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I. INTRODUCTION

1&HE purpose of this paper is to describe several
l digital computer programs that have turned out

to be extremely useful in applications to atomic and
molecular physics. The whole set of these programs
could be rewritten by an experienced programmer in
less than half a year, working from the information
given here.

These programs carry out some of the crucial com-
putational processes in a general procedure for solv-
ing the many-electron Schrodinger equation for
atoms and molecules. There are three relatively inde-
pendent stages of calculation:

Stage A: choice of some finite set of basis orbitals
and evaluation of all one- and two-electron integrals
over this set for operators in the many-electron
Hamiltonian. In Sec. II the simplest program of this
kind is described —it computes one-center integrals
for general atomic orbitals of the exponential class.
General programs for two-center integrals are much
more complicated, and cannot be produced except as
a separate major research project. The only workable
methods for multicenter integrals at present appear
to be those using Gaussian basis orbitals, originally
proposed by Boys.' Analysis needed for an eKcient
Gaussian program is presented by Harris in an ac-
companying paper. '

Stage B:matrix Hartree —Fock calculation, in the
basis of orbitals chosen in Stage A. The program de-
scribed in Sec. III carries out calculations by the un-
restricted Hartree —Fock method or by the truncated
Hartree —Fock method (method of symmetry and
equivalence restrictions') in open-shell configurations.
The truncated method diA'ers in some cases from the
traditional Hartree —Pock method, ' but it has the ad-
vantage of simplicity of programming, and no case
has yet been found in which the results are signifi-

r S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
~ F. E. Harris, Rev. Mod. Phys. 35, 558 (1963).
3R. E. Nesbet, Ph. D. Dissertation, University of Cam-

bridge, 1954 (unpublished); Proc. Roy. Soc. (London) A230,
;We (1955).

~ R. K. Nesbet, Rev. Mod. Phys. 33, 28 (1961).

cantly different from the traditional method. '
Stage C: configuration interaction. Such a wide

range of methods are available here, and there is so
little useful experience with adequate computations,
that it would be premature to prescribe a definite
procedure. In most methods, the one- and two-elec-
tron integrals must be transformed to the basis of
orthonormal Hartree —Pock orbitals. A general pro-
gram for doing this is described in Sec. IV. It is rela-
tively easy, given the transformed two-electron in-
tegrals, to carry out an extensive survey of correla-
tion effects, using second-order perturbation theory
after removing degeneracies or near degeneracies. ' '
The bulk of the effort in such a computation goes into
transforming the two-electron integrals.

(Q~ab) = dr, g,*(1.)Q(l)gg(1), (2)

(ab~cd) = dr, drsr).*(1)ri~(l) (1/r, s)r), (2)r)~(2) . (3)

The operator Q is either ——,
' p', 1/r, or unity.

The program requires, for each different value of Lt',

lists of A, e. for the basis orbitals. Output (to auxili-

ary memory for use by later programs) consists for
the one-electron operators of strings of matrices writ-
ten as linear arrays. The matrices are symmetrical, so
for each / value in increasing order there is a lower

s R. K. Nesbet and R. E. Watson, Ann. Phys. (N. Y.) 9,
260 (1960).Di6'erent variants of the Hartree-Fock method are
compared for the 2S ground state of I.i.

s R. K. Nesbet, J. Chem. Phys. 32, 1114(1960).
& The formulas used here are due to 8. F. Boys, Proc. Roy.

Soc. (London) A201, 125 (1950), programmed for the EDSAC
I by S. F. Boys and V. K. Price. The program described here
was written for Whirlwind II at MIT by R. K. Nesbet,
Quarterly Progress Report, Solid State and Molecular Theory
Group, MIT, April 15, 1955, p. 38. This program was recoded
for the IBM 704 by R, E. AVatsoII.

II. ATOMIC INTEGRALS7

By including enough basis orbitals from the class

~. = X.r"'" exp (—e.r) I'(l.,m. ;e,y), (1)
where A is an integer, z. is any positive number, and
Y is a normalized spherical harmonic, it is possible to
obtain atomic wave functions of arbitrary accuracy.

It is necessary to compute all integrals of the form
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(3II + 1)! 1("~"'= ~yS+I-r)~ ~"
X T(P + Q+ 3 —r,u+ v)

(Q+ 1)l 1

.=o (X+ 1 —s)! v'"'

X T(P+ Q+ 3 —s,u+ v), (9)

r,'dr, B.(1)Jt,'g(1)(c6~cd) = redry

X (r&/r& )8 (2)R(2)
where

B.(1) = X.r"+" exp (—z.r)

triangular list, in order 11, 21, 22, 31, etc. The two- malization constants, by
electron integrals can be expressed in terms of

is a normalized radial function, and r&, r& are, re-
spectively, the greater and lesser of r1, r~.

Given l., 2&, E., la there are, in general, several inde-

pendent integrals (ah~cd)' with different values of k.
The conditions to be satisfied are ~l. —

lb~ & k & l.
+ l„ fl, —f„/ & k & l„+ l„ l. + E& + k even,
l, + ls + k even. Each block of integrals with fixed

Z, Z&, Z., l& is computed and stored separately, with the
integrals in each block in the canonical sequence of
increasing "numbers" (a 6 c d), where a & 6, c & d,

(a6) & (cd), with all indices c considered to greater
than all indices 6 if Z. ) Z6, etc. Thus, within the

(as~ ss)' block the order is lais~ Isis, 2sls~ isis,
2sls~2sls, 2s2s~lsls, etc. Within the (ds pp)' block
the order is ldls~lplp, ldls~2plp, ldls 2p2p,
Id2s~1plp, Id2s~2plp, etc. I&'or convenience, the con-
vention l. & Z&, l, & l~, (L.l~) & (E.4) is maintained.
When several values of k occur, the integrals (ab!cd)"
are stored together (in order of increasing k in the
current 704/7090 program). The integral blocks
needed for Hartree —Fock calculations are themselves

arranged in a canonical sequence, described in Sec.
III.

Define the function T(x,y) =—x!/y*+' by the recur-
rence formula

T(0,y) = I/y,

T(x + I,V) = )(x + I)/t/Ã(x, V) (»
Then integrals of type (Q~ab) are given, except for
normalization constants, by

(Iiab) = T(A + 8 + 2l + 2,z. + zb),

—lab = T(A + 8 + 2l + l,z,. + z,),r

(——,"7'iab)

z.z~T(A + 8 + 2l + 2,z. + zs)

—(Az~ + Bz.)T (A + 8 + 2l + I,z. + zg)

+ ABT(A + 8 + 2l,z. + zb)

where Z„= Zf,
——l.

Integrals of type (cb~cd)" are given, except for nor-

VM(0, u) = I/u,
V (r P I,u) = [(M —r)/u]V„(r, ti) . (11)

The computer program consists of subroutines for
recurrence formulas (7) and (11),together with a sub-

routine which counts through all independent com-
binations of indices a, 6, c, d taking account of the
selection rules on Z., etc. The normalization constants

¹

= (liaa)
' (12)

are computed in a separate initial cycle. The one-
electron integrals are multiplied by X.X& and the
two-electron integrals by X.Xf,X,X& as they are com-
puted.

III. MATRIX HARTREE-FOCK METHOD8

The technique used is a straightforward generaliza-
tion of Roothaan's closed-shell method. ' A computer
program for Roothaan's method written by Meckler
for Whirlwind II"was a valuable source of ideas for
utilizing auxiliary memory and for the use of the

s The main SCF program (iterative matrix method incor-
porating the truncated Hartree —Fock. method for general open
shell systems) was originally programmed for EDSAC I by
R. K. Nesbet, Ph. D. dissertation, University of Cambridge
(1954). The SCF program was recoded for Whirlwind II at
MIT by R. E. Nesbet, Quarterly Progress Report, Solid State
and Molecular Theory Group, MIT, October 15, 1955, p. 4,
with some major modifications in technique. This program
was recoded for the IBM 704j7090 at the National Bureau of
Standards by A. Beam, P. Walsh, and J. D. Waggoner under
the supervision of E. Haynesworth. The A matrix program
was originally programmed for Whirlwind II by R. K. Nesbet,
Summary Report No. 42, Project Whirlwind, Digital Com-
puter Laboratory, MIT, April —June, 1955. This program (in
the version used for current, work) was recoded for the IBM
704j7090 by R. K. Nesbet.

s C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
» A. Meclder, Quarterly Progress Report, Solid State and

Molecular Theory Group, MIT, July 15, 1953, p. 46 and Jan.
15, 1955, p. 36.

cV = P —k,P = A + 8 + I. + lb, u = z. + zg,

V =- Q —kQ =(;+8+!,+lgv =z, +z~.
(10)

Equation (9) can be written in the form Q, V~r(r, u)
T( ) where Vir is defined by the recurrence formula,



554 8,. E. NESBF.T

density matrix rather than the individual orbitals in a
convergence criterion.

The matrix unrestricted Hartree —I'ock equations in
canonical form' are

g [(X.lab) —e, (llab)]x„= O,i = 1, ,3I, (18)
b=l

where

N M M

(se.~ab) = (Z~ab) + g g g &„.&„g(ab~,d)
i=--1 c=1 d= 1

where

B(ab~cd) = (ab~cd) —(ac~bd) (15)

in the notation of Eq. (8), and K is the one-electron
operator in the original many-electron Hamiltonian.
There are 3I basis orbitals q. and X occupied self-
consistent orbitals out of the 3ffold orthonormal set

species p are occupied, these will be denoted by dif-
ferent values of the index P. Thus, for the '8 state of
Li, configuration 18'28, 3fii ——-'„P has two values,
with 1~i = l = 0, p(l) = [(mi,m.) } = [(0,-', ), (0,——,')],
i(1) = jn} = [1];and 4 = l = 0, ii(2) = [(0,—',)],
i(2) = [2]. In the unrestricted Hartree —Fock method,

P for this example would also have two values but
with a different meaning. Since the state is spherically
symmetrical, It is still a good quantum number, but
m, subspecies are split (spin polarized), so for the
two values of index P, X&

——l = 0, p(1) = [(0,2)],
i(1) = [1,2];4 = l = o, ~(2) = [(o,——.)l, i(2) = [1].
Strictly speaking, in this last example, X has become
the index pair (l,m, ) and the symmetry species are
not degenerate in m, . The group of 3C& is the spatial
rotation group with no spin symmetry.

This analysis makes it possible to write the second
term of Eq. (14) in the simplified form

All coeKcients and matrix elements can be assumed
to be real, and the operators are assumed to be
Hermitian. The basis orbitals are, in general, not
orthonormal.

In the truncated Hartree —Fock method, ' ' coe%-
cients x.; vanish unless p; and g. belong to the same
symmetry species X (e.g. , l for spherical symmetry,
I 8coupling) and—subspecies p (e.g. , mi, m, ), with
respect to the symmetry group used to define shell
structure. Moreover, the coeKcients are the same for
all orbitals @;(Xp) with the same indices (8) [e.g. ,
(nl) in I 8 coupling], independent of the subspecies
index p. Thus, Eqs. (18) are solved for only one sub-
species po for each species ), or more generally, the
equation solved is a weighted average over the difer-
ent subspecies. ' Thus, in Eq. (14), indices a and b re-
fer to orbitals with a common value of ), say, ), and
a fixed subspecies index po(X ). Indices c and d also
refer to orbitals with a common value of X, say, ) p,

but there will be contributions from all of the differ-
ent subspecies p, p that represent occupied orbitals of
the set (9,p).

When there are several occupied shells (different
indicesi) of orbitals of the same symmetry species Xp,

with the same shell structure in the sense that the oc-
cupied subspecies ii(iX) are the same, the set of such
shells will be denoted by index p. Thus, P determines
a symmetry species Xp, a set of subspecies ii(P), and a
set of orbital indices (principal quantum numbers)

i(P). If there are other sets of occupied orbitals of the
same symmetry species Xp but with diferent shell
structure in the sense that a different set of sub-

P B(ap, ,bp, icy, dp) . (17)
-e(p)

Since z.;x&; is symmetrical in indices (cd), the li! in-
tegrals can by symmetrized in these indices, and the
summation is carried out only over independent in-
dex pairs (cd), with the convention that c ) d (lower
triangle of a symmetric matrix). Quantities xvith in-
dices (cd) are stored in the computer in linear arrays
indexed by increasing values of (cd) for c ) d,
counted separately for each value of P. Note that
X(c) = X(d) = ),p always. With this convention, Eq.
(14) becomes

(Xo~ab) = (&~ab) + Q Q p (cd)A (ablcd), (18)
P (cd) p

where

p (cd) = Q (2 —fi„,)x„z„
'(P)

alld

A(ab~cd) = Q. [(aijo,biio~cii, dp) ——', (apo, cij~bp„dp)
w(P)

—-'- (a~.,dpi%. ,cp)] (20

The coding of Eq. (18) is trivial, since each element

(X,~ab) is obtained by adding to the fixed element

(K~ab) the scalar product of the variable "vector"
pP(cd) with the fixed "vector" AP(ab~cd), the (ab) row
of a supermatrix, summing on the "index" (cd). The
2 matrix can be stored in auxiliary memory and
brought into fast memory by block transfer, one row
at a time.

As initial data the 8CI&' program requires the fixed
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matrices (%lab) and (llab), the fixed supermatrix
A (abl cd), and an approximation to the variable mat-
rix p(cd). In each iterative cycle, (golub) is con-
structed from Eq. (18) and Eqs. (18) are solved. The
method used to deal with the overlap matrix (llab)
will be described below. Starting from an estimated
matrix p(cd) i" three cycles are carried out in suc-
cession to give

p(cd) "'

p( d)"',
p(ca)"',

a(cd)"'
A(cd)"', (21)

where 6(") = p(") —p&" '~. This gives an extrapolated
value for each matrix element

(~) (~}
p = p (28)

+os-t1) ann

(
+(m+2) am+a( a

which, when solved for e '" and substituted into Eq.
(28) gives Eq. (22).

The convergence criterion is

Q [A(cd)] ( crit, (24)

for some fixed criterion, usually 10-'.
Before the iterative process begins a Schmidt trans-

formation matrix (Mlab) is constructed from the
overlap matrix 8 = (1 lab), where M is a triangular
matrix that satisfies

ilISM" = /. (25)
» This is a standard method of converting a 6rst-order

iterative procedure into a second-order one. See D. R. Hartree,
numerical Analysis (Oxford University Press, New York,
1952), pp. 196—197. C. W. Scherr [J. Chem. Phys. 23, 569
(1955)]reported geometrical convergence in an LCAO calcula-
tion. The present author had noted such things as oscillatory
geometrical divergence in work on excited states of butadiene,
Proc. Roy. Soc. (London) A230, 322 (1955).

(~) (s) + (g(&))2y(g(&} g(8)) (22)

which is taken as p(cd) &'& for the next sequence of
three cycles, unless

l
6&"j(h"' — 6&'&)l becomes

larger than some fixed number, in which case p&"& is
estimated by pi'& + 6 &'~ for the particular element in

question.
This extrapolation process has been very satisfac-

tory in practice. It is, of course, an essential part of a
fully automatic computer program. The extrapola-
tion method is based on the observation that the
error in successive estimates of p(cd) tends to oscillate
or to increase or decrease geometrically. "All of these
cases are covered by the formula (with complex e)

A method has been devised by which 8 is replaced
element by element by 3I/ without the use of addi-
tional storage space, where 8 is a string of lower tri-
angles of symmetric matrices and 3II is a string of
triangular matrices. "

At each cycle of the iterative process, the matrix
K, of Eq. (18) is constructed and then transformed
into

Seo = ~3'.o~'',

whose eigenvectors y&; satisfy

(26)

Both Eqs. (26) and (28) can be coded to repla, ce the
transformed matrix or vectors element by element
without using additional working space. Transforma-
tions with a triangular matrix are, of course, more
rapid than transformations with a square matrix. It
should be noted that, the large supermatrix A (ab lcd)
is not transformed at any stage in the calculation—
this would be a very slow process compared with two-
or one-index transformations.

A special program is used to construct the 3 mat-
rix. In general, given indices 'A, ),p as defined above,
the summation over subspecies index p indicated in
Eq. (20) reduces to a formula that can be symbolized

by

(29)

where D'(X,Xp) is a "direct" integral from the blocl~

(X X l'ApXp), and X" is an "exchange" integral from
the block () Apl'A ) p), with terminology as in Sec. II.
The indices o. or a' have the same meaning as the
quantum number A: in Sec. II:In general, an integral
(ap. ,bpt, lcp. ,dp&) can be written as a, linear combina, -
tion of integrals (ablcd)', where o. indexes the linearly
independent integrals arising from all possible com-
binations of subspecies indices p., pb, etc. The co-
efIicients CD and C~ are obviously independent of the
individual orbital indices c, 6, c, d. They depend only

~2 R. K. Nesbet (to be published).
~3 Jacobi method subroutines written by F. J. Corbato have

been used in both the Whirlwind and IBM 704/7090 programs
described here.

Z (xolab)y„= e;y.;.
b=l

Highly eKcient standard computer programs" are
available for solving Eqs. (27). The eigenvectors of
Eq. (18) are computed by the transformation

x- = Z (M'labiy~. = Z (Mlba)ya;. (28)
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on the symmetry species indices X, Xp, and on the set
of subspecies indices p(P). They are obtained by
writing each of the integrals in Eq. (20) as a linear
combination of the independent parameters D or
X ', and then summing the coeKcients over the set
I (P)

The A-matrix program requires the C~, C~ co-
efBcients as input data. It then uses the canonical
sequence of two-electron integrals, described in Sec.
II, to construct the 2 matrix, using Eq. (29). The
direct and exchange integral blocks are themselves in
a canonical sequence, as follows:

(Arab IArAb)i (AsAblA2Ar)i (A2A2IAbA'l)y (A2A2IA2A2), etc. (30)

This is the sequence of symmetric pairs (A As), with

X(A„,A,) before D(A. ,A,).
IV. TRAlVSFORMATION OF INTEGRALSI4

The symmetric one-electron matrices (1
I cb),

(Klcb), and (X,, lcb) are transformed to the basis of
self-consistent orbitals @;by the SCF program, after
convergence is reached. In the unrestricted or closed
shell case, the Hartree —Fock energy is given by the
well-known formula

&- = —: 2 [(3'.I") + (&I ")]

The X0 matrix is constructed from the vectors ob-
tained in the last iteration and then contracted with
the same vectors, to ensure that Eq. (31) is an identity
independent of the extent to which the iterative
process has converged. 4

The transformation of two-electron integrals to the
basis of orthonormal self-consistent orbitals is a
much more tedious process, and it requires special
organization for efIiciency. Fortunately, only those
two-electron integrals required for a particular con-
figuration interaction calculation need be computed.

The transformation to be considered is

(zest t)' = g g g g ~.;~„*.»«(cbl«) . (32)

The integral (cblcd) is unchanged by interchanging
a and 6, by interchanging c and d, or by interchanging
(cb) and (cd), if by convention orbitals of different
symmetry species are counted in different sequences
(see Sec. II). Then from the symmetry of (cblcd),

(vlIi) = ZZ
(ab) &(cd)

{&aiZbj 8 &bi&aj} {Scb&dl 8 XdbXc b}

X (cb cd)8 {iciSdi 8 SdiZci j {+ab+bl 8 Xbb+al j

where

F(cb) 8 F(bc) = F(cc),
= F(cb) + F(bc)

and

F[cb,cd] 8 F[cd,cb]

= F[cb,cb], (cb) = (cd)

= F(cb,cd] + F[cd,cb] ', (cb) W (cd) . (34)

Here the index pairs are ordered by the rules

(cb) & (cd) if c & c or if c = c,b & d .

By convention, a, & 6 a,nd c & d always.
This establishes a simple ordering of the integrals

if by convention (cb) & (cd) always. Then (cbcd)
& (c'b'c'd') is similarly defined. When the ba, sis or-
bitals have symmetry properties that define a num-
ber of blocks of independent integrals, the standard
ordering of integrals is preserved within each block,
while the blocks are treated independently of each
other. Here a block of integrals is designated by the
series of symmetry species indices (A.Able, A&).

The coeKcients v.; of Eq. (16) vanish unless it; and

q. belong to the same symmetry species. The integrals
do not depend explicitly on subspecies indices, and
subspecies are assumed to be equivalent to each
other, i.e., x.; does not depend on subspecies. Thus,
the transformation is applied to the independent
quantities (cblcd), not to the integrals

(cp&'ibjzb I cubi djji)

For counting purposes orbitals are numbered
serially [counting only one orbital (zA) from the set
(iAlb), since subspecies are equivalent], with orbitals

& or po. p„, in symmetry species 0, orbitals
ri„+„b or p„. p„+„,in symmetry species 1.,

etc. Then the orbitals of symmetry species X have in-
dices running from

«4The program for transforming two-electron integrals is
based on unpublished work by S. F. Boys. The erst version of
the present program was written by R. K. Nesbet, Ph. D. dis-
sertation, University of Cambridge, 1954, subsequently re-
coded for Whirlwind II, Quarterly Progress Report, Solid
State and Molecular Theory Group, MIT, April 15, 1955, p.
41, and again recoded for the IBM 704/7090, in both cases by
H, . K. Nesbet.

8=0

through

cx + zzi

Hence a, single Mock of integrals is completely speci-
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fied by two sets of four numbers, (a b c d) and

(a b c d). These numbers determine the orbitals in
both (ij~kl) and (ab~cd)' by the conditions a & a,i
& a, etc.

The integral transforming program includes a
counting subroutine that performs the following op-
erations:

Given (a b c d) and (a 5 c d) and some ordered set
of four integers (a b c d), with a & a & a, etc. , replace
(a b c d), by the next bracket (a b c d),+& in sequence,
with indices in the same specified range. If (a b c d)
= a 6 c d, transfer control to a specified exit.

Another subroutine constructs the quantity

~ai+bi 8 +bi~aj

defined by Eq. (84). If the two indices i and j do not
refer to the same symmetry species the operation
is suppressed.

The transformation of Eq. (88) is broken up into
two stages. First a semitransformation is performed.

(ij~cd) '= Q Ix.;xg; 8 xi;x.(}(ab~cd)'
(ab) &(cd)

+ Q (x.;xg; g xs;x.;}(cd~ah)', (86)
(ab) &(cd)

if both index pairs (ij) and (kt) refer to the same two

symmetry species. Otherwise,

(ij~cd)' = Q [x.;x~, g xg;x.;}(ab~cd)'. (87)

Given (ij) the matrix (ij~ cd) is built up in fast mem-

ory The m. uch larger matrix (ab~cd) is read through

serially, by block transfers from auxiliary storage if
necessary, for each value of (ij). The four indices

(a b c d) are stepped up serially by the counting sub-

routine and are used to compute

fx.;x~; g xg;x.;}(ab~cd)'

Ix„x~; g xs;x„}(ah~cd)', (89)

which are the contributions of (ab~cd)' to (ij~cd)' and

(ij ab)', respectively. There is no contribution to
(ij ab) when (ij) and (kt) refer to different pairs of
symmetry species.

From (ij~cd) all integrals (ij~kt)' with (ij) & (kl}
are computed by the formula

(ij~kl)' = Q fx.st& 8 xp&x. &} (ij~cd)'. (40)
(cd)

When there are several different values of the in-
dex c (see See. III), basis integrals (ab~cd), (ab~cd)",

~ ~ ~ are stored consecutively, so the count through
(ab~ cd) is incremented by one to obtain transformed
blocks (ij~kt)' in order.

V. APPLICATIONS

The versatility of these programs can be seen from
a summary of work done with them. The programs
of Sees. III and IV have been used with many differ-
ent sources of integrals for different, purposes: for con-
figuration interaction calculations on atomic carbon
and CII4, with Gaussian basis orbitals"; for Pariser-
Parr calculations, with empirical parameters for the
basic integrals"; for diatomic molecular calculations,
with two-center integrals evaluated by a program
not described here"; by atomic hyperfine structure
calculations using the integral program of Sec. IFs;
for various other atomic calculations, with the same
integral program"; and for an approximate nuclear
Hartree —Fock calculation with integrals computed by
special FORTRAN programs. "The atomic integral
program of Sec. II is used as an auxiliary to all ab
initio molecular calculations, since it is necessary to
carry out atomic and molecular calculations of com-
parable accuracy to establish the asymptotic limit of
potential curves.

&5 See references 3 and 6.
is R. E.Nesbet, Proc. Roy. Soc. (London) A230, 322 (1955);
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i7 R. K. Nesbet, Rev. Mod. Phys. 32, 272 (1960); P.
Merryman, C. M. Moser, and R. E. Nesbet, J. Chem. Phys.
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H. Lefebvre-Brion and C. M. Moser; other published work
includes calculations on N2, LiH, Li2, HF, and HCl.

is R. K. Nesbet, Phys. Rev. 118, 68 (1960};more recent
work with these programs is reported in a series of papers by
N. Bessis, H. Lefebvre-Brion, and C. M. Moser.

R. E. Nesbet and R. E. Watson, Phys. Rev. 110, 107$
(1958}; Ann. Phys. (N. Y.) 9, 260 (1960); R. E. Watson,
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20 N. Ullah, Ph. D. dissertation, Boston Universityp 1962'
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