,3) , (26)
Fi,-(i #= J) = B — %p“-(ii,jj) . (27)

Equation (26) is derived by setting the ¢.s in Eq.
(12) equal to unity. All the diagonal elements have
the same value, and this value () is the same in all
AH’s. The term } p.;(47,j7) vanishes as atoms ¢, j are
separated by an even number of bonds, since atoms
1, 7 then belong to the same set so that p.; vanishes.
If then we neglect 8;; for nonbonded atoms, and
neglect 3 p.;(7%,77), if the atoms 7, j are separated by
three or more bonds (which seems reasonable), then
F;; vanishes unless atoms ¢, 7 are directly linked. The
bond lengths and bond orders in aromatic hydro-
carbons vary little; one may then as a first approxi-
mation replace B, pi, and (#,jj) in Eq. (27) by
mean values. The off-diagonal elemeuts F;; then van-
ish for nonbonded atoms ¢, 7 and have a common
value (8) for bonded ones. Thus,

Fi,: = o y (28)
F;; = 8 (atoms 7, 7 bonded) , (29)
Fi; = 0 (atoms 7, 7 not bonded) . (30)

The resulting treatment is very simple since the ele-
ments of the F' matrix have fixed values. The orbital
coefficients and energies can be found directly with-
out any need for an iterative procedure. This treat-
ment is the so-called Hiickel method which remained
for a long time the only feasible method for treating
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conjugated systems. It has proved remarkably suc-
cessful in the interpretation of chemical and physical
properties of alternant aromatic hydrocarbons, and
it still remains an important tool in chemistry. It has,
indeed, been so successful, that attempts have been
made to extend it to molecules of other types; appli-
cations of this kind are suspect, however, for the fol-
lowing reasons:

(a) Application to molecules where the bond
orders alternate significantly (e.g., polyenes) is un-
satisfactory, since it is no longer justifiable to use a
fixed value g8 for the off-diagonal elements F';;. The
two-electron exchange term % p;(i2j7) in Eq.
(27) introduces a kind of positive feedback that in-
creases the alternation between strong and weak
bonds. The Hiickel method therefore underestimates
bond alternation. It predicts, for example, much too
high an order (0.45) for the central bond in buta-
diene. The Pople approximation predicts orders
ranging from 0.12-0.25, depending on the values used
for the electron-repulsion integrals.

(b) Application to nonalternant hydrocarbons is
unsatisfactory since the w-electron densities g; are no
longer equal to unity. The diagonal elements in the
F matrix can then no longer be given the constant
value a. The same difficulty arises in applying the
method to closed-shell ions, where there are an even
number of electrons but an odd number of con-
jugated atoms (e.g.,, CH,=CH—CHj;, PhCHS).
Wheland and Mann? suggested that allowance could
be made for this by writing the diagonal elements F';;
as

Fi=a+ (1—¢qw. (31)
This certainly allows for variations in the term %
g:(12,%7) in Eq. (12), but it does not allow for the
effects of nonneutrality (i.e., ¢; ¥ 1) in more distant
atoms. This treatment, which Streitwieser** has
termed the » technique, seems therefore to be of
doubtful value. If one is going to make allowance for
the terms in F;; involving the charge densities ¢;, one
might as well do the thing properly and use the full
Pople expression.

(¢) Similar difficulties arise in application of the
Hiickel method to conjugated systems containing
heteroatoms. The standard procedure has been to
write the diagonal elements F;; in the form

F:’i = a + [ (sz)i - (WZP)C] ) (32)

2 G. W. Wheland and D. E. Mann, J. Chem. Phys. 17, 264
(1949).

24 See A. Streitwieser, Molecular Orbital Theory for Organic
Chemists (John Wiley & Sons, Inc., New York, 1961), p. 115.
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where (Ws,). is the ionization potential of the 2p-
electron in a trigonal carbon atom, and (Ws,); that in
atom 7. Unfortunately, the condition ¢; = 1 fails in
compounds containing heteroatoms, and attempts to
allow for this by using the w technique are unsatis-
factory for the reasons indicated above. Our calcula-
tions® for boron-containing aromatic compounds in-
dicate that the w technique does not give a satisfac-
tory explanation for the observed chemical proper-
ties, even when allowance is made for differences in
the one-electron resonance integrals B between
bonds formed by different types of atom.

For these reasons one must regard Hiickel-type
calculations for molecules other than aromatic hydro-
carbons with some reserve. It would seem wiser to
use the Pople method in such cases; this involves no
more difficulty if the calculations are carried out with
a computer.

7. CHEMICAL APPLICATIONS

The introduction of MO theory has completely
revolutionized organic chemistry, and it is impossible
to do more here than comment on one or two salient
aspects.

First, the MO treatment is, as we have seen, most
easily applied in the case of aromatic hydrocarbons.
If we wish to use MO theory as a guide in studying
the mechanism of a given chemical reaction, we
should try if possible to collect experimental data for
cases where the reactants are alternant hydrocarbons.

We have used this technique in a number of con-
nections. Thus, a study of relative reactivities of
aromatic hydrocarbons in nitration provides® a new
and useful approach to the mechanism of electro-
philic substitution. A similar study? of the solvolysis
of chloromethyl derivatives of such hydrocarbons
threw a new light on the relation between the two
extreme mechanisms (Sy1, Sy2) for nucleophilic sub-
stitution on saturated carbon. Recently a study® of
the charge-transfer spectra of = complexes formed by
aromatic hydrocarbons with suitable acceptors has
been used as evidence for the structure of such com-
plexes.

An interesting development® has been the use of
perturbation methods in discussing chemical prob-

25 M. J. S. Dewar and W. H. Poesche (unpublished work).

26 M. J. S. Dewar, T. Mole, and E. W. T. Warford, J.
Chem. Soc. 1956, 3581.

27 M. J. 8. Dewar and R. J. Sampson, J. Chem. Soc. 1956,
2789: 1957, 2946.

28 M. J. S. Dewar and A. R. Lepley, J. Am. Chem. Soc. 83,
(4560 )(1961); M. J. S. Dewar and H. Rogers, ibid. 84, 395
1962).

29 M. J. S. Dewar, J. Am. Chem. Soc. 74, 3341, 3345, 3350,
3353, 3355, 3357 (1952).
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lems. Most chemical problems involve calculations of
small differences in energy between closely related
structures; thus the rate of a chemical reaction de-
pends on the difference in energy between the re-
actants, and a transition state which differs from the
reactants only by one or two bonds. Such energy dif-
ferences can be calculated very simply by applying
perturbation theory to the Hiickel approximation.
This approach has provided a new and much superior
alternative to the resonance theory as a general basis
for organic chemistry. It not only avoids the vague
and intuitive nature of arguments based on resonance
theory, but it also gives predictions of reactivity, ete.,
in a quantitative form.

The success of these simple methods is gratifying,
but not unexpected. It must always be better to cal-
culate a small difference between two large energies
by a direct perturbation method than to calculate the
two large energies separately and then subtract one
from the other. In certain cases the PMO (perturba-
tional MO) method has correctly made predictions
that follow from no other theoretical approach. Thus
it gives® an immediate and simple derivation of the
Hiickel rule for aromaticity, and it predicts® that
azulene (I) should be aromatie, unlike pentalene (IT)
or heptalene (III); none of the more elaborate MO
methods has been satisfactory in these connections.

0 o P

These perturbation methods are reliable only for
alternant systems since they derive from the Hiickel
method; they can, however, be applied in some cases
to nonalternant molecules if these can be derived
from alternants by a perturbation (as is the case for
I, II, IIT above). Perturbation methods can also be
used for systems containing heteroatoms by treating
them as perturbed forms of the corresponding or
isoconjugate hydrocarbons. All these calculations
have the advantage of “pencil and paper”’ simplicity
—a point of obvious importance to practical chem-
ists.

The success of these methods suggests that more
refined perturbation methods might be even more
successful. Pople®* has developed methods of this
kind based on his simplified SCF treatment, and of
course Moflitt’s ATM method® is based entirely on a

30 J. A. Pople, Proc. Roy. Soc. (London) A233, 233 (1955);
J. A. Pople and P. Schofield, sbid. A233, 241 (1955).
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perturbational approach. A parametric form of the
ATIM method might turn out to be ideal for chemical
problems in general and conjugated systems in par-
ticular.

8. RADICALS

So far we have considered only closed-shell mole-
cules where all the MQ’s are either full or empty.
This cannot be the case for a radical where one elec-
tron remains unpaired. Coujugated radicals (e.g.,
CH,=CH—CH,-, PhCH,-) must therefore contain
singly occupied 7-MO’s.

The simplest way to deal with such a compound is
to suppose that the electrons occupy a single set of
MO’s; these can be found by applying the usual
closed-shell SCF treatment either to the positive ion
formed by loss of one electron from the radical, or to
the negative ion formed by addition of one electron
to it. In this picture all the electrons but one remain
paired ; there is then an unpaired spin density at each
atom proportional to a2; where aq; is the coefficient of
the AO ¢; in the singly occupied MO. The distribu-
tion of unpaired spin can be estimated experimentally
by standard ESR techniques and the values com-
pared with those calculated.

Comparisons of this kind show a serious discrep-
ancy between theory and experiment. The theoretical
treatment indicates that the unpaired spin at each
position can be due only to the unpaired electron; if
this has a spin, the interactions with nuclei must cor-
respond to interactions with an a-spin electron. How-
ever, in certain positions, one finds evidence for an
excess of unpaired electrons of opposite spin to that
of the odd electron. Thus, in the allyl radical CH;
=CH—CH,-, theory predicts that the unpaired
electron (of, say, « spin) should be confined to the end
atoms; ESR studies show that there is indeed a high
density of unpaired « spin at these positions, but
there is also a significant density of excess 8 spin at
the central atom. Many other analogous cases of
“negative spin densities”’ in radicals are now known.

The reason for this discrepancy is easily seen. Con-
sider a radical with n a-spin electrons and (n — 1)
B-spin electrons. The interpretation of F-matrix ele-
ments given above showed how the total energy
could be divided into a classical part (corresponding
to the diagonal elements F';;) and a nonclassical part
(corresponding to the off-diagonal elements F;;). The
latter contains corrections to the interelectronic re-
pulsions, due to the effect of the Pauli principle. Now
in the case of our radical the corrections will not be
symmetrical. The potential of an a-spin electron
needs correction for interactions with the (n — 1)
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other a-spin electrons, but that of a 8-spin electron
needs correction for interactions with only (n — 2)
other electrons. If we are going to represent the
radical by a single determinant, we must then use
different orbitals for electrons of « and g spin. If we
introduce appropriate charge densities ¢%, ¢, and
bond orders p%, p%; for the two kinds of electrons de-
fined by

GF = D Nl DY = D m Nl (33)
with analogous expressions for ¢? and p#, we can see
that the orbital coefficients a2; for the a-spin electrons
will be the eigenvectors of one F' matrix. The corre-
sponding coefficients a®; for the S-spin electrons will
be eigenvectors of a different F matrix, the matrix
elements for the #* matrix being

Fi = (Wa)s + ¢ (i1,30) + Z#: (@ + ¢ — DG,
(34)

Fi5 = Ba = pis(40,77) - (35)
The matrix elements of the F® matrix are derived
from these by interchanging « and 8. The eigenvalues
and eigenvectors of the two F matrices are found in
the usual way by an iterative procedure, leading to
two sets of MO’s, one for the a-spin electrons and one
for the B-spin electrons.

This treatment gives a qualitatively correct pic-
ture of radicals in which negative spin densities duly
appear. The reason for this is easily seen. Suppose
that in the simple MO treatment (with a single set
of MO’s for all electrons) the unpaired a-spin electron
has a larger density at position 7. Consider the two
electrons occupying some other orbital ¥,. The re-
pulsion between the a-spin member of the pairs and
the a-spin electron on atom 7 will be less than that
between the g-spin member and the unpaired elec-
tron; the densities of the two electrons at atom ¢ are,
therefore, not the same. This unpairing of the elec-
trons has the effect of concentrating more of the a-
spin electron at position ¢ and so squeezing out an ex-
cess of B-spin electrons onto the rest of the conjugated
system. In allyl, where the unpaired electron is con-
centrated on the end atoms, the effect is to produce
a surplus of 8 spin at the central position.

This difficulty can be met in the simple MO treat-
ment by introducing configuration interaction, but
thisis a desperate expedient to be avoided at all costs.
The open-shell MO treatment avoids this difficulty
at the expense of another; it is easily shown that al-
though the one-configuration open-shell wave func-
tion is an eigenfunction of the spin operator S, it is
not an eigenfunction of S This difficulty in turn can
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be met by what is in effect another kind of configura-
tion interaction treatment;* this is certainly less ob-
jectionable than the one indicated above, in that the
number of configurations is less and in that their co-
efficients can be found by using projection operators.
However, the whole procedure is offensively cumber-
some in the case of large radicals.

Even though the open-shell single-determinant
wave functions are not eigenfunctions of §?, it seems
quite likely that they may in practice give good ac-
counts of the properties of radicals provided that the
repulsion integrals occurring in the F matrix are
adjusted as indicated earlier. Calculations carried
out®? in this way for the allyl radical have given good
agreement with experiment, and with the results of
more rigorous calculations by McConnell

Similar difficulties arise in the treatment of excited
states of molecules, where there are two unpaired
electrons; structures of this kind are becoming in-
creasingly important in organic photochemistry,
where excited triplet states play a dominant role.
Most calculations for triplet states have so far used
the simple model in which the same set of MO’s is
used for electrons of either spin; however, it may
well prove better to use the open-shell treatment,
particularly for triplet states where the number of
a- and B-spin electrons differ.

9. BOND FIXATION AND THE VALIDITY OF THE
HUCKEL APPROXIMATION

One basic assumption made throughout has been
the Hiickel approximation; this in turn is tied up
with the idea that bonds other than those involved
in conjugated systems can be represented in terms of
sharing of localized pairs of electrons between pairs
of atoms. The following argument®* throws light on
this problem.

Consider a molecule containing two bonds of given
type (e.g., C-C single bonds). In a localized bond
picture, these correspond to interactions of pairs of
AO’s on the bonded atoms to form pairs of MO’s, the
lower of which in each case is occupied by a pair of
electrons (Fig. 1).

Let us now consider the effects of interactions be-
tween the bonds. There will be first-order interac-
tions between the degenerate pair of filled orbitals,
and between the degenerate pair of empty orbitals
[Fig. 1(b)]; these interactions delocalize the electrons
over both bonds and greatly alter the orbital en-

31 P, O. Lowdin, Phys. Rev. 97, 1509 (1955).

32 M. J. S. Dewar and N. L. Sabelli (unpublished work).

33 H. M. McConnell, J. Chem. Phys. 29, 244 (1958).

3 M. J. S. Dewar, Hyperconjugation (Ronald Press, New
York, 1962); Tetrahedron (to be published).
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ergies; they do not, however, alter the total energy
or total spatial distribution of the electrons. Secondly,
there will be a much smaller second-order interaction
between the filled and empty orbitals, depressing the
former and raising the latter [Fig. 1(c)]. This will

i R B
(a) (b) (c)

F1a. 1. Interactions between a pair of similar bonds: (a)
unperturbed system; (b) effect of first-order perturbation; (c)
effect of second-order perturbation.

alter the total energy and the total electron distribu-
tion.

What then do we mean when we ask if the localized
bond model is valid? If we are interested in some one-
electron property of the molecule, i.e., a property that
depends on the individual MO’s, such as the ioniza-
tion potential or nuclear spin coupling of the unpaired
electron in a radical, then the first-order interactions
will be important, and we will not expect to get any
kind of agreement with experiment unless we take
them into account. If, however, we are interested in
some property that depends collectively on all the
electrons taken together, e.g., the total binding en-
ergy or dipole moment of a molecule, then we may
get a good estimate from the localized bond model—
for the deviations from this in the case of such col-
lective properties are due only to the small second-
order interactions which may well be unimportant.
The difference is analogous to that between first-
order configuration interaction in conjugated sys-
tems—which must be taken into account—and
higher order configuration interaction—which we de-
voutly hope need not be. Much confusion has been
caused by failure to realize this distinction. The
localized bond model is never a correct description,
but many molecules behave as #f the electrons in
them were delocalized, insofar as their collective prop-
erties are concerned. The localized bond model must
not, however, be used in discussing one-electron
properties, especially in cases where there are two or
more bonds of the same kind between which large
first-order interactions can occur.

Similar difficulties may arise in the case of con-
jugated systems with reference to the Hiicksl ap-
proximation. Things are made better here by the fact
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that the 7-MO’s are orthogonal to ¢ bonds formed by
the conjugated atoms, and by the fact that =-MO’s
and ¢-MO’s probably have very different energies.
Nevertheless, it may prove necessary to allow for
interactions between m-MO’s and 0-MO’s in discuss-
ing one-electron properties of conjugated molecules.
Hyperconjugation constitutes the most crucial case
of this kind ; the importance of this type of o—r inter-
action is still a matter of controversy.®®

10. BOND LOCALIZATION IN CONJUGATED
SYSTEMS; EQUIVALENT ORBITAL PRINCIPLE

The arguments of the previous section link up well
with the equivalent orbital method of Lennard-
Jones.®® One can state, on this basis, a principle that
might be termed the equivalent orbital principle.

If the basic orbitals for a molecule can be put in such
a form that they overlap efficiently only wn pairs or
small groups, then the collective properties of the mole-
cule can be well represented in terms of corresponding
localized bonds.

The usefulness of this principle can be illustrated
by two simple examples:

(a) Classical conjugated molecules. Certain conju-
gated molecules (e.g., butadiene, CH,=CH—-CH
=CH:) behave®* in many respects (i.e., those cor-
responding to collective properties) as though the
bonds in them were simple single or double bonds.
This is true of classical conjugated molecules, i.e.,
ones for which only single classical resonance struc-
tures can be written. As we have seen, the bond
orders in molecules of this kind alternate strongly;
the interaction terms F.; [Eq. (7)] for the weak
“single” bonds will be small. If we apply perturba-
tion theory to a classical model with alternating
single and double bonds, the interactions between the
two-center « bonds will be correspondingly small.
The arguments given above suggest then that the
collective properties should be little changed by the
interaction, so that the classical model should be a
good “as if”’ description. The situation is indeed even
more favorable, for one may absorb an averaged al-
lowance for the interactions into the empirical bond
properties we attribute to ‘pure” single and double
bonds. The collective properties of such molecules
can therefore be interpreted in terms of a localized
bond model, although of course there is no question
that the m-electrons are in fact delocalized.

(b) w-Bonding involving d orbitals. Just as ¢ bonds
can be treated in terms of a localized overlap of di-
rected hybrid orbitals of the component atoms, so

35 J. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1, 14
(1949).
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also can be the = bonds formed by dr:pr overlap. A
good example is provided by the phosphonitrile
chlorides. Craig®® thought these to be aromatic com-
pounds of novel type, but Dewar, Lucken, and
Whitehead® have pointed out that one can write a
localized bond model in which each nitrogen is
bonded to its adjacent phosphorus atoms by three-
center = bonds, the successive three-center 7-MO’s
not interacting significantly with each other. This is
illustrated schematically in Fig. 2, the dotted lines
implying dm:pm:dr three-center =-MO’s seen from
above.

CI-P CI P Cl Cl-—P ~cl ,P\ Ci

/\~-./\/\/

F1a. 2. Schematic representation of dmr:pmidr three-center
7-MO’s is a phosphonitrile chloride.

According to this representation, each three-center
unit should be independent of its neighbors. Mole-
cules of this kind should be quite flexible, unlike
aromatic systems where a set of p-AO’s fuse into ex-
tended 7w-MO’s, and their heats of formation per
PNCl; unit should be the same, regardless of the de-
gree of polymerization. These conclusions agree very
well with the experimental facts, suggesting that this
“as-if”” description in terms of segmented three-
center 7 bonds is a very good one.

A similar situation must arise in other molecules
where = bonds are formed by mutual overlapping of
p and d orbitals. Thus in sulphones (I)

R 0 R
N/ N

S C=0
) /
R 0 R

I II

the two S = 0 = bonds can be regarded as being es-
sentially independent of one another, and there will
be no conjugation (in the chemical sense) between

36 D. P. Craig, J. Chem. Soc. 1959, 997.
37 M. J. S. Dewar, E. A. C. Lucken, and M. A. Whitehead,
J. Chem. Soc. 1960, 2423.
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unsaturated groups R and S = 0 = bonds. The situ-
ation is therefore entirely different from that in a
corresponding ketone (II); here the C = 0 7 bond is
a pr:pw bond and the p orbital of the carbon atom
will overlap and interact with p or 7 orbitals on the
adjacent groups R.

The distinction between pr:dr and pr:pr bonds is
of course obscured in ordinary chemical symbolism
by the use of single lines to denote bonds of all kind;
this has caused considerable confusion in organic
chemistry, where no clear distinction has been drawn
between the two kinds of unsaturation. Another im-
mediate consequence is that dr:pr bonding cannot
lead to aromaticity, since bonds of this kind do not
lend themselves to extensive conjugation.

11. SUMMARY

The purpose of this paper is primarily to arouse
discussion; nevertheless, certain conclusions seem to
follow from the arguments presented in it:

(1) The only reason for trying to treat complex
organic molecules in general, and conjugated systems
in particular, by quantum mechanical methods lies
in the chemical value of such calculations. The main
criterion used to judge them must therefore be prag-
matic and we must be prepared to make any ap-
proximations, however outrageous, if they lead to
useful results.

(2) For the same reason it seems a waste of time
to attempt Group One calculations for molecules of
this kind; simple molecules still present problems of
quite sufficient complexity.

(3) On the other hand, parametric treatments of
Group Two type have been both successful and use-
ful; the evidence suggests that they may be made
even more so by a more judicious choice of the
parameters occurring in them.

(4) Conversely, there has been too much tendency
to rely on treatments which are unjustified either by
theory or by experiment, simply on the grounds that
similar methods have worked well in certain cases
and regardless of the fact that those cases may have
been very special ones.

(5) The most promising lines seem to be the use
of simple perturbation methods where these are ap-
plicable, and the use of the Pople method with suit-
able adjustment of the electron repulsion integrals.



