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Gaussian Wave Functions for Polyatomic Molecules
FRANK E. HARRIS*

Chemistry Department, Stanford University, 8tanford, Cctifornia

I. INTRODUCTION

~

~AUSSIAN wave functions have been suggested~ by several workers' ' as an alternative to the
more usual Slater-type orbitals in polyatomic mole-

cules, where the latter lead to extremely tedious in-
tegral computations. The Gaussian functions possess
the distinct advantage that all the integrals needed
for the usual nonrelativistic, spin-free approximate
molecular Hamiltonian can be evaluated in closed
form, including the three- and four-center integrals
which for Slater orbitals have proved exceedingly dif-
ficult. For atoms, it is possible that Gaussian orbitals,
which possess the wrong radial dependence at large
distances from the nucleus, will provide too poor an
electronic description to be of great value. However,
in molecules, the electron distribution will differ more
radically from that of hydrogenic or Slater orbitals,
and Gaussian functions may be fairly satisfactory
over the more important spatial regions. Moreover,
the increased ease of computation with Gaussiana
makes possible the free use of linear combinations of
functions for each orbital, and it is distinctly possible
that a combination giving better results than a Slater
type orbital can be handled more easily.

In addition to the possibility of using Gaussian
functions for orbitals, there also exists the alternative
of using Slater orbitals and evaluating the multi-
center integrals by an integral transform method first
proposed by Eikuchi. ' The transform converts the
integrals involving exponential functions into forms
identical to those appearing in the Gaussian orbital
formulation. Use of the transform method, then, in-
volves integration of Gaussian integrals followed by
the numerical application of the inverse transform.
Shavitt' waa the first to point out the applicability of
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this transform to the evaluation of molecular integ-
rals.

If Gaussian functions are to be most useful, it is
necessary to be able to compute integrals among
functions centered at arbitrary spatial points, with a
general angular dependence and a radial dependence
analogous to various values of the "principal quan-
tum number" of atomic problems. A suitable angular
dependence is provided by the spherical harmonics,
provided we permit the axes for each orbital to be in-
dependently oriented. This enables us to describe p,
d, or higher orbitals directed, for example, along the
bond directions of the molecule.

Previous work with Gaussian functions, particu-
larly by Boys, ' has led to formulas for the simplest
integrals of each type. While it is formally possible to
differentiate these formulas in various ways to pro-
duce all the integrals we describe, this process is
tedious and leads through work which is more com-
plicated than necessary. It is also desirable, if ma-
chine computations are contemplated, to have alge-
braic, rather than operator formulas. The present
paper is designed to contribute in this direction, by
providing a workable collection of formulas for the
application of a general set of Gaussian functions to
molecular problems. We have ma, naged to reduce to
explicit closed algebraic form all dependence of the
integrals upon the locations, angular dependence, and
orientation of the various orbitals. We have left in

operator form, however, the extension of the formulas
to integrals for which the principal quantum number
exceeds the azimuthal quantum number. The re-
sultant differential forms are easy to evaluate for
specific cases, but appear to be difFicult to specify
algebraically.

We considered two forms for the pre-exponential
radial dependence of the Gaussian wave functions,
namely, simple powers of the radial distance, and the
I aguerre polynomials which accompany the Gaussian
exponential in the eigenfunctions of the three-dimen-
sional harmonic oscillator. We did not find sufhcient
benefit from the special properties of the I aguerre
polynomials to make their use lead to simpler formu-

las in many-center systems, so that we used the
simple powers in the work which follows.
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II. DEFINITIONS

The wave functions used are of the form

P„"(„(r)= r~+'P) (cos 8~)e'""" '"", (1)
where (r~, 8~,ip„)are spherical polar coordinates with
origin at point A, and with axes 0~ ——0, q~ ——0 in
directions specified by Eulerian angles (cr&,P~,y~)
relative to a fixed axial frame which is the same for
all orbitals. To avoid ambiguity, the definition of
Eulerian angles used here is described fully in Ap-
pendix 1.We also use circular cylindrical coordinates
(pA eA (pA) With

The associated Legendre functions appearing in

Eq. (1) are deffned as

(7)

With the deffnition of Eq. (7), the representation of a
spherical harmonic originally in coordinates O, q when
expressed in coordinates 8',q' about an axial system
derived from the original system by rotation of the
axes through Eulerian angles (cr,p, y), is'

P", (cos 8)e'"" = Q D, '(o.,P,y)P((cos 8')e*"

PA = rg Sln 0~,

ZA
——r~ COS 0&. (2b) Di'(o. ,p,y) = e' +'"d'(cos p) . ,

(2a) with representation coefFicients

(Qa)
Subscripts and arguments are suppressed throughout
the paper wherever possible without ambiguity.
Additional orbitals, Ps, Pc, Po will be of the form of
Eq. (1), with a replaced by b,c,d, respectively. If co-
ordinates of two electrons appear in the same expres-
sion, they will be distinguished by additional sub-
scripts 1,2, as in r~&, 8», P"(r,), etc. Note that the
foregoing definition permits orbitals at arbitrary posi-
tions, with arbitrary orientation. The powers of r in
excess of l must be even to partake of the advantages
of the Gaussian formulation.

The integrals with which we are concerned are the
overlap integral

(Anlm)Bn'l'm') = dr/„", (r)P„,„(r),
the kinetic-energy integral

(Anlm~ —-', V'~Bn'l'm') = —-,'dr/„", (r) V'P„&„(r),

where

d '(t), = (l+ m)!(l —a)!

xg
j ] ™2+~/2 j $

'+m~

(—1)'
2

e!(l —o —e)1(e + a —m)!(l + m —e)! '

m, o- &~ 0. (Qb)

Negative m and c are reached through the relations

d'(t), = d'(t), .= (—1)"""d'(—t)
= (—1) d (—t)-,—. (Qc)

The functions d'(t)„.can be written in terms of
Sacobi polynomials, leading to recurrence relations
among d'(t), with different indices. Since d'(t)„,is
real, Eq. (Qa) implies Di" * = D& " '. Properties of the
Sacobi polynomials, Legendre functions, and repre-
sentation coefficients are collected in Appendix 2.

In discussing the integrals of Eqs. (3)—(6), the fol-
lowing definitions will be employed:

the nuclear-attraction integral

(Anlm~ ~Bn'l'm') = drat„"&„(r)—tt„&„(r),(5)

and the electron-repulsion integral

(A nlmBn'l'm'
~

Cn"l"m "Dn"'l"'m"')

dr, dr, P„", (r,)P„'","„"(r.) tt„',„(r,)
r12

Z, = fA —S),

8 =iC —Di,
abdal

Xl

cdRg
xs ~ d p

(10a)

(10b)

(1la)

(lib)

Its(r ) (6)

Here V' is the Laplace operator, r» ——~r, —r, ~, and
rc ——~r —C~. The integrations are over all space.
Notice that in Eq. (6) (AB~CD) refers to tt"* and fs
for one electron, etc* and fD for the other. This nota-
tion differs from that usual in some branches of phys-
ics but it is common in this context.

aA+ bB
a+5

cC+ dD
c+ d

(12a)

(12b)

9 A general reference on transformations of spherical har-
monics is A. R. Edmonds, Angular Momentum in Quantum
Mechanics (Princeton University Press, Princeton, New Jer-
sey, 1957), particularly Chap. 4.
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tt=a+b,
v=c jd,

(13a)

(13b)

(14)

(15)

along the directed line Q —P, and with (nI, Pp pp )
= (no', Po', yo') given by the equivalent of Eqs. (16),
with P and Q in place of A and B. The coordinate
systems defined by these axial systems we denote by
(r~,8~,g ~) and (r,',8,',p,').

Finally, two special functions enter our work,

The point P is on the line between A and 3 at a point
which is optimum for expansion of g~f&. It will prove
to be convenient to discuss a coordinate system
centered at P, with polar axis 0 = 0 along the directed
line 3 —A. Such an axial system, which we shall
characterize by Eulerian angles (n~, P~,yi), defines
the coordinates (r&,8&,q»). In terms of A and 3, the
Eulerian angles are

B. —A.
cos cry =

By sin
B„—A„

sin cr„=B" . ", (16a)
B~ sin

Bz —Az
cos P„=

LLI
(16b)

y„=0. (16c)
Similar remarks define coordinates (ro,8o,gq) centered
at Q with axes defined by Eulerian angles (era, Po, yo)
specified in terms of C and D.

In discussion of the nuclear attraction integral, Eq.
(5), it will turn out that the natural parameter is the
specification of C in the coordinate system about P
introduced in the preceding paragraph. We let the
coordinates of C in that system be (B„eo,Co) and
indicate them collectively by R&. The quantity in
Eq. (5) playing the role of z in the evaluation of Eq.
(6) we denote by y, defined as

y = (a+ b)B', .

When discussing rotations of the axial systems ap-
pearing on the problem so as to bring them to con-
venient orientations, it will be necessary to refer to
the Eulerian angles of a system of axes relative to
some other system which is not the single fixed axial
frame of the problem. We introduce the notation
(otpA PpA 'ypg) to refer to the Eulerian angles which
carry the axial system A into the system P, with
analogous definitions for other subscript combina-
tions. In Appendix 1 we discuss the calculation of
(ccpA PpA rpA) wllen (cxA PA yA) and (&p Pp rp) are
known.

Our most complicated. orientation problems occur
in the evaluation of Kq. (6). There we shall find it
convenient to introduce two axial systems not pre-
viously discussed, which we denote by P' and Q',
centered at P and at Q, respectively. These systems
have a common orientation, with polar axis 8 = 0

A. (t) = s"e "ds,

F„(t)= s'"e "ds.

A„is an elementary function occurring also in the
integrations of conventional atomic orbitals. "F. is
nonelement;ary, but may be reduced to an expression
involving the error function. Both A„and F.are dis-
cussed in Appendix 3.

III. OVERLAP INTEGRALS

The evaluation of the integrals (A~B) is conven-
iently performed by rotating the axes of A and B to a
common orientation, namely, that of the coordinate
system centered at I' and described in the preceding
section. This means that P" and Pe are to be expressed
in coordinates reached from the A and B systems by
~otatio~s (ctpA PpA QpA) and (cepB Ppe +pe), respec
tively. Representing such coordinates by primes, we
find

= Q D7 (PA)r~""P((cos 8~)e"" (2o)

(Antm~Bn't'm') = Q D, ' (PA)D, '(PB)
tf —l-

X 'S~. 'i'(a, b, ~B),

where l is the smaller of l and l', and

S:r. ( ( ba, B )=idrrg""P&(cos 8g)re""

(21)

X Pi' (cos 8&)exp[ —ar~ —br&j . (22)

The integrals 8.~.'~' depend, as indicated, only upon
the screening constants a and b, and upon the dis-
tance 8& between centers A and 3, the angular con-
tributions having been separated in Eq. (21).

The integral of Eq. (22) can be readily evaluated
forn = n' = 0, asshownin Appendix4. The result is

ie M. Eotani et al , Molecular 1ntegral. e (Maruzen Company,
Ltd. , Tokyo, 1955).

with a similar expression for Pe with o in place of o.
When the expressions of the form of Eq. (20) are sub-
stituted into (A~8), the y' integration causes all
terms to vanish except those for which 0-' = 0-, leading
to the result
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V. NUCLEAR ATTRACTION INTEGRALS

The nuclear attraction integrals may be evaluated
by transforming them to axes of common orientation,
just as for the overlap integrals. Thus, the corre-
sponding formula is

l l

Bn'l'm') = Q Q Db' (PA)D7' (PB)
a )=a-b-
X J 2' 'b'(a, b,B),Rc), (29)

l'-let

X Q A«'bx~b, l'
m& l (23)

with

IJ„';„',(a,b,8),Rc)

(lr TA P 2 (cos 8A) TB
rc

I

Pb x (cos 8B)expIi (o
' —o )(o' —aTA bTB]

I

8'2) (a,b,B)) = (—1)' '8'2'b(b, a, B&) . (25)

For nonzero n and n', we leave the result in terms of
the indicated differentiations:

(—1)"(l+ I I)!(l'+
I

I)!(2l' —2k —1)!!
k'!(l' —k+ o)!(l' —k —a)!2' "(l —l'+ k)!

w~ere
Values for l' ) l are reached through the identity

a " a'I"
S„',„,'(abs) ,=, ( —— ——

b&l
S;, (ab,s, ) . ,

(26)

IV. KINETIC ENERGY INTEGRALS

The kinetic-energy integrals can be transformed
into linear combinations of overlap integrals. A. con-
venient way of so doing is to employ the vector
identity"

v'fg = fv'g+ gv'f+ 2vf vg.

The special case n = n' = 0 is discussed in Appendix
4, where it is shown that J«' can be written in the
two alternative forms

l l

J (ab,s„R)=2ee"g g (. )

(,':::)(.".)"(.";,' '

I

X Q Cs;,''Bc" "Ps '(cos 8 )e"

Setting

l +2n -bTB'I I

=rB e g = P( (cos 8B)e*""
X &;(,+;'+2+2) (y) + —, A;(,+,''-2) (y) (31a)

(2n'+ l')(2n'+ l'+ 1)
2

rB

—2b(4n' + 2l' + 3) + 4b'TB f,
l'(l'+ 1)

Vf Vg = 0,
and

——; V'y„', ~ = —n'(2n'+ 2V+ 1)y„'
„„

+ b(4n' + 2l' + 3)p. 2

2 B2bgr br r

Thus,
(27)

(AnlmI —-', V'IBn'l'm') = —n'(2n'+ 2l'+ 1)

X (AnlmIBn' —ll'm') + b(4n' + 2l' + 3)

X (AnlmIBn'l'm') —2b'(AnlmIBn' + ll'm') .
(»)

ii P. M. Morse and H. Feshbach, Methods of TheoreticaL
Physics(McGraw Hill Book Company-, Inc. , New York, 1953).
The resu1t used here may be obtained from those given on
p. 114.

b82 &
' ') aB, —

X
b iI Ik b Q Ca»'Rc

X Ps' ' (cos Bc)e"

I:2 U+j' k)l ~ 'P
( ) (31b)

a=0 l a

Note that the dependence of the integral upon the lo-
cation of point | enters conveniently as a result of
the use of coordinates Rc —— (Pc, 8c,Cc) centered
about the point P. The coefEcients Cs,", arise as a re-
sult of the integrations of the Legendre functions and
are defined in Eq. (52) of A.ppendix 2. The sum over
A; is for all values such that Ck;,' does not vanish.

Substitution of either of Eqs. (31) may now be
made into Eq. (29) and the summations may be re-
arranged to place the r and 0' sums within the sums
over j, j', and k. Equation (29) then becomes

I,Alm Bl'm' =
I, , e-* g g grc Ia b j=0 j'=0 k
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,)a""""(P-"(r) + -'*A.(r)1 (bib)

The formula for TV depends only on the relative
orientations A, B, P, and P', and is thus essentially a
geometrical factor. We introduce the definition of 8'
for arbitrary 3' with an eye to its usefulness in the
discussion of the 2-electron integrals. For M = 0

D(a -a)&&gyp) p -a( ~ )
i(a r)aCp-

so th«p»cing pcP ec ~cP = 4c, Eq. (82) may be
reconciled with Eqs. (29) and (81).

A bit more simplification results if we further re-
arrange the summations, by introducing q

(j+j' —k) and doing the )c sum outside. The result
ls

AZm BZ'm' =
b

e

q+ (k/2)
Vg„"'"'PA, PB, P,a,,b, It'» Y,I, y

(85)

with

V', '
(PA, PB,P'P, a,b,B,) ="l '

)

X WB,,~,B„-,(PA, PB)p'P) . (86)

This formulation is useful in connection with the 2-
electron integrals.

Extension of Eqs. (81) to nonzero n and n' is pro-
vided by

/

J„'b'„b(a, BbRi)c

X ' 8' "' PA PBCP

—,'(i+j )

X 1 -,'(i+i '
B),t„(g)- (82)

g b

where
. /j j

W,', ,'" (PA,PB,P'P) = Q Q Di' (PA)
0=—jo=—j

X ~", ' (PB)D(' '"(P-'P) C;,'

~(",l (' )

Jib'(a b R Rc)
gg

(87)

where the dependence of R~ upon c and b must be in-
cluded in the differentiation. R~ depends on a and b

only through its dependence upon P. Let dPO refer to
a differential of P in the polar direction of the P co-
ordinates; this is the direction in which P moves as a
result of changes in a or b. In particular,

BP0 bjt!»

Ba (a+ b)''

Now, derivatives of the form

BP0 cB»
Bb (a+ b)' '

(8/Bpo) [Rcp)b
'

(cos ec) ]

are discussed in Appendix 5, in connection with the
evaluation of the two integrals. Using the techniques
there described, we And

gapa -a( e )
i(a a)@C-

BQ

Ai 0' 0 bg»

X pa a( () )
-i(a a)Cc—

(88a)

~&Pa —r( + )
i(a a)@C-

C k

—0 c~»

/ /

X PB:b' (cos ec)e" (88b)

/

Bopj.' '.) (cos Oc)e"
Ba

/ /

Bcp~~a' a[ (COS ec)C'—=0

Equations (88a) and (88b) facilitate the carrying out
of the operations of Eq. (87), particularly if Eq.
(81b) is used for J«". U Eq. (87) need not be ap-
plied, i.e., if n = n = 0, it is possible that Eq. (8»a)
will be the more convenient.

VI. TWO-ELECTRON INTEGRALS

As for the one-electron integrals, we remove some
of the angular contributions to the problem by align-
ing the coordinate axes of A and B to the P orienta-
tion, and by aligning the C and D axes to the Q
orientation. We then reduce the integral to a two-
center problem by expanding PA(r&) and PB(r,) about
P, and fc(rB) and pc(rB) about Q. Proceeding as for
the one-electron integrals discussed in Appendix 4,
one obtains for the special case n = n' = 0
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f) (r&)P) (r&) = e
*' Q Q D( ' (PA)

0=—l o'= —l

as for the nuclear attraction integrals. The result of
so doing can be cast in the form

(AZmBE'm'l Cl"m"Dl"'m'") = e
*' **

l+l' l "+l"' I &-,'(1+l'—a) &-,'(l "+l"'—r ')

l+ o l'+ o'
X . .i, z, Ci',"; P;(,„')) i, .. .(r,).J o ji o'

(89)

A corresponding expression may be written for the
second electron.

We next transform the expression of Eq. (89) to
the P' coordinate system, and transform the corre-
sponding expression for the second electron to the Q'

system. This set of transformations leads to the
standard form in which we shall express the two-
electron integrals. We may write the result of the
transformations just described in the form

(AlmBE'm']Cl"m"D2"'m"') = e
*' *'

l l llP l
11/

X Q Q Q Q D7' (PA)D) ' (PB)

l l l

xD",-' "(Qc)D",-" (QD) Z Z Z
~=I~I ~''-lr'l ~."-le"

l

, ...~...„(.„)(.„),...)
—CB2

' ' l O- t l' 0-'

lii + it) liii +x .
„„ I .„,'„,3 g gc:;,'c:,', -

a I g o

Z D" " "(P'P)D" ' '"(Q'Q)

ls 0 k ' 0 rN +Is q aaQp

X Vt,
"' "

(PA,PB,P'P, a,b,R„)
y~p

X (QC, QD, Q'Q, c,d, R,) X X, , i, , i. (u, v, R) . (42)

L'-l M l

A xi, ,x'F J.„(x), L&L' (48)

u)bere A J.I. , is given by the same expression as for the

overlap integral, namely, Eq. (24). For L' &~ L,

XI,I, (u,viR) = (—1) Xp g(v, u)R) . (44)

Nonzero X and X' values are obtained from

N N
M

XNz)('I, '(u, v, R) = Xl r '(uivrR)

(45)

thus, completing the specification of the two-electron
integrals for n = n' = n" = n"' = 0. The most gen-
eral case is reached by the formula

(AnlmBn'l'm'l Cn"l"m"Dn"'l"'m'")

We have been able to obtain a general explicit
formula for XNMLN L when N = X' = 0. Then, as
shown in Appendix 5,

5 I

X '(urB = ), i )

MX X &(i+i" )),(, ;(r "+&"' a'), i '(u, v—,-R), -

where k is the smaller of )(: and k' and

(40) X (AlmBl'm'l Cl"m"Dl"'m"') .
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(46)

X Ql)r j (uiviR)
2N+L 2N +L

drpydr()2 rp) Pp (cos cps)r()2
~12

X PM ( gi )
—rrp rr +iM(p -q-i )
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APPENDIX 1. EULERIAN ANGLES

We use a right-handed coordinate system, such
that a counterclockwise rotation by an angle m-/2
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about the z axis" carries the positive z axis into the
position originally occupied by the positive y axis.
Then the Eulerian angles (n,p, y) describe the follow-

ing ordered operations on a set of coordinate axes:
(1) rotation by an angle n counterclockwise about
the new z axis, (2) rotation by an angle P, 0 ~& P ~& s
counterclockwise about the new y axis, (3) rotation
by an angle y counterclockwise about the new z axis.

In the text we have introduced the notation
(ctpA PpA ppA) to signify the rotation which carries
axes denoted by (nA, PA, yA) into the system denoted
by (up, pp, pp). By straightforward trigonometric
manipulations, one finds

cos pPA —cos pA cos pp + sin pA sin pp cos (ctp (1A),

(47a)

COS PA Sill PPcos g Sln PPA
(47g')

It ShOuld be nOted that (cepA pPA +PA) W (OtAP pAP,

yAP), but that

~AP ~ +PA )

AP PA )

'yAP —r —0!PA .

(49a)

(49b)

(49c)

APPENDIX 2. SPHERICAL HARMONICS, JACOBI
POLYNOMIALS, AND ROTATION REPRESENTATIONS

The associated I egendre functions defined in Eq.
(7) of the main text are orthogonal, and normalized
so that

where

cipA yA + (47b)
Expansion of the product of two Legendre functions
leads to the formula"

sin pp sin (np clA)sine =
Sill PPA

—Cos pp + COS pA Cos ppAcos8 =—
sin pA sin ppA

+PA PP g )

(47C)

(47d)

(47e)

Pi (t)PF (t) = Q; C™ZP, =(t),
where the coeKcient C,",

1

'
is specified by

(2j + 1) (l + m)!(—1)' '
(2g —2l)!g!

(g - j) (g —l)!(g —l')!(2g+».

(51)

where

sin pA sin (esp —nA)
Sill X =-

)sin pA
(47f)

(-1)'(l'+ m'+ a)!(j+ l —m' —a)!
(l' —m' —a)!(j —l + m'+ a)!(l —m —a)!s!'

m' &~ m )~ 0. (52)

cos+ = COS PA —COS Pp COS PPA
( )sin pp sin p PA

0!PA = AP —A'A ) (48a)

+PA PP PA ~

If PpA 0 0 or s-, but sin PA or sin Pp
——0, Eqs. (47d)

and (47g) may be modified by substitution of Eq.
(47a) which in this special case becomes

The result is

Cos PPA —COS PA COS PP .

Specification of the range 0 ~( PpA ~& z insures that
Eq. (47a) is single valued in PPA.

Equations (47) are not properly defined for certain
values of the angles. If PPA

——0 or m, one may use in

place of Eqs. (47b) and (47e):

The sum over a in Eq. (52) is to be over all values
such that the factorials are well de6ned, and

g = -,'(l + l'+ j).These coefFicients vanish unless g
is an integer or zero, and j satisfies the relations
Im —m'I ~( j an.d fl —l'f ~( j ~( Il + l'I. As indi-
cated, Eq. (52) only applies for values m' &~ m &~ 0.
Extension of the definition to other values of m and
m' are provided by the following formulas, derivable
from the definition of Eq. (7) and consideration of
the integral relation to be cited below.

m'& m& 0

2j+1 (l'+ Im'I)!() - Im'+mf)!
2V + 1 (l' —

I

m'
I
)!(j+ I

m' + m
I )!

X C7'I,
"'" m' &~ m &~ 0. (54)

Equation (51), when applied to the integration of
products of three associated Legendre functions, leads
to

Sill PA Cos PPcose = ——
sin ppA

(47d') 1

P," "(t)P, (t)P, (t)dt

'-"The sense of all rotations described here is to be deter-
mined while looking toward the origin of the axial system from
a point in the positive direction along the axis of rotation.

I3 K. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951), p.
176.
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(j+ lm —m'l)! l/

(j —Im —m'l)l &2j+ 1

The associated Legendre functions satisfy various
recursion formulas, which prove to be extremely use-
ful in the developments of the later Appendices. In a
form consistent with the definition, Eq. (7), the
formulas we used are"

(1 —t ) d
P", (t) = —ZtP", (t) + (Z + lml)P", , (t),

(56)

(Z —lml + 1)P&+,(t) —(2Z + 1)tP~ (t)
+ (Z+ lml)P, , (t) = 0, (57)

d(t)..=( """+ "(1—t)™~2"
(Z + c)!

X (1+ t)™~'2PI".™~(t),m, a & 0.
The Jacobi polynomial P'. ~' (t) is defined as

P.'"(t) = (.
,
' (1 —t) (1+ t) '

The Jacobi polynomials and the associated Legendre
functions are related by the formula

p () ( 1) (Z+ m)!
( 2) /, (, )()

m & 0 . (62)

Many formulas relating to the d', can be derived
from Eq. (60). Some of these formulas are

(1 t)(r )/2(1 m+
—])(s+m)/2

4Z'(t) .= .. ., , a&m&0
2 jar —mb)

(63)
i4W. Magnus and F. Oberhettinger, Special Functions of

3fathematical Physics (Chelsea Publishing Company, New
York, 1949), Chap. 4.

~5 For a general discussion of Jacobi polynomials see Bate-
xnan Manuscript Project, Higher Transcendental Functions
(McGraw-Eiill Book Company, Inc. , New York, 1953), Vol.
2, pp. 168 6.

P~-~+~(t) = (2lml + 1)tP~ ! (t) . (58)

For initiating the use of the above formulas, it is con-
venient to use the result

P~-~(t) = (—1)"(2lml —1)!!(1—t') ""
(59)

Upon rotation of the coordinate system, spherical
harmonics transform as indicated in Eqs. (8) and

(9). The representation coefficients of Eq. (9b) can
also be written in terms of Sacobi polynomials, " a
form which facilitates study of the relations among
coefficients of different indices.

dm(t) ( j ( m).
(1 )(m r)/2(1 + )(m+g)/2

)

(Z+c + 1)(Z m+ 1)
(Z+ 1)

m)~o &~0 (64)

cpm ( ~)
jme g +

l

l jjj-
2

X P," (cos 8')e™. (66)

Equation (66) which is apparently not as widely

known as the corresponding formulas for rotations,
proves to be most useful in the work described in the
later Appendices.

Finally, we make the observation useful in the
later Appendices, that the Green's function expansion
in spherical coordinates takes the form, consistent
with the associated Legendre function definitions of

Eq (7),"

i
Pi (cos 84)Pi (cos 02)

1
"

(Z
—m)!

rl r2 l 0 —l m=

t m (0'2 94)X t' Z+1.
r+

(67)

is K. W. Hobson, The Theort/ cf Spherical and ELlipsoidal
Harmonics (Cambridge University Press, New York, 1931),
pp. 139 ff.

» P. M. Morse and H. Feshbach, reference 11, p. 1274.

mcT z t —0 l m

Z(Z+ 1) '
Z

X4Z' '(t)..= 0, Z
—1& m, a& 0. (65)

Starting from either Eq. (68) or (64), repeated ap-
plication of Eq. (65) enables generation of all d„'., for
m, a &~ 0. For the special cases l = m or / = 0, Eq.
(65) can be used if d".' and d'. ' are defined as zero.
Values of d', for negative m and 0. can be related to
values for positive m and c by considering the effect
of changing variables in Eq. (8) from q to —

ip, or
from y' to —y', with corresponding changes in cr, P,
and y so as to maintain the same physical content.
The results of these considerations are expressed in

Eq. (9c).
In addition to discussing the transformation of

spherical harmonics upon axial rotations, one may
consider the effect of translation of the origin of a
spherical harmonic expansion. In particular, a solid

spherical harmonic in coordinates (r,8,q) may be ex-
pressed in coordinates (r', 0', 4p') about an axial system
translated without rotation a distance t from the un-

primed system along the polar direction 0 = 0":
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APPENDIX 3. SPECIAL FUNCTIONS

The function A„(t)defined in Eq. (18) of the main
text is most conveniently generated by the recursion
formula"

A. (t) = (n/t)A. (t) + A (t) (68)

together with the initial value Ao(t) = e '/t. The
function F„(t)is closely related to A„*,(t), as may be
seen by making the substitution u = a' in the for-
mula of Eq. (19), giving an expression differing from
A. ; only in the limits of integration. By a partial
integration, it is possible to show that F„(t)satisfies
a recursion formula quite similar to Eq. (68),

F.(t) = [(n ——',)/tjF. (t) —-', Ao(t) . (69)

Equation (69) may be conveniently applied to pro-
ceed to F. from values of Fo. Fo is the function intro-
duced by Boys' in the form

where we have used in the exponent the relation

arA + brB (a + b)pp + a'A + b4B

=(a+b)p+a a+ ~)
2 bB,

a b

(
aa)'

2

= (a+ b)(p', +,', ) +
= (a + b)rp + xi .

The integral over the associated Legendre functions
vanishes unless j = j, in which case it has the value

given in Eq. (50). Identifying"

(2 ' w yltt

0

we obtain

F.(t) = t (70)

which may be evaluated from tables or by methods
of computation suitable for the error function.

By diA'erentiation of the formulas Eqs. (18) and

(19), one sees that advancement of the index corre-
sponds to derivatives in the sense that

Ao(t) = (—1) A (t)(
d

(—F (t) = (-1)F.(t)
dt

(71)

(72)

APPENDIX 4. ONE-ELECTRON INTEGRALS

The integration of S&& of Eq. (22) is conveniently
performed in a coordinate system centered at the
point P of Eq. (12a), with the axial orientation
given by Eqs. (16).Using the expansion of Eq. (66),
we write ref(cos 8&') in terms of solid spherical
harmonics about P, which is a distance lP —Al
= bR/(a + b) along the polar axis of the A' axial
system. In a similar manner, we write r~P& (cos 8'p) in
terms of solid spherical harmonics about P, which is a
distance —lP —Bl = —aB&/(a+ b) along the polar
axis of the 8' system. The result of these substitu-
tions, forn+ n' = Ois

(75)

which, upon setting A; = t' —j, can be converted to
the form of Eqs. (23) and (24). The upper limit L of
the sum over j is the lesser of l and t', and enters the
problem through the orthogonality condition on the
associated Legendre functions.

The integral J«"' of Eq. (80) may be evaluated by
methods quite similar to those just employed for 8«'.
Writing the solid spherical harmonics in coordinates
centered at P, using Eq. (66), and introducing the
Green's function expansion, Eq. (67), for the quan-

tity 1/rc, it is possible to bring Eq. (30) to the form

.I

X dr~r~"" „,exp[ —(a ~ b)r„'],
0 f+

(76)

&& P,'( cosg)rP,"( eos8-) dr&rV'+'exp[ —(a+b)r„'],
0

where C„,', defined in Eq. (52), enters through the
integration of the product of three associated
Legendre functions. The sum over k in Eq. (76) is to
include all values for which C„,'

does not vanish, and

8 W. Magnus and F. Oberhettinger, reference 14, Chap. 1.
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Changing variables to p = -', k[(u + v)/uv]~,

q = t[uv/(u + v)]'* + (k/2) [(u + v)/uv]', and intro-
ducing x = uvR'/(u + v),

M M 2——X« ——X,g {r,I,BQ
(92)

where the zPI and r1 factors in the integrals arise from+ e the excess powers of ri after use of Eq. (57).
Differentiation of XMLL with respect to u leads to

where

M 2~'[(2M —1)!!]
MM

( + )~ g XM! (85)

QO q 1 1 1 1
7 2 Mr' 2px —(q+a ) i —2' —(q—z )

0

(86)

M !!a ~ 2~ ! (2M) (2M —1)
dq8 q gM —1x p 4x

Integrating XM by parts twice with respect to p,
one obtains the recursion formula

while differentiation with respect to P, (in the P
axial system) leads to an expression for X~«'{z»]. In
passing, we observe that this differentiation with re-
spect to I', is the same process as that needed to pass
from Eq. (37) to Eqs. (38) in the discussion of the
nuclear attraction integrals. To carry out the differ-
entiation, we use the relations Br,/BP, = —z»/r, ,
8 eos 0&/8P. = (eos'8, —1)/r„and Eq. (56). These
considerations lead to

BX«, /BP, = 2uXI. I. {z»] —(L + M)XI, , ~,
L —1 &~ 3f .

M!e '
(2M —

1) Introducing Eqs. (92) and (93) into Eq. (91),
(87)

By comparison with Eq. (69), we see that x~/M!
satisfies the same recursion formula as does Fi!!(x).
Since

(
—(e-*'i —(s+* i ) p

2$ Q

we have in general x~(x) = 3' I 7~(x), and
I2~' 1~ M M —

x. + M h$0+M (x)uvu+v'uv
(2M )!(2M —1)!!~ MMQ

2 M

in accord with Eq. (43).
The next step in the inductive demonstration of

the formula for XLML is the application of recursion
formulas to advance the lower indices from 3f to L
and L'. The subsequent work can be expressed more
concisely if we introduce a symbolic notation

(L M + 1)XI y, z'

2L 1 9JLL

(L+ M)
I 1,I—

L —1& M. (94)

Equation (94) does not hold for L = M. Using Eq.
(58) and the methods employed immediately above,
one may show

2M+1 BX"
M+1 L 2 ~P (95)

(L 3I + l)Xg, l, '

= (
' ') ', "'+ (v+!!I!x.". ,

The corresponding formulas for advancement of
the second index are obtainable by similar methods.
They are

Xii U'(r~, r2) ]
M

+ (I'+ M) L' —1 & 3f (96)

—ur, ~—~r, ~+i M(ys —y, ) (9o)

L M L M
dridr2f(ri, 12) ry PI. (cos e&)r2 Pz, '(eos!92)

~12
XM 2M + 1 BXI.,~

L M+1 2 ~q (97)

where f(r, ,r,) may be any function of the indicated
variables.

Substituting the recursion formula, Eq. (57), for
P~~(cos 9,), Eq. (41) for X~I.i leads to

(I —M + 1)Xi,&, g
——(2L + 1)Xii'{~»]

—(I + 3II)XL, i, i, {r,],
L —1 &~ M (91)

YVe now carry out the inductive process by substi-
tuting Eq. (43) into Eqs. (94)—(97), confirming its
validity for arbitrary values of L and L'. With Eq.
(89) for X~~~, these steps complete a proof of Eq.
(43).

In using Eqs. (94)—(97), it is found that the de-
sired verification is by no means immediate. We be-
gin by remarking that 8/BQ. = —8/BP, = 8/BR,
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and Fi(x) = —F&+&(x). It is, in addition, necessary
to make rearrangements involving the functions
Fs(x) so as to cause them to appear multiplied by
suitable powers of x. The basic technique involved is
the multiple application of Eq. (69), to lead to
identities such as

2x'+'F&+;(x) —(2t + 2j —l)x'Fi+; i(x)

= 2x'+'F&+;+, (x) —(2t + 2j + 1)x'F&+;(x) . (98)

The actual work, though tedious, is straightforward
if the above considerations are kept in mind.
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Polynomial Orthogonality and Integration Quadratures
TrzN CHr CHzN

DeveLopment Laboratory, Data Systems Division,

Internationat Business Machines Corporation, Poughlceepsie, ¹w York'

1. INTRODUCTION

)~)UADR&TURE i~teg~ation formulas, when used

Q with polynomials, link together two kinds of
orthogonal properties: orthogonality in the sense of
integration on the one hand, and orthogonality in the
sense of summation on the other. The interrelation-
ships can be exploited towards the solution of eigen-
value problems in quantum theory.

Polynomials ig, (x) and p (x), of degrees k and rn,

respectively, are orthogonal in the sense of integra-
tion (or briefly integration-orthogonal) over (a,b) for
the weight function w(x), if

w(x)qs(x)p (x)ctx = Asks„,As ) 0. (1)

We restrict ourselves in the choices of (a,b) and w(x)
to the cases where a complete set of I ps(x) } can be so
de6ned.

The same polynomials would be termed orthogonal
in the sense of summation (or briefly summation-
orthogonal) over the n abscissas (x;} for the n
weights IW;} if

n—1

Q W;g, (x;)p (x;) = Asks„,'As ) 0 (2)
i=0

holds. Many properties of the orthogonal polynomials
are well established. ' Of particular interest to nu-

merical computation are
(a) the least-squares properties of orthogonal ex-

pansions of either kind;

& See, for example, G. Szego, OrthogonaL PoLynomiala
(American Mathematical Society, New York, 1959); also A.
Erdelyi, W. Magnus, F. Oberhettinger, and F. O. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Com-
pany, Inc. , New York, 1953), Chap. X.

(b) Gaussian quadrature integration formulas
based on interpolation of the integrand at zeros of
integration-orthogonal polynomials. The n-point
quadrature formula has a degree of precision' of

p = 2n —1—twice as large as corresponding New-
ton —Cotes formulas.

2. SUMMATION-ORTHOGONALITY THROUGH

QUADRATURE S
%e first observe that the Legendre polynomials

Ps(x), P„(x),which are characterized by integration-
orthogonal relationships [over (—1, +1) for w(x)
= 1], are, for k + m & 8, nevertheless, summation-
orthogonal over Ix, } = —1, 0, +1 for IW;} = lj8,
4/8, and 1j8, respectively. These abscissas and
weights are precisely those used in Simpson's rule,
whose degree of precision is 3.

This is not surprising since quadrature integration
formulas serve as a bridge between an integral and a
finite sum.

Theorem. Given an n-point quadrature formula of
degree of precision p over (a,b) for w(x). If ps(x) and.

q „(x)are integration-orthogonal in the same sense
and, further, k + m & p, then these polynomials are
also summation-orthogonal over the abscissas and
weights specified by the quadrature formula.

Proof. Clearly q»(x)y„(x) is a polynomial of de-
gree k + m & p. Hence,

A&8g —— w(x)ys(x)y (x)dx

= Q Wf;gi(x;)qc,.(xi;) . Q.E.D.
i=-0

2 The degree of precision of a formula is the maximum de-
gree of an otherwise arbitrary polynomial integrand for which
the formula is exact.


